JP2004283060A - Culture medium for mat plant, granular culture medium for mat plant, and method for constructing greening using the medium - Google Patents

Culture medium for mat plant, granular culture medium for mat plant, and method for constructing greening using the medium Download PDF

Info

Publication number
JP2004283060A
JP2004283060A JP2003077897A JP2003077897A JP2004283060A JP 2004283060 A JP2004283060 A JP 2004283060A JP 2003077897 A JP2003077897 A JP 2003077897A JP 2003077897 A JP2003077897 A JP 2003077897A JP 2004283060 A JP2004283060 A JP 2004283060A
Authority
JP
Japan
Prior art keywords
medium
mat
weight
fertilizer
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003077897A
Other languages
Japanese (ja)
Inventor
Noriaki Harada
典明 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2003077897A priority Critical patent/JP2004283060A/en
Publication of JP2004283060A publication Critical patent/JP2004283060A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide culture medium for mat plants and granular culture medium for mat plants, enabling simplification/labor reduction in a method for constructing greening using mat plants; and to provide a method for constructing greening to which the culture medium or granular culture medium is applied. <P>SOLUTION: The method for constructing greening comprises using mat plants grown at the culture medium for mat plants comprising a slow-acting fertilizer and a water-retaining material and having 100-500 wt.% of maximum water content of the culture medium, or the granular culture medium obtained by integrating the mat plant into granules. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、マット植物を育成するための培地若しくは粒状培地及びこれらを用いた緑化施工方法に関する。
【0002】
【従来の技術】
地面を覆い尽くすような緑化に用いられる植物を「グランドカバープランツ(Ground Cover Plants 以下GCP)」と称し、タマリュウやフッキソウなどが代表的なGCPである。これらは、従来ポット苗で流通しており、定植する際は穴を掘って一定の間隔を空けて定植していたため、手間がかかり、植物が育つまで見栄えがしなく、また、隙間に雑草が生え管理が大変となる等といった問題があった。
そこで考え出されたのが、マット植物を利用する植栽方法であり、マット植物とは、薄い容器の中で植物を育成し、相互の根が絡み合った1枚のシート状にした植物であり、これを緑化したい場所へ敷き詰めることによって緑化が完成する。現在、マット化可能な植物としては、シモツケ、コトネスター、タイムなど20種以上の植物がマット化可能とされている。
【0003】
また、マット植物の育成に用いられる培土の一例としては、赤土:ピートモス:粉状パーライト=2:1:1の混合土が用いられ、薄い容器(例えば、25cm×25cm×4cmの2連のプラスチックトレイ)に培土を満たし、直接挿し木するか、セル成型トレイ等で予め繁殖した発根苗あるいは株分け株を定植している。植物の種類によってマット化に要するスピードが異なり、草本類は1、2ヶ月〜半年、木本類は1〜2年程度を必要であった。
これらのマット植物を用いた簡易屋上緑化工法の一例として、
施工場所に遮水シートを敷設する。
泥の流出を抑え排水を効率的に行うために、遮水シート上に化学繊維シート(ニードルパンチ等の不織布)を敷設する。
レンガボード、ブロック等で枠取りする。
防根シートを枠内部に敷き詰める。
水分調節基盤材を数cm敷き詰める。
基肥として緩効性化成肥料を施用する。
マット植物を置き、軽く転圧する。
灌水装置(タイマー、電磁弁、水中ポンプ、散水器具等)を設置する。
が考案されていた(以上、特許文献1、2、3、4及び5参照)。
【0004】
【特許文献1】
特公昭50−013163
【特許文献2】
特公昭63−063689
【特許文献3】
特開平05−304841
【特許文献4】
特開平07−016022
【特許文献5】
特開平11−168987
【0005】
【発明が解決しようとする課題】
しかしながら、マット植物用の培土としては、従来の鉢やプランター等の深底容器に用いられるような培土では吸水保水能力が低く、育成に必要な水分保持ができないため、灌水回数を増やすなどの対応が必要であった。
更に、マット植物を用いた簡易屋上緑化工法において、水分調節基盤材を敷き詰める(一部省略可)手間や基肥として緩効性化成肥料を施用する手間がかかり、マット植物単独の設置で緑化が完了するわけではなかった。
【0006】
【課題を解決するための手段】
本発明者は、前述の従来技術の問題点に鑑み、鋭意検討を重ねた。その結果、緩効性肥料と保水材を含有した培地において、培地の最大容水量が100〜500%であるマット植物用培地を用いて育成したマット植物を簡易屋上緑化工法に用いた場合には、水分調節基盤材の使用及び緩効性化成肥料の施用の省略が可能であり、マット植物単独設置による緑化が可能であることを見出し、この知見に基づいて本発明を完成した。
【0007】
本発明は以下の(1)〜(6)の構成からなる。
(1) 緩効性肥料と保水材を含有した培地であって、培地の最大容水量が100〜500%であるマット植物用培地。
【0008】
(2) 緩効性肥料が、化学的に溶解度が緩効性である化学合成緩効性窒素肥料、ク溶性りん酸肥料及びク溶性加里肥料より選ばれた少なくとも1種の肥料である(1)項に記載されたマット植物用培地。
【0009】
(3) 培地の電気伝導度(Electrical Conductivity、以下EC)が0.1〜2.0mS/cmであることを特徴とする(1)項若しくは(2)項に記載されたマット植物用培地。
【0010】
(4) 保水材が、植物性繊維材料、天然高分子及びその誘導体からなる群より選ばれた少なくとも1種を含有する保水材である(1)〜(3)の何れか1項に記載されたマット植物用培地。
【0011】
(5) (1)〜(4)項の何れか1項に記載されたマット植物用培地を粒状一体化したマット植物用粒状培地。
【0012】
(6) (1)〜(4)項の何れか1項に記載されたマット植物用培地または(5)項に記載されたマット植物用粒状培地を用いた緑化施工方法。
【0013】
【発明の実施の形態】
以下、本発明のマット植物用培地及び粒状培地について詳細に説明する。
本発明に用いられる緩効性肥料として、物理的に溶出速度を調整した緩効性肥料(即ち緩効性被覆肥料)や化学的に溶解度が緩効性である緩効性肥料を用いることができる。
【0014】
物理的に溶出速度を調整した緩効性肥料としては、窒素質肥料をポリオレフィン系樹脂または硫黄その他の被覆原料で被覆した被覆窒素肥料、カリ質肥料をポリオレフィン系樹脂または硫黄その他の被覆原料で被覆した被覆カリ肥料、及び化成肥料または液状複合肥料をポリオレフィン系樹脂または硫黄その他の被覆原料で被覆複合肥料等が挙げられる。
【0015】
また、化学的に溶解度が緩効性である緩効性肥料としては、化学合成緩効性窒素肥料、ク溶性りん酸肥料及びク溶性加里肥料等があり、例えば、化学合成緩効性窒素肥料としては、イソブチルアルデヒド縮合尿素(IBDU)、アセトアルデヒド縮合尿素(CDUまたはOMU)、ホルムアルデヒド加工尿素肥料、硫酸グアニル尿素及びオキサミド等が挙げられ、ク溶性リン酸肥料としては、りん鉱石(微粉末)、焼成りん肥、熔成りん肥、沈澱りん酸石灰、苦土過石(蛇紋過石)、フッ素アパタイト及びヒドロキシアパタイト等が挙げられ、ク溶性加里肥料としては、塩基性のカリウムまたはマグネシウム含有化合物及び微粉炭燃焼灰を混合して焼成した珪酸加里肥料等が挙げられる。
【0016】
前記何れの緩効性肥料も培地に含有させることは可能であるが、特に粒状一体化した粒状培地に含有させる場合は、造粒時に被覆膜が破壊され、所定の機能を果たせなくなる点から、物理的に溶出速度を調整した緩効性被覆肥料ではなく、化学的に溶解度が緩効性である緩効性肥料を用いることが好ましい。
【0017】
保水材としては、マット植物が育成するのに十分な水分を保持し得るものであれば何れの材料であっても使用することができる。具体的には、軽量かつ保水性に優れる植物性繊維材料や、天然高分子及びその誘導体を挙げることができる。
【0018】
植物性繊維材料としては、ピートモスやヤシガラ(ヤシの果皮から外果皮及び内果皮を除去し取り出された中果皮から更に剛長繊維及び中短繊維を取り出した残滓物=コイアダスト等)、樹皮、木材パルプ、もみ殻、大鋸屑等が挙げられる。
【0019】
天然高分子及びその誘導体としては、澱粉やカルボキシメチルセルロース等の天然高分子及びその誘導体等の天然資材が挙げられ、これらは、吸水特性に優れ、また、造粒時の結合材としての働きもあるため本発明に好適に用いられる。
【0020】
また、必要に応じて本発明の効果を妨げない範囲で保水材として土壌を用いてもよく、かかる土壌としては、沖積土、洪積土、火山性土、及び腐植土等の天然の土壌を挙げることができる。また、これらを熱等により殺菌した乾燥殺菌土を用いてもよい。このような殺菌土としては、赤玉土((株)ソイール製、赤土系殺菌土)や黒玉土((株)ソイール製、黒土系殺菌土)を挙げることができる。
【0021】
