JP5774862B2 - Culture soil for soiled seedlings - Google Patents

Culture soil for soiled seedlings Download PDF

Info

Publication number
JP5774862B2
JP5774862B2 JP2011023559A JP2011023559A JP5774862B2 JP 5774862 B2 JP5774862 B2 JP 5774862B2 JP 2011023559 A JP2011023559 A JP 2011023559A JP 2011023559 A JP2011023559 A JP 2011023559A JP 5774862 B2 JP5774862 B2 JP 5774862B2
Authority
JP
Japan
Prior art keywords
soil
weight
base material
seedling
seedlings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011023559A
Other languages
Japanese (ja)
Other versions
JP2011200222A (en
Inventor
太郎 横地
太郎 横地
淳逸 熊谷
淳逸 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Agrotech Co Ltd
Original Assignee
Sumika Agrotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Agrotech Co Ltd filed Critical Sumika Agrotech Co Ltd
Priority to JP2011023559A priority Critical patent/JP5774862B2/en
Publication of JP2011200222A publication Critical patent/JP2011200222A/en
Application granted granted Critical
Publication of JP5774862B2 publication Critical patent/JP5774862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、土付き苗用の培土に関し、より詳細には、土付き苗の機械移植に適した培土に関するものである。   The present invention relates to a soil for soil seedlings, and more particularly to a soil suitable for mechanical transplantation of soiled seedlings.

近年、農作業の省力化等の観点から、育苗容器で育成された苗を、根部に土が付いた状態のまま取り出し、これを機械移植する方法が広く行われている。この機械移植によれば、比較的均一で強健な苗が得やすいものの、機械移植の際に、苗の根部の培土(根鉢部)が崩壊したり、根部と培土とが分離することがあった。   In recent years, from the viewpoint of labor saving in farm work, a method has been widely used in which seedlings grown in a seedling container are taken out with the soil attached to the root and are machine-transplanted. According to this machine transplantation, it is easy to obtain relatively uniform and strong seedlings. However, during the machine transplantation, the soil (root pot) of the root of the seedling may collapse or the root and the soil may be separated. It was.

このため、固化剤を培土基材に添加して根鉢部の強度を高める方法が提案され実施されている。固化剤としては、例えば、アクリル酸塩を含むアクリルアミド共重合体が提案されている(例えば特許文献1など)。   For this reason, a method for increasing the strength of the root pot portion by adding a solidifying agent to the soil base material has been proposed and implemented. As a solidifying agent, for example, an acrylamide copolymer containing an acrylate is proposed (for example, Patent Document 1).

ところが、アクリルアミド共重合体を固化剤として培土基材に添加する方法では、固化剤と培土基材とを混合することによって、培土基材中の水溶性の多価金属イオンが固化剤粒子の表面に結合して不溶性の殻が形成され、混合後の保管条件によっては固化剤が不溶化し固化活性を失ってしまうという問題点があった。   However, in the method of adding the acrylamide copolymer as a solidifying agent to the soil base material, the water-soluble polyvalent metal ions in the soil base material are mixed with the surface of the solidifying agent particles by mixing the solidifying agent and the soil base material. Insoluble shells are formed by bonding, and depending on the storage conditions after mixing, the solidifying agent becomes insoluble and loses its solidification activity.

そこで、培土基材と固化剤とを別々に包装し、使用の直前に混合するという方法が提案されている(例えば特許文献2など)。また、無機イオン封止剤を固化剤と共に培土基材に添加し、固化剤の不溶化を防ぐ方法も提案されている(例えば特許文献3など)。   Therefore, a method has been proposed in which the cultivating base material and the solidifying agent are separately packaged and mixed immediately before use (for example, Patent Document 2). In addition, a method for preventing the insolubilization of the solidifying agent by adding an inorganic ion sealing agent to the soil base material together with the solidifying agent has been proposed (for example, Patent Document 3).

特開昭59-059119号公報JP 59-059119 特開平11-235127号公報Japanese Patent Laid-Open No. 11-235127 特開2000-236743号公報JP 2000-236743 A

しかしながら、前者の方法では、培土基材と固化剤とを混合する作業が新たに必要となり、省力化という所期の目的が充分には達成されない。また、培土基材と固化剤とを混合するための機械が必要となり、このような機械を有さない使用者には適さない。他方、後者の方法では、上記のような混合作業を必要としないが、培土基材から溶出した多価金属イオンと固化剤との反応が、固化剤が溶解・拡散した後も無機イオン封止剤によって抑制されるので、固化剤による固化作用は弱いものにならざるを得ない。また、培土基材として用いている土壌は天然素材であるため、多価金属イオンの含有率や組成、活性が、土壌の採取場所や採取年次などによって様々に変動し、固化剤の反応強度や無機イオン封止剤の効果が安定しない。   However, the former method requires a new work of mixing the cultivating base material and the solidifying agent, and the intended purpose of labor saving is not sufficiently achieved. In addition, a machine for mixing the cultivating base material and the solidifying agent is required, which is not suitable for a user who does not have such a machine. On the other hand, the latter method does not require the mixing operation as described above, but the reaction between the polyvalent metal ions eluted from the soil base material and the solidifying agent is inorganic ion-sealed even after the solidifying agent is dissolved and diffused. Since it is suppressed by the agent, the solidifying action by the solidifying agent must be weak. In addition, since the soil used as the cultivation base is a natural material, the content, composition, and activity of polyvalent metal ions vary depending on the location of the soil and the year of collection. And the effect of inorganic ion sealant is not stable.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的は、移植前に培土基材と固化剤とを混合する必要がなく、また培土基材の含有成分に影響されることなく安定して所望の固化強度が得られ、機械移植の際に、根鉢部が崩壊したり、根部と培土とが分離することのない土付き苗の培土を提供することにある。   The present invention has been made in view of such conventional problems, and the object thereof is not required to mix the soil base material and the solidifying agent before transplantation, and is influenced by the components contained in the soil base material. An object of the present invention is to provide a soil for a seedling with soil, in which a desired solidification strength can be stably obtained, and a root pot portion does not collapse or a root portion and a soil do not separate at the time of mechanical transplantation.

