JP4651257B2 - Granular siliceous fertilizer - Google Patents

Granular siliceous fertilizer Download PDF

Info

Publication number
JP4651257B2
JP4651257B2 JP2001546604A JP2001546604A JP4651257B2 JP 4651257 B2 JP4651257 B2 JP 4651257B2 JP 2001546604 A JP2001546604 A JP 2001546604A JP 2001546604 A JP2001546604 A JP 2001546604A JP 4651257 B2 JP4651257 B2 JP 4651257B2
Authority
JP
Japan
Prior art keywords
fertilizer
granular
siliceous fertilizer
weight
rice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001546604A
Other languages
Japanese (ja)
Inventor
一男 吉田
高直 松本
啓司 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Application granted granted Critical
Publication of JP4651257B2 publication Critical patent/JP4651257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/10Solid or semi-solid fertilisers, e.g. powders
    • C05G5/12Granules or flakes

Description

技術分野
本発明は、植物の栽培土壌用肥料に用いるケイ酸質肥料に関するものである。
従来技術
イネや麦などのイネ科植物は、多量にケイ酸を吸収することが知られている。また、ケイ酸はイネ科植物だけでなく、サトウキビ、トウモロコシ、キュウリや苺などの植物の育成にも重要であるというとが知られている。例えば、イネでは、藁の乾燥物中にケイ酸が15%程度含まれていて、イネの茎や葉の骨格を形成していると言われている。イネ科植物においてケイ酸が不足すると、表皮細胞中のケイ酸が少なくなり、茎が弱くなって倒伏が起こりやすく、また、イモチ病などの病気にかかり易くなるという問題があった。そのためケイ酸質肥料は、水稲肥料として主に水田で広く用いられている。イネ以外にも麦、サトウキビ、トウモロコシなどにも用いられている。
肥料成分としてケイ酸が注目され始めたのは、昭和30年ごろからで、そのころから製鉄工業の副産物である鉱さいが利用されてきた。現在では、ケイ酸質肥料としては、鉱さいを造粒したもの及び軽量気泡コンクリートの破砕品が用いられている。
ケイ酸質肥料としての鉱さいは、造粒したものがあることから、機械散布しやすいためにかなり普及しているが、肥料としての効果に関しては、日本土壌肥料学,69(6) P.576−581及び日本土壌肥料学,69(6) p.612−617に記載されているように、多孔質ケイ酸カルシウム水和物である軽量気泡コンクリートの方が優れていると言われている。
多孔質ケイ酸カルシウム水和物である軽量気泡コンクリートをケイ酸質肥料として用いる方法は特開平6−293583号公報に開示されている。該公報に開示のケイ酸質肥料は、その70%以上が0.85〜8.0mmの範囲の粒径を有している破砕品であるため、造粒品に比べて容器や配管などに詰まりやすく、また造粒品に比べて機械散布が非常にしにくいという問題があるばかりでなく、破砕品は、出荷時に粒径を揃えても運搬中に欠けて粉落ちが起こり易く、播く時に目に入り易く、また手などに傷を付けたりすることから取り扱いにくいという問題もあった。更に運搬中に欠けて生じた粉末も一緒に施肥すると、根の通気性が悪く、根の発育に悪影響を与えるという問題もあった。
造粒したケイ酸質肥料としては、前記したように鉱さいが公知であり、特開平2−172883号公報及び特開平9−208350号公報に開示されている。
特開平2−172883号公報には、水系デンプンにアルカリを添加した後に約100℃で糊化したバインダーを用いて鉱さいケイ酸質肥料等を造粒した例が記載されている。しかしながら、本発明で用いている空隙率50%以上の多孔質ケイ酸質材料を用いて該公報の実施例に記載の方法で造粒すると、バインダーは多孔質ケイ酸質材料に含浸してしまい、バインダーの効果が無くなるので、4重量%を超えた量のバインダーが必要となってしまう。
特開平9−208350号公報には、貝殻粉砕物を5重量%以上ケイ酸質肥料に混合して造粒した肥料が開示されている。該公報中にケイ酸質肥料として軽量気泡コンクリートが使用できるとの記載はあるものの、実施例としては記載されていない。実施例では鉱さいケイ酸質肥料をリグニンスルホン酸ソーダ5重量%とともに用いて造粒を行っている。
イネ科植物の育成上は、苗の段階でケイ酸が不足すると茎の強度が弱く、苗の発育上良くないばかりでなく、田植機で苗をしっかり植え付けにくいという問題がある。そのため、育苗段階でのケイ酸質肥料の施肥効果は大きいものであり、育苗段階で施肥できるケイ酸質肥料が望まれている。ケイ酸質肥料は、アルカリ性が強いためそのままでは育苗段階で施肥することはできない。これを中和して用いる方法が特開平10−273666号公報及び特開平11−137074号公報に開示されている。特開平10−273666号公報では、軽量気泡コンクリートなどの多孔質ケイ酸カルシウム水和物を含有するケイ酸質材を、硫酸及び/又はリン酸で処理して中和し、ケイ酸質肥料としてばかりでなく保水材としても使用している。また、特開平11−137074号公報は、pHを3.5〜8.0に調整した多孔質ケイ酸カルシウム水和物の破砕品を施肥する水稲育苗方法を開示している。これらの方法は、中和をしているため育苗段階で使用できると考えられるが、育苗で用いる場合、育苗における培土と混合して施肥するため、破砕状ケイ酸質肥料が直接根に触れて、根の発育が充分ではないばかりか、根上がりや種子露出の割合が増えるという問題があった。また、破砕状の形状であるために前記と同様な問題があった。
発明の開示
本発明は、多孔質のケイ酸質材料を用いて、機械散布が可能で、しかも取り扱い易く、その上イネ科植物などの植物栽培土壌用肥料としての効果も優れた粒状ケイ酸質肥料を提供することを目的とする。また、本発明は、イネ科植物の育苗用肥料として使用可能な被覆粒状ケイ酸質肥料を提供することも目的とする。さらに、本発明は、軽量気泡コンクリート端材や使用済みの軽量気泡コンクリートなどのケイ酸質材をケイ酸質肥料の原料として再利用し、環境に適した安価なケイ酸質肥料を提供することをも目的とする。
本発明者らは、鋭意研究を行い、軽量気泡コンクリートなどの多孔質ケイ酸質原料からなる粉末原料を、バインダーとして少量の有機質ポリマーを用いて造粒することが可能であることを見出し、本発明を完成するに至った。
即ち、本発明は以下の通りである。
(1)空隙率が50〜90%のケイ酸質原料を含む粉末原料に、有機質ポリマーをバインダーとして添加し造粒して得られる肥料であって、該バインダーの含有量が0.1重量%以上3重量%以下であり、粒硬度が2〜5kgである上記粒状ケイ酸質肥料、
(2)ケイ酸質原料が水熱合成により得られるケイ酸カルシウム水和結晶を含有するケイ酸質材である(1)記載の粒状ケイ酸質肥料、
(3)ケイ酸質原料が、水熱合成により得られるケイ酸カルシウム水和結晶を含有するケイ酸質材を酸で中和し、pHを3.5〜8.0に調整したものである(1)記載の粒状ケイ酸質肥料、
(4)粉末原料がケイ酸質原料100重量%である(1)、(2)又は(3)記載の粒状ケイ酸質肥料、
(5)粉末原料が、ケイ酸質原料を40重量%以上100重量%未満含有する粉末原料である(1)、(2)又は(3)記載の粒状ケイ酸質肥料、
(6)粉末原料がケイ酸質原料と培土とを含む(5)記載の粒状ケイ酸質肥料、
(7)粉末原料が、目開き250μmのふるいを通過する粒子を70〜100重量%含む(1)〜(6)のいずれかに記載の粒状ケイ酸質肥料、
(8)有機質ポリマーが水性アクリルエマルジョン樹脂又はスチレンブタジエン共重合系エマルジョン樹脂である(1)〜(7)のいずれかに記載の粒状ケイ酸質肥料、
(9)粒状ケイ酸質肥料のふるい粒径が1〜20mmである(1)〜(8)のいずれかに記載の粒状ケイ酸質肥料、
(10)(1)〜(9)のいずれかに記載の粒状ケイ酸質肥料に、さらに培土を被覆してなる被覆粒状ケイ酸質肥料、
(11)粉末原料に、該粉末原料の10〜50重量%の量の液体を散布して含浸させた後、有機質ポリマー溶液又は分散液を添加し、撹拌することにより造粒することを含む(1)〜(9)のいずれかに記載の粒状ケイ酸質肥料の製造方法、
(12)(1)〜(9)のいずれかに記載の粒状ケイ酸質肥料を、栽培土壌用肥料として用いることを含む植物の栽培方法、
(13)(1)〜(9)のいずれかに記載の粒状ケイ酸質肥料を、イネ栽培土壌用肥料として用いることを含むイネの栽培方法、
(14)(3)記載の粒状ケイ酸質肥料を、イネ育苗栽培用土壌用肥料として用いるイネの栽培方法、
(15)(11)記載の被覆粒状ケイ酸質肥料を、イネ育苗栽培用床土として用いることを含むイネの栽培方法。
発明を実施するための最良の形態
本発明の粒状ケイ酸質肥料とは、空隙率が50〜90%のケイ酸質原料を含む粉末原料に、有機質ポリマーをバインダーとして添加して造粒し、粒状にしたケイ酸質肥料であり、空隙率50〜90%の多孔質のケイ酸質原料を少量の有機質ポリマーを用いて造粒して得られたものであることに特徴がある。
本発明でいう空隙率とは、水銀圧入法により求めた空隙率である。充分に乾燥させたサンプルを用い、水銀圧入法で細孔分布を測定して、細孔直径0.006μmから100μmの空隙直径に相当するサンプル1g当たりの空隙体積を空隙体積Fとする。一方、真密度を測定し、真密度からサンプル1g当たりのサンプル固形分体積を求め固形分体積Gとし、次式(1)で空隙率を求める。
空隙率(%)=空隙体積F÷(空隙体積F+固形分体積G)×100
(1)
ここでいう真密度とは、水銀圧入法による真密度であり、サンプル重量と水銀圧力207PMaにおけるサンプル容積から求めた密度である。
本発明でいうケイ酸質原料の空隙率は、50〜90%、好ましくは55〜85%であり、特に好ましくは60〜80%である。ケイ酸質原料は、肥料となるケイ酸成分を植物に供給する働きがあるので、水分がケイ酸質原料に含浸してケイ酸を溶出させなければならない。そのために水が含浸し易いように空隙率が高い方が望ましいが、空隙率が高すぎると肥料となるケイ酸の成分が少なくなり、肥料としても効果が少なくなる。この両者のかねあいから上記のような範囲の空隙率が好ましく、空隙率60〜80%が特に好ましい。
また本発明でいうケイ酸質原料は、塩酸/水酸化ナトリウム溶解法により測定した可溶性ケイ酸含有量が5〜40重量%であることが好ましく、10〜40重量%がより好ましく、20〜40重量%が特に好ましい。可溶性ケイ酸含有量が多ければ多いほどケイ酸質肥料としての効果は高く、ケイ酸質肥料として優れている。ケイ酸質原料として工業的に用いられている軽量気泡コンクリートにおいて、可溶性ケイ酸含有量を40重量%より高めるには、非常に長い時間オートクレーブ蒸気養生が必要になることから、生産上の問題があり、可溶性ケイ酸含有量が5〜40重量%であることが好ましい。
塩酸/水酸化ナトリウム溶解法により可溶性ケイ酸含有量は、以下のように測定される。
(1)粉砕後、ふるいで粒径を0.1〜0.5mmに調整したサンプル1gを20℃の0.5規定塩酸水溶液200mlに入れ、8時間撹拌した後、孔径1μmのメンブレンフィルターで濾過する。
(2)得られた塩酸濾過液中のケイ素濃度をICP発光分析法で求め、ケイ素がケイ酸由来であるとして、塩酸濾過液中のケイ酸量Aをグラム単位で求める。
(3)0.5規定塩酸で溶解しない濾過残を取り、0.5規定水酸化ナトリウム水溶液200mlに入れ、8時間撹拌した後、孔径1μmのメンブレンフィルターで濾過する。
(4)得られた水酸化ナトリウム濾過液中のケイ素濃度をICP発光分析法で求め、ケイ素がケイ酸由来であるとして、水酸化ナトリウム濾過液中のケイ酸量Bをグラム単位で求める。
(5)可溶性ケイ酸含有量を、次式(2)で求める。
可溶性ケイ酸含有量(重量%)=(ケイ酸量A+ケイ酸量B)÷1×100
(2)
本発明で用いる粉末原料としては、ケイ酸質原料そのものを用いても、ケイ酸質原料に、培土又は他の肥料成分などを添加したものを用いてもよい。粉末原料におけるケイ酸質原料の割合は、ケイ酸質原料の割合が少ないほど、ケイ酸質肥料としての効果がすくなくなることから40〜100重量%が好ましく、50〜100重量%がより好ましい。ケイ酸質原料100重量%である粒状ケイ酸質肥料とは、多孔質であるケイ酸カルシウム水和結晶を含むケイ酸質材又はそのケイ酸質材を中和したものをそのまま粉砕して粉末原料として造粒した粒状ケイ酸質肥料であり、肥料効果が高く特に好ましい。
本発明においてバインダーとして使用する有機質ポリマーとは、好ましくは、炭素、酸素及び水素元素の合計の含有量が70〜100重量%の有機質からなるポリマーで、重量分子量が100〜10000000のものをいう。重量分子量が100より小さい場合には、バインダーとしてケイ酸質原料粒子を結合して粒状にする効果が少なく、また、重量平均分子量が10000000より大きいものは粘度が高すぎて、造粒において噴霧しにくい。
この有機質ポリマーとして、例えばゼラチン、糖蜜、ポリビニルアルコール、リグニン、カルボキシメチルセルロース、水性アクリル系エマルジョン樹脂、スチレンブタジエン共重合系エマルジョン樹脂などが挙げられ、中でもポリビニルアルコール、リグニン、カルボキシメチルセルロース、水性アクリル系エマルジョン樹脂、スチレンブタジエン共重合系エマルジョン樹脂が好ましく、水性アクリル系エマルジョン樹脂、スチレンブタジエン共重合系エマルジョン樹脂がより好ましい。