本発明のマット植物用培地または粒状培地は、緩効性肥料と保水材を必須成分とするが、本発明の効果を妨げない範囲であれば、それら必須成分以外の成分も添加することが可能である。その必須成分以外の成分として、例えば、バーミキュライト(焼成バーミキュライト)、パーライト、ゼオライト、ロックウール等の鉱物、製紙工場のソーダパルプ製造の廃棄物から造られる黒灰、籾殻、ヤシガラの内果皮(内殻)から造られる活性炭、木材屑から造られた活性炭等の炭化物などを挙げることができる。
【0022】
また、農薬活性成分を添加してもよく、該農薬成分としては、殺虫剤、殺菌剤、除草剤、抗ウィルス剤、及び作物生長調整剤、殺ダニ剤及び殺線虫剤等が挙げられ、その性状は、固体または液体のいずれであっても本発明に使用可能である。
【0023】
本発明の培地または粒状培地の最大容水量は100〜500%であることが好ましく、培地または粒状培地の最大容水量が100%未満の場合は、マット植物が育成するのに十分な保水力を得られず、最大容水量が500%を超えることは緩効性肥料と保水材を含有した培地または粒状培地において物理的に難しい。また、最大容水量は緩効性肥料と保水材の割合で調整可能であり、緩効性肥料の培地中または粒状培地中の含有率(固形分換算)は1〜60重量%の範囲で、保水材の培地中または粒状培地中の含有率(固形分換算)は40〜99重量%の範囲で調整可能である。
なお、最大容水量は以下の方法で測定することができる。
【0024】
[最大容水量の測定方法]
(1)図1のaで示される容水量目皿(外寸;φ56×H10mm、容積;25ml、大起理化工業(株)製)の重量(A)を計量する。
(2)上記容水量目皿と図1のbで示される容積重円筒(外寸;φ56×H40mm、容積;100ml、大起理化工業(株)製)を併せて、その中に試料をすり切れ一杯入れ蓋をする。
(3)山中式容積重測定器(大起理化工業(株)製)にセットし、それを5cmの高さから10秒間隔で6回落下させる。
(4)蓋とbを取り除いて、カッターナイフのようなものでaの上縁に沿って余分な試料をすり切る。
(5)深めのパットに水深2mm程度まで水を入れる。
(6)水を入れたパットにaを静かに入れる。
(7)試料の上面が水で潤ったら、さらに1時間放置する。パットの水位が下がったら水を補充する。
(8)パットからaの容水量目皿を取り出す。
(9)底部・側部に付着した水を軽くふき取り、直ちに重量(W)を計量する。
(10)恒温乾燥機に入れ105℃で24時間乾燥し、重量(S1)を計量する。
(11)W−S1=M、S1−A=Sより、最大容水量(%)=M/S*100
を算出する。
【0025】
また、本発明のマット植物用培地は撥水性防止効果や作業性の点から粒状に一体化して粒状培地とした方がより好ましく、更に培地構成原料の嵩比重差による分級を解消する点においても有効である。
【0026】
本発明のマット植物用粒状培地は、前述の必須成分、及び必要に応じその他の成分を混合、造粒することによって得られる。本発明においては、結合材を使用しなくても造粒可能な方法をとれるが、例えば、コーンスターチ、小麦澱粉、米澱粉、甘薯澱粉、馬鈴薯澱粉、及びタピオカ澱粉等の澱粉類、ベントナイト等のモンモリロナイト群の粘土系鉱物、二水石膏や半水石膏(焼石膏)、アルギン酸ナトリウムや寒天等の海藻抽出物、アラビアガムやトラガントガム等の作物性樹脂状粘着物、カルボキシメチルスターチやカルボキシメチルセルロ−ス等の天然高分子の誘導体、ポリビニルアルコールやポリアクリル酸ナトリウム等の合成高分子等、また、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、フラン樹脂等の熱硬化性樹脂を結合材として使用しても良い。
【0027】
本発明のマット植物用粒状培地は、如何なる方法で造粒されたものであっても良いが、せん断力及び/または圧縮力を加えることが可能な方法により造粒することが好ましい。せん断力及び/または圧縮力を加えることが可能な方法で造粒すれば、結合材を用いなくても、緩効性肥料と保水材、更に必要により上記必須成分以外の成分とを含有する培地を粒状化することが可能となるからである。
【0028】
本発明のマット植物用粒状培地を造粒する方法として、押出造粒法、圧縮造粒法、転動造粒法、噴霧乾燥造粒法、流動層造粒法、破砕造粒法、攪拌造粒法、及びコーティング造粒法等を挙げることができる。また、前述の、せん断力及び/または圧縮力を加えることが可能な方法としては、押出造粒法と圧縮・粉砕造粒法を挙げることができる。
【0029】
押出造粒法の具体例としては、スクリュー型である前押出式、横押出式、真空押出式及び前処理兼用式、ロール型であるディスクダイ式やリングダイ式、ブレード型であるバスケット式やオシレーティング式、自己成形型であるツインダイス式やギヤー式やシリンダー式、ラム型である連続式や断続式等が挙げられる。
【0030】
圧縮・粉砕造粒方式として具体的には、タブレッティング法とロールプレス法等が挙げられ、双方とも本発明に好ましく用いられるが、本発明においては、特に、せん断力と圧縮力の両方を同時に加えることが可能なロール型であるディスクダイ式やリングダイ式が好ましい。
【0031】
本発明のマット植物用粒状培地の形状は特に限定されるものではなく、球状、楕円球状、ペレット状、多面体状等のいずれであっても使用することができる。
【0032】
本発明のマット植物用粒状培地の粒径は、最長部分で、3〜15mmとすることが好ましく、3〜6mmとすることが更に好ましい。上記範囲を外れた場合、粒状培地と後述する他の資材とを併用する際に分級が生じる傾向がある。
【0033】
本発明のマット植物用培地または粒状培地の電気伝導度(EC)は、育成する対象植物の種類によってことなるが、0.1〜2.0mS/cmであることが好ましく、0.1mS/cm未満とすることは物理化学的に難しく、また、2.0mS/cmを超えるとマット植物の育成に障害を来たす恐れがある。尚、ECは以下の方法により測定した。
培地に対してその5倍に相当する水(容量比)を添加し、60分間振り混ぜた後、得られた懸濁液を測定液とする。デジタル式電気伝導度計((株)竹村電機製作所製、CM−50D)の電極を測定液に浸し、EC値を読み取る。
【0034】
本発明のマット植物用培地または粒状培地のpHは、育成する対象植物の種類によって異なるが、一般的にpHは4〜7であることが好ましい。本発明の効果を妨げない範囲でpH調整剤を添加して所定のpHに調整可能である。酸性側へのpH調整剤としては酸性資材を用い、例えば石膏、硫酸第一鉄、りん酸溶液などを挙げることができる。またアルカリ側へのpH調整剤としてはアルカリ資材を用い、例えば炭酸カルシウムや炭酸マグネシウムなどを挙げることができる。これらのpH調整剤は何れも水溶性成分であり、前述のECを高める作用があるため、使用に当たっては注意が必要である。
【0035】
本発明ではマット植物としては、GCPと称される植物が用いられるが、特にマット化可能植物として、例えば、木本類植物では、サワラ‘フィリフェラオーレア’・‘ゴールデンモップ’、ニオイヒバ‘テディ’・‘ラインゴールド’、ヌマヒノキ‘エリコイデス’、フッキソウ、チゴザサ、カムロザサ、レンギョウ、メギ、ヘデラ ヘリックスL、ニイタカビャクシン‘ブルーカペット’、アメリカハイビャクシン‘ウィルトニー’、ハイネズ‘ブルーパシフィック’、ツルマサキ‘エメラルドガイティ’・‘エメラルドゴールド’、アベリア‘エドワードゴーチャ’、ヒペリカム‘ヒデコート’、ロニセラ ニチダ、イヌツゲ‘ヒレリー’、ツゲ、コトネアスター‘ホリゾンタリス’、スモツケ‘ゴールドマウンド’、草本類植物では、ダイアンサス‘ライオンロック’、リシマキア ヌンムラリア、フェスツカ‘グラウカ’、セキショウ‘マサムネ’、ヘリクリサム イタリクム、プラティア‘ブルースター’、メキシコマンネングサ、ツルマンネングサ、エリゲロン カルビンスキアヌス、ジンジャーミント、タマリュウ、リュウノヒゲ、ヤブラン、ポテンティラ ベルナ、ヒメイワダレソウ、イワダレソウ、イソギク、フイリヨモギ、ディカンドラ、コウライシバ、ノシバが適している。
【0036】
本発明の緑化施工方法は、本発明のマット植物用培地または粒状培地を用いる緑化施工方法である。
本発明の緑化施工方法によると、マット植物の根がマット形成した内部に、本発明のマット植物用培地または粒状培地を保持した状態で緑化施工できる。すなわち、マット植物自体が植物の育成に必要な肥料成分を抱え持ち、吸水保水特性も兼ね備えていることから、マット植物単独設置による緑化が可能となる。具体的には、例えば、前述した簡易屋上緑化工法において、本発明のマット植物用培地または粒状培地を用いて育成したマット植物を用いた場合、設置施工場所における水分調節基盤材の使用及び緩効性化成肥料の施用の省略が可能であり、マット植物単独設置による緑化が可能である。
以下、実施例、比較例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0037】
【実施例】
実施例1、2(培地A、粒状培地A)
CDU(アセトアルデヒド縮合尿素、チッソ旭肥料(株)製)10重量%(有姿で16.068kg)、熔成りん肥(粒度;0.01〜0.5mm、南九州化学工業(株)製)20重量%(有姿で32.136kg)、珪酸加里(細粒品、開発肥料販売(株)製)1.5重量%(有姿で2.410kg)、ヤシガラ(コイアダスト、含有水分率;20重量%、粒度;4〜6mm品、嵩比重;0.11g/ml、スリランカ産)を固形分換算で25重量%(有姿で50.213kg)、黒玉土((株)ソイール製、含有水分率;35重量%、粒度;2〜4mm品、嵩比重;0.85g/ml)を固形分換算で32重量%(有姿で79.105kg)、炭(ソノ炭、含有水分率;9重量%、粒度;2mmアンダー品、インドネシア産)を固形分換算で10重量%(有姿で17.657kg)、硫酸第一鉄((株)鐵原製 硫酸第一鉄・四水塩、Fe成分;23.5%以上)1.5重量%(有姿で2.410kg)として有姿で200kg仕込み、内部容量が1000Lの羽付きコンクリートミキサーに投入した。更に、原料のトータル含有水分率が約45重量%になるように92L加水して、10rpmの回転速度で20分間混合し、培地Aを得た(実施例1)。
【0038】
また、原料のトータル含有水分率を約29重量%になるように27L加水する他は、実施例1と同様の操作を繰り返して得た混合培地をディスクダイ式ロール型押出造粒機(型式;F40/33−390、不二パウダル(株)製、ダイス・ノズル径;φ3mm)にて造粒し、熱風温度140℃の流動振動乾燥機(型式;VDF−6000、不二パウダル(株)製)にて粒状培地の含有水分率が約10重量%になるように乾燥した。乾燥した粒状物を篩い分けし、粒度2〜6mmの粒状培地A(実施例2)を得た。前述の測定方法で最大容水量を測定したところ、培地Aの最大容水量は290%、粒状培地Aの最大容水量は184%であった。
【0039】
実施例3、4(培地B、粒状培地B)
