JP4141528B2 - Lightweight medium and mixed medium using the same - Google Patents

Lightweight medium and mixed medium using the same Download PDF

Info

Publication number
JP4141528B2
JP4141528B2 JP10846298A JP10846298A JP4141528B2 JP 4141528 B2 JP4141528 B2 JP 4141528B2 JP 10846298 A JP10846298 A JP 10846298A JP 10846298 A JP10846298 A JP 10846298A JP 4141528 B2 JP4141528 B2 JP 4141528B2
Authority
JP
Japan
Prior art keywords
medium
weight
lightweight
fertilizer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10846298A
Other languages
Japanese (ja)
Other versions
JPH11239416A (en
Inventor
典明 原田
Original Assignee
チッソ旭肥料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チッソ旭肥料株式会社 filed Critical チッソ旭肥料株式会社
Priority to JP10846298A priority Critical patent/JP4141528B2/en
Publication of JPH11239416A publication Critical patent/JPH11239416A/en
Application granted granted Critical
Publication of JP4141528B2 publication Critical patent/JP4141528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/002Solid waste from mechanical processing of material, e.g. seed coats, olive pits, almond shells, fruit residue, rice hulls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Description

【0001】
【発明の属する技術分野】
本発明は、水稲育苗用培地、園芸育苗用培地、芝生栽培用培地、養液栽培用培地、本圃栽培用培地及び土壌改良材等として用いられ、水稲、花卉、野菜、芝生、観賞用植物等を生育・栽培するのに好適な植物栽培用培地に係り、更に詳細には、軽量且つ撥水性が低減した低水分系の軽量培地及びその製造方法並びに混合培地に関する。
【0002】
【従来の技術】
従来から、植物を栽培するために、沖積土、洪積土、火山性土、腐食土、火成土、砂、その他天然鉱物から成る土壌が用いられており、一般農家では、これらの土壌に肥料成分を混合し、独自の配合により自家製培土として使用していた。
ところが、一般農家で土壌に肥料成分を混合すると、不均一な混合状態になり易く、また、手間がかかり労力を要するため、予め土壌と肥料成分とを造粒した粒状培土が使用されるようになった。
【0003】
しかし、上述の如き培土及び粒状培土は、その真比重及び嵩比重の双方が大きいため重く、これらを用いる農作業はかなり重労働となるという問題があった。
かかる問題に対し、近年では、培土の軽量化、作業性向上及び培土の物理化学性向上を図れる、ソイルレス(土、土壌の不使用)系の培地原料として、ピートモスやヤシガラ等の植物性繊維材料が好適に用いられるようになってきた。
【0004】
【発明が解決しようとする課題】
しかしながら、これらソイルレス系培地原料は、従来の土や土壌と比較して軽量であるものの、乾燥した低水分の状態で単独又は混合して培地原料として使用すると、撥水性が発現し、吸水・保水特性が低下するという課題があった。従って、ソイルレス系培地原料では、予め含水処理を行って、撥水性が発現しないような含有水分率である水分率40〜60重量%に調整しなければならず、この結果、嵩比重が、土や土壌に比べれば小さいが、水分を含有しているため大きくならざるを得ず、十分な軽量化が実現されていなかった。
【0005】
また、かかるソイルレス系培地原料を用いた培地では、上記含水処理により培地に水分が含まれているため、長期保管よる黴の発生や経時的な物理性・化学性の変化が極めて起こり易く、更に、これら培地原料に、化学的に溶解度を調整し又は物理的に溶出速度を調整した緩効性肥料を混合してパッケージングすると、輸送・長期保管中に緩効性肥料の肥料成分が溶出してしまい、所期の緩効性機能を発揮できなくなるといった課題もあった。
【0006】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、軽量且つ撥水性が低減した低水分系の軽量培地及びその製造方法、並びにこの軽量培地を他の軽量天然資材と混合した混合培地を提供することにある。
また、本発明の他の目的は、化学的に溶解度を調整し又は物理的に溶出速度を調整した緩効性肥料と予め混合しても、長期保管が可能な培土資材を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、特定のヤシガラ系材料を用いることにより、上記目的が達成できることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明の軽量培地は、ヤシガラを含有して成る軽量培地であって、土壌三相計にて測定した上記ヤシガラの真比重d1が、1.5g/cm3≦d1≦3.0g/cm3であることを特徴とする。
また、本発明の軽量培地の好適形態は、土壌三相計にて測定した上記軽量培地全体の真比重d2が、1.5g/cm3≦d2≦3.5g/cm3であることを特徴とする。
更に、これらの軽量培地に、肥料及び/又は炭化物を含有させた成型加工物であってもよい。
【0009】
また、本発明の軽量培地の製造方法は、上述の軽量培地を製造するに当たり、ヤシガラを含有する培地原料に、剪断応力及び/又は圧縮応力を加えて成型加工を施すことを特徴とする。
【0010】
また、本発明の混合培地は、上述の軽量培地に、焼成バーミキュライト、パーライト、ゼオライト、炭化物及び乾燥殺菌土から成る群より選ばれた少なくとも1種のものを混合して成ることを特徴とするが、その好適形態は、更に化学的に溶解度を調整し又は物理的に溶出速度を調整した緩効性肥料を付加して成ることを特徴とする。
【0011】
更に、本発明の栽培方法は、上述の軽量培地又は混合培地を用いて植物の育苗及び/又は栽培を行うことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の軽量培地について詳細に説明する。
上述の如く、本発明の軽量培地は、ヤシガラを含有する培地であるが、その含有量は代表的に10重量%以上であり、10重量%未満では培地全体の撥水性への影響は少ない。
【0013】
ここで、主たる培地原料であるヤシガラは、ヤシの実の果皮から外果皮及び内果皮を除去し、取り出された中果皮に由来する繊維状物及び木質部分から得られ、中果皮全体に裁断粉砕等を施して繊維状物と木質部分との混合物としたものや、コイアダストと称される中果皮から更に有用成分(剛長繊維及び中短繊維)を除いた残りの細短繊維と木質部分との混合物を意味する。
【0014】
かかる木質部分は、中果皮の繊維間を埋めるように構成している木質のようなものであり、特に、コイアダストは、有用成分である繊維の採取工程に伴って大量(中果皮全体の約60重量%)に発生するものであり、従来は廃棄されていたものである。
なお、コイアダストは、上述のように繊維採取工程の不要成分として採取されるため、これを構成する細短繊維及び木質部分の中には若干の長中繊維が混在していることがある。
【0015】
以下、コイアダストの製法を示す。
▲1▼ ヤシの実から、果汁、胚乳、内果皮部分を除いた外・中果皮を乾燥する。
▲2▼ 乾燥した外・中果皮を4〜6週間淡水に浸し、余分なタンニン、塩化物を除去する(アク抜き)とともにふやけさせる。
▲3▼ 柔らかくなった外・中果皮から、ロープ、マット及びマットレスに使用される剛長繊維・中短繊維を分離し、残滓として副生する細短繊維と木質部分を採取する。
▲4▼ 採取した細短繊維と木質部分は、水分を80〜90重量%含有しているが、脱水工程により40〜50重量%とし、次いで、天日又は熱風乾燥により水分率20重量%とする。
▲5▼ 更に、この乾燥品を薫蒸消毒・殺菌工程に供し、コンタミ(不純物)除去・粒度調整を行い、コイアダストを得る。
【0016】
上述のように、ヤシの実の外・中果皮から、ロープ、マット及びマットレスに使用される剛長・中短繊維を除いた残滓がコイアダストであり、別名コイア、ピス等とも呼ばれ、従来は廃棄されていたものである。
よって、本発明の軽量培地は、かかるコイアダストを積極的に使用するものであり、この観点によれば、本発明は廃棄物の有効利用につながるものである。
【0017】
なお、コイアダストを採取するヤシの種類は、特に限定されるものではないが、スリランカ産のココヤシから良質の剛い繊維が採取され、このココヤシがロープ、マット及びマットレス等の繊維製品に好適に使用されるので、コイアダストの排出量も多い。このため、スリランカ産のココヤシのコイアダストは、品質及び安定供給の点で優れており、本発明において好適に用いられる。