バインダーである有機質ポリマーとして、水性アクリル系エマルジョン樹脂及びスチレンブタジエン共重合系エマルジョン樹脂を用いた場合は、吸湿性が無く、保存期間中に時間が経ても粒硬度が低下せず、安定した物性の粒状ケイ酸質肥料を長期に亘って提供することができる。粒状ケイ酸質肥料は、根の通気性を確保するために施肥した後、数日間形状を維持することが好ましい。水性アクリル系エマルジョン樹脂及びスチレンブタジエン共重合系エマルジョン樹脂を用いて造粒した粒状ケイ酸質肥料は、バインダーとして噴霧するときはエマルジョンとなっているため、液状で噴霧できるが、造粒して肥料になった場合には、水に溶けにくく、適当な水中形状維持性を有する。この肥料の水中形状維持性は、例えばイネの水田に用いる場合にはあまり影響はなく、水により早く粒状形状が崩壊して粉体化し肥料効果を高めてもかまわない。ところが、イネ育苗など苗に用いる場合には、種から芽が出て数日は、種に成長養分が蓄えられていることもあり、肥料成分が溶出しない方が、発芽や初期の成長が良い。従って、適当な水中形状維持性を持たず、施肥後直ぐに粒が粉体化して肥料成分が溶出すると、かえって苗の成長を阻害することになる。この水中形状維持性は、植物の種類によって異なるが、通常は、5〜20日程度が好ましく、7〜14日が特に好ましい。バインダーとして水性アクリル系エマルジョン樹脂及びスチレンブタジエン共重合系エマルジョン樹脂を用いて造粒した粒状ケイ酸質肥料は、上記の範囲に水中形状維持性を調整することができる。
ところで、ゼラチン、糖蜜などを用いた場合は水溶性が高く、施肥した後、数日間形状を維持することは困難である。また、ゼラチン、糖蜜、ポリビニルアルコールは吸湿性があることから、粒状肥料にした場合、保存期間中に時間とともに粒硬度が低下する。吸湿性は、有機ポリマーとしてリグニン又はカルボキシメチルセルロースを用いればやや減少する。
有機質ポリマーを添加する割合は、有機質ポリマー固形分としての含有量が、乾燥した粒状ケイ酸質肥料に対して0.1〜3重量%であり、好ましくは0.3〜2重量%、より好ましくは0.5〜2重量%、特に好ましく、0.8〜1.5重量%である。有機ポリマーの含有量は、少ないほど栽培土に残らず、環境上好ましいが、0.1重量%より少ない場合には、粒硬度が小さくなり、運搬中に欠けたり、粉落ちなどが起こり易くなり、また機械散布でできにくくなる。また、有機ポリマーの添加含有量が3重量%を超えると、必要以上に粒硬度が高くなり、自然では分解されにくい有機ポリマーの割合が大きくなるので、環境上好ましくない。施肥時の要求される形状維持性や育苗などの用途により、上記範囲内で適宜決めればよい。
本発明でいう粒硬度とは、木屋式硬度計((株)藤原製作所製、実用新案登録第174886号)で測定した粒硬度で、任意の20粒を測定した平均値をkg単位で表したものをいう。本発明においては、粒硬度が2〜5kgであることが必要であり、2〜4kgであることが好ましい。粒硬度が2kg未満であると運搬による崩壊や取り扱い中に欠ける恐れがある。また、5kgより大きくする必要性はなく、バインダー量を増大して必要以上に粒硬度を大きくすると、却って上述したような弊害を大きくすることになる。
本発明において、空隙率が50〜90%のケイ酸質原料として、水熱合成により得られるケイ酸カルシウム水和結晶を含有するケイ酸質材が用いられる。該ケイ酸質材は、水及び珪石と、酸化カルシウム、水酸化カルシウム、ポルトランドセメントなどのカルシウム酸化物成分との混合物を水熱合成して得られるケイ酸カルシウム水和結晶を含有するケイ酸質材である。ここで水熱合成とは、オートクレーブ蒸気養生を言い、水蒸気温度140〜230℃の雰囲気で少なくとも1〜30時間養生することをいう。水熱合成して得られるケイ酸カルシウム水和結晶を含有するケイ酸質材としては、トバモライト、ゾノトライト、ジャイロライト、ヒレブランライトなどのケイ酸カルシウム水和結晶を含むものが挙げられる。
本発明において、水熱合成により得られるケイ酸カルシウム水和結晶を含有するとは、粉末X線回折分析で、トバモライト、ゾノトライト、ジャイロライト、ヒレブランライトのいずれかに相当するの結晶の主ピークを確認できることをいう。
粉末X線回折分析におけるケイ酸カルシウム水和結晶の主ピークは、それぞれ、トバモライトが約11Å、ゾノトライトが約3.7Å、ジャイロライトが約22Å、ヒレブランライト約4.7Åの位置に現れる。
水熱合成により得られるケイ酸カルシウム水和結晶を含有するケイ酸質材としては、例えばJIS A5416に規格されている軽量気泡コンクリートが挙げられる。該軽量気泡コンクリートは、可溶性のシリカ成分が多く、しかも空隙率が高いため水が浸透してケイ酸を溶出し易いことからケイ酸肥料としての効果が高く、本発明において特に好ましく用いられる。
また、本発明において、空隙率が50〜90%のケイ酸質原料として、水熱合成により得られるケイ酸カルシウム水和結晶を含有するケイ酸質材を、酸で中和し、pHを3.5〜8.0に調整したケイ酸質材も用いることができる。酸で中和し、pHを3.5〜8.0に調整したケイ酸質材とは、水熱合成により得られたケイ酸カルシウム水和結晶を含むアルカリ性のケイ酸質材を、酸で中和して、酸性〜弱アルカリ性にしたケイ酸質材であり、pHを4.0〜6.5に調整することが好ましく、pH4.5〜5.5に調整することがより好ましい。
本発明でいうpHとは、ケイ酸質材、粒状ケイ酸質肥料又は被覆粒状ケイ酸質肥料10重量部を蒸留水50重量部に浸漬して形状が壊れない程度に撹拌し、3日経過後、20℃にて測定した液相部のpHをいう。
水熱合成して得られるケイ酸カルシウム水和結晶を含有するケイ酸質材を中和する酸としては、塩酸、硝酸、硫酸、リン酸が挙げられ、中でも硫酸及びリン酸が好ましく、硫酸が特に好ましい。中和しないケイ酸質材に含まれるケイ酸カルシウム水和結晶のアルカリ成分はカルシウムであるため、塩酸や硝酸などの酸で中和すると可溶性の塩ができ、ケイ酸質肥料の水溶性塩濃度を増加させることになる。ケイ酸質材を硫酸やリン酸で中和すると、水に不溶性の硫酸カルシウムやリン酸カルシウムになるので、水溶性塩濃度増加の問題が少ないが、リン酸で中和した場合には、イネ苗にリン障害を起こす場合もあることから、硫酸で中和するのが特に好ましい。
ケイ酸質材を中和する酸の量は、ケイ酸質材のpHを3.5〜8.0、好ましくはpH4.0〜6.5、より好ましくはpH4.5〜5.5に調整できる量であればよい。例えばケイ酸質材が軽量気泡コンクリートであれば、乾燥軽量気泡コンクリート100重量部に対して、12規定硫酸40〜80重量部に相当する硫酸量が適当である。
イネ育苗の栽培に用いる場合、粒状ケイ酸質肥料のpHは、3.5〜8.0が好ましく、pH4.0〜6.5がより好ましく、pH4.5〜5.5がさらに好ましい。このようなpHの粒状ケイ酸質肥料を得るには、相当するpHのケイ酸質材を用いて造粒すればよい。イネ育苗試験において、pH5付近がイネ苗の成長が特に良く、pHが5から遠ざかるに従い成長が良くない傾向にある。
酸で中和しない、水熱合成して得られるケイ酸カルシウム水和結晶を含むケイ酸質材を粉末原料として作った粒状ケイ酸質肥料のpHは10〜11である。このようなpHを有する肥料でも、水田やその他の植物の畑などに用いることが可能である。イネ育苗の栽培土壌用にはpHを3.5〜8.0に調整した粒状ケイ酸質肥料を用いれば、イネ育苗においてイネ苗の成長が良く、ケイ酸質肥料の効果がある。pHが10〜11の粒状ケイ酸質肥料を、イネ育苗に用いると、根上り籾上がりが非常に多く起こり易くなり、イネ育苗は困難になる。
本発明において、ケイ酸質原料に混合して用いることのできるものとしては、培土、ケイ酸以外の肥料、栽培用土、腐葉土、殺菌剤などが挙げられ、これらを混合して粉末原料として使用することができる。中でも培土を混合した粒状ケイ酸質肥料はイネ育苗において培土などを使用せずに、床土として単独で使用できるという効果もある。イネ育苗に用いる場合は、ケイ酸質原料として水熱合成により得られるケイ酸質原料を酸で中和し、pHを調整したケイ酸質材を用いる。
本発明でいう培土とは、植物を栽培する土を言い、市販の水稲育苗培土、山土、水田土壌等が挙げられる。山土、水田土壌を培土とする場合は、適宜、土壌消毒を行ったものが好ましい。本発明の培土の粒径は、造粒が行える程度であればよく、特に限定しないが、目開き250μmのふるいを通過する程度の細かい粒径に調整することが好ましい。
本発明の培土を混合した粒状ケイ酸質肥料の培土の割合は、粉末原料に対して60重量%以下であることが好ましく、イネ育苗において培土などを使用せずに、床土として単独で使用する場合には、30〜55重量%がより好ましく、40〜50重量%が最も好ましい。培土を多く入れれば入れるほど、肥料としてケイ酸をイネ科植物に供給する効果が少なくなることから、培土は60重量%以下が好ましい。培土を40〜50重量%含む粒状ケイ酸質肥料を、イネ育苗試験の床土にそのまま単独で使用した場合、イネ苗の成長が良い。次いで培土30重量%と55重量%を含む場合の成長が良かった。
本発明において用いる粉末原料の粒径は、造粒が行える程度であればよく、使用する造粒装置の種類や大きさによって異なる。一般的には細かければ細かいほど造粒が容易であるが、施肥した造粒肥料が時間が経って崩壊したとき、あまり細かすぎると通気性が悪くなり、根の成長を阻害する恐れがあるので、目開き250μmのふるいを通過する微粒子の粉末原料を70〜100重量%含むことが好ましく、80〜100重量%含むことがより好ましく、100重量%含むことが特に好ましい。目開き250μmのふるいを通過しない大きいケイ酸質材粒子を多く含むと、造粒において粒状を形成しにくくなるばかりでなく、粒状ケイ酸質肥料の粒硬度が大きく低下するため、粉末原料として目開き250μmのふるいを通過する微粒子が70重量%以上であることが好ましい。
また、上記の粒状ケイ酸質肥料を、さらに培土で被覆して得られる被覆粒状ケイ酸質肥料は、根の成長に特に優れたケイ酸質肥料である。本発明の培土を被覆した被覆粒状ケイ酸質肥料は、イネ育苗において培土などを使用せずに、床土として単独で使用できるという効果もある。特にケイ酸質原料としては水熱合成により得られるケイ酸質原料を中和してpHを調整したケイ酸質材を用いた被覆粒状ケイ酸質肥料はイネ育苗用の床土として好ましい。
本発明の被覆粒状ケイ酸質肥料の被覆に使用する培土の割合は、被覆粒状ケイ酸質肥料に対して30〜60重量%が好ましく、40〜50重量%がより好ましい。被覆する培土の量が多くなればなるほど、肥料としてケイ酸をイネ科植物に供給する効果が少なくなることから、培土は60重量%以下が好ましい。また、培土を40〜50重量%含む粒状ケイ酸質肥料を、イネ育苗試験の床土にそのまま単独で使用した場合、イネ苗の成長が良かった。
培土を粒状ケイ酸質肥料に被覆する際に使用するバインダーとしては、上述した粒状ケイ酸質肥料の製造に用いられる有機質ポリマーを同様の理由からバインダーとして使用することができる。例えばゼラチン、糖蜜、ポリビニルアルコール、リグニン、カルボキシメチルセルロース、水性アクリル系エマルジョン樹脂、スチレンブタジエン共重合系エマルジョン樹脂などが挙げられ、好ましくは、ポリビニルアルコール、リグニン、カルボキシメチルセルロース、水性アクリル系エマルジョン樹脂、スチレンブタジエン共重合系エマルジョン樹脂であり、より好ましくは、水性アクリル系エマルジョン樹脂、スチレンブタジエン共重合系エマルジョン樹脂である。有機質ポリマーを添加する割合は、粒状ケイ酸質肥料と同様の理由で、有機質ポリマーの含有量が、乾燥した被覆粒状ケイ酸質肥料に対して0.1〜3重量%であり、好ましくは0.3〜2重量%、より好ましくは0.5〜2重量%、特に好ましくは、0.8〜1.5重量%である。
本発明の粒状ケイ酸質肥料の製造方法を以下に説明する。
本発明において、造粒とは、粉末原料を、パン造粒機、押し出し式造粒機、撹拌造粒機、逆流式強力ミキサーなどの造粒装置を用い、有機ポリマーを溶剤で薄めた溶液又はスラリーを噴霧しながら行う造粒をいう。本発明のように、少ないバインダー量で粒硬度が2〜5kgの粒状ケイ酸質肥料を得るためには、上記造粒装置の中でも、逆流式強力ミキサーを用いることが好ましい。
本発明で使用する粉末原料は多孔質のケイ酸質原料を含むため、造粒する際バインダーが多孔質の中に入り、バインダーの消費量が多くなるおそれがある。これを避けるために、本発明では、造粒の際に水などの溶剤を噴霧して粉末原料の空隙を水などの液体で満たした後、バインダーである有機ポリマーを溶剤で薄めた溶液又はスラリーを噴霧して造粒を行うことが必要である。バインダーを添加する前に、粉末原料の空隙を水などの液体で満たすには、粉末原料を撹拌機で撹拌しながら、ゆっくりと水などの液体をスプレー噴霧すればよい。また、粉末原料の空隙を水などの液体で満たす時の液体の量は、粉末原料の空隙率により異なるが、軽量気泡コンクリートをケイ酸質原料とした粉末原料では、乾燥粉末原料に対する水などの液体の量は、10〜50重量%が好ましく、20〜40重量%が特に好ましい。この液体の量が少ないと、硬度を得るためのバインダー量が多く必要になる。また、この液体の量が多いと、造粒収率が低下することから、10〜50重量%が好ましい。
バインダーである有機ポリマーを溶剤で薄めた溶液又はスラリーを噴霧して造粒する際の有機ポリマー溶液又はスラリーの濃度は、有機ポリマー固形分濃度として、0.5〜70重量%、好ましくは5〜50重量%、特に好ましくは10〜30重量%である。有機ポリマースラリーの溶液又は濃度は、噴霧できる程度であればよいが、有機ポリマーの濃度が70重量%を超えると、噴霧できる噴霧機が特殊でなけれなならないので、汎用的ではない。また有機ポリマー溶液又はスラリーの濃度が0.5重量%未満では、非常に多くのスラリーを噴霧する必要があり、効率が悪い。
また、この造粒は、室温で行うことが好ましいが、造粒をしながら温度を上げて乾燥と造粒を兼ねるような造粒装置では、0〜100℃の範囲で造粒を行うことが好ましい。造粒温度が100℃を超えると、バインダーである有機ポリマーが分解して、植物に障害となることがある。
培土を混合した粒状ケイ酸質肥料は、ケイ酸質原料と培土とミキサーで均一に撹拌したものを粉末原料として、粒状ケイ酸質肥料と同様にして製造することができる。
また、被覆粒状ケイ酸質肥料は、粒状ケイ酸質肥料を撹拌造粒機に入れ、先ず粒状ケイ酸質肥料を撹拌しながら、その表面に、バインダーである有機ポリマーを溶剤で薄めた溶液又はスラリーを、粒状ケイ酸質肥料100重量部に対して2〜10重量部程度の量で噴霧して表面全体を濡らし、その後培土粉末を造粒機に入れ、撹拌しながら、バインダーである有機質ポリマー溶液又はスラリーを追加噴霧して造粒を行う。
本発明の粒状ケイ酸質肥料及び被覆粒状ケイ酸質肥料は、植物の栽培用途を目的にしているので、植物の根になじみ易く、散布し易い大きさであることが好ましい。そのため、ふるい粒径が1〜20mmが好ましく、1〜10mmがより好ましく、1〜6mmが特に好ましい。ふるい径が20mmより大きい場合には、通常の機械散布には粒径が大きすぎて、散布機に詰まることがあるので適当ではない。ふるい粒径が10mmより大きく20mm以下の場合は、機械散布は可能であるが、かなり大きな植物でないと粒径が大きいため根になじみにくいので、適応範囲が大きな植物に限られる。ふるい粒径1〜10mmでは、需要の多いイネ水田やイネ育苗に用いるのに適しているが、特にふるい粒径1〜6mmでは、イネ苗の成長に優れていて、なおかつイネ水田にも使用できるため、有効な肥料の粒径である。