CDU(アセトアルデヒド縮合尿素、チッソ旭肥料(株)製)10重量%(有姿で15.712kg)、熔成りん肥(粒度;0.01〜0.5mm、南九州化学工業(株)製)10重量%(有姿で15.712kg)、珪酸加里(細粒品、開発肥料販売(株)製)1.5重量%(有姿で2.357kg)、ヤシガラ(コイアダスト、含有水分率;20重量%、粒度;4〜6mm品、嵩比重;0.11g/ml、スリランカ産)を固形分換算で35重量%(有姿で68.739kg)、黒玉土((株)ソイール製、含有水分率;35重量%、粒度;2〜4mm品、嵩比重;0.85g/ml)を固形分換算で32.6重量%(有姿で78.801kg)、炭(ソノ炭、含有水分率;9重量%、粒度;2mmアンダー品、インドネシア産)を固形分換算で10重量%(有姿で17.266kg)、硫酸第一鉄((株)鐵原製 硫酸第一鉄・四水塩、Fe成分;23.5%以上)0.9重量%(有姿で1.414kg)として有姿で200kg仕込み、内部容量が1000Lの羽付きコンクリートミキサーに投入した。更に、原料のトータル含有水分率が約50重量%になるように114L加水して、10rpmの回転速度で20分間混合し、培地Bを得た(実施例3)。
【0040】
また、原料のトータル含有水分率を約31重量%になるように28L加水する他は、実施例3と同様の操作を繰り返して得た混合培地をディスクダイ式ロール型押出造粒機(型式;F40/33−390、不二パウダル(株)製、ダイス・ノズル径;φ3mm)にて造粒し、熱風温度140℃の流動振動乾燥機(型式;VDF−6000、不二パウダル(株)製)にて粒状培地の含有水分率が約10重量%になるように乾燥した。乾燥した粒状物を篩い分けし、粒度2〜6mmの粒状培地B(実施例4)を得た。前述の測定方法で最大容水量を測定したところ、培地Bの最大容水量は385%、粒状培地Bの最大容水量は293%であった。
【0041】
実施例5、6(培地C、粒状培地C)
CDU(アセトアルデヒド縮合尿素、チッソ旭肥料(株)製)1重量%(有姿で1.522kg)、熔成りん肥(粒度;0.01〜0.5mm、南九州化学工業(株)製)10重量%(有姿で15.221kg)、珪酸加里(細粒品、開発肥料販売(株)製)0.3重量%(有姿で0.457kg)、ヤシガラ(コイアダスト、含有水分率;20重量%、粒度;4〜6mm品、嵩比重;0.11g/ml、スリランカ産)を固形分換算で40重量%(有姿で76.105kg)、黒玉土((株)ソイール製、含有水分率;35重量%、粒度;2〜4mm品、嵩比重;0.85g/ml)を固形分換算で37.9重量%(有姿で88.751kg)、炭(ソノ炭、含有水分率;9重量%、粒度;2mmアンダー品、インドネシア産)を固形分換算で10重量%(有姿で16.726kg)、硫酸第一鉄((株)鐵原製 硫酸第一鉄・四水塩、Fe成分;23.5%以上)0.8重量%(有姿で1.218kg)として有姿で200kg仕込み、内部容量が1000Lの羽付きコンクリートミキサーに投入した。更に、原料のトータル含有水分率が約50重量%になるように100L加水して、10rpmの回転速度で20分間混合し、培地Cを得た(実施例5)。
【0042】
また、原料のトータル含有水分率を約33重量%になるように26L加水する他は、実施例5と同様の操作を繰り返して得た混合培地をディスクダイ式ロール型押出造粒機(型式;F40/33−390、不二パウダル(株)製、ダイス・ノズル径;φ3mm)にて造粒し、熱風温度140℃の流動振動乾燥機(型式;VDF−6000、不二パウダル(株)製)にて粒状培地の含有水分率が約10重量%になるように乾燥した。乾燥した粒状物を篩い分けし、粒度2〜6mmの粒状培地C(実施例6)を得た。前述の測定方法で最大容水量を測定したところ、培地Cの最大容水量は489%、粒状培地Cの最大容水量は361%であった。
【0043】
実施例7、8(培地D、粒状培地D)
CDU(アセトアルデヒド縮合尿素、チッソ旭肥料(株)製)10重量%(有姿で17.195kg)、熔成りん肥(粒度;0.01〜0.5mm、南九州化学工業(株)製)40重量%(有姿で68.778kg)、珪酸加里(細粒品、開発肥料販売(株)製)1.5重量%(有姿で2.579kg)、ヤシガラ(コイアダスト、含有水分率;20重量%、粒度;4〜6mm品、嵩比重;0.11g/ml、スリランカ産)を固形分換算で15重量%(有姿で32.240kg)、黒玉土((株)ソイール製、含有水分率;35重量%、粒度;2〜4mm品、嵩比重;0.85g/ml)を固形分換算で21.5重量%(有姿で56.874kg)、炭(ソノ炭、含有水分率;9重量%、粒度;2mmアンダー品、インドネシア産)を固形分換算で10重量%(有姿で18.895kg)、硫酸第一鉄((株)鐵原製 硫酸第一鉄・四水塩、Fe成分;23.5%以上)2.0重量%(有姿で3.439kg)として有姿で200kg仕込み、内部容量が1000Lの羽付きコンクリートミキサーに投入した。更に、原料のトータル含有水分率が約45重量%になるように110L加水して、10rpmの回転速度で20分間混合し、培地Dを得た(実施例7)。
【0044】
また、原料のトータル含有水分率を約29重量%になるように41L加水する他は、実施例7と同様の操作を繰り返して得た混合培地をディスクダイ式ロール型押出造粒機(型式;F40/33−390、不二パウダル(株)製、ダイス・ノズル径;φ3mm)にて造粒し、熱風温度140℃の流動振動乾燥機(型式;VDF−6000、不二パウダル(株)製)にて粒状培地の含有水分率が約10重量%になるように乾燥した。乾燥した粒状物を篩い分けし、粒度2〜6mmの粒状培地D(実施例8)を得た。前述の測定方法で最大容水量を測定したところ、培地Dの最大容水量は187%、粒状培地Dの最大容水量は118%であった。
【0045】
実施例9(培地E)
被覆複合ハイコントロール1000(被覆複合肥料、1000日タイプ、チッソ旭肥料(株)製)20重量%(有姿で34.264kg)、ヤシガラ(コイアダスト、含有水分率;20重量%、粒度;4〜6mm品、嵩比重;0.11g/ml、スリランカ産)を固形分換算で15重量%(有姿で32.123kg)、ピートモス(ラメキュー社製、含有水分率;50重量%、粒度;3mmアンダー品、嵩比重;0.12g/ml)を固形分換算で12重量%(有姿で41.117kg)、バーミキュライト(パラボラ2号、日商岩井ケミカル(株)製、嵩比重;0.11g/ml)42.5重量%(有姿で72.812kg)、炭(ソノ炭、含有水分率;9重量%、粒度;2mmアンダー品、インドネシア産)を固形分換算で10重量%(有姿で18.827kg)、りん酸溶液(三井東圧(株)製 P成分;32%)0.5重量%(有姿で0.857kg)として有姿で200kg仕込み、内部容量が1000Lの羽付きコンクリートミキサーに投入した。更に、原料のトータル含有水分率が約50重量%になるように140L加水して、10rpmの回転速度で20分間混合し、培地Eを得た(実施例9)。前述の測定方法で最大容水量を測定したところ、培地Eの最大容水量は251%であった。
【0046】
実施例10(培地F)
被覆複合ハイコントロール1000(被覆複合肥料、1000日タイプ、チッソ旭肥料(株)製)10重量%(有姿で16.773kg)、ヤシガラ(コイアダスト、含有水分率;20重量%、粒度;4〜6mm品、嵩比重;0.11g/ml、スリランカ産)を固形分換算で17重量%(有姿で35.643kg)、ピートモス(ラメキュー社製、含有水分率;50重量%、粒度;3mmアンダー品、嵩比重;0.12g/ml)を固形分換算で14重量%(有姿で46.964kg)、バーミキュライト(パラボラ2号、日商岩井ケミカル(株)製、嵩比重;0.11g/ml)48.4重量%(有姿で81.181kg)、炭(ソノ炭、含有水分率;9重量%、粒度;2mmアンダー品、インドネシア産)を固形分換算で10重量%(有姿で18.432kg)、りん酸溶液(三井東圧(株)製 P成分;32%)0.6重量%(有姿で1.006kg)として有姿で200kg仕込み、内部容量が1000Lの羽付きコンクリートミキサーに投入した。更に、原料のトータル含有水分率が約50重量%になるように135L加水して、10rpmの回転速度で20分間混合し、培地Fを得た(実施例10)。前述の測定方法で最大容水量を測定したところ、培地Fの最大容水量は343%であった。
【0047】
比較例1(培地G)
赤玉土((株)ソイール製、含有水分率;20重量%、粒度;2〜4mm品、嵩比重;0.85g/ml)50容積%(有姿で174kg)、ピートモス(ラメキュー社製、含有水分率;50重量%、粒度;3mmアンダー品、嵩比重;0.12g/ml)を25容積%(有姿で12kg)、パーライト(ネニサンソ2号、三井金属鉱業(株)製、粒度;2.5mmアンダー品、嵩比重;0.13g/ml)25容積%(有姿で14kg)として有姿で200kg仕込み、内部容量が1000Lの羽付きコンクリートミキサーに投入した。更に、原料のトータル含有水分率が約50重量%になるように59L加水して、10rpmの回転速度で20分間混合し、培地Gを得た(比較例1)。前述の測定方法で最大容水量を測定したところ、培地Gの最大容水量は321%であった。
【0048】
比較例2(培地H)
CDU(アセトアルデヒド縮合尿素、チッソ旭肥料(株)製)20重量%(有姿で37.087kg)、熔成りん肥(粒度;0.01〜0.5mm、南九州化学工業(株)製)50重量%(有姿で92.718kg)、珪酸加里(細粒品、開発肥料販売(株)製)1.5重量%(有姿で2.782kg)、ヤシガラ(コイアダスト、含有水分率;20重量%、粒度;4〜6mm品、嵩比重;0.11g/ml、スリランカ産)を固形分換算で7重量%(有姿で16.226kg)、黒玉土((株)ソイール製、含有水分率;35重量%、粒度;2〜4mm品、嵩比重;0.85g/ml)を固形分換算で9.5重量%(有姿で27.102kg)、炭(ソノ炭、含有水分率;9重量%、粒度;2mmアンダー品、インドネシア産)を固形分換算で10重量%(有姿で20.377kg)、硫酸第一鉄((株)鐵原製 硫酸第一鉄・四水塩、Fe成分;23.5%以上)2.0重量%(有姿で3.709kg)として有姿で200kg仕込み、内部容量が1000Lの羽付きコンクリートミキサーに投入した。更に、原料のトータル含有水分率が約40重量%になるように100L加水して、10rpmの回転速度で20分間混合し、培地Hを得た(比較例2)。前述の測定方法で最大容水量を測定したところ、培地Hの最大容水量は86%であった。
【0049】
比較例3(粒状培地E)
実施例9の原料のトータル含有水分率を約30重量%になるように45L加水する他は、実施例9と同様の操作を繰り返して得た混合培地をディスクダイ式ロール型押出造粒機(型式;F40/33−390、不二パウダル(株)製、ダイス・ノズル径;φ3mm)にて造粒し、熱風温度140℃の流動振動乾燥機(型式;VDF−6000、不二パウダル(株)製)にて粒状培地の含有水分率が約10重量%になるように乾燥した。乾燥した粒状物を篩い分けし、粒度2〜6mmの粒状培地E(比較例3)を得た。前述の測定方法で最大容水量を測定したところ、粒状培地Eの最大容水量は186%であった。
【0050】
比較例4(粒状培地F)
実施例10の原料のトータル含有水分率を約30重量%になるように40L加水する他は、実施例10と同様の操作を繰り返して得た混合培地をディスクダイ式ロール型押出造粒機(型式;F40/33−390、不二パウダル(株)製、ダイス・ノズル径;φ3mm)にて造粒し、熱風温度140℃の流動振動乾燥機(型式;VDF−6000、不二パウダル(株)製)にて粒状培地の含有水分率が約10重量%になるように乾燥した。乾燥した粒状物を篩い分けし、粒度2〜6mmの粒状培地F(比較例4)を得た。粒状培地Fの最大容水量は233%であった。
培地、粒状培地の諸特性(最大容水量、EC、pH)と、これら培地を用いたマット植物育成時の灌水頻度、及び緑化施工時の資材省略可否を表1に示す。
【0051】
【表1】