【0018】
また、上述のように、本発明の軽量培地では、培地中のヤシガラ部分の真比重d1は、土壌三相計で測定して1.5g/cm3≦d1≦3.0g/cm3であり、この値は本軽量培地を崩壊させてヤシガラ部分を選別・収集して測定した場合でも成立する。
なお、この軽量培地全体の真比重d2は、1.5g/cm3≦d2≦3.5g/cm3になることがあるが、この場合も植物栽培用培地として好適である。
【0019】
上述した真比重の制御は、代表的に上記ヤシガラ等の培地原料に、剪断応力及び/又は圧縮応力を加えて成型加工することにより行うことができるが、ヤシガラ部分の真比重が1.5g/cm3未満の場合には、撥水性が発現し、吸水・保水特性が悪化し、ヤシガラ部分の真比重が3.0g/cm3を超える場合には、培地全体としての重量が大きくなり過ぎるので、好ましくない。
【0020】
なお、本発明者は、上述したヤシガラ等の培地原料について、土壌三相計によって測定可能な真比重を1.5g/cm3以上とすることにより、これを含有する培地が乾燥した低水分の状態であっても撥水性を発現しないことを知見したものであり、本発明はこの知見に基づくものである。
【0021】
また、真比重の調整方法は、特に限定されるものではなく、上述のように、剪断応力及び/又は圧縮応力を加える等の物理的調整方法の他、肥料をはじめとする無機物や、ポリビニルアルコール等の親水性有機物をヤシガラに付着させる方法でもよい。但し、後述する無機物や有機物の付着は、灌水により付着物が流出して経時的安定性が低下するため、長期使用には向いていない。
これに対し、上述した剪断応力及び/又は圧縮応力を加える等の物理的調整方法は経時的安定性に優れており、本発明ではかかる方法を好適に用いることができる。
【0022】
なお、本発明の軽量培地の含有水分率X1は、化学的に溶解度を調整し又は物理的に溶出速度を調整した緩効性肥料との混合時における肥料成分の品質安定性を向上し、更には嵩比重を小さくして軽量化をも図る観点から、0重量%<X1≦20重量%とすることが好ましい。
含有水分率を完全に0重量%にすることは、空気中の湿気等により含有水分率が経時的に変化し易いため、工業的に困難である。一方、20重量%を超える場合には、後述する化学的に溶解度を調整し又は物理的に溶出速度を調整した緩効性肥料と混合して保管すると、含有水分により肥料成分が経時的に溶解・溶出することがあり、好ましくない。
【0023】
また、本発明の軽量培地は、育苗又は本圃の栽培培地として利用されるものであり、上述のようにヤシガラを含有するものであるが、培地中又は崩壊後のヤシガラ部分が上記真比重の範囲を逸脱せず、また、撥水性の発現抑制その他の特性に悪影響を及ぼさない限り、肥料及び/又は炭化物を添加することができ、このように栽培に必要な肥料や炭化物を予め添加しておけば、施肥・施用労力削減を図ることができる。
更に、上述のような悪影響が無い限り、肥料以外にも結合材や保水材等の添加材を添加することも可能である。
【0024】
ここで、添加可能な肥料は、特に限定されるものではなく、N(窒素)、P25(リン酸)、K2O(加里)のうち少なくとも一種の成分を含むものであればば十分であるが、これら以外にもCaO(酸化カルシウム)、MgO(酸化マグネシウム)、微量要素等の化合物を含んでいてもよい。
具体的には、チッソ肥料、リン酸肥料、加里肥料、配合肥料、普通化成肥料、高度化成肥料、ニ成分複合化成肥料、緩効性チッソ入り化成肥料、被覆複合肥料、硝化制御剤入り化成肥料、固形肥料、ペースト肥料、液体肥料、微量要素肥料、石灰質肥料、苦土質肥料、ケイ酸質肥料、有機質肥料及び堆肥等が挙げられる。
【0025】
また、物理的に溶出速度を調整した緩効性肥料、即ち緩効性被覆肥料を添加して成型加工する場合は、造粒などにより被覆膜が破壊され、所定の機能を果たせなくなるため好ましくないが、化学的に溶解度を調整した緩効性肥料、即ち化学合成緩効性窒素肥料、ク溶性リン酸肥料及びク溶性加里肥料等を添加して成型加工することは可能である。
例えば、化学合成緩効性窒素肥料としては、イソブチルアルデヒド縮合尿素(IBDU)、アセトアルデヒド縮合尿素(CDU又はOMU)、ホルムアルデヒド加工尿素肥料、硫酸グアニル尿素、オキサミド等が挙げられ、ク溶性リン酸肥料としては、焼成リン肥、よう性リン肥、沈澱リン酸石灰、苦土過石(蛇紋過石)、フッ素アパタイト、ヒドロキシアパタイト等が挙げられ、更に、ク溶性加里肥料としては、塩基性のカリウム又はマグネシウム含有物及び微粉炭燃焼灰を混合して焼成したケイ酸加里肥料等が挙げられる。
【0026】
一方、添加可能な炭化物としては、製紙工場におけるソーダパルプ製造の廃棄物から造られる黒灰、籾殻やヤシ殻の内果皮(内殻)から造られた活性炭、木材屑から造られた活性炭等が挙げられ、コスト面からは製紙工場のソーダパルプ製造の廃棄物から造られる黒灰が好適に用いられる。
【0027】
また、結合材としては、コーンスターチ、小麦澱粉、米澱粉、甘藷澱粉、馬鈴薯澱粉及びタピオカ澱粉等の澱粉類、ベントナイト等のモンモリロナイト群の粘度鉱物、二水石膏や半水石膏(焼石膏)、アルギン酸ナトリウムや寒天等の海藻抽出物、アラビアガムやトラガントガム等の植物性樹脂粘着物、カルボキシメチルスターチやカルボキシメチルセルロース等の天然高分子誘導体、ポリビニルアルコールやポリアクリル酸ナトリウム等の合成高分子等を挙げることができ、水溶性の結合材が好ましい。
【0028】
また、上記結合材の使用法としては、ヤシガラ等と混合して成型・造粒することを挙げることができるが、成型・造粒後などに成型体や粒状体の表面に塗布、噴霧等してもよい。
但し、かかる結合材は本発明における必須の材料ではなく、多量に使用したり、培地全体へ混合使用したり、非水溶性の結合材を使用する場合などには、撥水性が発現するおそれがあるので、使用上十分注意を払う必要がある。
【0029】
更に、保水材としては、バーミキュライト、パーライト、ゼオライト、ベントナイト、ロックウール等の鉱物類、ピートモス、樹皮、木材パルプ、もみ殻、おが屑、木炭等の草木類、及び吸水ポリマー等を挙げることができ、これらも本発明の効果を妨げない範囲で加えることができる。
【0030】
更にまた、農薬活性成分を添加して成型加工してもよいし、成型加工した軽量培地と農薬活性成分を混合してもよい。
かかる農薬活性成分としては、殺虫剤、殺菌材、除草剤、抗ウィルス剤及び植物成長調整剤の外、殺ダニ剤、殺線虫剤等を挙げることができ、これらは固定又は液体のいずれであっても使用可能である。
【0031】
上述した種々の添加材の添加量については、本発明の効果を妨げない範囲で、且つ本発明の培地を水に浸漬した場合のpH及びEC(電気伝導度)に相当の注意を払って決定することが好ましく、場合によっては、酸性やアルカリ性の材料を含むpH調整剤を添加してpHやECを制御してもよい。
pH及びECの値は、栽培する対象植物によって異なるが、一般的に、pHで5〜8、ECは肥料未添加系で0.5mS/cm以下、肥料添加系で1.0〜2.0mS/cmとすることが好ましい。但し、土壌改良材的に希釈して使用することを意図して、高濃度の肥料を添加して成型加工したものについては、かかる範囲を大きく逸脱することがあるのは言うまでもない。
【0032】
次に、本発明の軽量培地の製造方法について説明する。
本軽量培地は、上述のようなヤシガラと、所要に応じて肥料その他の成分とを混合して培地原料を作成し、この培地原料に、剪断応力及び/又は圧縮応力を加えて成型加工を施すことによって、得られる。
なお、上述のヤシガラ原料に剪断応力及び/又は圧縮応力を加えることなく粉状のまま乾燥し、これを培地としても、撥水性が発現し、吸水・保水特性が悪化するので、好ましくないことは言うまでもない。
【0034】
また、剪断応力及び/又は圧縮応力を加えることが可能な成型方法としては、得られる軽量培地の真比重を上記範囲に制御できる方法であれば、特に限定されるものではなく、各種成型方法、造粒方法を適用できる。
ここで、成型方法としては、ロールプレス法やタブレッティング法などを好ましく実施することができる。
【0035】
造粒の方法としては、押出造粒法、圧縮造粒法、転動造粒法、噴霧乾燥造粒法、流動層造粒法、破砕造粒法、攪拌造粒法及びコーティング造粒法等が挙げられる。これらの中でも、剪断応力及び/又は圧縮応力を加えることができる方法として、押出造粒法と圧縮・粉砕造粒法が好ましく、押出造粒方式としては、例えば、スクリュー型である前押出式、横押出式、真空押出式及び前処理兼用式、ロール型であるディスクダイ式やリングダイ式、ブレード型であるバスケット式やオシレーティング式、自己成形型であるギヤー式やシリンダー式、ラム型である連続式や断続式等が挙げられ、いずれも好適に適用できる。
なお、剪断応力及び/又は圧縮応力の値は、適用する造粒法などに応じて適宜変更することができるが、代表的にロール型のディスクダイ式造粒法では、100〜600kg/cm2であり、好ましくは200〜400kg/cm2である。また、圧縮・粉砕造粒方式としては、上記圧縮成型法にて成型した成型体を粉砕して粒状化する方法が好適に実施できる。
【0036】
上述の成型・造粒によって得られる軽量培地の形状も特に限定されるものではなく、粒状、ブリケット状、タブレット状、マット状及びサイコロ状等のいずれであってもよいが、他の資材と混合使用する場合には、粒径が2〜10mmの粒状又は小粒のブリケット状等とすることが好ましい。
特に、本発明に係る粒状等の軽量培地は、培地や肥料及び種子等をホッパーで育苗箱に連続的に充填して行く自動播種施肥装置に用いるのに好適であり、ホッパーでの残存率(所謂ブリッジによる詰まり)が粉状の培地に比し著しく低いので、かかる播種施肥装置における培地の充填効率を向上することができる。
【0037】