本発明の粒状ケイ酸質肥料又は被覆粒状ケイ酸質肥料の使用方法としては、
(1)本発明の粒状ケイ酸質肥料又は被覆粒状ケイ酸質肥料をイネ科を含む植物の栽培土壌に散布する方法、
(2)本発明の粒状ケイ酸質肥料又は被覆粒状ケイ酸質肥料をイネ科を含む植物の苗床へ敷設して、育苗後に苗床ごと栽培土壌に植える方法、
(3)本発明の粒状ケイ酸質肥料又は被覆粒状ケイ酸質肥料を水田の一又は数カ所に局所的に敷設する方法、
などが挙げられる。
(1)の粒状ケイ酸質肥料又は被覆粒状ケイ酸質肥料(以下、(被覆)粒状ケイ酸質肥料という。)をイネ科を含む植物の広い面積の栽培土壌に散布する場合は、ケイ酸質肥料のpHに土壌のpHがあまり影響されないため、(被覆)粒状ケイ酸質肥料はpH3〜11の広い範囲で使用できる。ただし、尿素などのアンモニア系窒素肥料と同時期に散布する場合には、アルカリ性が強いとアンモニアが揮散して窒素肥料の効果を失うため、pHが8以下の粒状ケイ酸質肥料を使用することが好ましい。(被覆)粒状ケイ酸質肥料の施肥量は、栽培土壌1000m当たり本発明の(被覆)粒状ケイ酸質肥料を10〜1000kg施肥することが好ましく、50〜300kg施肥することが特に好ましい。本発明の(被覆)粒状ケイ酸質肥料の施肥量が、栽培土壌1000m当たり10kgより少ない場合には、ケイ酸質肥料の効果が少ない。また、本発明の(被覆)粒状ケイ酸質肥料の施肥量が、栽培土壌1000m当たり1000kgより多い場合には、必要以上に肥料を多く施肥することになり、好ましくない。
(2)の本発明の(被覆)粒状ケイ酸質肥料をイネ科を含む植物の苗床へ敷設する場合には、pHが3.5〜8.0の(被覆)粒状ケイ酸質肥料が好ましく、pH4.0〜6.5の(被覆)粒状ケイ酸質肥料がより好ましく、pH4.5〜5.5の(被覆)粒状ケイ酸質肥料がさらに好ましい。イネ育苗試験において、(被覆)粒状ケイ酸質肥料のpHが5付近のものがイネ苗の成長が特に良く、pHが5から遠ざかるに従い成長が低下する傾向にあった。なお、イネ科を含む植物の苗床へ敷設する場合には、粒状ケイ酸質肥料を用いてもよいが、培土を混合した粒状ケイ酸質肥料がより好ましく、培土を被覆した被覆粒状ケイ酸質肥料がさらに好ましい。粒状ケイ酸質肥料よりも、培土を混合した粒状ケイ酸質肥料の方がイネ苗の成長が良く、培土を混合した粒状ケイ酸質肥料より培土を被覆した被覆粒状ケイ酸質肥料の方がイネ苗の成長が良い。その理由は、培土が根に触れる方が苗の成長には良いからと推測される。
本発明の粒状ケイ酸質肥料と培土とを適当な割合で混合したものに、窒素、リン酸、カリ肥料を加え、必要に応じて病原菌や害虫防止剤などを加え、苗床とし、その苗床の上に催芽籾を播き、培土で覆土する方法がある。本発明の粒状ケイ酸質肥料と培土を混合する場合の混合割合は、特に限定されないが、培土100重量部に対して、本発明の粒状ケイ酸質肥料10〜100重量部が好ましい。該肥料が10重量部より少ないと、ケイ酸質肥料の効果が少ない。また、該肥料が100重量部より多い場合には、根の発育が良くない場合がある。
(3)の本発明の(被覆)粒状ケイ酸質肥料を水田の一ヵ所又は数カ所に局所的に敷設する場合には、例えば、水田の取水口付近に本発明の(被覆)粒状ケイ酸質肥料を敷設することが好ましい。該(被覆)粒状ケイ酸質肥料を敷設する量は、水田1000m当たり(被覆)粒状ケイ酸質肥料を10〜1000kg施肥することが好ましく、50〜300kg施肥することが特に好ましい。(被覆)粒状ケイ酸質肥料の施肥量が、水田1000m当たり10kgより少ない場合には、ケイ酸質肥料の効果が少ない。また、(被覆)粒状ケイ酸質肥料の施肥量が、水田1000m当たり1000kgより多い場合には、必要以上に肥料を多く施肥することになり、あまり適当ではない。
以下実施例により本発明の粒状ケイ酸質肥料とその製造方法を説明する。なお実施例及び比較例で使用した測定法は、以下の通りである。
(1)空隙率測定
水銀圧入法により求めた空隙率である。水銀圧入法による空隙率の求め方は、充分に乾燥させたサンプルを、水銀圧入法で細孔分布を測定して、細孔直径0.006μmから100μmの空隙直径に相当するサンプル1g当たりの空隙体積を空隙体積Fとする。また、水銀圧入法で細孔分布と同時に、真密度を測定し、真密度からサンプル1g当たりのサンプル固形分体積を求め固形分体積Gとし、次式(1)で空隙率を求める。
空隙率(%)=空隙体積F÷(空隙体積F+固形分体積G)×100 (1)
ここでいう真密度とは、水銀圧入法による真密度であり、サンプル重量と水銀圧力207MPaにおけるサンプル容積から求めた密度である。
(2)肥料の粒硬度測定
木屋式硬度計((株)藤原製作所製、実用新案登録174886号)で測定した粒硬度で、任意の20粒を測定した平均値をkg単位で表したものである。
(3)肥料や原料のpH測定
肥料や原料などのサンプル10重量部を蒸留水50重量部に浸漬して形状が壊れない程度に撹拌し、3日経過後、20℃にて測定した液相部のpHをいう。
(4)トバモライト結晶測定
粉砕したサンプル粉末を、(株)理学電機RU−200B型X線回折分析装置を用いてX線回折分析を行い、トバモライト結晶に相当する約11Åの位置にピークが鮮明に現れるか否かを評価した。
(5)可溶性ケイ酸含有量測定
以下の手順に従い、塩酸/水酸化ナトリウム溶解法により求めたものをいう。
(a)粉砕後ふるいで粒径を0.1〜0.5mmに調整したサンプル1gを20℃の0.5規定塩酸水溶液200mlに入れ、8時間撹拌した後、孔径1μmのメンブレンフィルターで濾過する。
(b)その塩酸濾過液中のケイ素濃度をICP発光分析法で求め、ケイ素がケイ酸由来であるとして、塩酸濾過液中のケイ酸量Aをグラム単位で求める。
(c)0.5規定塩酸で溶解しない濾過残を取り、0.5規定水酸化ナトリウム水溶液200mlに入れ、8時間撹拌した後、孔径1μmのメンブレンフィルターで濾過する。
(d)その水酸化ナトリウム濾過液中のケイ素濃度をICP発光分析法で求め、ケイ素がケイ酸由来であるとして、水酸化ナトリウム濾過液中のケイ酸量Bをグラム単位で求める。
(e)可溶性ケイ酸含有量を、次式(2)で求める。
可溶性ケイ酸含有量(重量%)=(ケイ酸量A+ケイ酸量B)÷1×100
(2)
(6)イネ地上部乾物重量測定
イネの土から上の部分(茎、葉、籾部分)を刈り取り、刈り取った地上部を80℃乾燥器中で恒量になるまで充分に乾燥させた重量。
(7)イネ地上部乾物のケイ酸含有率測定
イネの土から上の部分(茎、葉、籾部分)を刈り取り、刈り取った地上部を80℃乾燥器中で恒量になるまで充分に乾燥させた後、1kgを取り1mm以下になるように均一に粉砕混合する。粉砕混合したイネ乾物1gを取り、10gの無水炭酸ナトリウムを加え、混合してから白金るつぼに移し、加熱してアルカリ溶融する。放冷後白金るつぼの中の固塊を熱蒸留水で溶かす。さらに熱蒸留水で溶かした溶液に、水酸化ナトリウムと蒸留水を加え、水酸化ナトリウム0.5規定の200mlの溶液Dを得る。
この溶液D中のケイ素(Si)濃度をICP発光分析法で定量する。溶液D中のケイ素(Si)がすべてケイ酸(SiO)から由来するとして、溶液D中のケイ酸重量Dを求める。ケイ酸重量Dは、イネ乾物1g中のケイ酸重量であるため、ケイ酸重量Dからイネ地上部のケイ酸含有率を重量%で求める。
(8)苗地上部の乾物重量測定
栽培覆土から上に出ているイネ苗部分(茎、葉部分)を刈り取り、刈り取ったイネ苗地上部1000本を80℃乾燥器中で恒量になるまで充分に乾燥させた後、乾燥したイネ苗地上部1000本の重量を測定する。
(9)苗地上部のケイ酸含有率測定
栽培覆土から上に出ているイネ苗部分(茎、葉部分)を刈り取り、刈り取ったイネ苗地上部を80℃乾燥器中で恒量になるまで充分に乾燥させた後、20gを取り1mm以下になるように均一に粉砕混合する。粉砕混合したイネ乾物1gを取り、10gの無水炭酸ナトリウムを加え、混合してから白金るつぼに移し、加熱してアルカリ溶融する。放冷後白金るつぼの中の固塊を熱蒸留水で溶かす。さらに熱蒸留水で溶かした溶液に、水酸化ナトリウムと蒸留水を加え、水酸化ナトリウム0.5規定の200mlの溶液Dを得る。
この溶液D中のケイ素(Si)濃度をICP発光分析法で定量する。溶液D中のケイ素(Si)がすべてケイ酸(SiO)から由来するとして、溶液D中のケイ酸重量Dを求める。ケイ酸重量Dは、イネ乾物1g中のケイ酸重量であるため、ケイ酸重量Dからイネ地上部のケイ酸含有率を重量%で求める。
(10)苗地下部(根)の乾物重量測定
栽培覆土から下のイネ苗の根部分を刈り取り、刈り取ったイネ苗地下部1000本を80℃乾燥器中で恒量になるまで充分に乾燥させた後、乾燥したイネ苗地下部1000本の重量を測定する。
(11)水中形状維持性の測定
肥料100粒と、水200gを500ミリリットル容器に入れ、20℃恒温室に静置する。毎日同じ時間にこれを静かに引き上げ、崩壊した粒の数が50粒を越えた静置時間を日数で表示した。
実施例1
珪石53重量部、生石灰7.5重量部、普通ポルトランドセメント37重量部、乾燥石膏2.5重量部、これら固形分100重量部に対し、水70重量部、アルミ粉末0.060重量部をスラリー状に混合し、型枠に注入した。この型枠に注入したスラリーを40℃の恒温室に入れ、硬化時間を調整して、JIS A5416に準じて測定した圧縮強度が0.1MPaの半硬化状気泡コンクリート材を得た。
この半硬化状気泡コンクリート材に対して、室温から180℃に昇温2時間、180℃定温5時間、180℃から室温に降温3時間かけて、オートクレーブ水蒸気養生を行い軽量気泡コンクリート板を得た。
この軽量気泡コンクリート板は、本発明でいう水熱合成により得られるケイ酸カルシウム水和結晶を含有するケイ酸質材である。この軽量気泡コンクリート板を粉砕して3日間、70℃で恒量になるまで乾燥させ、目開き250μmのふるいを通過させて、ふるい径250μm以下の軽量気泡コンクリート粉末を得た。
この軽量気泡コンクリート粉末をケイ酸質原料とした。このケイ酸質原料の空隙率測定、トバモライト結晶測定、可溶性ケイ酸含有量測定を行った。その結果を表1に示す。
このケイ酸質原料をそのまま粉末原料として、ミキサー(日本アイリッヒ(株)製 アイリッヒミキサーR−02型)を用いて、水性アクリルエマルジョン樹脂をバインダーとして造粒を行い、造粒品を作った。水性アクリルエマルジョン樹脂として、旭化成工業(株)製のポリトロンU154(製品の樹脂固形分60重量%)を用いた。造粒は、該ミキサーで粉末原料1500gを回転させながら、先ず水だけを少しづつ375g噴霧し、次に水性アクリルエマルジョン樹脂を樹脂固形分が12重量%になるように水で薄めて調整した水性アクリルエマルジョン樹脂スラリー溶液を152g噴霧しながら造粒を行った。造粒後、造粒品を60℃乾燥器中で3日間、恒量になるまで乾燥後、粒状ケイ酸質肥料を得た。粒状ケイ酸質肥料は、目開き1mmと10mmのふるいを用いてふるい、ふるい径1〜10mmの粒状ケイ酸質肥料を得た。この粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒中の水性アクリルエマルジョン樹脂スラリーの噴霧添加量から求めた。その結果を表2に示す。
またこの粒状ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定を行った。その結果も表2に示す。
この粒状ケイ酸質肥料の輸送試験をした。粒状ケイ酸質肥料を20kgの袋詰めにして、トラックの荷台に10袋を重ねて置き、静岡県富士市から宮城県仙台市までトラック輸送し、トラック輸送における欠けや粉落ちを調べた。トラック輸送後、ふるい径1mmを通過する欠け率としてその重量%を測定したところ、欠け率0重量%であり、トラック輸送による欠けや粉落ちは無かった。
この粒状ケイ酸質肥料を200mの試験水田に40kgを均等に、井関農機(株)乗用型田植機PA53Dを用いて散布し、機械散布試験をした。この機械散布試験では、粒状ケイ酸質肥料による目詰まりなどが起こらず、機械散布で問題のないことが判った。また粒状ケイ酸質肥料を素手で取り扱ったが、手を傷つけることがなく、粉が目に入るということもないことから、以下に示す比較例7の破砕状の軽量気泡コンクリートより扱い易いことが判った。
次に粒状ケイ酸質肥料40kgを200mの試験水田に均等に撒き、イネの水田育成試験を行った。試験水田の土壌は非アロフェン質黒ボク土である。この水田に育苗したコシヒカリ苗を5月中旬に、栽植密度18株/mで移植した。ケイ酸質以外の肥料は、全量基肥とし、窒素成分で7g/mとなるように被覆尿素入り粒状複合肥料(N:P:KO=16:16:16、うち被覆尿素N=70%)を側条で施用した。
この苗を水田で育て、9月中旬に稲刈りを行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表3に示す。
表3から判るように、得られた粒状ケイ酸質肥料を施肥すると、ケイ酸肥料を施肥しない以下に示す比較例8に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも大きく、水稲のケイ酸栄養改善にきわめて有効であった。また、粒状ケイ酸質肥料を施肥すると、破砕状の軽量気泡コンクリートを施肥した比較例7とほぼ同等の肥料効果であることが判った。
実施例2
実施例1の造粒において、先ず水だけを520g噴霧して、次に水性アクリルエマルジョン樹脂(旭化成工業(株)製ポリトロンU154(製品樹脂固形分60重量%))を水で薄めて樹脂固形分の重量%を20重量%になるように調整したスラリー溶液を30g噴霧しながら造粒した以外は、実施例1と同様にして造粒を行い、有機質ポリマーの含有量0.4重量%のふるい径1〜10mmの粒状ケイ酸質肥料を得た。この粒状ケイ酸質肥料の有機質ポリマーの含有量は、造粒中の水性アクリルエマルジョン樹脂スラリーの噴霧添加量から求めた値である。結果を表2に示す。またこの粒状ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定を行った。その結果も表2に示す。
この粒状ケイ酸質肥料について実施例1と同様に、輸送試験を行ったところ、欠け率は0重量%であり、トラック輸送による欠けや粉落ちは殆ど無かった。
得られた粒状ケイ酸質肥料を用いて実施例1と同様に、機械散布試験を行ったところ、粒状ケイ酸質肥料による目詰まりなどが起こらず、機械散布で問題のないことが判った。またこの粒状ケイ酸質肥料を素手で取り扱ったが、手を傷つけることがなく、粉が目に入るという問題もないことから、比較例7の破砕状の軽量気泡コンクリートより扱い易いことが判った。
この粒状ケイ酸質肥料を用いて実施例1と同様に、イネの水田育成試験を行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表3に示す。