Figure 2004283060
【0052】
表1から、緩効性肥料と保水材を含有する培地において、培地の最大容水量が100〜500の範囲にある培地または粒状培地(実施例1〜10)は、十分な吸水保水特性と施工後に必要な肥料成分を含有していることから、マット植物育成時の灌水頻度が比較的少なく、また、緑化施工時の資材である水分調節基盤材や基肥の省略が可能である。また、培地のECが2.0mS/cmを超える培地Dまたは粒状培地D(実施例7、8)は、マット植物の種類によっては育成の障害がでる場合がある。
【0053】
粒状培地のうち、化学的に溶解度が緩効性である緩効性肥料ではなく、物理的に溶出速度を調整した緩効性被覆肥料を用いた粒状培地E、F(比較例3、4)は、造粒時に被覆肥料の被膜が破壊され、内部の肥料成分が溶出してきたと考えられ、ECが5.0mS/cmを超えており、マット植物用粒状培地としては不適合である。
【0054】
また、粒状一体化していない培地A、培地B、培地C、培地D(実施例1、3、5、7)において、製品水分率が低い場合、撥水性が発現し吸水し難いため、製品水分率を40〜50wt%としている。このため、pHの経時変化(製造直後と3ヵ月後のpH)が比較的大きくなる傾向にある。
【0055】
一方、粒状一体化した粒状培地A、粒状培地B、粒状培地C、粒状培地D(実施例2、4、6、8)は、製品水分率を低くしても撥水性が発現しないため、製品水分率を10wt%程度まで下げることが可能である。このため、pHの経時変化(製造直後と3ヵ月後のpH)がほとんどなく、製造後の長期保管も可能である。
【0056】
【発明の効果】
本発明のマット植物用培地または粒状培地をマット植物専用の培地として用いて育成した場合には、育成時の灌水頻度を抑えられ、かつ、マット植物を用いた緑化施工において、水分調節基盤材や基肥の省略が可能であり、従来非常に手間のかかる屋上等の緑化が手軽に施工することができる。
【図面の簡単な説明】
【図1】最大容水量の測定装置である。
【符号の説明】
a 容水量目皿
b 容積重円筒
c 蓋[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a medium or a granular medium for growing a mat plant and a method for greening using the medium.
[0002]
[Prior art]
Plants used for greening that cover the ground are called “Ground Cover Plants (GCP)”, and Tamaryu and Fukkisou are typical GCPs. These are conventionally distributed in pot seedlings, and when planting, they are dug out and planted at regular intervals, so it takes time, does not look good until the plants grow, and weeds in the gaps There were problems such as the growing management becoming difficult.
Therefore, a planting method using a mat plant was devised. A mat plant is a plant that grows a plant in a thin container and forms a single sheet in which the roots are entangled with each other. The greening is completed by laying this at the place where the greening is desired. At present, as plants that can be matted, more than 20 types of plants, such as spiraea, cotoneaster, and thyme, can be matted.
[0003]
Further, as an example of the soil used for growing mat plants, a mixed soil of red soil: peat moss: powdery pearlite = 2: 1: 1 is used, and a thin container (for example, a double plastic of 25 cm × 25 cm × 4 cm) is used. Tray) is filled with cultivated soil and either directly cut or planted with rooting seedlings or strains that have been bred in advance using cell molding trays or the like. The speed required for matting varies depending on the type of plant. Herbs require 1-2 months to half a year, and woody plants require about 1 to 2 years.
As an example of a simple rooftop greening method using these mat plants,
Lay the impermeable sheet at the construction site.
A chemical fiber sheet (non-woven fabric such as a needle punch) is laid on the impermeable sheet to suppress outflow of mud and drain efficiently.
Frame with a brick board, block, etc.
Spread the root protection sheet inside the frame.
Spread a few cm of moisture control base material.
Slow release chemical fertilizer is applied as a base fertilizer.
Place mat plant and gently compact.
Install a watering device (timer, solenoid valve, submersible pump, sprinkler, etc.).
(See Patent Documents 1, 2, 3, 4 and 5).
[0004]
[Patent Document 1]
Japanese Patent Publication No. 50-013163
[Patent Document 2]
JP-B-63-063689
[Patent Document 3]
JP 05-304841
[Patent Document 4]
JP-A-07-016022
[Patent Document 5]
JP-A-11-168987
[0005]
[Problems to be solved by the invention]
However, as the cultivation soil for mat plants, cultivation soil used in conventional deep-bottom containers such as pots and planters has low water absorption and retention capacity, and cannot retain the water necessary for growing, so it is necessary to increase the number of times of irrigation, etc. Was needed.
Furthermore, in the simple rooftop greening method using mat plants, it takes time to spread the moisture control base material (some can be omitted) and apply slow-release chemical fertilizer as a base fertilizer. I didn't do it.
[0006]
[Means for Solving the Problems]
The present inventor has made intensive studies in view of the above-described problems of the related art. As a result, in a medium containing a slow-release fertilizer and a water retention material, when a mat plant grown using a mat plant medium having a maximum water content of 100 to 500% is used for a simple rooftop greening method, The present inventors have found that the use of a moisture control base material and the application of a slow-acting chemical fertilizer can be omitted, and that greening is possible by installing a mat plant alone, and the present invention has been completed based on this finding.
[0007]
The present invention has the following configurations (1) to (6).
(1) A medium containing a slow-acting fertilizer and a water retention material, wherein the medium has a maximum water content of 100 to 500%.
[0008]
(2) The slow-release fertilizer is at least one fertilizer selected from a chemically synthesized slow-release nitrogenous fertilizer, a potassium-soluble phosphate fertilizer, and a potassium-soluble Kali fertilizer, whose solubility is chemically slow (1). The medium for a mat plant described in the item (6).
[0009]
(3) The medium for a mat plant according to the above (1) or (2), wherein the medium has an electric conductivity (EC) of 0.1 to 2.0 mS / cm.
[0010]
(4) The water retention material according to any one of (1) to (3), wherein the water retention material is a water retention material containing at least one selected from the group consisting of a vegetable fiber material, a natural polymer, and a derivative thereof. Matte plant medium.
[0011]
(5) A granular medium for mat plants, wherein the medium for mat plants described in any one of (1) to (4) is integrated in a granular manner.
[0012]
(6) A greening method using the medium for mat plants described in any one of (1) to (4) or the granular medium for mat plants described in (5).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the medium for a mat plant and the granular medium of the present invention will be described in detail.
As the slow-release fertilizer used in the present invention, it is possible to use a slow-release fertilizer whose dissolution rate is physically adjusted (that is, a slow-release coated fertilizer) or a slow-release fertilizer whose solubility is chemically slow. it can.
[0014]
As slow-release fertilizers with physically adjusted dissolution rates, coated nitrogenous fertilizers coated with nitrogenous fertilizers with polyolefin resin or sulfur or other coating materials, coated potassium fertilizers with polyolefin resin or sulfur or other coating materials The coated potash fertilizer and the compound fertilizer or the liquid compound fertilizer coated with a polyolefin-based resin or sulfur or other coating materials are used.
[0015]
In addition, examples of slow-release fertilizers whose chemical solubility is slow-release include chemically synthesized slow-release nitrogen fertilizers, potassium-soluble phosphate fertilizers, and potassium-soluble Kali fertilizers. Examples thereof include isobutyraldehyde condensed urea (IBDU), acetaldehyde condensed urea (CDU or OMU), formaldehyde-processed urea fertilizer, guanyl urea sulfate, and oxamide. Examples include calcined phosphorus manure, molten manure, precipitated phosphate lime, mouldite (serpentine), fluorapatite, and hydroxyapatite. Examples of the soluble potassium fertilizer include basic potassium or magnesium-containing compounds and Silicic acid fertilizers mixed with pulverized coal combustion ash and fired.
[0016]
Any slow-release fertilizer can be contained in the culture medium, but especially when it is contained in the granular medium in which the granules are integrated, the coating film is destroyed during granulation, and the predetermined function cannot be achieved. It is preferable to use a slow-release fertilizer whose solubility is chemically slow rather than a slow-release coated fertilizer whose dissolution rate is physically adjusted.
[0017]
As the water retaining material, any material can be used as long as it can retain sufficient moisture for the mat plant to grow. Specific examples include a vegetable fiber material that is lightweight and excellent in water retention, and a natural polymer and a derivative thereof.
[0018]
Examples of the vegetable fiber material include peat moss and coconut shell (residues obtained by removing the outer and inner pericarps from the coconut pericarp and extracting the rigid fibers and medium and short fibers from the mesocarp taken out, such as coir dust), bark, and wood Pulp, rice husk, sawdust and the like can be mentioned.
[0019]
Examples of the natural polymer and its derivative include natural materials such as starch and carboxymethylcellulose, and natural materials such as a derivative thereof. These materials have excellent water absorption properties and also function as a binder during granulation. Therefore, it is suitably used in the present invention.
[0020]
Soil may be used as a water retention material as long as the effects of the present invention are not impaired, and natural soil such as alluvial soil, dip soil, volcanic soil, and humus soil may be used as necessary. Can be mentioned. Moreover, you may use the dry sterilization soil which sterilized these by heat etc. Examples of such disinfecting soil include Akadama soil (manufactured by Soyle Corp., red soil-based disinfecting soil) and Kurotamado (manufactured by Soyle Corp., black soil-based disinfecting soil).
[0021]
The medium or granular medium for mat plants of the present invention contains a slow-release fertilizer and a water retention material as essential components, but components other than those essential components can be added as long as the effects of the present invention are not impaired. It is. Ingredients other than the essential components include, for example, minerals such as vermiculite (calcined vermiculite), perlite, zeolite, rock wool, black ash produced from soda pulp production waste in a paper mill, rice husk, coconut shell endocarp (inner shell) ), And charcoal such as activated carbon made from wood waste.
[0022]
Further, a pesticide active ingredient may be added, and examples of the pesticide ingredient include insecticides, fungicides, herbicides, antiviral agents, and crop growth regulators, acaricides and nematicides, and the like. The properties, whether solid or liquid, can be used in the present invention.
[0023]
The maximum water capacity of the medium or the granular medium of the present invention is preferably 100 to 500%. When the maximum water capacity of the medium or the granular medium is less than 100%, the medium or the granular medium has sufficient water retention capacity for growing the mat plant. Not being obtained, it is physically difficult to obtain a maximum water content exceeding 500% in a medium or granular medium containing a slow-release fertilizer and a water retention material. The maximum water capacity can be adjusted by the ratio of the slow-release fertilizer and the water retention material, and the content of the slow-release fertilizer in the medium or granular medium (in terms of solid content) is in the range of 1 to 60% by weight. The content (in terms of solid content) of the water retention material in the medium or the granular medium can be adjusted in the range of 40 to 99% by weight.
The maximum water capacity can be measured by the following method.
[0024]
[Method of measuring maximum water capacity]
(1) The weight (A) of a water dish (outer dimension: φ56 × H10 mm, volume: 25 ml, manufactured by Daiki Rika Kogyo Co., Ltd.) shown in FIG.
(2) A sample was rubbed together with the water volume plate and the volumetric heavy cylinder (external size: φ56 × H40 mm, volume: 100 ml, manufactured by Daiki Rika Kogyo Co., Ltd.) shown in FIG. Put a lid on it.
(3) It is set on a Yamanaka volumetric weight measuring device (manufactured by Daiki Rika Kogyo Co., Ltd.) and dropped from a height of 5 cm six times at 10 second intervals.
(4) Remove the lid and b, and scrape off excess sample along the upper edge of a with something like a cutter knife.
(5) Fill a deep pad with water to a depth of about 2 mm.
(6) Put a into the pad with water gently.
(7) When the upper surface of the sample is moistened with water, the sample is left for one hour. When the water level of the pat drops, replenish the water.
(8) Take out the water capacity plate of a from the pad.
(9) Lightly wipe off water adhering to the bottom and sides and immediately measure the weight (W).
(10) Place in a constant temperature drier and dry at 105 ° C. for 24 hours, and weigh (S1).
(11) From W-S1 = M and S1-A = S, the maximum water capacity (%) = M / S * 100
Is calculated.
[0025]
Further, the medium for a mat plant of the present invention is more preferably formed into a granular medium by integrating into a granular form from the viewpoint of water repellency preventing effect and workability, and also from the viewpoint of eliminating classification due to a difference in bulk specific gravity of a medium constituting raw material. It is valid.
[0026]