また、本発明の製造方法においては、ヤシガラと肥料その他の成分を混合した培地原料の含有水分率は特に限定されるものではないが、最終製品として、即ち軽量培地の含有水分率X1を、最終的に0重量%<X1≦20重量%とすることが好ましい。この理由は、上述したように、得られる軽量培地の嵩比重を小さくして軽量化を図るためであり、また、上記緩効性肥料と混合して保管した場合における肥料成分の経時的溶解・溶出を回避するためである。
なお、上述した軽量培地の含有水分率は、成型加工時の加水量の調整及び/又は成型加工後の乾燥により調整することができる。
【0038】
次に、本発明の混合培地について説明すると、本混合培地は、本発明の軽量培地に、焼成バーミキュライト、パーライト、ゼオライト、炭化物又は乾燥殺菌土及びこれらの任意の組み合わせを混合したものであり、また、化学的に溶解度を調整し、又は物理的に溶出速度を調整した緩効性肥料を混合することも可能である。
【0039】
ここで、化学的に溶解度を調整した緩効性肥料としては、上述の如く、化学合成緩効性窒素肥料、ク溶性リン酸肥料及びク溶性加里肥料等を挙げることができ、具体的には、化学合成緩効性窒素肥料としては、イソブチルアルデヒド縮合尿素(IBDU)、アセトアルデヒド縮合尿素(CDU又はOMU)、ホルムアルデヒド加工尿素肥料、硫酸グアニル尿素及びオキサミド等を例示でき、ク溶性リン酸肥料としては、焼成リン肥、よう性リン肥、沈澱リン酸石灰、苦土過石(蛇紋過石)、フッ素アパタイト及びヒドロキシアパタイト等が挙げられ、ク溶性加里肥料としては、塩基性のカリウム又はマグネシウム含有物及び微粉炭燃焼灰を混合して焼成したケイ酸加里肥料等が挙げられる。
一方、物理的に溶出速度を調整した緩効性肥料としては、窒素肥料をポリオレフィン系樹脂又は硫黄その他の被覆原料で被覆した被覆窒素肥料、カリ質肥料をポリオレフィン系樹脂又は硫黄その他の被覆肥料で被覆した被覆カリ肥料、化成肥料又は液状複合肥料をポリオレフィン系樹脂又は硫黄その他の被覆原料で被覆した被覆複合肥料等が挙げられる。
【0040】
また、本発明の効果を妨げない範囲で、本発明の軽量培地と農薬活性成分から成る材料を混合した混合培地とすることも可能である。
この際、農薬活性成分から成る材料としては、殺虫剤、殺菌材、除草剤、抗ウィルス剤及び植物成長調整剤の外、殺ダニ剤、殺線虫剤等を挙げることができ、これらの性状は固定又は液体のいずれであってもよい。また、これらの農薬活性成分の放出を時限制限するようにして成る時限放出型被覆農薬粒剤を、本発明の軽量培地に混合して混合培地を得てもよい。
【0041】
なお、軽量培地の場合と同様に、上述した種々の添加材の添加量については、本発明の効果を妨げない範囲で、且つこの混合培地を水に浸漬した場合のpH及びEC(電気伝導度)に相当の注意を払って決定することが好ましい。
pH及びECの値は、栽培する対象植物によって異なるが、一般的に、pHで5〜8、ECは肥料未添加系で0.5mS/cm以下、肥料添加系で1.0〜2.0mS/cmとすることが好ましい。
【0042】
また、本発明の軽量培地との共通性から、例えば、含有水分率X2は、軽量培地と同様の理由から0重量%<X2≦20重量%とすることが好ましい。
なお、本発明の軽量培地は、それ自体で極めて有用なものであり、必ずしも混合培地として使用する必要がないのは勿論である。
【0043】
【実施例】
以下、本発明を実施例及び比較例に基づいて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
なお、各例において、最大容水量その他の特性は以下のようにして求めた。
【0044】
(最大容水量)
撥水性及び保水性の指標として用いた最大容水量は、ヒルガード法に従い、最大容水量測定容器にサンプルを投入し、底面から吸水させ24時間放置する。吸水された水分の重量と乾土との重量を測定し、次式
(吸水された水分の重量)/(乾土の重量)×100
より算出した。但し、撥水性を正確に評価すべく、底面からの吸水のみ行い、上面からの灌水は行わないことにした。
【0045】
(大起理科工業(株)製の土壌三相計(型式;DIK−3520)による、三相分布及び真比重の測定)
▲1▼サンプルを三相分布測定用100ml試料円筒(大起理化工業(株)製、型式;DIK−1801)に充填し、撥水性のあるものについては、上部から灌水しながら攪拌して強制的に吸水させておく。
▲2▼砂柱法キット(大起理化工業(株)製、型式;DIK−3520)に、サンプルを充填した100ml試料円筒をセットし、十分に灌水させた後、水位をPF=1.5(石英砂上面からの水位;31.6cm下位)に調節する。
▲3▼100ml試料円筒に蓋をし、PF=1.5の状態で24時間以上放置する。
▲4▼土壌三相計(大起理化工業(株)製、型式;DIK−1120)に試料円筒をセットし、サンプルの実容積(V)を測定する。
▲5▼更に天秤にて全重量(W)を測定し、オーブンに入れ105℃で24時間以上乾燥させ、乾燥前後の重量差から水分重量(M)を算出する。
▲6▼下記の計算式により、a)気相率 b)固相率 c)液相率 d)真比重を算出した。
a)気相率(A=Va) ;空気容量Va=100−V
b)固相率(Sν=Vs);固相容量Vs=(W−V)/(d−1)
c)液相率(Mν=Vl);水分容量Vl=V−Vs
d)真比重(d) ;d=(W−M)/(V−Vl)
但し、Vl:水分容量、Vl=M
【0046】
(カビ発生有無)
サンプル200mlをシャーレに取り、更に、非滅菌のピートモスを微量加え、30℃−50%RHの恒温恒湿槽に3カ月間保管し、カビの発生有無を確認する。なお、非滅菌のピートモスの添加は、ピートモスに混在する菌の添加を目的として行った。
【0047】
(被覆尿素肥料(LPコート)添加時の肥料成分溶出率)
50L用ポリ袋に充填されたLPコート100号(くみあい40被覆尿素LPコート100、保証成分;窒素全量40%、チッソ(株)製)入り培地を、常温暗所に放置する。3カ月経過後、各培地中からLPコートを全て取り出し、これを乳鉢ですりつぶす。メスフラスコに全て移し入れ、純水を加えて定容にし、その定量を取り出してPDAB法により、当該溶液中の尿素濃度を定量する。
得られた定量値から肥料成分溶出量を算出し、当初含まれていた肥料成分量で除することにより、肥料成分溶出率を算出する。
【0048】
1.軽量培地の造粒
(実施例1)
200Lのヤシガラ中果皮粉砕品(含有水分率;40重量%、φ4mmパス、スリランカ産ヤシガラ)と、肥料成分としての、150gの硫酸アンモニア(新日鐵化学(株)製、保証成分 窒素;21%)と、200gの重焼リン(小野田化学工業(株)製、保証成分 ク溶性リン酸;46%)と、60gの硫酸加里(チッソ旭肥料(株)製、保証成分 加里;50%)とを、内部容量が400Lの羽根付きコンクリートミキサーに投入し、10rpmの回転速度で10分間混合した。得られた混合物を前押出造粒機(スクリーンメッシュ径;φ3mm)にて造粒し、90℃の熱風乾燥機にて含有水分率が5重量%になるように乾燥した後、篩いにより2〜4mmの軽量培地Aを約50L得た。
【0049】
(実施例2〜4)
造粒・乾燥後の含有水分率がそれぞれ10重量%(実施例2)、20重量%(実施例3)及び30重量%(実施例4)となるように乾燥した以外は、実施例1と同様の操作を繰り返し、2〜4mmの軽量培地B(実施例2)、C(実施例3)及びD(実施例4)をそれぞれ約50Lずつ得た。
【0050】
(実施例5)
ヤシガラ中果皮粉砕品の代わりにコイアダスト(スリランカ産)を用いた以外は、実施例1と同様の操作を繰り返し、2〜4mmの軽量培地Eを約50L得た。
【0051】
(実施例6〜8)
造粒・乾燥後の含有水分率がそれぞれ10重量%(実施例6)、20重量%(実施例7)及び30重量%(実施例8)となるように乾燥した以外は、実施例5と同様の操作を繰り返し、2〜4mmの軽量培地F(実施例6)、G(実施例7)及びH(実施例8)をそれぞれ約50Lずつ得た。
【0052】
(実施例9)
ヤシガラ中果皮粉砕品の替わりに、コイアダストと炭の混合物(重量比=3:1)を用いた以外は、実施例1と同様の操作を繰り返し、2〜4mmの軽量培地Iを約50L得た。
【0053】
(実施例10〜11
造粒・乾燥後の含有水分率がそれぞれ10重量%(実施例10)、20重量%(実施例11)なるように乾燥した以外は、実施例5と同様の操作を繰り返し、2〜4mmの軽量培地J(実施例10)及び(実施例11)をそれぞれ50Lずつ得た。
【0054】
(比較例1)
200Lのヤシガラ中果皮粉砕品(含有水分率;40重量%、φ4mmパス、スリランカ産ヤシガラ)と、肥料成分としての、150gの硫酸アンモニア(新日鐵化学(株)製、保証成分 窒素;21%)と、200gの重焼リン(小野田化学工業(株)製、保証成分 ク溶性リン酸;46%)と、60gの硫酸加里(チッソ旭肥料(株)製、保証成分 加里;50%)とを、内部容量が400Lの羽根付きコンクリートミキサーに投入し、10rpmの回転速度で10分間混合した。得られた混合物を90℃の熱風乾燥機にて含有水分率が10重量%になるように乾燥し、乾燥培地Iを得た。
【0055】
(比較例2)
乾燥を行わなかった以外は比較例1と同様の操作を繰り返し、培地Jを得た。
【0056】
(比較例3)
ヤシガラ中果皮粉砕品の代わりにコイアダスト(スリランカ産)を用いた以外は、比較例1と同様の操作を繰り返し、培地Kを得た。
【0057】
(比較例4)
乾燥を行わなかった以外は比較例3と同様の操作を繰り返し、培地Lを得た。
【0058】
(比較例5)
ヤシガラ中果皮粉砕品の代わりにピートモス(VAPO社製)を用いた以外は、実施例1と同様の操作を繰り返し、培地Mを得た。
【0059】
2.軽量培地の物理的特性
実施例1〜11で得られた軽量培地、比較例1〜5で得られた培地、及び比較例6としての水稲育苗用粒状培土(クレハ粒状培土)につき、上述した特性を評価し、得られた結果を表1に示す。
【0060】
【表1】