表3から判るように、得られた粒状ケイ酸質肥料を施肥すると、ケイ酸肥料を施肥しない比較例8に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも大きく、水稲のケイ酸栄養改善にきわめて有効であった。また、この粒状ケイ酸質肥料を施肥すると、破砕状の軽量気泡コンクリートを施肥した比較例7とほぼ同等の肥料効果であることが判った。
実施例3
実施例1の造粒において、水性アクリルエマルジョン樹脂の樹脂固形分の重量%を20重量%になるように水で薄めて調整した水性アクリルエマルジョン樹脂スラリー溶液を用いて、これを232g噴霧しながら造粒を行った以外は、実施例1と同様にしてふるい径1〜10mmの粒状ケイ酸質肥料を得た。この粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒中の水性アクリルエマルジョン樹脂スラリーの噴霧添加量から求めた。その結果を表2に示す。またこの粒状ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定を行った。その結果も表2に示す。
この粒状ケイ酸質肥料について実施例1と同様に、輸送試験を行ったところ、欠け率は0重量%であり、トラック輸送による欠けや粉落ちは無かった。
得られた粒状ケイ酸質肥料を用いて実施例1と同様に、機械散布試験を行ったところ、粒状ケイ酸質肥料による目詰まりなどが起こらず、本粒状ケイ酸質肥料が機械散布で問題のないことが判った。また粒状ケイ酸質肥料を素手で取り扱ったが、手を傷つけることが無く、粉が目に入るという問題もないことから比較例7の破砕状の軽量気泡コンクリートより扱い易いことが判った。
この粒状ケイ酸質肥料を用いて実施例1と同様に、イネの水田育成試験を行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表3に示す。
表3から判るように、本粒状ケイ酸質肥料を施肥すると、ケイ酸肥料を施肥しない比較例8に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも大きく、水稲のケイ酸栄養改善にきわめて有効であった。また、本粒状ケイ酸質肥料を施肥すると、破砕状の軽量気泡コンクリートを施肥した比較例7とほぼ同等の肥料効果であることが判った。
実施例4
実施例1の軽量気泡コンクリート粉末の代わりに、軽量気泡コンクリート廃材である旭化成工業(株)製ヘーベルライトの施工現場廃材を粉砕して得た軽量コンクリート廃材粉末を用いた以外は、実施例1と同様にしてふるい径1〜10mmの粒状ケイ酸質肥料を得た。
旭化成工業(株)製ヘーベルライトの施工現場廃材をハンマーでたたいて粗粉砕して、内部の補強ラス網部と軽量気泡コンクリート部を分離した。この軽量気泡コンクリート部を粉砕して、目開き250μmのふるいでふるい、ふるいを通過した軽量気泡コンクリート廃材粉末を得た。この軽量気泡コンクリート廃材粉末をケイ酸質原料とした。このケイ酸質原料の空隙率測定、トバモライト結晶測定、可溶性ケイ酸含有量測定を行った。その結果を表1に示す。このケイ酸質原料をそのまま粉末原料として、実施例1と同様にして粒状ケイ酸質肥料を得た。この粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒に用いた水性アクリルエマルジョン樹脂スラリーの噴霧添加量から求めた。その結果を表2に示す。またこの粒状ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定を行った。その結果も表2に示す。
この粒状ケイ酸質肥料について実施例1と同様に、輸送試験を行ったところ、欠け率は0重量%であり、トラック輸送による欠けや粉落ちは無かった。
得られた粒状ケイ酸質肥料を用いて実施例1と同様に、機械散布試験を行ったところ、粒状ケイ酸質肥料による目詰まりなどが起こらず、機械散布で問題のないことが判った。また粒状ケイ酸質肥料を素手で取り扱ったが、手を傷つけることがなく、粉が目に入るという問題もないことから、比較例7の破砕状の軽量気泡コンクリートより扱い易いことが判った。
この粒状ケイ酸質肥料を用いて実施例1と同様に、イネの水田育成試験を行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表3に示す。
表3から判るように、本粒状ケイ酸質肥料を施肥すると、ケイ酸肥料を施肥しない比較例8に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも大きく、水稲のケイ酸栄養改善にきわめて有効であった。また、本粒状ケイ酸質肥料を施肥すると、破砕状の軽量気泡コンクリートを施肥した比較例7とほぼ同等の肥料効果であることが判った。
実施例5
実施例1の造粒に用いる粉末原料のふるい径を変えた以外は、実施例1と同様にしてふるい径1〜10mmの粒状ケイ酸質肥料を得た。
実施例1と同様にして作った軽量気泡コンクリート粉を、ふるいで分けて、目開き250μmのふるいを通過した微粒子と、ふるい径250〜475μmの中粒子に分け、微粒子70重量部と中粒子30重量部を均一に混合して、ケイ酸質原料とした。このケイ酸質原料の空隙率測定、トバモライト結晶測定、可溶性ケイ酸含有量測定を行った。その結果を表1に示す。このケイ酸質原料をそのまま粉末原料として、実施例1と同様にして粒状ケイ酸質肥料を得た。この粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒中の水性アクリルエマルジョン樹脂スラリーの噴霧添加量から求めた。その結果を表2に示す。またこの粒状ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定を行った。その結果も表2に示す。
この粒状ケイ酸質肥料について実施例1と同様に、輸送試験を行ったところ、欠け率は0重量%であり、トラック輸送による欠けや粉落ちは無かった。
得られた粒状ケイ酸質肥料を用いて実施例1と同様に、機械散布試験を行ったところ、粒状ケイ酸質肥料による目詰まりなどが起こらず、機械散布で問題のないことが判った。またこの粒状ケイ酸質肥料を素手で取り扱ったが、手を傷つけることがなく、粉が目に入るという問題もないことから、比較例7の破砕状の軽量気泡コンクリートより扱い易いことが判った。
この粒状ケイ酸質肥料を用いて実施例1と同様に、イネの水田育成試験を行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表3に示す。
表3から判るように、得られた粒状ケイ酸質肥料を施肥すると、施肥しない比較例8に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも大きく、水稲のケイ酸栄養改善にきわめて有効であった。また、この粒状ケイ酸質肥料を施肥すると、破砕状の軽量気泡コンクリートを施肥した比較例7とほぼ同等の肥料効果であることが判った。
実施例6
実施例1と同様に作製した目開き250μmのふるいを通過した軽量気泡コンクリート粉末9kgと蒸留水50kgを混合し、さらに12規定の硫酸を4170ml加えて撹拌し、7日後に、そのスラリー上澄みの20℃におけるpHを測定したところ8.0であった。この中和した軽量気泡コンクリートスラリーを5種Cの濾紙で濾過して、濾紙上の固体部分を60℃で3日乾燥させ、恒量になるまで水分を除いて中和した軽量気泡コンクリート粉末を得た。この中和した軽量気泡コンクリート粉末を、ふるい分けして目開き250μmのふるいを通過した中和軽量気泡コンクリート粉末を得た。この中和軽量気泡コンクリート粉末をケイ酸質原料とした。このケイ酸質原料の空隙率測定、可溶性ケイ酸含有量測定を行った。その結果を表4に示す。このケイ酸質原料をそのまま粉末原料として、実施例1と同様にしてpH8.0の粒状ケイ酸質肥料を得た。この粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒に用いた水性アクリルエマルジョン樹脂スラリー溶液の噴霧添加量から求めた。その結果を表5に示す。またこの粒状ケイ酸質肥料の粒硬度、pH、可溶性ケイ酸含有量の測定結果を表5に示す。
この粒状ケイ酸質肥料について実施例1と同様に、輸送試験を行ったところ、欠け率は0重量%であり、トラック輸送による欠けや粉落ちは無かった。
得られた粒状ケイ酸質肥料を用いて実施例1と同様に、機械散布試験を行ったところ、粒状ケイ酸質肥料による目詰まりなどが起こらず、本粒状ケイ酸質肥料が機械散布で問題のないことが判った。また粒状ケイ酸質肥料を素手で取り扱ったが、手を傷つけることが無く、粉が目に入るという問題もなかった。
この粒状ケイ酸質肥料を用いて実施例1と同様に、イネの水田育成試験を行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表6に示す。
表6から判るように、この得られた粒状ケイ酸質肥料を施肥すると、施肥しない比較例8に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも大きく、水稲のケイ酸栄養改善にきわめて有効であった。また、本粒状ケイ酸質肥料を施肥すると、破砕状の軽量気泡コンクリートを施肥した比較例7よりも優れた肥料効果であることが判った。
実施例7
実施例1と同様に作製した目開き250μmのふるいを通過した軽量気泡コンクリート粉末9kgと蒸留水50kgを混合し、さらに12規定硫酸を5800ml加えて撹拌し、7日後に、そのスラリー上澄みの20℃におけるpHを測定したところ5.0であった。この中和した軽量気泡コンクリートスラリーを5種Cの濾紙で濾過して、濾紙上の固体部分を60℃で3日乾燥させ、恒量になるまで水分を除いて中和した軽量気泡コンクリート粉末を得た。この中和した軽量気泡コンクリート粉末を、ふるい分けして目開き250μmのふるいを通過した中和軽量気泡コンクリート粉末を得た。この中和軽量気泡コンクリート粉末を、ケイ酸質原料とした。このケイ酸質原料の空隙率測定、可溶性ケイ酸含有量測定を行った。その結果を表4に示す。このケイ酸質原料をそのまま粉末原料として、実施例1と同様にしてpH5.0の粒状ケイ酸質肥料を得た。この粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒に用いた水性アクリルエマルジョン樹脂スラリー溶液の噴霧添加量から求めた。その結果を表5に示す。またこの粒状ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定の結果を表5に示す。
この粒状ケイ酸質肥料について実施例1と同様に、輸送試験を行ったところ、欠け率は0重量%であり、トラック輸送による欠けや粉落ちは無かった。
得られた粒状ケイ酸質肥料を用いて実施例1と同様に、機械散布試験を行ったところ、粒状ケイ酸質肥料による目詰まりなどが起こらず、機械散布で問題のないことが判った。またこの粒状ケイ酸質肥料を素手で取り扱ったが、手を傷つけることが無く、粉が目に入るという問題もなかった。
この粒状ケイ酸質肥料を用いて実施例1と同様に、イネの水田育成試験を行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表6に示す。表6から判るように、得られた粒状ケイ酸質肥料を施肥すると、施肥しない比較例8に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも大きく、水稲のケイ酸栄養改善にきわめて有効であった。また、この粒状ケイ酸質肥料を施肥すると、破砕状の軽量気泡コンクリートを施肥した比較例7よりも優れた肥料効果であることが判った。
実施例8
実施例1と同様に作製した目開き250μmのふるいを通過した軽量気泡コンクリート粉9kgと蒸留水50kgを混合し、さらに12規定硫酸を6142ml加えて撹拌し、7日後に、そのスラリー上澄みの20℃におけるpHを測定したところ3.5であった。この中和した軽量気泡コンクリートスラリーを5種Cの濾紙で濾過して、濾紙上の固体部分を60℃で3日乾燥させ、恒量になるまで水分を除いて中和した軽量気泡コンクリート粉末を得た。この中和した軽量気泡コンクリート粉末を、ふるい分けして目開き250μmのふるいを通過した中和軽量気泡コンクリート粉末を得た。この中和軽量気泡コンクリート粉末を、ケイ酸質原料とした。このケイ酸質原料の空隙率測定、可溶性ケイ酸含有量測定を行った。その結果を表4に示す。このケイ酸質原料をそのまま粉末原料として、実施例1と同様にして粒状ケイ酸質肥料を得た。この粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒に用いた水性アクリルエマルジョン樹脂スラリー溶液の噴霧添加量から求めた。その結果を表5に示す。またこの粒状ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定を行った。その結果も表5に示す。
この粒状ケイ酸質肥料について実施例1と同様に、輸送試験を行ったところ、欠け率は0重量%であり、トラック輸送による欠けや粉落ちは無かった。
得られた粒状ケイ酸質肥料を用いて実施例1と同様に、機械散布試験を行ったところ、粒状ケイ酸質肥料による目詰まりなどが起こらず、機械散布で問題のないことが判った。またこの粒状ケイ酸質肥料を素手で取り扱ったが、手を傷つけることが無く、粉が目に入るという問題もなかった。
この粒状ケイ酸質肥料を用いて実施例1と同様に、イネの水田育成試験を行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表6に示す。表6から判るように、得られた粒状ケイ酸質肥料を施肥すると、施肥しない比較例8に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも大きく、水稲のケイ酸栄養改善にきわめて有効であった。また、この粒状ケイ酸質肥料を施肥すると、破砕状の軽量気泡コンクリートを施肥した比較例7よりも優れた肥料効果であることが判った。
実施例9
実施例7と同様に作製した目開き250μmのふるいを通過したpH5.0の中和軽量気泡コンクリート粉末10kgと培土粉末10kgをモルタルミキサーで10分間混合したものを粉末原料として、実施例1と同様に造粒を行い、実施例1と同様にしてふるい径1〜10mmの培土を混合した粒状ケイ酸質肥料を得た。用いた培土粉末は、水稲育苗用培土(片倉チッカリン(株)製 粒状ぱあるまっと)を粉砕して乾燥した後、目開き250μmのふるいを通過した培土粉末である。この培土を混合した粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒に用いた水性アクリルエマルジョン樹脂スラリー溶液の噴霧添加量から求めた。その結果を表5に示す。またこの培土を混合した粒状ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定を行った。その結果も表5に示す。