The granular medium for a mat plant of the present invention can be obtained by mixing and granulating the above-mentioned essential components and, if necessary, other components. In the present invention, a method capable of granulating without using a binder can be employed. For example, starches such as corn starch, wheat starch, rice starch, potato starch, potato starch, and tapioca starch, and montmorillonite such as bentonite Group of clay minerals, gypsum dihydrate and hemihydrate gypsum (plaster of Paris), seaweed extracts such as sodium alginate and agar, crop-like resinous stickies such as gum arabic and gum tragacanth, carboxymethyl starch and carboxymethyl cellulose Derivatives of natural polymers such as, synthetic polymers such as polyvinyl alcohol and sodium polyacrylate, and thermosetting resins such as phenol resin, epoxy resin, polyurethane resin, urea resin, melamine resin, alkyd resin, and furan resin May be used as a binder.
[0027]
The granular medium for mat plants of the present invention may be granulated by any method, but is preferably granulated by a method capable of applying a shearing force and / or a compressive force. A medium containing a slow-release fertilizer, a water retention material, and, if necessary, components other than the above essential components, even if a binder is not used, if the granulation is carried out by a method capable of applying a shearing force and / or a compressive force. This is because it becomes possible to granulate.
[0028]
Examples of the method of granulating the granular medium for mat plants of the present invention include extrusion granulation, compression granulation, tumbling granulation, spray drying granulation, fluidized bed granulation, crush granulation, and stirring granulation. Granulation method, coating granulation method and the like can be mentioned. Examples of the method capable of applying the shearing force and / or the compressing force described above include an extrusion granulation method and a compression / pulverization granulation method.
[0029]
Specific examples of the extrusion granulation method include a screw type pre-extrusion type, a horizontal extrusion type, a vacuum extrusion type and a combined pre-treatment type, a roll type disk die type and a ring die type, a blade type basket type and the like. Examples include an oscillating type, a self-molding type twin die type, a gear type and a cylinder type, and a ram type continuous type and intermittent type.
[0030]
Specific examples of the compression / crushing granulation method include a tableting method and a roll press method, and both are preferably used in the present invention.In the present invention, in particular, both the shear force and the compressive force are simultaneously used. A disk die type or a ring die type which is a roll type to which addition is possible is preferable.
[0031]
The shape of the granular medium for mat plants of the present invention is not particularly limited, and any one of a spherical shape, an elliptical spherical shape, a pellet shape, a polyhedral shape, and the like can be used.
[0032]
The particle size of the granular medium for mat plants of the present invention is preferably 3 to 15 mm, more preferably 3 to 6 mm at the longest part. If the ratio is outside the above range, classification tends to occur when the granular medium and other materials described later are used in combination.
[0033]
The electric conductivity (EC) of the medium for a mat plant or the granular medium of the present invention is preferably 0.1 to 2.0 mS / cm, and varies depending on the kind of the target plant to be grown, and is preferably 0.1 mS / cm. If it is less than physicochemically, it may be difficult to grow the mat plant if it exceeds 2.0 mS / cm. In addition, EC was measured by the following method.
Water (volume ratio) equivalent to 5 times that of the medium is added and shaken for 60 minutes, and the obtained suspension is used as a measurement liquid. The electrodes of a digital electric conductivity meter (CM-50D, manufactured by Takemura Electric Co., Ltd.) are immersed in the measurement liquid, and the EC value is read.
[0034]
The pH of the medium for a mat plant or the granular medium of the present invention varies depending on the type of the target plant to be grown, but generally the pH is preferably 4 to 7. The pH can be adjusted to a predetermined value by adding a pH adjuster within a range that does not impair the effects of the present invention. As the pH adjusting agent for the acidic side, an acidic material is used, and examples thereof include gypsum, ferrous sulfate, and a phosphoric acid solution. As the pH adjuster for the alkali side, an alkali material is used, and examples thereof include calcium carbonate and magnesium carbonate. Since these pH adjusters are all water-soluble components and have an action to enhance the above-mentioned EC, care must be taken when using them.
[0035]
In the present invention, as a mat plant, a plant called GCP is used. In particular, as a mattable plant, for example, a woody plant, such as sawara, 'Philiferaurea', 'Golden mop', and odorant 'Teddy'・ 'Rheingold', 'Numahinoki', 'Erikoides', Fukkisou, Chigozasa, Kamrosasa, Forsythia, Barberry, Hedera Helix L, Niitakabyakshin 'Blue Cappet', U.S.A. Tee '' Emerald Gold ', Avelia' Edward Gocha ', Hypericum' Hidecoat ', Roni Sera Nichida, Inutsuge' Hillery ', Boxwood, Cotoneaster'Horizontalis', Smotsuke 'Gold Mound', Herbaceous plants, Dianthus 'Lion Rock', Rishimakia Nmulalia, Festsuka 'Glauca', Sekisho 'Masamune', Helichrysum Italicum, Platia 'Blustar', Mexican Manngusa, Tsurumannengusa, Eligeron Calvinskianus, Gingermint, Tamaryu, Ryunohige, Yabulan, Potentilla Berna, Himeiwadagiseogi, Himeiwada-Resouw , Decandra, Kouraishiba and Noshiba are suitable.
[0036]
The greening method of the present invention is a greening method using the medium for a mat plant or the granular medium of the present invention.
According to the greening method of the present invention, greening can be performed in a state where the mat plant medium or the granular medium of the present invention is held inside the mat formed by the roots of the mat plant. That is, since the mat plant itself has a fertilizer component necessary for growing the plant and has both water absorption and water retention properties, greening can be achieved by installing the mat plant alone. Specifically, for example, in the above-mentioned simplified rooftop greening method, when a mat plant grown using the mat plant medium or the granular medium of the present invention is used, the use and slow effect of the moisture control base material at the installation construction site It is possible to omit the application of the sexual fertilizer, and it is possible to plant trees by installing mat plants alone.
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0037]
【Example】
Examples 1 and 2 (medium A, granular medium A)
CDU (acetaldehyde condensed urea, manufactured by Chisso Asahi Fertilizer Co., Ltd.) 10% by weight (16.068 kg in shape), molten fertilizer (particle size: 0.01 to 0.5 mm, manufactured by Minami Kyushu Chemical Industry Co., Ltd.) 20% by weight (32.136 kg in actual form), Kali silicate (fine granules, manufactured by Development Fertilizer Sales Co., Ltd.) 1.5% by weight (2.410 kg in actual form), Yashigara (coir dust, moisture content; 20) 25% by weight (50.213 kg in a solid form) in terms of solid content, containing black gauze clay (manufactured by Soyle Corporation) in terms of solid content, weight%, particle size: 4 to 6 mm, bulk specific gravity: 0.11 g / ml, Sri Lanka Moisture content: 35% by weight, particle size: 2 to 4 mm, bulk specific gravity: 0.85 g / ml) was converted to a solid content of 32% by weight (79.105 kg in form), charcoal (Sono charcoal, water content: 9) Weight%, particle size: 2mm under product, Indonesian) 10% by weight (17.657 kg in form), ferrous sulfate (ferrous sulfate / tetrahydrate, manufactured by Tetsuhara Corporation, Fe component: 23.5% or more) 1.5% by weight (form) (2,410 kg) and charged into a concrete mixer with an internal volume of 1000 L with wings. Further, 92 L of water was added so that the total water content of the raw materials became about 45% by weight, followed by mixing at a rotation speed of 10 rpm for 20 minutes to obtain a medium A (Example 1).
[0038]
A mixed medium obtained by repeating the same operation as in Example 1 except that 27 L of water was added so that the total water content of the raw materials was about 29% by weight was obtained by using a disk-die roll-type extrusion granulator (model; F40 / 33-390, manufactured by Fuji Paudal Co., Ltd., granulated with a die / nozzle diameter: φ3 mm, and a hot air temperature 140 ° C. fluidized vibration dryer (model: VDF-6000, manufactured by Fuji Paudal Co., Ltd.) ) Was dried so that the moisture content of the granular medium was about 10% by weight. The dried granular material was sieved to obtain a granular medium A (Example 2) having a particle size of 2 to 6 mm. When the maximum water capacity was measured by the above-described measurement method, the maximum water capacity of the medium A was 290%, and the maximum water capacity of the granular medium A was 184%.
[0039]
Examples 3 and 4 (medium B, granular medium B)
CDU (acetaldehyde condensed urea, manufactured by Chisso Asahi Fertilizer Co., Ltd.) 10% by weight (15.712 kg in actual form), molten fertilizer (particle size: 0.01 to 0.5 mm, manufactured by Minami Kyushu Chemical Industry Co., Ltd.) 10% by weight (15.712 kg in physical form), Kali silicate (fine granules, developed by Fertilizer Sales Co., Ltd.) 1.5% by weight (2.357 kg in physical form), Yashigara (coir dust, moisture content; 20) Weight%, particle size: 4-6 mm product, bulk specific gravity: 0.11 g / ml, Sri Lanka) 35% by weight (solid: 68.739 kg) in solid content, Kokutamado (manufactured by Soyle Corp.) Moisture content: 35% by weight, particle size: 2 to 4 mm, bulk specific gravity: 0.85 g / ml) is 32.6% by weight (78.801 kg in a solid form) in terms of solid content, charcoal (Sono charcoal, moisture content 9% by weight, particle size; 2mm under product, made in Indonesia) solid 10% by weight (17.266 kg in actual form), ferrous sulfate (ferrous sulfate, tetrahydrate, Fe component: 23.5% or more, manufactured by Tetsuhara Corporation) 0.9% by weight (Yes) 200 kg in a real form was charged into a concrete mixer with a 1000 L internal capacity. Further, 114 L of water was added so that the total water content of the raw materials became about 50% by weight, and the mixture was mixed at a rotation speed of 10 rpm for 20 minutes to obtain a medium B (Example 3).
[0040]
A mixed medium obtained by repeating the same operation as in Example 3 except that 28 L of water was added so that the total water content of the raw materials was about 31% by weight was obtained by using a disk-die roll-type extrusion granulator (model; F40 / 33-390, manufactured by Fuji Paudal Co., Ltd., granulated with a die / nozzle diameter: φ3 mm, and a hot air temperature 140 ° C. fluidized vibration dryer (model: VDF-6000, manufactured by Fuji Paudal Co., Ltd.) ) Was dried so that the moisture content of the granular medium was about 10% by weight. The dried granular material was sieved to obtain a granular medium B (Example 4) having a particle size of 2 to 6 mm. When the maximum water capacity was measured by the above-described measurement method, the maximum water capacity of the medium B was 385%, and the maximum water capacity of the granular medium B was 293%.
[0041]
Examples 5 and 6 (medium C, granular medium C)
CDU (acetaldehyde condensed urea, manufactured by Chisso Asahi Fertilizer Co., Ltd.) 1% by weight (1.522 kg in shape), molten fertilizer (particle size: 0.01 to 0.5 mm, manufactured by Minami Kyushu Chemical Industry Co., Ltd.) 10% by weight (15.221 kg in actual form), Kali silicate (fine grain, manufactured by Development Fertilizer Sales Co., Ltd.) 0.3% by weight (0.457 kg in actual form), Yashigara (coir dust, moisture content; 20) Weight%, particle size: 4-6 mm, bulk specific gravity; 0.11 g / ml, Sri Lanka) 40% by weight (76.105 kg in actual form) in terms of solid content, Kurotamato (manufactured by Soil Co., Ltd.) Moisture content: 35% by weight, particle size: 2 to 4 mm, bulk specific gravity: 0.85 g / ml) was converted to 37.9% by weight in solid equivalent (88.751 kg in actual form), charcoal (Sono charcoal, moisture content 9% by weight, particle size; 2mm under product, made in Indonesia) 0.8% by weight of ferrous sulfate (ferrous sulfate, tetrahydrate, Fe component: 23.5% or more, manufactured by Tehara Corporation) 200 kg in the actual state, and charged into a 1000 L feathered concrete mixer. Further, 100 L of water was added so that the total water content of the raw materials became about 50% by weight, and the mixture was mixed at a rotation speed of 10 rpm for 20 minutes to obtain a medium C (Example 5).
[0042]