本発明者等は前記目的を達成すべく鋭意検討を重ねた結果、アクリルアミドを主成分とする重合体と共に、スメクタイト、複鎖型粘土鉱物、カオリン鉱物からなる群から選択される少なくとも1つの鉱物を主成分とする粉体(以下、「鉱物粉体」と記すことがある)を培土に含有させることによって、培土基材に含まれる多価金属イオン量に影響されることなく、安定して所望の固化強度が得られることを見出し、本発明をなすに至った。すなわち、本発明に係る土付き苗用の培土は、前記の鉱物粉体と、アクリルアミドを主成分とする重合体と、培土基材とを含み、前記粉体の含有率が1〜20重量%であることを特徴とする。なお、「アクリルアミドを主成分とする」とは、重合体に占めるアクリルアミドの重量割合が50%以上であることを意味し、「スメクタイト、複鎖型粘土鉱物、カオリン鉱物からなる群から選択される少なくとも1つの鉱物を主成分とする」とは、鉱物粉体に占める前記鉱物の総重量割合が50%以上であることを意味する。 As a result of intensive studies to achieve the above object, the present inventors, as a result, at least one mineral selected from the group consisting of smectite, double-chain clay mineral, and kaolin mineral, together with a polymer mainly composed of acrylamide. By containing a powder containing the main component (hereinafter sometimes referred to as “mineral powder”) in the cultivation soil, it is stably desired without being affected by the amount of polyvalent metal ions contained in the cultivation substrate. The present inventors have found that a solidification strength of 1 can be obtained, and have reached the present invention. That is, soil for soil with seedlings according to the present invention, the mineral powder, and polymer mainly comprising acrylamide, viewed contains a soil base material, the content of the powder is 20 weight % . “Containing acrylamide as a main component” means that the weight ratio of acrylamide in the polymer is 50% or more, and “selected from the group consisting of smectite, double-chain clay mineral, and kaolin mineral. “Containing at least one mineral as a main component” means that the total weight ratio of the mineral in the mineral powder is 50% or more.

ここで、前記重合体の含有率としては、培土全体に対して0.2〜3重量%の範囲が好ましい。   Here, as a content rate of the said polymer, the range of 0.2 to 3 weight% is preferable with respect to the whole cultivation soil.

そしてまた、前記培土基材は、天然土壌及び繊維状物質の少なくとも一方を含有しているのが好ましい。   Moreover, it is preferable that the cultivated soil base material contains at least one of natural soil and fibrous material.

また、培土のかさ比重としては0.8kg/L以下が好ましい。   The bulk specific gravity of the soil is preferably 0.8 kg / L or less.

本発明に係る土付き苗用の培土によれば、移植前に培土基材と固化剤とを混合する必要がなく、一層の省力化が図れる。また、培土基材の含有成分に影響されることなく、安定して所望の固化強度が得られる。これにより、機械移植の際に、根鉢部が崩壊したり、根部と培土とが分離することがない。   According to the soil for seedling with soil according to the present invention, it is not necessary to mix the soil base material and the solidifying agent before transplanting, and further labor saving can be achieved. Moreover, the desired solidification strength can be stably obtained without being affected by the components contained in the soil base material. As a result, the root pot portion does not collapse or the root portion and the soil do not separate during machine transplantation.

実施例において培土の充填性を測定する際に使用した底部が1/3欠損したポットの斜視図である。It is a perspective view of the pot which the bottom part used when measuring the filling property of cultivation soil in an Example lost 1/3.

本発明に係る土付き苗用の培土(以下、単に「培土」と記すことがある)は、アクリルアミドを主成分とする重合体と、スメクタイト、複鎖型粘土鉱物、カオリン鉱物からなる群から選択される少なくとも1つの鉱物を主成分とする粉体と、培土基材とを含み、前記粉体の含有率が1〜20重量%であることを特徴とする。 The soil for seedling with soil according to the present invention (hereinafter sometimes simply referred to as “culture soil”) is selected from the group consisting of a polymer mainly composed of acrylamide, smectite, double-chain clay mineral, and kaolin mineral. a powder composed mainly of at least one mineral is, viewed contains a soil base material, wherein the content of the powder is 1 to 20% by weight.