この培土を混合した粒状ケイ酸質肥料について実施例1と同様に、輸送試験を行ったところ、欠け率は0重量%であり、トラック輸送による欠けや粉落ちはなかった。
得られた培土を混合した粒状ケイ酸質肥料を用いて実施例1と同様に、機械散布試験を行ったところ、粒状ケイ酸質肥料による目詰まりなどが起こらず、機械散布で問題のないことが判った。また培土を混合した粒状ケイ酸質肥料を素手で取り扱ったが、手を傷つけることがなく、粉が目に入るという問題もなかった。
培土を混合した粒状ケイ酸質肥料80kgを施肥した以外は、実施例1と同様にして、イネの水田育成試験を行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表6に示す。イネの水田育成試験で、培土を混合した粒状ケイ酸質肥料の施肥量を実施例1の2倍にしたのは、実施例1とほぼ同じ可溶性ケイ酸量を施肥するためである。表6から判るように、この粒状ケイ酸質肥料を施肥すると、施肥しない比較例8に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも大きく、水稲のケイ酸栄養改善にきわめて有効であった。また、この粒状ケイ酸質肥料を施肥すると、破砕状の軽量気泡コンクリートを施肥した比較例7よりも優れた肥料効果であることが判った。
実施例10
実施例7と同様に作製したpH5.0の粒状ケイ酸質肥料750gを、ミキサー(日本アイリッヒ(株)製 アイリッヒミキサーR−02型)に入れ、先ず粒状ケイ酸質肥料を撹拌しながらその表面に水性アクリルエマルジョン樹脂(旭化成工業(株)製 ポリトロンU154(製品の樹脂固形分60重量%))を樹脂固形分が12重量%になるように水で薄めて調整した水性アクリルエマルジョン樹脂スラリー溶液を10g噴霧して、粒状ケイ酸質肥料の表面を濡らし、次に培土粉末750gを上記アイリッヒミキサーに入れ、さらに水性アクリルエマルジョン樹脂スラリー溶液を66g追加噴霧して造粒を行った。造粒後、実施例1と同様にしてふるい径1〜10mmの培土を被覆した被覆粒状ケイ酸質肥料を得た。この時用いた培土粉末は、水稲育苗用培土(片倉チッカリン(株)製 粒状ぱあるまっと)を粉砕して乾燥した後、目開き250μmのふるいで通過した培土粉末である。この被覆粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒及び被覆に用いた水性アクリルエマルジョン樹脂スラリー溶液の噴霧添加量から求めた。その結果を表5に示す。またこの被覆ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定を行った。その結果も表5に示す。
この被覆粒状ケイ酸質肥料について実施例1と同様に、輸送試験を行ったところ、欠け率は0重量%であり、トラック輸送による欠けや粉落ちは無かった。得られた被覆粒状ケイ酸質肥料を用いて実施例1と同様に、機械散布試験を行ったところ、被覆粒状ケイ酸質肥料による目詰まりなどが起こらず、本被覆粒状ケイ酸質肥料が機械散布で問題のないことが判った。
この被覆粒状ケイ酸質肥料80kgを施肥した以外は、実施例1と同様にして、イネの水田育成試験を行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表6に示す。イネの水田育成試験で、被覆粒状ケイ酸質肥料の施肥量を実施例1の2倍にしたのは、実施例1とほぼ同じ可溶性ケイ酸量を施肥するためである。表6から判るように、この被覆粒状ケイ酸質肥料を施肥すると、施肥しない比較例8に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも大きく、水稲のケイ酸栄養改善にきわめて有効である。また、被覆粒状ケイ酸質肥料を施肥すると、破砕状の軽量気泡コンクリートを施肥した比較例7よりも優れた肥料効果であることが判った。
実施例11
12規定硫酸を5280ml用いた以外は実施例6と同様に行い、pH6.8の中和軽量気泡コンクリート粉末を得た。この中和軽量気泡コンクリート粉末を、ケイ酸質原料とした。このケイ酸質原料の空隙率測定、可溶性ケイ酸含有量測定を行った。その結果を表7に示す。このケイ酸質原料をそのまま粉末原料として、実施例1と同様に造粒を行い、ふるい目開き1mmと6mmのふるいを用いてふるい径1〜6mmのpH6.8の粒状ケイ酸質肥料を得た。この粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒に用いた水性アクリルエマルジョン樹脂スラリー溶液の噴霧添加量から求めた。その結果を表8に示す。またこの粒状ケイ酸質肥料の粒硬度、pH、可溶性ケイ酸含有量、水中形状維性の測定結果を表8に示す。さらにこの粒状ケイ酸質肥料を20℃、湿度70%部屋に放置して、製造直後、製造1ヶ月後、製造6ヶ月後、製造1年後の粒硬度を測定した。その結果を表9に示す。
この粒状ケイ酸肥料を用いて、イネ育苗試験を行った。この粒状ケイ酸肥料1500gと水稲育苗用培土(片倉チッカリン(株)製 粒状ぱあるまっと)1500gを均一に混合したものと、初期抑制型被覆肥料(旭化成工業(株)製 苗箱まかせNK301−100(N:30%−P:0%−KO:10%)700g、立ち枯れ防止剤(三共(株)製 タチガレエース)6gを混合し、1苗箱用の床土とした。さらに床土には、速攻性肥料として硫酸アンモニウム、リン酸−石灰、塩化カリウムを添加し、窒素、リン酸、カリが1苗箱当たり各1.5gになるように補正した。
この上に催芽籾(こしひかり)140gを均一に播き、充分灌水し、水稲育苗培土(片倉チッカリン(株)製 粒状ぱあるまっと)1200gで覆土して育苗の設置をした。播種3日後に出芽苗における種子露出又は根上りの割合と発芽率を測定した。その結果を表10に示す。さらに播種後35日間苗を育てた。苗の葉色や、障害など外観上の問題は無かった。このイネ苗の苗地上部の乾物重量測定、苗地上部のケイ酸含有率測定、苗地下部(根)の乾物重量測定の結果を表11に示す。
表10から判るように、種子露出又は根上りの割合と発芽率は、粒状ケイ酸質肥料を施肥したものも、ケイ酸質肥料を用いないものも同様の良好な結果であるが、表11から判るように、育苗試験では、粒状ケイ酸質肥料を施肥したものは、これを使用しない比較例9に比べ、苗地上部の乾物重量、苗地上部のケイ酸含有率、苗地下部(根)の乾物重量のいずれも大きく、イネ苗の成長も良かった。
実施例12〜15
12規定硫酸の添加量を、実施例12においては5686ml、実施例13においては5724ml、実施例14においては5875ml、実施例15においては5913mlに変えた以外は実施例11と同様に行い、粒状ケイ酸質肥料を得た。このケイ酸質原料の空隙率、可溶性ケイ酸含有量の測定結果を表7に示す。この粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒に用いた水性アクリルエマルジョン樹脂スラリー溶液の噴霧添加量から求めた。その結果を表8に示す。またこの粒状ケイ酸質肥料の粒硬度、pH、可溶性ケイ酸含有量、水中形状維性の測定結果を表8に示す。さらにこの粒状ケイ酸質肥料を20℃、湿度70%部屋に放置して、製造直後、製造1ヶ月後、製造6ヶ月後、製造1年後の粒硬度を測定した。その結果を表9に示す。
得られた粒状ケイ酸質肥料を用いて実施例11と同様に、イネ育苗試験を行った。播種3日後に出芽苗における種子露出又は根上りの割合と発芽率を測定した。その結果を表10に示す。さらに播種後35日間苗を育てた。苗の葉色や、障害など外観上の問題は無かった。このイネ苗の苗地上部の乾物重量測定、苗地上部のケイ酸含有率測定、苗地下部(根)の乾物重量測定した結果を表11に示す。
表10から判るように、発芽試験では、得られた粒状ケイ酸質肥料を施肥したものも、ケイ酸質肥料を用いないものも同様の良好な結果であるが、表11から判るように、育苗試験では、粒状ケイ酸質肥料を施肥したものは、これを使用しない比較例9に比べ、苗地上部の乾物重量、苗地上部のケイ酸含有率、苗地下部(根)の乾物重量のいずれも大きく、イネ苗の成長が良かった。
実施例16
実施例11と同様に作製した目開き250μmのふるいを通過したpH6.8の中和軽量気泡コンクリート粉末10kgと培土粉末10kgを通常のモルタルミキサーで10分間混合したものを粉末原料とした。この時用いた培土粉末は、実施例9の培土粉末と同様のものである。この粉末原料を用いて、実施例1と同様に造粒を行い、実施例11と同様にしてふるい径1〜6mmの、培土を混合した粒状ケイ酸質肥料を得た。この培土を混合した粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒に用いた水性アクリルエマルジョン樹脂スラリー溶液の噴霧添加量から求めた。その結果を表12に示す。またこの培土を混合した粒状ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定、水中形状維性の測定を行った。その結果も表12に示す。
実施例11のイネ育苗試験で用いた、粒状ケイ酸肥料1500gと水稲育苗用培土(片倉チッカリン(株)製 粒状ぱあるまっと)1500gを均一に混合したものの代わりに、本実施例で得られた培土を混合した粒状ケイ酸肥料3000gを用いた以外は、実施例11と同様の方法でイネ育苗試験を行った。播種3日後に出芽苗における種子露出又は根上りの割合と発芽率を測定した。その結果を表13に示す。さらに播種後35日間苗を育てた結果、苗の葉色や、障害など外観上の問題は無かった。このイネ苗の苗地上部の乾物重量測定、苗地上部のケイ酸含有率測定、苗地下部(根)の乾物重量測定した結果を表14に示す。
表13から判るように、本発芽試験では、本実施例の粒状ケイ酸質肥料を施肥したものも、ケイ酸質肥料を用いないものも同様の良好な結果であるが、表14から判るように、育苗試験では、本実施例の粒状ケイ酸質肥料を施肥したものは、これを使用しない比較例9に比べ、苗地上部の乾物重量、苗地上部のケイ酸含有率、苗地下部(根)の乾物重量のいずれも大きく、イネ苗の成長が良かった。
実施例17〜18
異なるpHの中和軽量気泡コンクリート粉末を用いた以外は実施例16と同様にしての培土を混合した粒状ケイ酸質肥料を製造した。実施例17においては実施例13と同様に作製したpH5.2の中和軽量気泡コンクリート粉末を用いた。実施例18においては実施例14と同様に作製したpH4.1の中和軽量気泡コンクリート粉末を用いた。この培土を混合した粒状ケイ酸質肥料中の有機質ポリマーの含有量を、造粒に用いた水性アクリルエマルジョン樹脂スラリー溶液の噴霧添加量から求めた。その結果を表12に示す。またこの培土を混合した粒状ケイ酸質肥料の粒硬度、pH、可溶性ケイ酸含有量、水中形状維性の測定結果を表12に示す。
これらの培土を混合した粒状ケイ酸肥料を用いて、実施例16と同様にイネ育苗試験を行った。播種3日後に出芽苗における種子露出又は根上りの割合と発芽率を測定した。その結果を表13に示す。さらに播種後35日間苗を育てた。苗の葉色や、障害など外観上の問題は無かった。このイネ苗の苗地上部の乾物重量測定、苗地上部のケイ酸含有率測定、苗地下部(根)の乾物重量測定した結果を表14に示す。表13から判るように、発芽試験では、粒状ケイ酸質肥料を施肥したものも、ケイ酸質肥料を用いないものも同様の良好な結果であるが、表14から判るように、育苗試験では、粒状ケイ酸質肥料を施肥したものは、これを使用しない比較例9に比べ、苗地上部の乾物重量、苗地上部のケイ酸含有率、苗地下部(根)の乾物重量のいずれも大きく、イネ苗の成長が良かった。
実施例19
実施例11と同様に作製したpH6.8の粒状ケイ酸質肥料750gを用いて実施例10と同様にして培土で被覆し、ふるい目開き1mmと6mmのふるいを用いてふるい径1〜6mmの被覆粒状ケイ酸質肥料を得た。この被覆粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒及び被覆に用いた水性アクリルエマルジョン樹脂スラリーの噴霧添加量から求めた。その結果を表12に示す。またこの被覆粒状ケイ酸質肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定、水中形状維性の測定を行った。その結果も表12に示す。
実施例16の培土を混合した粒状ケイ酸肥料の代わりに、この得られた被覆粒状ケイ酸肥料を用いた以外は実施例16と同様にイネ育苗試験を行った。播種3日後に出芽苗における種子露出又は根上りの割合と発芽率を測定した。その結果を表13に示す。さらに播種後35日間苗を育てた。苗の葉色や、障害など外観上の問題は無かった。このイネ苗の苗地上部の乾物重量測定、苗地上部のケイ酸含有率測定、苗地下部(根)の乾物重量測定した結果を表14に示す。
表13から判るように、本発芽試験では、本実施例の被覆粒状ケイ酸質肥料を施肥したものも、ケイ酸質肥料を用いないものも同様の良好な結果であるが、表14から判るように、育苗試験では、本実施例の被覆粒状ケイ酸質肥料を施肥したものは、これを使用しない比較例9に比べ、苗地上部の乾物重量、苗地上部のケイ酸含有率、苗地下部(根)の乾物重量のいずれも大きく、イネ苗の成長が良かった。
実施例20〜21
異なるpHの粒状ケイ酸質肥料を用いた以外は実施例19と同様にしてpHの異なる被覆粒状ケイ酸質肥料を得た。実施例20においては実施例13におけると同様にして作製したpH5.2の粒状ケイ酸質肥料を用いた。実施例21においては実施例15におけると同様にして作製したpH4.2の粒状ケイ酸質肥料を用いた。これらの被覆粒状ケイ酸質肥料の有機質ポリマーの含有量を、造粒及び被覆に用いた水性アクリルエマルジョン樹脂スラリー溶液の噴霧添加量から求めた。その結果を表12に示す。またこれらの被覆粒状ケイ酸質肥料の粒硬度、pH、可溶性ケイ酸含有量、水中形状維性の測定結果を表12に示す。
これらの被覆粒状ケイ酸肥料を用いて、実施例19と同様にイネ育苗試験を行った。播種3日後に出芽苗における種子露出又は根上りの割合と発芽率を測定した。その結果を表13に示す。さらに播種後35日間苗を育てた。苗の葉色や、障害など外観上の問題は無かった。このイネ苗の苗地上部の乾物重量測定、苗地上部のケイ酸含有率測定、苗地下部(根)の乾物重量測定した結果を表14に示す。
表13から判るように、本発芽試験では、被覆粒状ケイ酸質肥料を施肥したものも、ケイ酸質肥料を用いないものも同様の良好な結果であるが、表14から判るように、育苗試験では、被覆粒状ケイ酸質肥料を施肥したものは、これを使用しない比較例9に比べ、苗地上部の乾物重量、苗地上部のケイ酸含有率、苗地下部(根)の乾物重量のいずれも大きく、イネ苗の成長が良かった。
比較例1
実施例1の造粒において、水を噴霧せずに、水性アクリルエマルジョン樹脂(旭化成工業(株)製ポリトロンU154(製品樹脂固形分60重量%))を水で薄めて樹脂固形分の重量%を7重量%になるように調整したスラリー溶液を663g噴霧しながら造粒した以外は、実施例1と同様にして造粒を行い、有機質ポリマーの含有量3.0重量%のふるい径1〜10mmの粒状ケイ酸質肥料を得た。この粒硬度を測定したところ1.4kgであった。