Further, a mixed medium obtained by repeating the same operation as in Example 5 except that 26 L of water was added so that the total water content of the raw materials was about 33% by weight was obtained by using a disk-die roll extruder (model; F40 / 33-390, manufactured by Fuji Paudal Co., Ltd., granulated with a die / nozzle diameter: φ3 mm, and a hot air temperature 140 ° C. fluidized vibration dryer (model: VDF-6000, manufactured by Fuji Paudal Co., Ltd.) ) Was dried so that the moisture content of the granular medium was about 10% by weight. The dried granular material was sieved to obtain a granular medium C having a particle size of 2 to 6 mm (Example 6). When the maximum water capacity was measured by the above-described measurement method, the maximum water capacity of the medium C was 489%, and the maximum water capacity of the granular medium C was 361%.
[0043]
Examples 7 and 8 (medium D, granular medium D)
CDU (acetaldehyde condensed urea, manufactured by Chisso Asahi Fertilizer Co., Ltd.) 10% by weight (17.195 kg in actual form), molten fertilizer (particle size: 0.01 to 0.5 mm, manufactured by Minami Kyushu Chemical Industry Co., Ltd.) 40% by weight (68.778kg in the form), Kali silicate (fine granules, manufactured by Fertilizer Sales Co., Ltd.) 1.5% by weight (2.579kg in the form), Yashigara (coir dust, moisture content; 20) Weight%, particle size: 4-6 mm product, bulk specific gravity: 0.11 g / ml, Sri Lanka) 15% by weight (solid: 32.240 kg) in solid content conversion, Kurotamato (manufactured by Soyle Corporation) Water content: 35% by weight, particle size: 2 to 4 mm, bulk specific gravity: 0.85 g / ml), 21.5% by weight (56.874 kg in a solid state) in terms of solid content, charcoal (Sono charcoal, moisture content 9% by weight, particle size; 2mm under product, made in Indonesia) solid 10% by weight (18.895kg in form), ferrous sulfate (ferrous sulfate / tetrahydrate, manufactured by Tetsuhara Corporation, Fe component: 23.5% or more) 2.0% by weight (Yes) 200 lbs. Was charged into a concrete mixer with an internal volume of 1000 L with wings. Further, 110 L of water was added so that the total water content of the raw materials became about 45% by weight, and the mixture was mixed at a rotation speed of 10 rpm for 20 minutes to obtain a culture medium D (Example 7).
[0044]
A mixed medium obtained by repeating the same operation as in Example 7 except that 41 L of water was added so that the total water content of the raw materials was about 29% by weight was obtained by using a disk-die-type roll-type extrusion granulator (model; F40 / 33-390, manufactured by Fuji Paudal Co., Ltd., granulated with a die / nozzle diameter: φ3 mm, and a hot air temperature 140 ° C. fluidized vibration dryer (model: VDF-6000, manufactured by Fuji Paudal Co., Ltd.) ) Was dried so that the moisture content of the granular medium was about 10% by weight. The dried granular material was sieved to obtain a granular medium D (Example 8) having a particle size of 2 to 6 mm. When the maximum water capacity was measured by the above-described measurement method, the maximum water capacity of the medium D was 187%, and the maximum water capacity of the granular medium D was 118%.
[0045]
Example 9 (medium E)
Coated composite high control 1000 (Coated composite fertilizer, 1000-day type, manufactured by Chisso Asahi Fertilizer Co., Ltd.) 20% by weight (34.264 kg in actual form), coconut husk (coir dust, water content; 20% by weight, particle size; 6 mm product, bulk specific gravity; 0.11 g / ml, Sri Lanka) 15% by weight in solid equivalent (32.123 kg in shape), peat moss (made by Ramekue, moisture content: 50% by weight, particle size: 3 mm under Product, bulk specific gravity: 0.12 g / ml) was converted to a solid content of 12% by weight (41.117 kg in a solid state), vermiculite (Parabora No. 2, manufactured by Nissho Iwai Chemical Co., Ltd.), bulk specific gravity: 0.11 g / ml ml) 42.5 wt% (72.812 kg in actual form), charcoal (Sono charcoal, water content: 9 wt%, particle size: 2 mm under product, made in Indonesia), 10 wt% in terms of solid content ( Figure with 18.827kg), made of phosphoric acid solution (Mitsui Toatsu (Ltd.) P 2 O 5 (Ingredient: 32%) 0.5 kg by weight (0.857 kg in actual state) was charged in 200 kg in actual state, and the mixture was charged into a 1000 L internal concrete mixer with wings. Further, 140 L of water was added so that the total water content of the raw materials became about 50% by weight, and the mixture was mixed at a rotation speed of 10 rpm for 20 minutes to obtain a medium E (Example 9). When the maximum water capacity was measured by the measurement method described above, the maximum water capacity of the medium E was 251%.
[0046]
Example 10 (medium F)
Coated composite high control 1000 (Coated composite fertilizer, 1000-day type, manufactured by Chisso Asahi Fertilizer Co., Ltd.) 10% by weight (16.773 kg in shape), coconut husk (coir dust, moisture content; 20% by weight, particle size; 6 mm product, bulk specific gravity: 0.11 g / ml, Sri Lanka) 17% by weight (35.643 kg in physical form) in terms of solid content, peat moss (manufactured by Ramekue, moisture content: 50% by weight, particle size: 3 mm under) Product, bulk specific gravity; 0.12 g / ml) was converted to a solid content of 14% by weight (46.964 kg in actual form), vermiculite (Parabora No. 2, manufactured by Nissho Iwai Chemical Co., Ltd.), bulk specific gravity: 0.11 g / ml 48.4% by weight (81.181 kg in actual form), charcoal (Sono charcoal, water content: 9% by weight, particle size: 2 mm under product, produced in Indonesia), 10% by weight in terms of solid content ( Figure with 18.432kg), made of phosphoric acid solution (Mitsui Toatsu (Ltd.) P 2 O 5 (Ingredient: 32%) 0.6 kg by weight (1.006 kg in the form) was charged in the form of 200 kg and charged into a 1000 L-feather concrete mixer having an internal capacity of 1000 L. Further, 135 L of water was added so that the total water content of the raw materials became about 50% by weight, and the mixture was mixed at a rotation speed of 10 rpm for 20 minutes to obtain a medium F (Example 10). When the maximum water capacity was measured by the above-described measurement method, the maximum water capacity of the medium F was 343%.
[0047]
Comparative Example 1 (Medium G)
Akadama (manufactured by Soyle Co., Ltd., moisture content: 20% by weight, particle size: 2 to 4 mm, bulk specific gravity: 0.85 g / ml) 50% by volume (174 kg in actual form), peat moss (manufactured by Lameque, Inc.) Moisture content: 50% by weight, particle size: 3 mm under product, bulk specific gravity: 0.12 g / ml) 25% by volume (12 kg in shape), perlite (Nenisanso No. 2, manufactured by Mitsui Kinzoku Mining Co., Ltd., particle size: 2) A 2.5 mm under product, a bulk specific gravity; 0.13 g / ml) was charged as a 25 volume% (14 kg in shape) 200 kg in a tangible state, and was charged into a 1000 L internal concrete mixer with wings. Further, 59 L of water was added so that the total water content of the raw materials was about 50% by weight, and the mixture was mixed at a rotation speed of 10 rpm for 20 minutes to obtain a culture medium G (Comparative Example 1). When the maximum water capacity was measured by the above-described measurement method, the maximum water capacity of the medium G was 321%.
[0048]
Comparative Example 2 (Medium H)
CDU (acetaldehyde condensed urea, manufactured by Chisso Asahi Fertilizer Co., Ltd.) 20% by weight (37.087 kg in actual form), molten fertilizer (particle size: 0.01 to 0.5 mm, manufactured by Minami Kyushu Chemical Industry Co., Ltd.) 50% by weight (92.718 kg in actual form), Kali silicate (fine-grained product, manufactured by Fertilizer Sales Co., Ltd.) 1.5% by weight (2.782 kg in actual form), Yashigara (coir dust, moisture content; 20) Weight%, particle size: 4-6 mm, bulk specific gravity: 0.11 g / ml, Sri Lanka) 7% by weight (solid: 16.226 kg) in solid content, Kokutamado (manufactured by Soil Co., Ltd.) Moisture content: 35% by weight, particle size: 2 to 4mm, bulk specific gravity: 0.85g / ml) 9.5% by weight (27.102kg in solid form) in terms of solid content, charcoal (Sono charcoal, moisture content 9% by weight, particle size; 2mm under product, made in Indonesia) 2.0% by weight of ferrous sulfate (ferrous sulfate, tetrahydrate, Fe component: 23.5% or more, manufactured by Tehara Co., Ltd.) 200 g of 3.709 kg) and charged into a 1000 L winged concrete mixer having an internal capacity of 1000 L. Further, 100 L of water was added so that the total water content of the raw materials became about 40% by weight, followed by mixing at a rotation speed of 10 rpm for 20 minutes to obtain a medium H (Comparative Example 2). When the maximum water capacity was measured by the measurement method described above, the maximum water capacity of the medium H was 86%.
[0049]
Comparative Example 3 (granular medium E)
A mixed medium obtained by repeating the same operation as in Example 9 except that 45 L of water was added so that the total water content of the raw materials in Example 9 was about 30% by weight was obtained by using a disk-die roll-type extrusion granulator ( Model: F40 / 33-390, manufactured by Fuji Paudal Co., Ltd., die / nozzle diameter: φ3 mm), and a fluidized vibration dryer (model: VDF-6000, Fuji Paudal Co., Ltd.) having a hot air temperature of 140 ° C. )) Was dried so that the moisture content of the granular medium was about 10% by weight. The dried granular material was sieved to obtain a granular medium E having a particle size of 2 to 6 mm (Comparative Example 3). When the maximum water capacity was measured by the measurement method described above, the maximum water capacity of the granular medium E was 186%.
[0050]
Comparative Example 4 (granular medium F)
A mixed medium obtained by repeating the same operation as in Example 10 except that 40 L of water was added so that the total water content of the raw materials of Example 10 was about 30% by weight was obtained by using a disk-die roll-type extrusion granulator ( Model: F40 / 33-390, manufactured by Fuji Paudal Co., Ltd., die / nozzle diameter: φ3 mm), and a fluidized vibration dryer (model: VDF-6000, Fuji Paudal Co., Ltd.) having a hot air temperature of 140 ° C. )) Was dried so that the moisture content of the granular medium was about 10% by weight. The dried granular material was sieved to obtain a granular medium F (Comparative Example 4) having a particle size of 2 to 6 mm. The maximum water capacity of the granular medium F was 233%.
Table 1 shows various characteristics (maximum water capacity, EC, pH) of the medium and the granular medium, the frequency of irrigation when growing mat plants using these mediums, and whether or not materials can be omitted during greening.
[0051]
[Table 1]
Figure 2004283060
[0052]
From Table 1, in the medium containing the slow-release fertilizer and the water retention material, the medium or the granular medium having the maximum water capacity of the medium in the range of 100 to 500 (Examples 1 to 10) has sufficient water absorption and water retention properties and construction. Since it contains a fertilizer component necessary later, the frequency of irrigation at the time of mat plant cultivation is relatively low, and it is possible to omit the moisture control base material and the base fertilizer which are materials at the time of greening. In addition, the medium D or the granular medium D (Examples 7 and 8) having a medium EC of more than 2.0 mS / cm may hinder the growth depending on the type of the mat plant.
[0053]
Among the granular media, granular media E and F using a slow-release coated fertilizer whose dissolution rate is physically adjusted, instead of a slow-release fertilizer whose solubility is chemically slow (Comparative Examples 3 and 4) It is considered that the film of the coated fertilizer was destroyed during granulation, and the fertilizer component inside was eluted, and the EC exceeded 5.0 mS / cm, and was not suitable as a granular medium for mat plants.
[0054]
Further, in the medium A, the medium B, the medium C, and the medium D (Examples 1, 3, 5, and 7) which are not granularly integrated, when the moisture content of the product is low, water repellency is exhibited and it is difficult to absorb water. The rate is set to 40 to 50 wt%. For this reason, the change with time of the pH (the pH immediately after the production and three months later) tends to be relatively large.
[0055]
On the other hand, the granular medium A, granular medium B, granular medium C, and granular medium D (Examples 2, 4, 6, and 8) integrated with granular do not exhibit water repellency even when the moisture content of the product is reduced. It is possible to reduce the moisture content to about 10% by weight. For this reason, there is almost no change in pH over time (immediately after production and three months later), and long-term storage after production is possible.
[0056]
【The invention's effect】
When grown using the mat plant medium or granular medium of the present invention as a mat plant-dedicated medium, the frequency of irrigation during growing can be suppressed, and in the greening work using the mat plant, the moisture control base material and It is possible to omit the base fertilizer, and it is possible to easily perform greening on a rooftop or the like, which is conventionally very complicated.
[Brief description of the drawings]
FIG. 1 shows an apparatus for measuring the maximum water capacity.
[Explanation of symbols]
a Water capacity plate
b Volumetric cylinder
c lid