Figure 0004141528
【0061】
表1から明らかなように、実施例1〜11の軽量培地は、比較例1〜の粉状培地と比較しても同等程度軽さと三相分布を有し、低水分の場合でも最大容水量の変化がほとんど無く、撥水性も認められなかった。
また、実施例の軽量培地は、水稲育苗用粒状培土と比較してかなり軽量であり、同様な方法で成型加工して得られた粒状ピートモスと比較しても、撥水性が無く吸水特性に優れていた。
【0062】
3.カビ発生テスト及び被覆尿素肥料(LPコート)添加時の肥料成分溶出率
(実施例13)
40Lの軽量培地Aに、1kgのLPコート100号(くみあい40被覆尿素LPコート100、保証成分;窒素全量40%、チッソ(株)製)を加えて均一に混合し、50L用ポリ袋に充填し、カビ発生テスト及び肥料成分溶出率の測定を行った。得られた結果を表2に示す。
【0063】
(実施例14)
20Lの軽量培地Aと20Lの焼成バーミキュライト(含有水分率;5重量%以下)に、1kgのLPコート100号を加えた以外は、実施例13と同様の操作を繰り返し、得られた結果を表2に示した。
【0064】
(実施例15、17、19、21、23、25、27及び29並びに比較例7及び9)
軽量培地Aの代わりに、それぞれ軽量培地B(実施例15)、C(実施例17)、E(実施例19)、F(実施例21)、G(実施例23)、I(実施例25)、J(実施例27)及びK(実施例29)、並びに培地M(比較例7)及びP(比較例9)を用いた以外は、実施例13と同様の操作を繰り返し、得られた結果を表2に示す。
【0065】
(実施例16、18、20、22、24、26、28及び30並びに比較例8及び10)
軽量培地Aの代わりに、それぞれ軽量培地B(実施例16)、C(実施例18)、E(実施例20)、F(実施例22)、G(実施例24)、I(実施例26)、J(実施例28)及びK(実施例30)、培地J(比較例8)及びL(比較例10)を用いた以外は、実施例14と同様の操作を繰り返し、得られた結果を表2に示す。
【0066】
【表2】
Figure 0004141528
【0067】
表2から明らかなように、実施例13〜30においては、培地含有水分率が20重量%以下に抑えられているため、比較例7〜10のようにカビが発生することがなく、また、緩効性被覆肥料を添加しても肥料成分が大幅に溶出することもなかった。
【0068】
なお、上述の実施例に準じて肥料成分を調整した軽量培地及び混合培地を用いて、小松菜、白菜及び水稲の育苗、並びに芝生の栽培を実施したところ、各々の生育に適した慣行培土と比較しても、発芽・生育状態については有意差が無く、良好であった。
【0069】
【発明の効果】
以上説明してきたように、本発明によれば、特定のヤシガラ系材料を用いることとしたため、軽量且つ撥水性が低減した低水分系の軽量培地及びその製造方法、並びにこの軽量培地を他の軽量天然資材と混合した混合培地を提供することができる。また、化学的に溶解度を調整し又は物理的に溶出速度を調整した緩効性肥料と予め混合しても、長期保管が可能な培地資材を提供することも可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention is used as a paddy rice seedling culture medium, a horticultural seedling culture medium, a lawn cultivation medium, a nutrient culture medium, a mainland cultivation medium, a soil conditioner, and the like, such as paddy rice, flowers, vegetables, lawn, ornamental plants, etc. More particularly, the present invention relates to a light-weight medium with a low moisture content and a reduced water repellency, a method for producing the same, and a mixed medium.
[0002]
[Prior art]
Traditionally, soil made of alluvial soil, diluvial soil, volcanic soil, corrosive soil, igneous soil, sand, and other natural minerals has been used to grow plants. Fertilizer ingredients were mixed and used as home-grown soil with a unique formulation.
However, when fertilizer components are mixed with soil by a general farmer, it is easy to be in a non-uniform mixed state, and it takes time and labor, so that a granular soil that has been previously granulated with soil and fertilizer components is used. became.
[0003]
However, the above-mentioned cultivated soil and granular cultivated soil are heavy because both their true specific gravity and bulk specific gravity are large, and there is a problem that farm work using these becomes quite heavy labor.
In response to these problems, plant fiber materials such as peat moss and coconut husks have recently been used as soil-less (soil-free) medium materials that can reduce the weight of the soil, improve workability, and improve the physicochemical properties of the soil. Have come to be used favorably.
[0004]
[Problems to be solved by the invention]
However, these soilless medium raw materials are lighter than conventional soil and soil, but when used alone or mixed as a medium raw material in a dry and low moisture state, they exhibit water repellency and absorb water and retain water. There existed a subject that a characteristic fell. Therefore, in the soilless medium raw material, it is necessary to adjust the water content to 40 to 60% by weight, which is a water content not to exhibit water repellency, by performing water treatment in advance. Although it is small compared to soil, it has to be large because it contains moisture, and sufficient weight reduction has not been realized.
[0005]
In addition, in a medium using such a soilless-type medium raw material, moisture is contained in the medium due to the above water-containing treatment, so generation of wrinkles due to long-term storage and changes in physical / chemical properties over time are extremely likely to occur. When these medium raw materials are mixed with a slow-release fertilizer whose solubility is chemically adjusted or whose dissolution rate is physically adjusted and packaged, the fertilizer components of the slow-release fertilizer are eluted during transportation and long-term storage. Therefore, there is a problem that the intended slow-release function cannot be exhibited.
[0006]
The present invention has been made in view of the above-described problems of the prior art. The object of the present invention is to provide a lightweight medium with a low moisture content and a reduced water repellency, a method for producing the same, and the lightweight medium. An object of the present invention is to provide a mixed medium in which the above is mixed with other lightweight natural materials.
Another object of the present invention is to provide a soil material that can be stored for a long time even if it is premixed with a slow-release fertilizer that has been chemically adjusted for solubility or physically adjusted for dissolution rate. .
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by using a specific coconut shell material, and has completed the present invention.
[0008]
That is, the lightweight medium of the present invention is a lightweight medium comprising coconut shells, and the true specific gravity d of the coconut shells measured with a three-phase soil meter. 1 Is 1.5 g / cm Three ≦ d 1 ≦ 3.0 g / cm Three It is characterized by being.
Moreover, the suitable form of the lightweight culture medium of this invention is the true specific gravity d of the whole said lightweight culture medium measured with the soil three-phase meter. 2 Is 1.5 g / cm Three ≦ d 2 ≦ 3.5g / cm Three It is characterized by being.
Furthermore, it may be a molded product in which a fertilizer and / or a carbide is contained in these lightweight media.
[0009]
Moreover, the manufacturing method of the light-weight culture medium of this invention is characterized by performing a shaping | molding process by adding a shear stress and / or a compressive stress to the culture medium raw material containing a coconut husk in manufacturing the above-mentioned light-weight culture medium.
[0010]
In addition, the mixed medium of the present invention is characterized in that the above-mentioned lightweight medium is mixed with at least one selected from the group consisting of calcined vermiculite, pearlite, zeolite, carbide and dry sterilized soil. The preferred form is characterized in that a slow-release fertilizer whose chemical solubility is adjusted or whose dissolution rate is physically adjusted is added.
[0011]
Furthermore, the cultivation method of the present invention is characterized in that plant seedling and / or cultivation is performed using the above-mentioned light-weight medium or mixed medium.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the lightweight medium of the present invention will be described in detail.
As described above, the light-weight medium of the present invention is a medium containing coconut shells, but its content is typically 10% by weight or more, and if it is less than 10% by weight, the influence on the water repellency of the whole medium is small.
[0013]
Here, coconut husk, which is the main medium raw material, is obtained from the fibrous and wooden parts derived from the mesocarp removed from the pericarp of the coconut, and cut and crushed into the entire mesocarp Etc. to give a mixture of fibrous materials and wood parts, and the remaining fine short fibers and wood parts from which useful components (rigid fibers and medium and short fibers) are further removed from mesocarp called coir dust Means a mixture of
[0014]
Such a woody portion is like wood that is configured so as to fill between the fibers of the mesocarp, and in particular, coir dust is produced in a large amount (about 60% of the entire mesocarp) along with the process of collecting fibers that are useful components. Weight percent), and was previously discarded.
In addition, since coir dust is extract | collected as an unnecessary component of a fiber extraction process as mentioned above, some long and medium fibers may be mixed in the thin short fiber and wood part which comprise this.
[0015]
Hereafter, the manufacturing method of coir dust is shown.
(1) Dry the outer and middle pericarp from the fruit of the palm, excluding fruit juice, endosperm and inner pericarp.
(2) Soak the dried outer and mesocarp in fresh water for 4-6 weeks to remove excess tannin and chloride (without draining) and to make them soft.
(3) Separate the rigid and medium-short fibers used in ropes, mats and mattresses from the softened outer and mesocarp, and collect the fine fibers and woody parts that are by-produced as residues.
(4) The collected short fiber and the wood part contain 80 to 90% by weight of moisture, but 40 to 50% by weight by the dehydration process, and then 20% by weight of water by sun or hot air drying. To do.
(5) Further, this dried product is subjected to fumigation disinfection and sterilization processes to remove contamination (impurities) and adjust the particle size to obtain coir dust.
[0016]
As mentioned above, the residue after removing the long, medium and short fibers used for ropes, mats and mattresses from the outside and mesocarp of palm fruit is coir dust, also known as coir, pis etc. It has been discarded.
Therefore, the lightweight culture medium of the present invention actively uses such coir dust, and according to this aspect, the present invention leads to effective use of waste.
[0017]
The kind of palm from which the coir dust is collected is not particularly limited, but high-quality rigid fibers are collected from Sri Lankan coconut, and this coconut is preferably used for fiber products such as ropes, mats and mattresses. As a result, there is a lot of emission of coir dust. For this reason, cocoa palm dust from Sri Lanka is excellent in terms of quality and stable supply, and is preferably used in the present invention.
[0018]
Further, as described above, in the lightweight medium of the present invention, the true specific gravity d of the coconut husk portion in the medium. 1 Is 1.5 g / cm as measured with a three-phase soil meter. Three ≦ d 1 ≦ 3.0 g / cm Three This value is established even when the light-weight medium is disrupted and the coconut shell portion is selected and collected and measured.
The true specific gravity d of the entire light-weight medium 2 Is 1.5 g / cm Three ≦ d 2 ≦ 3.5g / cm Three In this case, it is also suitable as a plant culture medium.
[0019]
The control of the true specific gravity described above can be typically performed by applying a shearing stress and / or a compressive stress to a medium raw material such as the above-mentioned coconut shell, and the true specific gravity of the coconut shell portion is 1.5 g / cm Three If it is less than 1, water repellency is exhibited, water absorption / retention characteristics are deteriorated, and the true specific gravity of the coconut shell portion is 3.0 g / cm. Three In the case where it exceeds 1, the weight of the whole medium becomes too large, which is not preferable.
[0020]
In addition, this inventor is 1.5 g / cm of true specific gravity measurable with a soil three phase meter about medium raw materials, such as the above-mentioned coconut husk. Three By having made it above, it discovered that even if the culture medium containing this was the state of the dry low moisture, it discovered that water repellency was not expressed, and this invention is based on this knowledge.
[0021]
The method for adjusting the true specific gravity is not particularly limited. As described above, in addition to the physical adjustment method such as applying a shear stress and / or a compressive stress, inorganic materials such as fertilizers, and polyvinyl alcohol. A method of adhering a hydrophilic organic material such as coconut shells to the coconut shells may also be used. However, the adhesion of inorganic substances and organic substances, which will be described later, is not suitable for long-term use because the deposits flow out due to irrigation and the stability over time decreases.
On the other hand, the physical adjustment method such as applying the above-described shear stress and / or compressive stress has excellent temporal stability, and such a method can be suitably used in the present invention.
[0022]