本発明で使用するアクリルアミドを主成分とする重合体としては、ポリアクリルアミド及びアクリルアミドと他の単量体との共重合体が挙げられる。アクリルアミドと共重合可能な単量体としては、カルボキシル基又はカルボン酸塩形基を含有する単量体や、スルホン酸(塩)基を含有する単量体などアニオン性官能基を有する単量体が好適である。カルボキシル基又はカルボン酸塩形基を含有する単量体としては、例えば、(メタ)アクリル酸やマレイン酸、メタクリルアミド、ヒドロキシエチルアクリレート及びその塩などが挙げられる。スルホン酸(塩)基を含有する単量体としては、例えば、ビニルスルホン酸やスチレンスルホン酸、アクリロイルアミノメチルプロパンスルホン酸及びその塩などが挙げられる。また、塩としては、Na,K,Liなどのアルカリ金属塩、アンモニウム塩、アミン塩などが挙げられる。これらの中でもアルカリ金属塩が好ましい。アクリルアミドと共重合可能な単量体のモル含有率は、30%以下が好ましく、15%以下がさらに好ましい。また、分子量としては、500万以上が好ましく、800万以上がさらに好ましい。   Examples of the acrylamide-based polymer used in the present invention include polyacrylamide and copolymers of acrylamide and other monomers. Monomers copolymerizable with acrylamide include monomers having an anionic functional group, such as monomers containing carboxyl groups or carboxylate groups, and monomers containing sulfonic acid (salt) groups. Is preferred. Examples of the monomer containing a carboxyl group or a carboxylate form group include (meth) acrylic acid, maleic acid, methacrylamide, hydroxyethyl acrylate, and salts thereof. Examples of the monomer containing a sulfonic acid (salt) group include vinyl sulfonic acid, styrene sulfonic acid, acryloylaminomethylpropane sulfonic acid, and salts thereof. Examples of the salt include alkali metal salts such as Na, K, and Li, ammonium salts, and amine salts. Among these, alkali metal salts are preferable. The molar content of the monomer copolymerizable with acrylamide is preferably 30% or less, and more preferably 15% or less. Further, the molecular weight is preferably 5 million or more, and more preferably 8 million or more.

培土における、アクリルアミドを主成分とする重合体の含有率としては、0.2〜3重量%の範囲が好ましい。前記重合体の含有率が0.2重量%未満であると、培土の充分な固化強度が得られないおそれがある一方、3重量%を超えると、植物の発芽に悪影響を与えるおそれがある。   As a content rate of the polymer which has acrylamide as a main component in culture medium, the range of 0.2 to 3 weight% is preferable. If the polymer content is less than 0.2% by weight, sufficient solidification strength of the soil may not be obtained, while if it exceeds 3% by weight, germination of the plant may be adversely affected.

本発明で使用する鉱物粉体は、スメクタイト、複鎖型粘土鉱物、カオリン鉱物からなる群から選択される少なくとも1つの鉱物を主成分とするものである。スメクタイトとしては、例えば、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライトなどが挙げられ、これらの中でもモンモリロナイトが好適である。層間イオン種による分類としては、一般的に、カルシウム型モンモリロナイト、ナトリウム型モンモリロナイト、水素型モンモリロナイト(酸性白土)などがあるが、カルシウム型及びナトリウム型が最も好ましい。複鎖型粘土鉱物としては、アタパルジャイト、セピオライト、パリゴルスカイトなどが挙げられる。カオリン鉱物としては、カオリナイト、ディッカイト、ナクライト、ハロサイトなどが挙げられる。これらの鉱物の総含有量が鉱物粉体の50重量%以上であればよい。本発明で使用する鉱物粉体の平均粒子径は100μm以下であることが好ましく、70μm以下であることがさらに好ましい。   The mineral powder used in the present invention is mainly composed of at least one mineral selected from the group consisting of smectite, double-chain clay mineral, and kaolin mineral. Examples of the smectite include montmorillonite, beidellite, nontronite, saponite, hectorite and the like. Among these, montmorillonite is preferable. Generally, there are calcium type montmorillonite, sodium type montmorillonite, hydrogen type montmorillonite (acid clay), etc. as the classification based on the interlayer ion species, but the calcium type and sodium type are most preferable. Examples of double-chain clay minerals include attapulgite, sepiolite, and palygorskite. Examples of kaolin minerals include kaolinite, dickite, nacrite, and halosite. The total content of these minerals should just be 50 weight% or more of mineral powder. The average particle size of the mineral powder used in the present invention is preferably 100 μm or less, and more preferably 70 μm or less.

培土における鉱物粉体の含有率としては、1〜20重量%の範囲である。前記鉱物粉体の含有率が1重量%未満であると、培土の充分な固化強度が得られないおそれがある一方、20重量%を超えると、植物の発芽に悪影響を与えるおそれがある。 As a content rate of the mineral powder in cultivation soil, it is the range of 1-20 weight%. If the content of the mineral powder is less than 1% by weight, sufficient solidification strength of the soil may not be obtained, while if it exceeds 20% by weight, germination of the plant may be adversely affected.

本発明で使用する培土基材としては、従来公知のものが使用できる。例えば、黒ボク土、砂、火山灰、軽石、赤玉土、鹿沼土、日向土、田土などの天然土壌;ピートモス、バーク堆肥、チップ堆肥、おがくず、竹粉など植物性の繊維状物質及びこれらの混合物が挙げられる。これらの中でも、天然土壌としては、粒子形状が偏析の起きにくい不定形で、且つかさ比重が小さいことから火山灰や軽石を含んでいることが好ましく、さらに、pH緩衝性やイオン交換性、適度な粘性などを持たせるため、粘土や黒ぼく土や赤土などを含んでいることが好ましい。これらの成分を混合して造粒した粒状培土が特に好ましい。また、植物性の繊維状物質としては、品質が安定しているピートモスが好ましい。   A conventionally well-known thing can be used as a culture | cultivation base material used by this invention. For example, natural soils such as black soil, sand, volcanic ash, pumice, red ball soil, Kanuma soil, Hinata soil, and rice soil; plant fibrous materials such as peat moss, bark compost, chip compost, sawdust, bamboo flour, and mixtures thereof Is mentioned. Among these, natural soil preferably has volcanic ash and pumice because the particle shape is indeterminate and segregation is less likely and the bulk specific gravity is small. In order to give viscosity etc., it is preferable to include clay, black soil or red soil. Particular preference is given to granular soils obtained by mixing these ingredients and granulating them. Moreover, as a vegetable fibrous substance, peat moss with which quality is stable is preferable.