Claims (6)

緩効性肥料と保水材を含有した培地であって、培地の最大容水量が100〜500%であるマット植物用培地。A medium containing a slow-release fertilizer and a water retention material, wherein the maximum water capacity of the medium is 100 to 500%. 緩効性肥料が、化学的に溶解度が緩効性である化学合成緩効性窒素肥料、ク溶性りん酸肥料及びク溶性加里肥料より選ばれた少なくとも1種の肥料である請求項1に記載されたマット植物用培地。The slow-release fertilizer is at least one fertilizer selected from the group consisting of a chemically synthesized slow-release nitrogen fertilizer, a potassium-soluble phosphate fertilizer, and a potassium-soluble Kali fertilizer, which have a slow chemical solubility. Matted plant medium. 培地の電気伝導度が0.1〜2.0mS/cmであることを特徴とする請求項1若しくは2に記載されたマット植物用培地。The medium for mat plants according to claim 1 or 2, wherein the medium has an electric conductivity of 0.1 to 2.0 mS / cm. 保水材が、植物性繊維材料、天然高分子及びその誘導体からなる群より選ばれた少なくとも1種を含有する保水材である請求項1〜3の何れか1項に記載されたマット植物用培地。The medium for a mat plant according to any one of claims 1 to 3, wherein the water retaining material is a water retaining material containing at least one selected from the group consisting of a plant fiber material, a natural polymer, and a derivative thereof. . 請求項1〜4の何れか1項に記載されたマット植物用培地を粒状一体化したマット植物用粒状培地。A granular medium for a mat plant, wherein the medium for a mat plant according to any one of claims 1 to 4 is granulated and integrated. 請求項1〜4の何れか1項に記載されたマット植物用培地または請求項5に記載されたマット植物用粒状培地を用いた緑化施工方法。A greening method using the medium for mat plants according to any one of claims 1 to 4 or the granular medium for mat plants according to claim 5.
JP2003077897A 2003-03-20 2003-03-20 Culture medium for mat plant, granular culture medium for mat plant, and method for constructing greening using the medium Withdrawn JP2004283060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077897A JP2004283060A (en) 2003-03-20 2003-03-20 Culture medium for mat plant, granular culture medium for mat plant, and method for constructing greening using the medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077897A JP2004283060A (en) 2003-03-20 2003-03-20 Culture medium for mat plant, granular culture medium for mat plant, and method for constructing greening using the medium