この、粒状ケイ酸質肥料について実施例1と同様に、輸送試験を行ったところ欠け率は3%であり、実施例に比べ輸送による欠けや粉落ちが多かった。
比較例2
実施例1の造粒において、水を噴霧せずに、水性アクリルエマルジョン樹脂(旭化成工業(株)製ポリトロンU154(製品樹脂固形分60重量%))を水で薄めて樹脂固形分の重量%を5重量%になるように調整したスラリー溶液を928g噴霧しながら造粒作業をした以外は、実施例1と同様にして造粒作業を行い、有機質ポリマーの含有量が3.0重量%以下で粒硬度2〜5kgの粒状ケイ酸質肥料を得ようとしたが、造粒中に原料が大きな塊状となり、造粒品ができなかった。
比較例3
軽量気泡コンクリート粉末を用いて、従来方法でケイ酸質肥料の造粒を行った。
7.7重量部のコーンスターチに、90.5重量部の水を加えてかき混ぜて懸濁させた後、次第に加熱して80℃まで昇温した。その後、48%水酸化ナトリウム溶液を1.2重量部加え、加熱したまま30分かきまぜ続けた。その後冷却したものを造粒剤として用いた(以下、コンスターチ造粒剤という。)。
実施例1と同様にして作成したふるい径250μm以下の軽量気泡コンクリート粉末100重量部に、コーンスターチ造粒剤を10重量部加え、さらに水25重量を加えよく混合した後パン造粒機で造粒を行った。できあがった粒を105℃で12時間乾燥した後目開き4mmと1mmのふるいを用いて、ふるい径1〜4mmの造粒品を得た。
この造粒品の硬度を測定したところ、0kgであり、20kgの袋に詰めて取り出したところ、袋詰め作業で粒の90%が崩壊し、粉などが舞って扱いにくかった。
比較例4
軽量気泡コンクリート粉末100重量部に、コーンスターチ造粒剤を25重量部加えた以外は比較例1と同様な方法でふるい径1〜4mmの造粒品を得た。この造粒品の硬度を測定したところ、0.2kgであり、20kgの袋に詰めて取り出したところ、袋詰め作業で粒の30%が崩壊し、粉などが舞って扱いにくかった。
比較例5
軽量気泡コンクリート粉末を用い、アルギン酸ソーダをバインダーにして造粒した。
7.7重量部のアルギン酸ソーダに、90.5重量部の水を加えてかきまぜて懸濁させた後、次第に加熱して80℃まで昇温した。その後、48%水酸化ナトリウム溶液を1.2重量部加え、加熱したまま30分かきまぜ続けた。その後冷却したものをアルギン酸ソーダ造粒剤として用いた。
実施例1と同様にして作成したふるい径250μm以下の軽量気泡コンクリート粉100重量部に、アルギン酸ソーダ造粒剤を7重量部加え、さらに水28重量を加えよく混合した後パン造粒機で造粒を行った。できあがった粒を105℃で12時間乾燥した後目開き4mmと1mmのふるいを用いて、ふるい径1〜4mmの造粒品を得た。この造粒品の硬度を測定したところ、0kgであり、20kgの袋に詰めて取り出したところ、袋詰め作業で粒の80%が崩壊し、粉などが舞って扱いにくかった。
比較例6
軽量気泡コンクリート粉末100重量部に、アルギン酸ソーダ造粒剤を54重量部加えた以外は比較例3と同様にしてふるい径1〜4mmの造粒品を得た。この造粒品の硬度を測定したところ、0.2kgであり、20kgの袋に詰めて取り出したところ、袋詰め作業で粒の30%が崩壊し、粉などが舞って扱いにくかった。
比較例7
破砕状の軽量気泡コンクリートを破砕状ケイ酸肥料として使用した水田試験を示す。軽量気泡コンクリートとして旭化成工業(株)製ヘーベルライトをハンマーでたたいて粗粉砕して、内部の補強ラス網部と軽量気泡コンクリート部を分離した。この軽量気泡コンクリート部を粉砕して、目開き1.00mmと10mmのふるいを用いてふるい、ふるい径1〜10mmの破砕状ケイ酸肥料を得た。この破砕状ケイ酸肥料の粒硬度測定、pH測定、可溶性ケイ酸含有量測定を行った。その結果を表2に示す。
この粒状ケイ酸質肥料を実施例1と同様に、輸送試験行ったところ、欠け率は6.5重量%であった。
得られた破砕状ケイ酸質肥料を用いて実施例1と同様に、肥料の機械散布を行ったが、破砕状のケイ酸肥料が肥料散布用ホッパー出口で詰まり機械散布できなかった。そこで、手で破砕状ケイ酸質肥料を散布した以外は、実施例1と同様にイネの水田育成行った。実施例1と同様にして破砕状ケイ酸質肥料を素手で取り扱ったところ、手に細かい傷が付き、また粉が目に入るという問題があった。
実施例1の粒状ケイ酸質肥料の代わりに破砕状ケイ酸質肥料を用いた以外は、実施例1と同様に、イネの水田育成を行った。実施例1と同様に、9月中旬に稲刈りを行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表3に示す。破砕状の軽量気泡コンクリートを施肥した場合、実施例1〜5とほぼ同等の肥料効果であった。
比較例8
実施例1の粒状ケイ酸質肥料を施肥しない以外は、実施例1と同様に、イネの水田育成行った。実施例1と同様に、9月中旬に稲刈りを行い、水田1m当たりのイネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた水田1m当たりの精玄米重量をそれぞれ求めた。その結果を表3に示す。
表3から判るように、ケイ酸質肥料を施肥しないと、施肥した実施例1〜5に比べ、イネ地上部の乾物重量、イネ地上部乾物のケイ酸含有率、及び得られた精玄米重量のいずれも小さく、水稲の栄養上、実施例1〜5に比べ良くなかった。
比較例9
ケイ酸質肥料を用いないでイネ育苗試験を行った結果を示す。
イネ育苗培土(片倉チッカリン(株)製 粒状ぱあるまっと)3000gを実施例11の粒状ケイ酸肥料1500gと水稲育苗用培土(片倉チッカリン(株)製 粒状ぱあるまっと)1500gを均一に混合したものの代わりに用いた以外は、実施例11と同様のイネ育苗試験を行った。
播種3日後に出芽苗における種子露出又は根上りの割合と発芽率を測定し表10に示した。さらに播種後35日間苗を育てた。苗の葉色や、障害など外観上の問題は無かった。このイネ苗の苗地上部の乾物重量測定、苗地上部のケイ酸含有率測定、苗地下部(根)の乾物重量測定した結果を表11に示す。
比較例10
破砕状の軽量気泡コンクリートを破砕状ケイ酸肥料として使用して、イネ育苗試験を行った結果を示す。
実施例11の粒状ケイ酸肥料1500gの代わりに、比較例7と同様にして得られたふるい径1〜6mmの破砕状ケイ酸肥料1500gを用いた以外は、実施例11と同様にして、イネ育苗試験を行った。
播種3日後に出芽苗における種子露出又は根上りの割合と発芽率を測定し表10に示した。さらに播種後35日間苗を育てた。苗の葉色が黄色がかり問題であった。外観上、成長が遅く、葉色が黄色くなったが、病害は観察されなかった。このイネ苗の苗地上部の乾物重量測定、苗地上部のケイ酸含有率測定、苗地下部(根)の乾物重量測定した結果を表11に示す。イネ苗の発芽及び育苗後の育成が良くなかった。

Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
産業上の利用可能性
本発明の粒状ケイ酸質肥料は、バインダーが少なく上に粒硬度が充分高いため、欠けにくく、運搬や散布中に粉落ちしにくい。また、本発明の粒状ケイ酸質肥料は、ケイ酸質肥料としての肥料効果が大きい。本発明の粒状ケイ酸質肥料は、粒状のため、機械散布が容易で、手でも撒き易く、撒くとき目に入ったり手などに傷を付けたりする心配も少ない。また、粒状のため根の通気性が良く、根の発育も良い。
さらには、肥料の原料として軽量気泡コンクリートなどの水熱合成して得られるケイ酸質カルシウム水和結晶を含有する廃材をリサイクル原料として用いることができるため、廃棄物量を減らすことができる。さらには、製造工程が簡易で、結果として低コストでケイ酸質肥料を供給することができる。
また、ケイ酸質材を酸で中和し、pHを3.5〜8.0に調整した粒状ケイ酸質肥料は、イネの水田及び育苗の両方で、ケイ酸質肥料としての効果が高かった。Technical field
The present invention relates to a siliceous fertilizer used as a fertilizer for plant cultivation soil.
Conventional technology
Gramineae plants such as rice and wheat are known to absorb a large amount of silicic acid. Silicic acid is known to be important not only for gramineous plants but also for growing plants such as sugarcane, corn, cucumbers and strawberries. For example, in rice, it is said that about 15% of silicic acid is contained in dry matter of rice cake and forms a stem or leaf skeleton of rice. In case of lack of silicic acid in gramineous plants, there is a problem that the silicic acid in epidermal cells is decreased, the stem is weakened, and lodging tends to occur, and it is easy to suffer from diseases such as blast disease. Therefore, siliceous fertilizer is widely used mainly in paddy fields as paddy rice fertilizer. In addition to rice, it is also used in wheat, sugarcane, corn and the like.
Silica has begun to attract attention as a fertilizer component since around 1955, and from that time, mineral waste, a by-product of the steel industry, has been used. At present, granulated slag and crushed lightweight lightweight concrete are used as siliceous fertilizers.
Since slag as siliceous fertilizer is granulated, it is quite popular because it is easy to spread by machine. However, regarding its effect as a fertilizer, Japanese soil fertilizer science, 69 (6) 576-581 and Japanese soil fertilizer science, 69 (6) p. As described in 612-617, lightweight cellular concrete that is porous calcium silicate hydrate is said to be superior.
A method of using lightweight cellular concrete, which is porous calcium silicate hydrate, as a siliceous fertilizer is disclosed in JP-A-6-293585. Since the siliceous fertilizer disclosed in the publication is a crushed product in which 70% or more thereof has a particle size in the range of 0.85 to 8.0 mm, it is more suitable for containers and pipes than granulated products. Not only does it have a problem of being easily clogged and mechanical spraying is difficult compared to a granulated product, but even if the particle size is the same at the time of shipment, the crushed product is prone to chipping during transportation and is likely to fall off. There is also a problem that it is difficult to handle because it is easy to enter and scratches the hand. Furthermore, when fertilizing together with the powder generated during transportation, the air permeability of the roots is poor and the root growth is adversely affected.
As the granulated siliceous fertilizer, slag is known as described above, and is disclosed in JP-A-2-17283 and JP-A-9-208350.
JP-A-2-17283 discloses an example in which mineral silicic acid fertilizer and the like are granulated using a binder gelatinized at about 100 ° C. after adding alkali to water-based starch. However, when the porous siliceous material having a porosity of 50% or more used in the present invention is granulated by the method described in the examples of the publication, the binder impregnates the porous siliceous material. Since the effect of the binder is lost, an amount of binder exceeding 4% by weight is required.