培土基材には、天然土壌及び繊維状物質の少なくとも一方を含有させるのが好ましい。植物性の繊維状物質を含有させる場合、培土基材に占める繊維状物質の割合は、2重量%以上が好ましく、3〜40重量%の範囲がさらに好ましく、5〜25%の範囲が最も好ましい。また、培土基材に軽量のものを用いることにより、培土のかさ比重を0.8kg/L以下とするのが好ましい。これにより、輸送コストが低くなると共に、育苗容器の重量が軽くなり運搬労力等が軽減されるようになる。ここでいうかさ比重は、粉粒体を自由落下によって一定容量の容器に充填し、それ以上振動や衝撃を加えることなく、粒子間の空隙が多い状態で測定した場合のかさ比重(ルースかさ比重)を指す。   It is preferable that the cultivating base material contains at least one of natural soil and fibrous material. When the plant fibrous material is contained, the proportion of the fibrous material in the culture medium is preferably 2% by weight or more, more preferably 3 to 40% by weight, and most preferably 5 to 25%. . In addition, it is preferable that the bulk specific gravity of the soil is 0.8 kg / L or less by using a lightweight material for the soil base. As a result, the transportation cost is reduced, the weight of the seedling container is reduced, and the transportation labor and the like are reduced. The bulk specific gravity here refers to the bulk specific gravity (loose bulk specific gravity) measured when a granular material is filled into a container of a certain volume by free fall and there are many voids between the particles without further vibration or impact. ).

本発明の培土は、例えば、前記重合体と鉱物粉体とを培土基材に添加することにより作製される。より詳細には、前記重合体と鉱物粉体とをそれぞれ培土基材に添加してもよいし、前記重合体と鉱物粉体とを混合して、鉱物粉体に前記重合体を付着・含浸させた後、これを培土基材に添加してもよい。なお、混合は、ミキサーなどの従来公知の混合機を用いて行うことができる。   The soil according to the present invention is produced, for example, by adding the polymer and mineral powder to a soil base material. More specifically, the polymer and the mineral powder may be added to the soil base material, respectively, and the polymer and the mineral powder are mixed to adhere and impregnate the polymer to the mineral powder. This may be added to the soil base material. In addition, mixing can be performed using conventionally well-known mixers, such as a mixer.

本発明の培土は、野菜や花き、苗木、水稲などの容器での育苗に好適であり、特に、たまねぎなどのような主根のみで側根を持たないか又は少ない植物に好適である。   The soil of the present invention is suitable for raising seedlings in containers such as vegetables, flowering plants, seedlings, paddy rice, etc., and particularly suitable for plants having only a main root such as onion or the like and having few or no side roots.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples at all.

(実施例1〜13,比較例1〜3)
培土基材としての粒状培土とピートモスの混合物(かさ比重:0.50〜0.65kg/L)と、アクリルアミド系重合体と、スメクタイト(モンモリロナイト)を主成分とする鉱物粉体と、界面活性剤とを、表1に示す重量割合となるように秤量した後、ミキサーに投入して混合し、実施例1〜13及び比較例1,2の培土を作製した。また、比較例3として、市販されている培土「オニオンエース」(片倉チッカリン社製)を用いた。そして、作製した培土の物性を以下の方法により測定した。測定結果を表1に合わせて示す。
(Examples 1-13, Comparative Examples 1-3)
A mixture of granular soil and peat moss (bulk specific gravity: 0.50 to 0.65 kg / L), a acrylamide polymer, a mineral powder mainly composed of smectite (montmorillonite), and a surfactant. Were weighed so as to have the weight ratios shown in Table 1, and then put into a mixer and mixed to prepare soil for Examples 1 to 13 and Comparative Examples 1 and 2. As Comparative Example 3, a commercially available soil “Onion Ace” (manufactured by Katakura Chikkarin Co., Ltd.) was used. And the physical property of the produced soil was measured with the following method. The measurement results are shown in Table 1.

(かさ比重)
容積1L(直径約10cm、深さ約13cm)のプラスチック製カップに、作製した培土を上から振り落として充填し、カップのふちをすりきって正確に1Lを量りとり、内容物重量を電子天秤で秤量し、かさ比重を算出した。
(Bulk specific gravity)
A plastic cup with a volume of 1 L (diameter: about 10 cm, depth: about 13 cm) is filled with the prepared medium by shaking it off from the top, scraping off the edge of the cup, accurately weighing 1 L, and weighing the contents. The bulk specific gravity was calculated.