Publications (1)

Publication Number Publication Date
JP2004283060A true JP2004283060A (en) 2004-10-14

Family

ID=33292539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077897A Withdrawn JP2004283060A (en) 2003-03-20 2003-03-20 Culture medium for mat plant, granular culture medium for mat plant, and method for constructing greening using the medium

Country Status (1)

Country Link
JP (1) JP2004283060A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067695A (en) * 2006-08-16 2008-03-27 West Nippon Expressway Co Ltd Greening control method
JP2008092915A (en) * 2006-10-16 2008-04-24 Kawakita Kojuen:Kk Artificial culture medium for flowering plant
JP2013146255A (en) * 2012-01-23 2013-08-01 Mogami Ranen Kk Mass propagation method of chrysanthemum pacificum, greening method using chrysanthemum pacificum, and cultivation method of wood rotting fungus used therefor
JP2013153735A (en) * 2012-01-31 2013-08-15 Mogami Ranen Kk Plant vegetation base material, plant vegetation foundation using the same, and method for planting chrysanthemum pacificum using the base material and foundation
JP2015084654A (en) * 2013-10-28 2015-05-07 東洋ゴム工業株式会社 Plant growth culture medium and plant growth kit
RU2614780C1 (en) * 2015-10-05 2017-03-29 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" Method for producing substrate blocks for growing protected ground vegetables

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067695A (en) * 2006-08-16 2008-03-27 West Nippon Expressway Co Ltd Greening control method
JP4642049B2 (en) * 2006-08-16 2011-03-02 西日本高速道路株式会社 Tree planting management method
JP2008092915A (en) * 2006-10-16 2008-04-24 Kawakita Kojuen:Kk Artificial culture medium for flowering plant
JP2013146255A (en) * 2012-01-23 2013-08-01 Mogami Ranen Kk Mass propagation method of chrysanthemum pacificum, greening method using chrysanthemum pacificum, and cultivation method of wood rotting fungus used therefor
JP2013153735A (en) * 2012-01-31 2013-08-15 Mogami Ranen Kk Plant vegetation base material, plant vegetation foundation using the same, and method for planting chrysanthemum pacificum using the base material and foundation
JP2015084654A (en) * 2013-10-28 2015-05-07 東洋ゴム工業株式会社 Plant growth culture medium and plant growth kit
RU2614780C1 (en) * 2015-10-05 2017-03-29 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" Method for producing substrate blocks for growing protected ground vegetables

Similar Documents

Publication Publication Date Title
US20110094967A1 (en) Composite material composed of polymer materials and a porous mineral matrix and the production and use thereof
US8256160B2 (en) Compressed growing medium
CN101715714B (en) Moisture-preserving nutritious soil for growing herbaceous flower seedlings and preparation method thereof
JP3969810B2 (en) Fertilizer medium
EP1680954A1 (en) Nursery bed for transplantation
US20060117655A1 (en) Agglomerated volcanic ash
JP2000198858A (en) Crosslinked polyamino acid-containing particle
JPH11116950A (en) Formed item and its manufacture
JP2004283060A (en) Culture medium for mat plant, granular culture medium for mat plant, and method for constructing greening using the medium
JP4153587B2 (en) Granular medium and mixed medium using the same
JP5774862B2 (en) Culture soil for soiled seedlings
JP2000004670A (en) Granular phosphoric acid medium and material for fertilizing seedling raising vessel using the same
JP2000139207A (en) Granular medium and mixed medium using the same
JP5951952B2 (en) Water retention aggregate
JP2000212561A (en) Charcoal-containing granule, culturing medium by using the same and culturing method
JP4864466B2 (en) Transplanting nursery
JPH11116798A (en) Resin composition
JP4813127B2 (en) Seedling medium with granular fertilizer
JP4141528B2 (en) Lightweight medium and mixed medium using the same
JP2001340017A (en) Granular medium, material for fertilizer application to seedling raising vessel using the same, and method for cultivating crop
JP4651257B2 (en) Granular siliceous fertilizer
JP4932503B2 (en) Disintegrating granular phosphate medium
JP2006254902A (en) Granular culture soil
JP2003158918A (en) Artificial culture soil for raising seedling and method for producing the same
JPH0349525B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070926