Japanese Patent Application Laid-Open No. 9-208350 discloses a fertilizer obtained by mixing and pulverizing a shell crushed material with 5% by weight or more of siliceous fertilizer. Although the publication mentions that lightweight cellular concrete can be used as siliceous fertilizer, it is not described as an example. In the examples, granulation is performed using a mineral siliceous fertilizer together with 5% by weight of sodium lignin sulfonate.
In growing grasses, there is a problem that if the silicic acid is insufficient at the seedling stage, the strength of the stem is weak and not good for the growth of the seedling, but it is difficult to firmly plant the seedling with a rice transplanter. Therefore, the fertilization effect of the siliceous fertilizer at the seedling stage is great, and a siliceous fertilizer that can be fertilized at the seedling stage is desired. Silicic fertilizers are strongly alkaline and cannot be fertilized at the seedling stage. Methods for neutralizing this are disclosed in JP-A-10-273666 and JP-A-11-137074. In JP-A-10-273666, a siliceous material containing porous calcium silicate hydrate such as lightweight cellular concrete is neutralized by treatment with sulfuric acid and / or phosphoric acid, and used as a siliceous fertilizer. Not only is it used as a water retention material. Japanese Patent Application Laid-Open No. 11-137074 discloses a rice seedling raising method for fertilizing a pulverized product of porous calcium silicate hydrate having a pH adjusted to 3.5 to 8.0. These methods can be used at the seedling stage because they are neutralized, but when they are used in raising seedlings, the fertilizer is mixed with the soil in the seedlings so that the crushed siliceous fertilizer directly touches the roots. In addition to insufficient root development, there was a problem that the proportion of root up and seed exposure increased. Moreover, since it was a crushed shape, there was the same problem as described above.
Disclosure of the invention
The present invention provides a granular siliceous fertilizer that can be mechanically sprayed using a porous siliceous material, is easy to handle, and has excellent effects as a fertilizer for plant cultivation soil such as gramineous plants. The purpose is to do. Another object of the present invention is to provide a coated granular siliceous fertilizer that can be used as a fertilizer for raising seedlings of gramineous plants. Furthermore, the present invention provides an inexpensive siliceous fertilizer suitable for the environment by reusing siliceous materials such as lightweight aerated concrete scraps and used lightweight aerated concrete as raw materials for silicic manure. Also aimed at.
The present inventors have conducted intensive research and found that it is possible to granulate a powder raw material made of a porous siliceous raw material such as lightweight cellular concrete using a small amount of an organic polymer as a binder. The invention has been completed.
That is, the present invention is as follows.
(1) A fertilizer obtained by adding and granulating an organic polymer as a binder to a powder raw material containing a siliceous raw material having a porosity of 50 to 90%, and the binder content is 0.1% by weight The above-mentioned granular siliceous fertilizer having a particle hardness of 2 to 5 kg and not more than 3% by weight,
(2) The granular siliceous fertilizer according to (1), wherein the siliceous raw material is a siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis,
(3) The siliceous raw material is obtained by neutralizing a siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis with an acid and adjusting the pH to 3.5 to 8.0. (1) Granular siliceous fertilizer according to the description,
(4) The granular siliceous fertilizer according to (1), (2) or (3), wherein the powder raw material is 100% by weight of the siliceous raw material,
(5) The granular siliceous fertilizer according to (1), (2) or (3), wherein the powder raw material is a powder raw material containing 40% by weight or more and less than 100% by weight of a siliceous raw material,
(6) The granular siliceous fertilizer according to (5), wherein the powder raw material includes a siliceous raw material and a soil.
(7) The granular siliceous fertilizer according to any one of (1) to (6), wherein the powder raw material contains 70 to 100% by weight of particles passing through a sieve having an opening of 250 μm.
(8) The granular siliceous fertilizer according to any one of (1) to (7), wherein the organic polymer is an aqueous acrylic emulsion resin or a styrene butadiene copolymer emulsion resin,
(9) The granular siliceous fertilizer according to any one of (1) to (8), wherein the sieve siliceous fertilizer has a sieve particle size of 1 to 20 mm,
(10) The coated granular siliceous fertilizer obtained by further covering the granular siliceous fertilizer according to any one of (1) to (9) with a culture medium,
(11) After the powder raw material is sprayed and impregnated with a liquid in an amount of 10 to 50% by weight of the powder raw material, the organic polymer solution or dispersion is added and granulated by stirring ( 1) A method for producing a granular siliceous fertilizer according to any one of (9),
(12) A plant cultivation method including using the granular siliceous fertilizer according to any one of (1) to (9) as a fertilizer for cultivated soil,
(13) A rice cultivation method comprising using the granular siliceous fertilizer according to any one of (1) to (9) as a fertilizer for rice cultivation soil,
(14) Rice cultivation method using the granular siliceous fertilizer according to (3) as a soil fertilizer for rice seedling cultivation,
(15) A method for cultivating rice, comprising using the coated granular siliceous fertilizer according to (11) as floor soil for rice seedling cultivation.
BEST MODE FOR CARRYING OUT THE INVENTION
The granular siliceous fertilizer of the present invention is a siliceous fertilizer granulated by adding an organic polymer as a binder to a powder raw material containing a siliceous raw material having a porosity of 50 to 90%. It is characterized in that it is obtained by granulating a porous siliceous material having a porosity of 50 to 90% using a small amount of an organic polymer.