(含水率)
(1)任意容量の耐熱容器を準備し、その重量を測定する(重量aとする)。
(2)本発明の培土を所定量(例えば、5〜10g程度)を前記の耐熱容器内に入れて、その重量を測定する(重量bとする)。
(3)耐熱容器ごとオーブンに入れて、105℃で16〜24時間程度、加熱乾燥する。
(4)乾燥後の耐熱容器ごと、シリカゲルの入ったデシケーター内に入れて、常温になるまで放置した後、その重量を測定する(重量cとする)。
(5)下記式から含水率を求める。
含水率(fw%)=(b−c)/(b−a)×100
(Moisture content)
(1) A heat-resistant container having an arbitrary capacity is prepared and its weight is measured (weight a).
(2) A predetermined amount (for example, about 5 to 10 g) of the soil of the present invention is placed in the heat-resistant container, and the weight thereof is measured (referred to as weight b).
(3) Place the whole heat-resistant container in an oven and heat dry at 105 ° C. for about 16 to 24 hours.
(4) The dried heat-resistant container is placed in a desiccator containing silica gel and allowed to stand at room temperature, and then its weight is measured (referred to as weight c).
(5) Obtain the water content from the following formula.
Water content (fw%) = (b−c) / (b−a) × 100

(育苗)
作製後数日経過後の培土を用いて、下記の手順でたまねぎの育苗を行った。ただし、実施例12のみ、製造から6ヶ月経過後の培土を用いた。
(1)直径16mm、深さ25mmのポット448個からなる育苗トレイに、培土を床土として充填した。その際、充填量を測定した。そして、播種するスペースを確保するため、ポット中の床土を上から鎮圧した後、たまねぎのコーティング種子(品種:北もみじ2000)を播種し、同一の培土で覆土した。
(2)播種し終わった育苗トレイの重量を測定した後、ハウス内に運び、育苗床に育苗トレイの底面が充分に密着するように圧着設置した。トレイ1枚当り1Lの灌水を行なった。10日間シルバーポリトウで覆って発芽させ、シルバーポリトウを取り去った。
(3)その後、適時に灌水を行って育苗した。その間、発芽が出揃って、数値が安定した時点で、正常発芽率を計測した。
(4)播種後45日目から灌水を10日間止め、その後、トレイ1枚当たり1Lの灌水を行なった。
(5)灌水24時間後に育苗床から育苗トレイをはがし、移植機(みのる産業社製「OPR4」)を用いて以下の要領で移植を行い、移植適性を評価した。評価結果を表2に示す。
(Nursing seedlings)
Onion seedlings were bred in the following procedure using the soil after a few days had passed. However, only in Example 12, the soil after 6 months from the production was used.
(1) The culture soil was filled as floor soil into a seedling tray composed of 448 pots having a diameter of 16 mm and a depth of 25 mm. At that time, the filling amount was measured. Then, in order to secure a space for sowing, the floor soil in the pot was crushed from above, and then onion-coated seeds (cultivar: Kita Maple 2000) were sowed and covered with the same soil.
(2) After measuring the weight of the seedling tray after sowing, the seedling tray was transported into the house and installed so that the bottom surface of the seedling tray was in close contact with the nursery bed. Irrigation of 1 L was performed per tray. It was covered with silver polytow for 10 days to germinate, and the silver polytow was removed.
(3) Thereafter, the seedlings were raised by irrigating in a timely manner. During this period, when the germination was completed and the value was stable, the normal germination rate was measured.
(4) Irrigation was stopped for 10 days from the 45th day after sowing, and then 1 L of irrigation was performed per tray.
(5) The seedling tray was peeled off from the nursery bed 24 hours after irrigation, and transplantation was performed using the transplanter (“OPR4” manufactured by Minoru Sangyo Co., Ltd.) as follows to evaluate the transplantability. The evaluation results are shown in Table 2.

(苗の移植適性評価)
移植機の植え付け部を地面から浮いた状態にし、植え付け部の下に苗受け容器を設置した。そして、育苗トレイを移植機に仕掛け、移植機を最大速度で稼動させた。苗受け容器に落下してきた苗を回収し、無作為に50〜100本程度をサンプリングし、根鉢部の固化状態を下記基準で評価しその個数比率(%)を算出した。
「形状維持」:培土がポットの形状を保っている。
「半壊」 :半分以上の培土が失われている。
「全壊」 :培土が完全に失われている。
(Evaluation of transplantability of seedlings)
The planting part of the transplanter was floated from the ground, and a seedling receiving container was installed under the planting part. Then, the seedling tray was set on the transplanter, and the transplanter was operated at the maximum speed. The seedlings that had fallen into the seedling receiving container were collected, about 50 to 100 samples were randomly sampled, the solidified state of the root pots was evaluated according to the following criteria, and the number ratio (%) was calculated.
“Keep shape”: The soil keeps the shape of the pot.
“Semi-broken”: More than half of the soil has been lost.
“Completely destroyed”: The soil has been completely lost.