In addition, the moisture content X of the lightweight culture medium of the present invention 1 Improves the quality stability of fertilizer components when mixed with slow-release fertilizers that have been chemically adjusted for solubility or physically adjusted for elution rate, and further reduced in weight by reducing bulk specific gravity From the viewpoint, 0 wt% <X 1 ≦ 20 wt% is preferable.
It is industrially difficult to make the water content completely 0% by weight because the water content tends to change with time due to moisture in the air. On the other hand, if it exceeds 20% by weight, the fertilizer components will dissolve over time due to the moisture content when stored with a slow-release fertilizer whose chemical solubility is adjusted later or whose dissolution rate is physically adjusted.・ It may elute and is not preferable.
[0023]
Further, the light-weight medium of the present invention is used as a seedling or cultivation medium for cultivation in the field, and contains coconut shells as described above. Fertilizer and / or carbide can be added as long as they do not deviate from the above and the water repellency is not adversely affected and other properties are not adversely affected. In this way, fertilizer and carbide necessary for cultivation can be added in advance. For example, fertilization and application labor can be reduced.
Furthermore, as long as there is no adverse effect as described above, it is possible to add additives such as a binder and a water retention material in addition to the fertilizer.
[0024]
Here, the fertilizer which can be added is not particularly limited, and N (nitrogen), P 2 O Five (Phosphoric acid), K 2 It is sufficient if it contains at least one component of O (Kari), but in addition to these, compounds such as CaO (calcium oxide), MgO (magnesium oxide), and trace elements may be included.
Specifically, nitrogen fertilizer, phosphate fertilizer, potassium fertilizer, compound fertilizer, ordinary chemical fertilizer, advanced chemical fertilizer, two-component compound chemical fertilizer, slow-release chemical compound fertilizer, coated compound fertilizer, chemical fertilizer with nitrification control agent , Solid fertilizer, paste fertilizer, liquid fertilizer, trace element fertilizer, calcareous fertilizer, mafic fertilizer, siliceous fertilizer, organic fertilizer, compost and the like.
[0025]
In addition, when a slow-acting fertilizer with a physically adjusted elution rate, that is, a slow-acting coated fertilizer is added and molded, the coating film is destroyed by granulation or the like, and it is impossible to perform a predetermined function. However, it is possible to mold and process a slow-release fertilizer with chemically adjusted solubility, that is, a chemically-synthesized slow-release nitrogen fertilizer, a soluble phosphate fertilizer, a soluble soluble fertilizer, and the like.
For example, chemically synthesized slow-release nitrogenous fertilizers include isobutyraldehyde condensed urea (IBDU), acetaldehyde condensed urea (CDU or OMU), formaldehyde processed urea fertilizer, guanyl urea sulfate, oxamide, etc. Examples include calcined phosphorous fertilizer, idiopathic phosphorous fertilizer, precipitated lime phosphate, mafic perlite (serpentine perlite), fluorapatite, hydroxyapatite, and the like. Examples thereof include silicate potassium fertilizer and the like, which are obtained by mixing a magnesium-containing material and pulverized coal combustion ash.
[0026]
On the other hand, the carbides that can be added include black ash made from soda pulp manufacturing waste at paper mills, activated carbon made from rice husk and coconut shell (inner shell), activated carbon made from wood scrap, etc. From the viewpoint of cost, black ash produced from wastes of soda pulp production at a paper mill is preferably used.
[0027]
As binders, starches such as corn starch, wheat starch, rice starch, sweet potato starch, potato starch and tapioca starch, montmorillonite group viscosity minerals such as bentonite, dihydrate gypsum and hemihydrate gypsum (calcined gypsum), alginic acid List seaweed extracts such as sodium and agar, vegetable resin adhesives such as gum arabic and tragacanth, natural polymer derivatives such as carboxymethyl starch and carboxymethylcellulose, synthetic polymers such as polyvinyl alcohol and sodium polyacrylate, etc. A water-soluble binder is preferable.
[0028]
In addition, as a method of using the above-mentioned binder, it can be mixed with coconut husk etc. to be molded and granulated, but it can be applied, sprayed, etc. on the surface of the molded body or granular body after molding or granulation. May be.
However, such a binding material is not an essential material in the present invention, and when it is used in a large amount, mixed with the whole medium, or used with a water-insoluble binding material, water repellency may be developed. Because there is, it is necessary to pay sufficient attention in use.
[0029]
Furthermore, examples of the water retaining material include minerals such as vermiculite, pearlite, zeolite, bentonite, rock wool, peat moss, bark, wood pulp, rice husk, sawdust, plants such as charcoal, and water-absorbing polymers. These can be added as long as the effects of the present invention are not hindered.
[0030]
Furthermore, the agrochemical active ingredient may be added and molded, or the molded lightweight medium and the agrochemical active ingredient may be mixed.
Examples of such agrochemical active ingredients include insecticides, fungicides, herbicides, antiviral agents, plant growth regulators, acaricides, nematicides and the like, which are either fixed or liquid. Even if it exists, it can be used.
[0031]
The amount of the various additives mentioned above is determined within a range that does not impede the effects of the present invention, and paying considerable attention to pH and EC (electrical conductivity) when the medium of the present invention is immersed in water. In some cases, a pH adjuster containing an acidic or alkaline material may be added to control pH and EC.
The values of pH and EC vary depending on the plant to be cultivated, but in general, pH is 5 to 8, EC is 0.5 mS / cm or less in a fertilizer-free system, and 1.0 to 2.0 mS in a fertilizer-added system. / Cm is preferable. However, it is needless to say that those that have been molded and processed with the addition of a high-concentration fertilizer intended to be used as a soil amendment may deviate significantly from this range.
[0032]
Next, the manufacturing method of the lightweight culture medium of this invention is demonstrated.
This lightweight medium is prepared by mixing coconut husk as described above with fertilizer and other components as required to create a medium raw material, and applying a shearing stress and / or compressive stress to the medium raw material. Can be obtained.
It should be noted that the above-mentioned coconut shell raw material is dried in a powdery state without applying shear stress and / or compressive stress, and even if this is used as a medium, water repellency is exhibited and water absorption / water retention properties are deteriorated. Needless to say.
[0034]
In addition, the molding method capable of applying shear stress and / or compressive stress is not particularly limited as long as the true specific gravity of the obtained lightweight medium can be controlled within the above range, and various molding methods, A granulation method can be applied.
Here, as a molding method, a roll press method, a tableting method, or the like can be preferably performed.
[0035]
As granulation methods, extrusion granulation method, compression granulation method, rolling granulation method, spray drying granulation method, fluidized bed granulation method, crushing granulation method, stirring granulation method, coating granulation method, etc. Is mentioned. Among these, as a method capable of applying a shear stress and / or a compressive stress, an extrusion granulation method and a compression / pulverization granulation method are preferable. As the extrusion granulation method, for example, a pre-extrusion method that is a screw type, Horizontal extrusion type, vacuum extrusion type and pre-processing type, roll type disk die type and ring die type, blade type basket type and oscillating type, self-forming type gear type and cylinder type, ram type A continuous type, an intermittent type, etc. are mentioned, All are applicable suitably.
The value of the shear stress and / or the compressive stress can be appropriately changed according to the granulation method to be applied. Typically, in the roll-type disk die granulation method, the value is 100 to 600 kg / cm. 2 Preferably 200 to 400 kg / cm 2 It is. As the compression / pulverization granulation method, a method of pulverizing and granulating a molded body molded by the above compression molding method can be suitably implemented.
[0036]
The shape of the lightweight medium obtained by the above molding and granulation is not particularly limited, and may be any of granular, briquette, tablet, mat, and dice, etc., but mixed with other materials When using, it is preferable to use a granular or small briquette with a particle size of 2 to 10 mm.
In particular, the light-weight medium such as granular according to the present invention is suitable for use in an automatic sowing fertilizer that continuously fills a seedling box with a culture medium, fertilizer, seeds, etc., and the residual rate in the hopper ( Since so-called bridge clogging) is remarkably lower than that of the powdered medium, the filling efficiency of the medium in the sowing fertilizer can be improved.
[0037]
Further, in the production method of the present invention, the moisture content of the medium raw material in which coconut husk, fertilizer and other components are mixed is not particularly limited, but as a final product, that is, the moisture content X of the light medium. 1 Finally, 0% by weight <X 1 ≦ 20 wt% is preferable. The reason for this is to reduce the bulk specific gravity of the resulting lightweight medium, as described above, to reduce the weight, and to dissolve the fertilizer components over time when stored in a mixture with the slow-release fertilizer. This is to avoid elution.
In addition, the moisture content of the lightweight medium mentioned above can be adjusted by adjusting the amount of water added during molding and / or drying after molding.
[0038]
Next, the mixed medium of the present invention will be described. The mixed medium is a mixture of the light-weight medium of the present invention with calcined vermiculite, pearlite, zeolite, carbide or dry sterilized soil, and any combination thereof. It is also possible to mix a slow-release fertilizer whose chemical solubility is adjusted or whose dissolution rate is physically adjusted.
[0039]
Here, as described above, the slow-release fertilizer whose solubility has been chemically adjusted can include chemically synthesized slow-release nitrogen fertilizer, soluble phosphate fertilizer, soluble soluble fertilizer, etc., specifically, Examples of chemically synthesized slow-release nitrogenous fertilizers include isobutyraldehyde condensed urea (IBDU), acetaldehyde condensed urea (CDU or OMU), formaldehyde processed urea fertilizer, guanylurea sulfate, oxamide, etc. , Calcined phosphorous fertilizer, idiopathic phosphorous fertilizer, precipitated lime phosphate, mafic perlite (serpentine perlite), fluorapatite, hydroxyapatite, etc., and basic soluble potassium fertilizer containing magnesium And silicate fertilizers of silicic acid obtained by mixing and firing pulverized coal combustion ash.
On the other hand, as slow-release fertilizers whose physical dissolution rates have been physically adjusted, nitrogen fertilizer is coated with polyolefin resin or sulfur or other coating raw materials, and nitrogenous fertilizer is coated with polyolefin resin or sulfur or other coated fertilizer. Examples thereof include a coated composite fertilizer obtained by coating a coated potash fertilizer, a chemical fertilizer, or a liquid composite fertilizer with a polyolefin resin, sulfur, or other coating raw materials.
[0040]
Moreover, it is also possible to set it as the mixed culture medium which mixed the material which consists of the lightweight culture medium of this invention and an agrochemical active ingredient in the range which does not inhibit the effect of this invention.
In this case, examples of the material composed of the agrochemical active ingredient include insecticides, fungicides, herbicides, antiviral agents, plant growth regulators, acaricides, nematicides and the like. May be fixed or liquid. In addition, a time-release coated pesticidal granule that is configured to limit the release of these pesticidal active ingredients may be mixed with the lightweight medium of the present invention to obtain a mixed medium.
[0041]
As in the case of the light medium, the addition amount of the various additives described above is within a range that does not hinder the effects of the present invention, and the pH and EC (electric conductivity) when the mixed medium is immersed in water. ) Is preferably determined with considerable care.
The values of pH and EC vary depending on the plant to be cultivated, but in general, pH is 5 to 8, EC is 0.5 mS / cm or less in a fertilizer-free system, and 1.0 to 2.0 mS in a fertilizer-added system. / Cm is preferable.
[0042]
Moreover, from the commonality with the lightweight culture medium of this invention, for example, moisture content X 2 Is 0% by weight <X for the same reason as the lightweight medium. 2 ≦ 20 wt% is preferable.
In addition, the light-weight culture medium of this invention is very useful in itself, and of course does not necessarily need to be used as a mixed culture medium.
[0043]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to these Examples.
In each example, the maximum water volume and other characteristics were determined as follows.
[0044]
(Maximum water capacity)
The maximum water volume used as an index of water repellency and water retention is according to the Hillguard method, in which a sample is put into a maximum water volume measuring container, water is absorbed from the bottom and left for 24 hours. Measure the weight of absorbed water and dry soil,
(Weight of water absorbed) / (weight of dry soil) × 100
Calculated from However, in order to accurately evaluate water repellency, only water absorption from the bottom surface was performed, and irrigation from the top surface was not performed.
[0045]
(Measurement of three-phase distribution and true specific gravity using a soil three-phase meter (model: DIK-3520) manufactured by Daiki Science Industry Co., Ltd.)
(1) The sample is filled into a 100 ml sample cylinder (manufactured by Daiki Rika Kogyo Co., Ltd .; model: DIK-1801) for three-phase distribution measurement. Let it absorb water.
(2) A 100 ml sample cylinder filled with a sample was set in a sand column method kit (manufactured by Daiki Rika Kogyo Co., Ltd., model: DIK-3520), and after sufficient irrigation, the water level was adjusted to PF = 1.5. Adjust to (water level from the top of quartz sand; lower 31.6 cm).
(3) Cover the 100 ml sample cylinder and leave it in the state of PF = 1.5 for 24 hours or more.
(4) A sample cylinder is set on a soil three-phase meter (manufactured by Daiki Rika Kogyo Co., Ltd., model: DIK-1120), and the actual volume (V) of the sample is measured.
(5) Further, the total weight (W) is measured with a balance, put in an oven and dried at 105 ° C. for 24 hours or more, and the moisture weight (M) is calculated from the weight difference before and after drying.
(6) The following formula was used to calculate a) gas phase rate b) solid phase rate c) liquid phase rate d) true specific gravity.
a) Gas phase rate (A = Va); Air capacity Va = 100−V
b) Solid phase ratio (Sν = Vs); Solid phase capacity Vs = (W−V) / (d−1)
c) Liquid phase ratio (Mν = Vl); moisture capacity Vl = V−Vs
d) True specific gravity (d); d = (WM) / (V-Vl)
Where Vl: moisture capacity, Vl = M
[0046]
(With or without mold)
Take 200 ml of sample in a petri dish, add a small amount of non-sterile peat moss, and store in a thermostatic chamber at 30 ° C.-50% RH for 3 months to check for the presence of mold. The addition of non-sterile peat moss was performed for the purpose of adding bacteria mixed in peat moss.
[0047]
(Elution rate of fertilizer components when coated urea fertilizer (LP coat) is added)
A medium containing LP coat 100 (Kumiai 40-coated urea LP coat 100, guarantee component: nitrogen total 40%, manufactured by Chisso Corporation) filled in a 50 L plastic bag is left in a dark place at room temperature. After 3 months, remove all LP coat from each medium and grind it with a mortar. Transfer all into a volumetric flask, add pure water to make a constant volume, take out the quantified amount, and quantify the urea concentration in the solution by the PDAB method.
The amount of fertilizer component elution is calculated from the obtained quantitative value, and the fertilizer component elution rate is calculated by dividing by the amount of fertilizer component originally contained.
[0048]
1. Granulation of lightweight medium
(Example 1)
200L of coconut husk pulverized product (water content: 40% by weight, φ4 mm pass, Sri Lankan coconut husk) and 150 g of ammonium sulfate (manufactured by Nippon Steel Chemical Co., Ltd., guarantee component, nitrogen: 21%) ), 200 g of heavy burnt phosphorus (Onoda Chemical Co., Ltd., guaranteed component, soluble phosphoric acid; 46%), and 60 g of sulfuric acid Kari (manufactured by Chisso Asahi Fertilizer Co., Ltd., certified component, Kari; 50%) Was put into a concrete mixer with blades having an internal volume of 400 L and mixed at a rotation speed of 10 rpm for 10 minutes. The obtained mixture was granulated with a pre-extrusion granulator (screen mesh diameter: φ3 mm), dried with a hot air dryer at 90 ° C. so that the moisture content was 5% by weight, About 50 L of 4 mm lightweight medium A was obtained.
[0049]
(Examples 2 to 4)
Example 1 except that the moisture content after granulation and drying was 10% by weight (Example 2), 20% by weight (Example 3) and 30% by weight (Example 4), respectively. The same operation was repeated to obtain about 50 L each of 2 to 4 mm lightweight medium B (Example 2), C (Example 3), and D (Example 4).
[0050]
(Example 5)
Except for using coir dust (from Sri Lanka) in place of the coconut shell mesocarp product, the same operation as in Example 1 was repeated to obtain about 50 L of a 2 to 4 mm lightweight medium E.
[0051]
(Examples 6 to 8)
Example 5 except that the moisture content after granulation and drying was 10% by weight (Example 6), 20% by weight (Example 7), and 30% by weight (Example 8), respectively. The same operation was repeated to obtain about 50 L of light medium F (Example 6), G (Example 7), and H (Example 8) each having a thickness of 2 to 4 mm.
[0052]
Example 9
The same operation as in Example 1 was repeated except that a mixture of coir dust and charcoal (weight ratio = 3: 1) was used in place of the coconut shell mesocarp pulverized product to obtain about 50 L of a 2-4 mm lightweight medium I. .
[0053]
(Examples 10 to 10 11 )
The moisture content after granulation and drying is 10% by weight (Example 10) and 20% by weight (Example 11), respectively. When Except that it was dried, the same operation as in Example 5 was repeated to obtain a 2 to 4 mm lightweight medium J (Example 10). as well as 50 L each of (Example 11) was obtained.
[0054]
(Comparative Example 1)
200 L coconut shell crushed product (water content: 40% by weight, φ4 mm pass, Sri Lankan coconut shell) and 150 g of ammonium sulfate as a fertilizer component (manufactured by Nippon Steel Chemical Co., Ltd., guarantee component nitrogen: 21%) ), 200 g of heavy burnt phosphorus (Onoda Chemical Co., Ltd., guaranteed component, soluble phosphoric acid; 46%), and 60 g of sulfuric acid Kari (manufactured by Chisso Asahi Fertilizer Co., Ltd., certified component, Kari; 50%) Was put into a concrete mixer with blades having an internal volume of 400 L and mixed at a rotation speed of 10 rpm for 10 minutes. The obtained mixture was dried with a hot air drier at 90 ° C. so that the water content was 10% by weight, and a dry medium I was obtained.
[0055]
(Comparative Example 2)
Except not having dried, the same operation as the comparative example 1 was repeated, and the culture medium J was obtained.
[0056]
(Comparative Example 3)
A culture medium K was obtained by repeating the same operation as in Comparative Example 1 except that coir dust (produced by Sri Lanka) was used instead of the pulverized coconut peel.
[0057]
(Comparative Example 4)
A medium L was obtained by repeating the same operation as in Comparative Example 3 except that drying was not performed.
[0058]
(Comparative Example 5)
Except for using peat moss (manufactured by VAPO) instead of coconut shell mesocarp, Implementation The same operation as in Example 1 was repeated to obtain a medium M.
[0059]
2. Physical properties of lightweight media
Example 1 11 The light-weight medium obtained in Example 1, the medium obtained in Comparative Examples 1 to 5, and the granular soil for paddy rice seedling seedling (Kureha granular soil) as Comparative Example 6 were evaluated for the above-described characteristics, and the results obtained are shown in Table 1. Shown in
[0060]
[Table 1]
Figure 0004141528
[0061]
As is clear from Table 1, the lightweight media of Examples 1 to 11 are comparative examples 1 to 1. 4 Compared with the powdery medium, it had a lightness and a three-phase distribution comparable to each other, there was almost no change in the maximum water content even in the case of low moisture, and water repellency was not recognized.
In addition, the lightweight medium of the examples is considerably lighter than the granular soil for paddy rice seedling raising, and even when compared with the granular peat moss obtained by molding by the same method, there is no water repellency and excellent water absorption characteristics. It was.
[0062]
3. Fertilizer component elution rate when mold generation test and coated urea fertilizer (LP coat) are added
(Example 13)
Add 1 kg of LP Coat 100 (Kumiai 40-coated urea LP coat 100, guarantee component; nitrogen total 40%, manufactured by Chisso Co., Ltd.) to 40 L of lightweight medium A, mix uniformly, and fill into a 50-L plastic bag Then, the mold generation test and the fertilizer component elution rate were measured. The obtained results are shown in Table 2.
[0063]
(Example 14)
The same results as in Example 13 were repeated except that 1 kg of LP coat 100 was added to 20 L of light-weight medium A and 20 L of calcined vermiculite (containing water content: 5% by weight or less). It was shown in 2.
[0064]
(Examples 15, 17, 19, 21, 23, 25, 27 and 29 and Comparative Examples 7 and 9)
Instead of the light medium A, the light medium B (Example 15), C (Example 17), E (Example 19), F (Example 21), G (Example 23), I (Example 25), respectively. ), J (Example 27) and K (Example 29), and medium M (Comparative Example 7) and P (Comparative Example 9) were used. The results are shown in Table 2.
[0065]
(Examples 16, 18, 20, 22, 24, 26, 28 and 30 and Comparative Examples 8 and 10)
Instead of the light medium A, the light medium B (Example 16), C (Example 18), E (Example 20), F (Example 22), G (Example 24), I (Example 26), respectively. ), J (Example 28) and K (Example 30), Medium J (Comparative Example 8) and L (Comparative Example 10) were used, and the same operation as Example 14 was repeated and obtained. Is shown in Table 2.
[0066]
[Table 2]
Figure 0004141528
[0067]
As is clear from Table 2, in Examples 13 to 30, the medium-containing water content is suppressed to 20% by weight or less, so mold does not occur as in Comparative Examples 7 to 10, and Addition of slow-release coated fertilizer did not significantly elute fertilizer components.
[0068]
In addition, using a light-weight medium and a mixed medium in which fertilizer components were adjusted according to the above-mentioned examples, raising seedlings of komatsuna, Chinese cabbage and paddy rice, and lawn cultivation, compared with conventional culture soil suitable for each growth Even so, the germination / growth state was good with no significant difference.
[0069]
【The invention's effect】
As described above, according to the present invention, since a specific coconut shell material is used, a lightweight medium with a low moisture content with reduced weight and water repellency, a method for producing the same, and this lightweight medium can be used as another lightweight medium. A mixed medium mixed with natural materials can be provided. It is also possible to provide a medium material that can be stored for a long time even if it is preliminarily mixed with a slow-release fertilizer whose solubility is chemically adjusted or whose elution rate is physically adjusted.