表2から明らかなように、実施例1〜13の培土では、正常発芽率が97.5%以上と良好で、移植適性評価において、大半の根鉢部がポットの形状を保っており、根鉢部の全壊となったものはなかった。これに対し、鉱物粉体を添加しなかった比較例1の培土では、移植適性評価において、培土の半分以上が半壊又は全壊となった。また、アクリルアミド系重合体を添加しなかった比較例2の培土では、移植適性評価においてすべての培土が全壊となった。一方、比較例3の市販培土「オニオンエース」では、正常発芽率及び移植適性評価も良好であったが、かさ比重が0.85kg/Lと実施例1〜13の各培土よりも大きいため、播種後の育苗トレイ重量が2160gにもなり、播種機への培土投入や運搬、播種後の育苗トレイの運搬などの作業負担が大きくなると共に、輸送コストも大きくなると推測される。また、次に説明する、培土をポットに充填する段階において不具合の発生するおそれがある。   As apparent from Table 2, in the soils of Examples 1 to 13, the normal germination rate was as good as 97.5% or more, and most root pots maintained the shape of the pot in the transplantability evaluation. None of the bowls were completely destroyed. In contrast, in the soil of Comparative Example 1 to which no mineral powder was added, more than half of the soil was partially or completely broken in the transplantability evaluation. Moreover, in the soil of Comparative Example 2 to which no acrylamide polymer was added, all the soil was completely destroyed in the transplant suitability evaluation. On the other hand, in the commercial soil "Onion Ace" of Comparative Example 3, the normal germination rate and transplantability evaluation were also good, but the bulk specific gravity was 0.85 kg / L and larger than each soil of Examples 1-13, The seedling tray weight after sowing becomes 2160 g, and it is presumed that the work load such as feeding and transporting the soil to the seeding machine and transporting the seedling tray after sowing increases and the transportation cost also increases. In addition, there is a risk that problems will occur at the stage of filling the pot with the soil, which will be described next.

(培土の充填性)
実施例1と比較例3の培土について、ポットへの充填性を下記方法によってさらに測定した。結果を表3に示す。
図1に示すような底部が1/3欠損したポットを200個用意し、みのる産業社製のタマネギ自動播種機「OSE-100」を用いてこれらのポットに培土を充填した。そして、ポット欠損部からの培土の流亡の有無を目視により観察し、培土が流亡したポット数を数えた。
(Culture filling)
About the soil of Example 1 and Comparative Example 3, the filling property to a pot was further measured by the following method. The results are shown in Table 3.
As shown in FIG. 1, 200 pots having a 1/3 deficient bottom were prepared, and these pots were filled with soil using an automatic onion seeder “OSE-100” manufactured by Minoru Sangyo Co., Ltd. And the presence or absence of the runoff of the soil from a pot defect | deletion part was observed visually, and the number of pots in which the soil was run away was counted.

表3から明らかなように、実施例1の培土ではポット底部からの流亡はゼロであったのに対し、かさ比重の大きい比較例3の培土では106個ものポットにおいて流亡が発生した。   As is clear from Table 3, in the cultivating soil of Example 1, the run-off from the bottom of the pot was zero, whereas in the cultivating soil of Comparative Example 3 having a large bulk specific gravity, run-out occurred in as many as 106 pots.

(実施例14〜19,比較例4〜12
表4に示す鉱物を主成分とする粉体6.54重量%と、培土基材としての粒状培土83.71重量%と、ピートモス8.49重量%と、アクリルアミド系重合体1.12重量%と、界面活性剤0.09重量%とをミキサーに投入して混合し、実施例14〜19及び比較例4〜12の培土を作製した。なお、培土のpHを6〜7に調整するため、pH調整剤としての消石灰を必要によりさらに添加した。そして、作製直後の培土及び温度20℃のインキュベータ器内に密閉状態で1ヶ月保存した培土の圧縮強度を測定した。測定結果を表4に合わせて示す。
(Examples 14 to 19 and Comparative Examples 4 to 12 )
6.54% by weight of powder mainly composed of minerals shown in Table 4, 83.71% by weight of granular soil as a soil base material, 8.49% by weight of peat moss, 1.12% by weight of acrylamide polymer When, and 0.09 wt% surfactant were mixed was charged into a mixer, to prepare a plug mixture for examples 14-19 and Comparative examples 4-12. In addition, in order to adjust pH of culture soil to 6-7, the slaked lime as a pH adjuster was further added as needed. And the compressive strength of the soil immediately after preparation and the culture soil preserve | saved in the sealed state in the 20 degreeC incubator for 1 month was measured. The measurement results are shown in Table 4.

(培土の圧縮強度の測定方法)
直径16mm、深さ25mmのポット14個に、作製した培土30gを充填した。そして、ポット中の培土を専用鎮圧機によって鎮圧した後、鎮圧によって生じた空間部に覆土を充填しポットのふちをすり切った。次に、ポット底面から吸水させた後、ポットをラップで包み温度20℃で72時間養生させ培土を固化させた。次いで、ラップを取り除いた後、乾燥機を用いて50℃で40時間乾燥させた。
乾燥させた培土をポットから取り出し、純水に15分間浸漬させた後、ウエス上に5分間載置して脱水した。そして、イマダ社製のデジタルフォースゲージを用いて圧縮強度を測定した。
(Measurement method of compressive strength of culture soil)
Fourteen pots having a diameter of 16 mm and a depth of 25 mm were filled with 30 g of the produced soil. Then, after the soil in the pot was crushed by a dedicated crushed machine, the space created by the crushed was filled with cover soil and the pot edge was cut off. Next, water was absorbed from the bottom of the pot, and the pot was wrapped with a wrap and cured at a temperature of 20 ° C. for 72 hours to solidify the soil. Next, after removing the wrap, it was dried at 50 ° C. for 40 hours using a dryer.
The dried soil was taken out from the pot, immersed in pure water for 15 minutes, and then placed on a waste cloth for 5 minutes for dehydration. Then, the compressive strength was measured using a digital force gauge manufactured by Imada Corporation.

実施例14〜19の本発明に係る培土は、圧縮強度が5.6N〜7.8Nと高く、また1ヶ月保存後も圧縮強度は高い値を保っていた。これに対し、鉱物粉体を配合しなかった比較例4の培土は圧縮強度が3.6Nと低かった。また、比較例5の培土は、作製直後の圧縮強度は5.5Nと高かったものの、1ヶ月保存後は3.3Nにまで低下し保存安定性に欠けるものであった。さらに、比較例6〜12の培土はいずれも作製直後の圧縮強度が4.7N以下と低いものであった。 The soil according to the present invention of Examples 14 to 19 had a high compressive strength of 5.6 N to 7.8 N, and the compressive strength maintained a high value even after storage for 1 month. In contrast, the soil of Comparative Example 4 in which no mineral powder was blended had a compressive strength as low as 3.6 N. Moreover, although the compressive strength immediately after preparation was as high as 5.5 N, the cultivation soil of Comparative Example 5 fell to 3.3 N after storage for 1 month and lacked storage stability. Furthermore, the soils of Comparative Examples 6 to 12 all had a low compressive strength of 4.7 N or less immediately after production.

(実施例20,比較例13
スメクタイト(Ca型モンモリロナイト)を主成分とする粉体4.33重量%と、粒状培土26.66重量%と、ピートモス21.33重量%と、火山レキ29.49重量%と、アクリルアミド系重合体0.58重量%とをミキサーに投入して混合して、実施例20の培土を作製した。一方、比較例13として、市販されている培土「全農 与作N150」(チッソ旭肥料社製)を用いた。そして、それぞれの培土を用いて下記要領でたまねぎの育苗を行いその発芽率を測定すると共に、根鉢強度を測定した。測定結果を表5に合わせて示す。
(Example 20 and Comparative Example 13 )
4.33% by weight of powder mainly composed of smectite (Ca-type montmorillonite), 26.66% by weight of granular soil, 21.33% by weight of peat moss, 29.49% by weight of volcanic reki, and acrylamide polymer 0.58 wt% was put into a mixer and mixed to prepare the soil for Example 20 . On the other hand, as Comparative Example 13 , a commercially available soil “Zenno Yosaku N150” (manufactured by Chisso Asahi Fertilizer Co., Ltd.) was used. And onion seedlings were grown in the following manner using each cultivated soil, the germination rate was measured, and the root pot strength was measured. The measurement results are shown in Table 5.

(育苗)
(1)直径16mm、深さ25mmのポット448個からなる育苗トレイに、培土を床土として充填した。そして、播種するスペースを確保するため、ポット中の床土を上から鎮圧した後、たまねぎのコーティング種子(品種:ターザン)を播種し、同一の培土で覆土した。
(2)コンクリート床上に吸水マットを敷き、その上に防草シートを被せ、その上に播種し終わった育苗トレイを置いた。育苗トレイ1枚当り1Lの灌水を行なった。10日間シルバーポリトウで覆って発芽させ、シルバーポリトウを取り去った。
(3)その後、適時に灌水を行って育苗した。その間、発芽が出揃って、数値が安定した時点で、正常発芽率を計測した。結果を表5に示す。
(Nursing seedlings)
(1) The culture soil was filled as floor soil into a seedling tray composed of 448 pots having a diameter of 16 mm and a depth of 25 mm. And in order to secure the space for sowing, after crushing the floor soil in a pot from the top, the onion coating seed (variety: Tarzan) was seed | inoculated and it covered with the same cultivation soil.
(2) A water-absorbing mat was laid on the concrete floor, a grass protection sheet was placed on the mat, and a seedling tray that had been seeded was placed thereon. 1 L of water was irrigated per seedling tray. It was covered with silver polytow for 10 days to germinate, and the silver polytow was removed.
(3) Thereafter, the seedlings were raised by irrigating in a timely manner. During this period, when the germination was completed and the value was stable, the normal germination rate was measured. The results are shown in Table 5.

(根鉢強度の測定)
播種後45日目及び60日目に、育苗トレイのポットから100個の根鉢を抜き出し、高さ50cmの所から2回落下させ、根鉢の形状が半分以上残っているものを「移植可能」とし、移植可能な根鉢の数を数えた。結果を表5に合わせて示す。
(Measurement of root pot strength)
On the 45th and 60th day after sowing, 100 root pots were extracted from the seedling tray pot, dropped twice from a 50cm height, and those with more than half of the root pot shape remained "Transplantable" And counted the number of root pots that could be transplanted. The results are shown in Table 5.

表5から明らかなように、実施例20の培土では、正常発芽率が98%と高く、しかも播種後45日目ですでに移植可能な強度に達していた。これに対し、比較例13の培土では、正常発芽率は実施例20の培土と同じであったが、播種後45日目では未だ移植可能な強度には達せず、苗の根が充分に成長した播種後60日目になってようやく移植可能な強度に達した。 As is clear from Table 5, in the soil of Example 20 , the normal germination rate was as high as 98%, and had already reached a transplantable strength 45 days after sowing. On the other hand, in the soil of Comparative Example 13 , the normal germination rate was the same as that of Example 20 , but it still did not reach the transplantable strength on the 45th day after sowing, and the seedling roots grew sufficiently. At 60 days after sowing, the transplantable strength was finally reached.

本発明に係る土付き苗の培土によれば、移植前に培土基材と固化剤とを混合する必要がなく、また培土基材の含有成分に影響されることなく安定して所望の固化強度が得られ有用である。   According to the soil seedling culture according to the present invention, there is no need to mix the soil base material and the solidifying agent before transplanting, and the desired solidification strength can be stably achieved without being affected by the components contained in the soil base material. Is useful.