Claims (11)

ヤシガラを含有して成る軽量培地であって、押出造粒法を用いて造粒されたものであり、土壌三相計にて測定した上記軽量培地中のヤシガラの真比重d1が、1.5g/cm3≦d1≦3.0g/cm3であることを特徴とする軽量培地。A light-weight medium containing coconut shells, which is granulated using an extrusion granulation method, and the true specific gravity d 1 of the coconut shells in the light-weight medium measured by a soil three-phase meter is 1. A light-weight medium, wherein 5 g / cm 3 ≦ d 1 ≦ 3.0 g / cm 3 . 土壌三相計にて測定した上記軽量培地全体の真比重d2が、1.5g/cm3≦d2≦3.5g/cm3であることを特徴とする請求項1記載の軽量培地。2. The lightweight medium according to claim 1, wherein the true specific gravity d 2 of the whole lightweight medium measured with a three-phase soil meter is 1.5 g / cm 3 ≦ d 2 ≦ 3.5 g / cm 3 . 更に肥料及び/又は炭化物を含有することを特徴とする請求項1又は2記載の軽量培地。Furthermore, fertilizer and / or a carbide | carbonized_material are contained, The lightweight medium of Claim 1 or 2 characterized by the above-mentioned. ヤシガラがコイアダストであることを特徴とする請求項1〜のいずれか1つの項に記載の軽量培地。The lightweight medium according to any one of claims 1 to 3 , wherein the coconut husk is coir dust. 軽量培地の含有水分率X1が、0重量%<X1≦20重量%であることを特徴とする請求項1〜のいずれか1つの項に記載の軽量培地。Moisture content X 1 lightweight medium, 0% by weight <lighter medium according to any one of claims 1-4, characterized in that the X 1 ≦ 20% by weight. 軽量培地の嵩比重が0.17〜0.36g/cmThe bulk specific gravity of the lightweight medium is 0.17 to 0.36 g / cm 3Three であることを特徴とする請求項1〜5のいずれか1つの項に記載の軽量培地。The lightweight medium according to any one of claims 1 to 5, wherein 請求項1〜6のいずれか1つの項に記載の軽量培地を製造するに当たり、ヤシガラを含有する培地原料を押出造粒法により造粒し、軽量培地中のヤシガラの土壌三相計にて測定した真比重d 1 が1.5g/cm 3 ≦d 1 ≦3.0g/cm 3 となるようにすることを特徴とする軽量培地の製造方法。In producing the light-weight medium according to any one of claims 1 to 6, a medium raw material containing coconut shells is granulated by an extrusion granulation method, and measured with a soil three-phase meter of coconut shells in the light-weight medium. method for producing a lightweight media true specific gravity d 1 that is characterized in that so as to be 1.5g / cm 3 ≦ d 1 ≦ 3.0g / cm 3. 請求項1〜6のいずれか1つの項に記載の軽量培地に、焼成バーミキュライト、パーライト、ゼオライト、炭化物及び乾燥殺菌土から成る群より選ばれた少なくとも1種のものを混合して成ることを特徴とする混合培地。  The light-weight medium according to any one of claims 1 to 6, comprising at least one selected from the group consisting of calcined vermiculite, pearlite, zeolite, carbide and dry sterilized soil. A mixed medium. 化学的に溶解度を調整し又は物理的に溶出速度を調整した緩効性肥料を付加して成ることを特徴とする請求項記載の混合培地。9. The mixed medium according to claim 8, wherein a slow-release fertilizer whose chemical solubility is adjusted or whose dissolution rate is physically adjusted is added. 培地の全含有水分率X2が、0重量%<X2≦20重量%であることを特徴とする請求項又は記載の混合培地。All moisture content X 2 of the medium, 0% by weight <mixed medium of claim 8, wherein it is X 2 ≦ 20 wt%. 請求項1〜6のいずれか1つの項に記載の軽量培地、又は請求項10のいずれか1つの項に記載の混合培地を用いて植物の育苗及び/又は栽培を行うことを特徴とする栽培方法。The seedling and / or cultivation of a plant is performed using the light-weight medium according to any one of claims 1 to 6, or the mixed medium according to any one of claims 8 to 10. How to grow.
JP10846298A 1997-12-24 1998-04-06 Lightweight medium and mixed medium using the same Expired - Lifetime JP4141528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10846298A JP4141528B2 (en) 1997-12-24 1998-04-06 Lightweight medium and mixed medium using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-365962 1997-12-24
JP36596297 1997-12-24
JP10846298A JP4141528B2 (en) 1997-12-24 1998-04-06 Lightweight medium and mixed medium using the same

Publications (2)

Publication Number Publication Date
JPH11239416A JPH11239416A (en) 1999-09-07
JP4141528B2 true JP4141528B2 (en) 2008-08-27

Family

ID=26448333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10846298A Expired - Lifetime JP4141528B2 (en) 1997-12-24 1998-04-06 Lightweight medium and mixed medium using the same

Country Status (1)

Country Link
JP (1) JP4141528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774072A (en) * 2014-12-16 2015-07-15 镇江兴农有机肥有限公司 Rice seedling raising organic matrix

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016202083A (en) * 2015-04-23 2016-12-08 東洋ゴム工業株式会社 Artificial soil particles, and artificial soil culture medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774072A (en) * 2014-12-16 2015-07-15 镇江兴农有机肥有限公司 Rice seedling raising organic matrix

Also Published As

Publication number Publication date
JPH11239416A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
AU2006207886B2 (en) Fertiliser
EP2882825B1 (en) . product and process for the intensification of plant cultivation and increase plant fertillity
JPH049482B2 (en)
JP3969810B2 (en) Fertilizer medium
JP6077501B2 (en) Single-grain fertilizer and method for producing the same
JP4153587B2 (en) Granular medium and mixed medium using the same
JP4141528B2 (en) Lightweight medium and mixed medium using the same
JP2000212561A (en) Charcoal-containing granule, culturing medium by using the same and culturing method
JP5401656B2 (en) Clay heat treatment granular material
JP2000004670A (en) Granular phosphoric acid medium and material for fertilizing seedling raising vessel using the same
JP2000139207A (en) Granular medium and mixed medium using the same
JP2004283060A (en) Culture medium for mat plant, granular culture medium for mat plant, and method for constructing greening using the medium
JP2005231950A (en) Fertilizer having function for insolubilizing cadmium compound
JP4813127B2 (en) Seedling medium with granular fertilizer
JP2001340017A (en) Granular medium, material for fertilizer application to seedling raising vessel using the same, and method for cultivating crop
JP4651257B2 (en) Granular siliceous fertilizer
CN101747111A (en) Preparation method of green organic manure
JPH01312934A (en) Culture medium for plant cultivation
JP4932503B2 (en) Disintegrating granular phosphate medium
JP2002291332A (en) Culture medium, granular culture medium, method for producing granular culture medium and method for culturing crop
JP4194773B2 (en) Seed mixed compost composition and method for producing the same
JP2003265053A (en) Granular culture soil, material for fertilizing raising pot and using the same, and method for cultivating crop plant
CN108812187A (en) A kind of crops seedling medium and preparation method thereof
JP2001340018A (en) Granular medium, material for fertilizer application to seeding raising vessel using the same, and method for cultivating crop
NL2034243B1 (en) Albic soil improve and fertilizing package fertilize and preparation method thereof

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term