Claims (4)

スメクタイト、複鎖型粘土鉱物、カオリン鉱物からなる群から選択される少なくとも1つの鉱物を主成分とする粉体と、アクリルアミドを主成分とする重合体と、培土基材とを含み、
前記粉体の含有率が1〜20重量%である
ことを特徴とする土付き苗用の培土。
Smectite, seen containing a powder mainly composed double-chained-type clay mineral, at least one mineral selected from the group consisting of kaolin minerals, and polymer comprising acrylamide, a soil base material,
A soil for seedling with soil, wherein the content of the powder is 1 to 20% by weight .
前記重合体の含有率が0.2〜3重量%である請求項1記載の土付き苗用の培土。   The soil for seedling with a soil according to claim 1, wherein the content of the polymer is 0.2 to 3% by weight. 前記培土基材が、天然土壌及び繊維状物質の少なくとも一方を含有する請求項1又は2記載の土付き苗用の培土。 The soil for seedling with a soil according to claim 1 or 2 , wherein the soil base material contains at least one of natural soil and a fibrous material. かさ比重が0.8kg/L以下である請求項1〜のいずれかに記載の土付き苗用の培土。 Bulk soil specific gravity is 0.8 kg / L or less, The cultivation soil for soil seedlings in any one of Claims 1-3 .
JP2011023559A 2010-03-02 2011-02-07 Culture soil for soiled seedlings Active JP5774862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011023559A JP5774862B2 (en) 2010-03-02 2011-02-07 Culture soil for soiled seedlings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010044840 2010-03-02
JP2010044840 2010-03-02
JP2011023559A JP5774862B2 (en) 2010-03-02 2011-02-07 Culture soil for soiled seedlings

Publications (2)

Publication Number Publication Date
JP2011200222A JP2011200222A (en) 2011-10-13
JP5774862B2 true JP5774862B2 (en) 2015-09-09

Family

ID=44877691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011023559A Active JP5774862B2 (en) 2010-03-02 2011-02-07 Culture soil for soiled seedlings

Country Status (1)

Country Link
JP (1) JP5774862B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960383A1 (en) * 2010-06-01 2011-12-02 Edmond Pierre Picard SUBSTRATE FOR USE AS A CULTURE SUPPORT AND APPLICATION TO THE PRODUCTION IN PARTICULAR OF SPORTING SURFACES
JP2016153468A (en) * 2015-02-20 2016-08-25 みのる産業株式会社 Solidification culture soil for machinery transplant
FR3062985B1 (en) * 2017-02-17 2019-10-11 Veritable ELEMENT FOR CULTIVATION OF AT LEAST ONE PLANT AND METHOD OF MAKING THE ELEMENT

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573924B2 (en) * 1999-05-27 2010-11-04 奥多摩工業株式会社 Agglomerated zeolite, production method thereof and seedling culture soil
JP2003289720A (en) * 2002-04-08 2003-10-14 Okutama Kogyo Co Ltd Culture soil for mechanical setting
JP2005229857A (en) * 2004-02-18 2005-09-02 Sumika Agrotech Co Ltd Soil covering layer solidifying ridging and usage of the same
JP4865196B2 (en) * 2004-06-04 2012-02-01 奥多摩工業株式会社 Superabsorbent lightweight soil containing water repellent organic material and method for producing the same
JP2007222111A (en) * 2006-02-24 2007-09-06 Yanmar Co Ltd Cultivation soil for cell-formed seedling, and method for producing cell-formed seedling

Also Published As

Publication number Publication date
JP2011200222A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
US10064345B2 (en) Culture medium for plant cultivation
JP4573924B2 (en) Agglomerated zeolite, production method thereof and seedling culture soil
EP1680954A1 (en) Nursery bed for transplantation
JP5774862B2 (en) Culture soil for soiled seedlings
JP2020188726A (en) Method for producing seedling-raising culture soil, seedling-raising culture soil and plant cultivation method
JP6281133B2 (en) Method and planter for growing plants
JP4950744B2 (en) Soil for raising seedlings and cutting method of vegetables using the same
JP4864466B2 (en) Transplanting nursery
JP4813127B2 (en) Seedling medium with granular fertilizer
JP2007222111A (en) Cultivation soil for cell-formed seedling, and method for producing cell-formed seedling
JP2021177735A (en) Method for producing seedling culture soil, seedling culture soil, and method for culturing plants
JPH0349525B2 (en)
JP3315660B2 (en) Improved seedling culture for mechanical transplantation
JP2012055275A (en) Culture soil for seedling with soil
JP2004283060A (en) Culture medium for mat plant, granular culture medium for mat plant, and method for constructing greening using the medium
JP2002171831A (en) Seedling-raising culture soil for mechanical plantation
JP5994003B1 (en) Water-retaining granular culture soil for planters using carboxymethylcellulose
JP7471908B2 (en) Method for manufacturing seedling soil, seedling soil, and method for cultivating plants
JPH10248376A (en) Earthing for cell seedling rearing
JPH0984451A (en) Powdery granular artificial culture soil
JP4699771B2 (en) Nursery soil for machine-planting
JP2001346438A (en) Culture soil for raising seedling
JPH0491722A (en) Seedling-raising culture coil for horticulture
JP2021177733A (en) Method for producing seedling culture soil, seedling culture soil, and method for culturing plants
JPH02117330A (en) Nutriculture of plant and culture medium material for culture bed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150702

R150 Certificate of patent or registration of utility model

Ref document number: 5774862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250