The porosity referred to in the present invention is a porosity determined by a mercury intrusion method. Using a sufficiently dried sample, the pore distribution is measured by the mercury intrusion method, and the void volume per 1 g of the sample corresponding to the void diameter of 0.006 μm to 100 μm is defined as void volume F. On the other hand, the true density is measured, and the sample solid content volume per 1 g of the sample is obtained from the true density to obtain the solid content volume G, and the porosity is obtained by the following equation (1).
Porosity (%) = void volume F / (void volume F + solid content volume G) × 100
(1)
Here, the true density is a true density obtained by a mercury intrusion method, and is a density obtained from a sample weight and a sample volume at a mercury pressure of 207 PMa.
The porosity of the siliceous material referred to in the present invention is 50 to 90%, preferably 55 to 85%, particularly preferably 60 to 80%. The siliceous raw material has a function of supplying the plant with a silicic acid component serving as a fertilizer, so that the water must be impregnated into the siliceous raw material to elute the silicic acid. Therefore, it is desirable that the porosity is high so that water can be easily impregnated. However, if the porosity is too high, the component of silicic acid that becomes fertilizer decreases and the effect as fertilizer decreases. From the balance of both, the porosity in the above range is preferable, and the porosity of 60 to 80% is particularly preferable.
The siliceous raw material referred to in the present invention preferably has a soluble silicic acid content of 5 to 40% by weight, more preferably 10 to 40% by weight, as measured by hydrochloric acid / sodium hydroxide dissolution method, and 20 to 40%. Weight percent is particularly preferred. The more soluble silicic acid content is, the higher the effect as siliceous fertilizer is, and it is excellent as siliceous fertilizer. In lightweight cellular concrete used industrially as a siliceous raw material, autoclave steam curing is required for a very long time to increase the soluble silicic acid content to more than 40% by weight. Yes, the content of soluble silicic acid is preferably 5 to 40% by weight.
The soluble silicic acid content is measured as follows by the hydrochloric acid / sodium hydroxide dissolution method.
(1) After pulverization, 1 g of a sample adjusted to a particle size of 0.1 to 0.5 mm by sieving is placed in 200 ml of a 0.5N hydrochloric acid aqueous solution at 20 ° C., stirred for 8 hours, and then filtered through a membrane filter having a pore size of 1 μm. To do.
(2) The silicon concentration in the obtained hydrochloric acid filtrate is obtained by ICP emission spectrometry, and the amount A of silicic acid in the hydrochloric acid filtrate is obtained in grams, assuming that silicon is derived from silicic acid.
(3) Take a filtration residue that does not dissolve in 0.5 N hydrochloric acid, put in 200 mL of 0.5 N aqueous sodium hydroxide solution, stir for 8 hours, and filter through a membrane filter with a pore size of 1 μm.
(4) The silicon concentration in the obtained sodium hydroxide filtrate is determined by ICP emission analysis, and the amount B of silicic acid in the sodium hydroxide filtrate is determined in grams, assuming that silicon is derived from silicic acid.
(5) The soluble silicic acid content is determined by the following formula (2).
Soluble silicic acid content (% by weight) = (silicic acid amount A + silicic acid amount B) ÷ 1 × 100
(2)
The powder raw material used in the present invention may be a siliceous raw material itself or a material obtained by adding soil or other fertilizer components to a siliceous raw material. The proportion of the siliceous raw material in the powder raw material is preferably 40 to 100% by weight, and more preferably 50 to 100% by weight because the smaller the proportion of the siliceous raw material, the less effective the siliceous fertilizer. The granular siliceous fertilizer of 100% by weight of siliceous raw material is a powder obtained by directly pulverizing a siliceous material containing porous calcium silicate hydrate crystals or a neutralized material of the siliceous material. Granular siliceous fertilizer granulated as a raw material, which is particularly preferred because of its high fertilizer effect.
The organic polymer used as a binder in the present invention is preferably an organic polymer having a total content of carbon, oxygen and hydrogen elements of 70 to 100% by weight and having a weight molecular weight of 100 to 10000000. When the weight molecular weight is smaller than 100, the effect of combining the siliceous raw material particles as a binder to form a granule is small, and when the weight average molecular weight is larger than 10000000, the viscosity is too high and sprayed during granulation. Hateful.
Examples of the organic polymer include gelatin, molasses, polyvinyl alcohol, lignin, carboxymethyl cellulose, aqueous acrylic emulsion resin, styrene butadiene copolymer emulsion resin, and the like. Among them, polyvinyl alcohol, lignin, carboxymethyl cellulose, aqueous acrylic emulsion resin. A styrene butadiene copolymer emulsion resin is preferable, and an aqueous acrylic emulsion resin and a styrene butadiene copolymer emulsion resin are more preferable.
When an aqueous acrylic emulsion resin and styrene butadiene copolymer emulsion resin are used as the organic polymer as a binder, there is no hygroscopicity, the grain hardness does not decrease over time during storage, and stable physical properties. Granular siliceous fertilizer can be provided over a long period of time. The granular siliceous fertilizer is preferably maintained in shape for several days after fertilization in order to ensure root breathability. Granular siliceous fertilizer granulated using aqueous acrylic emulsion resin and styrene butadiene copolymer emulsion resin is an emulsion when sprayed as a binder, so it can be sprayed in liquid form, but it is granulated and fertilizer When it becomes, it is hard to melt | dissolve in water and it has appropriate underwater shape maintenance property. The underwater shape maintainability of this fertilizer has little influence when used in, for example, a rice paddy field, and the fertilizer effect may be improved by pulverizing the granular shape quickly with water. However, when used for seedlings such as rice seedlings, germination and initial growth are better if the seeds are stored for several days after the seeds have been sprouted and the fertilizer components do not elute. . Therefore, it does not have appropriate underwater shape maintenance, and if the grains are pulverized immediately after fertilization and the fertilizer components are eluted, the growth of seedlings is inhibited. Although this underwater shape maintenance property changes with kinds of plant, about 5 to 20 days is preferable normally and 7-14 days is especially preferable. The granular siliceous fertilizer granulated using an aqueous acrylic emulsion resin and a styrene butadiene copolymer emulsion resin as a binder can adjust the shape maintenance in water within the above range.
By the way, when gelatin, molasses or the like is used, it is highly water-soluble and it is difficult to maintain the shape for several days after fertilization. In addition, since gelatin, molasses, and polyvinyl alcohol are hygroscopic, when used as a granular fertilizer, the grain hardness decreases with time during the storage period. Hygroscopicity is slightly reduced when lignin or carboxymethylcellulose is used as the organic polymer.
The proportion of the organic polymer added is 0.1 to 3 wt%, preferably 0.3 to 2 wt%, more preferably 0.1 to 3 wt%, based on the dry granular siliceous fertilizer. Is 0.5 to 2% by weight, particularly preferably 0.8 to 1.5% by weight. The smaller the content of the organic polymer, the less it remains in the cultivated soil and the environment is preferable. However, when the content is less than 0.1% by weight, the grain hardness becomes small, and chipping or falling off easily occurs during transportation. Also, it becomes difficult to do by machine spraying. On the other hand, when the content of the organic polymer exceeds 3% by weight, the particle hardness is unnecessarily high, and the proportion of the organic polymer that is difficult to be decomposed naturally increases, which is not preferable in the environment. What is necessary is just to determine suitably in the said range according to uses, such as a shape maintenance property at the time of fertilization and raising seedling.
The grain hardness referred to in the present invention is the grain hardness measured with a Kiya-type hardness meter (manufactured by Fujiwara Seisakusho Co., Ltd., utility model registration No. 174886), and the average value obtained by measuring any 20 grains is expressed in kg. Say things. In the present invention, the grain hardness is required to be 2 to 5 kg, and preferably 2 to 4 kg. If the grain hardness is less than 2 kg, there is a risk of disintegration during transportation or chipping during handling. Moreover, there is no need to make it larger than 5 kg, and if the amount of binder is increased and the grain hardness is increased more than necessary, the above-described adverse effects are increased.
In the present invention, a siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis is used as a siliceous material having a porosity of 50 to 90%. The siliceous material is a siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis of a mixture of water and silica and calcium oxide components such as calcium oxide, calcium hydroxide, and Portland cement. It is a material. Here, hydrothermal synthesis refers to autoclave steam curing, and curing is performed in an atmosphere having a steam temperature of 140 to 230 ° C. for at least 1 to 30 hours. Examples of the siliceous material containing hydrated calcium silicate crystals obtained by hydrothermal synthesis include those containing calcium silicate hydrate crystals such as tobermorite, zonotlite, gyrolite, and Hille branlite.
In the present invention, containing calcium silicate hydrate crystals obtained by hydrothermal synthesis means that the main peak of a crystal corresponding to any one of tobermorite, zonotrite, gyrolite, and Hillebranlite is obtained by powder X-ray diffraction analysis. It means that it can be confirmed.
The main peaks of calcium silicate hydrate crystals in powder X-ray diffraction analysis appear at positions of about 11 Å for tobermorite, about 3.7 ゾ for zonotlite, about 22 が for gyrolite, and about 4.7 ヒ for hellebranlite, respectively.
As a siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis, for example, lightweight cellular concrete standardized in JIS A5416 can be mentioned. The lightweight aerated concrete has many soluble silica components and has a high porosity, so that water penetrates easily and elutes silicic acid, so that it is highly effective as a silicic acid fertilizer and is particularly preferably used in the present invention.
In the present invention, a siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis as a siliceous material having a porosity of 50 to 90% is neutralized with an acid to adjust the pH to 3 A siliceous material adjusted to .5 to 8.0 can also be used. A siliceous material neutralized with an acid and adjusted to pH 3.5 to 8.0 is an alkaline siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis. It is a siliceous material neutralized to be acidic to weakly alkaline, and the pH is preferably adjusted to 4.0 to 6.5, and more preferably adjusted to pH 4.5 to 5.5.
The pH referred to in the present invention means that 10 parts by weight of siliceous material, granular siliceous fertilizer or coated granular siliceous fertilizer is immersed in 50 parts by weight of distilled water and stirred to the extent that the shape does not break, and after 3 days have passed. The pH of the liquid phase part measured at 20 ° C.
Examples of the acid that neutralizes the siliceous material containing hydrated calcium silicate crystals obtained by hydrothermal synthesis include hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. Among them, sulfuric acid and phosphoric acid are preferable, and sulfuric acid is preferable. Particularly preferred. The alkali component of calcium silicate hydrate crystals contained in non-neutralized siliceous materials is calcium, so when neutralized with an acid such as hydrochloric acid or nitric acid, a soluble salt is formed, and the water-soluble salt concentration of siliceous fertilizer Will be increased. Neutralizing siliceous materials with sulfuric acid or phosphoric acid results in water-insoluble calcium sulfate or calcium phosphate, so there is little problem of increasing the concentration of water-soluble salts, but when neutralized with phosphoric acid, Neutralization with sulfuric acid is particularly preferred because it may cause phosphorus damage.
The amount of acid for neutralizing the siliceous material is adjusted so that the pH of the siliceous material is 3.5 to 8.0, preferably pH 4.0 to 6.5, more preferably pH 4.5 to 5.5. Any amount can be used. For example, if the siliceous material is lightweight cellular concrete, an amount of sulfuric acid corresponding to 40 to 80 parts by weight of 12 normal sulfuric acid is appropriate for 100 parts by weight of dry lightweight cellular concrete.
When used for cultivation of rice seedlings, the pH of the granular siliceous fertilizer is preferably 3.5 to 8.0, more preferably 4.0 to 6.5, and even more preferably 4.5 to 5.5. In order to obtain a granular siliceous fertilizer having such a pH, granulation may be performed using a siliceous material having a corresponding pH. In the rice seedling test, the growth of rice seedlings is particularly good when the pH is around 5, and the growth tends to be poor as the pH is further away from 5.
The pH of the granular siliceous fertilizer made from a siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis that is not neutralized with an acid as a powder raw material is 10 to 11. Even a fertilizer having such a pH can be used in paddy fields and other plant fields. If a granular siliceous fertilizer having a pH adjusted to 3.5 to 8.0 is used for cultivating soil for rice seedlings, the growth of rice seedlings is good in rice seedlings, and the effect of siliceous fertilizer is obtained. When a granular siliceous fertilizer having a pH of 10 to 11 is used for rice seedlings, the amount of uprooting is likely to increase and rice seedlings become difficult.
In the present invention, those that can be used by mixing with siliceous raw materials include cultivated soil, fertilizers other than silicic acid, soil for cultivation, humus, fungicides, etc., and these are mixed and used as a powder raw material. be able to. Above all, granular siliceous fertilizer mixed with cultivated soil also has the effect that it can be used alone as floor soil without using cultivated soil in rice seedlings. When using it for rice seedlings, a siliceous material obtained by neutralizing a siliceous material obtained by hydrothermal synthesis with an acid as a siliceous material and adjusting the pH is used.
The term “cultivated soil” as used in the present invention refers to soil for cultivating plants, and examples include commercially available paddy rice seedling cultivated soil, mountain soil, and paddy soil. When mountain soil and paddy soil are used as cultivation soil, those subjected to soil disinfection as appropriate are preferable. The grain size of the soil of the present invention is not particularly limited as long as granulation can be performed, but it is preferable to adjust the grain size so as to pass through a sieve having an opening of 250 μm.
The proportion of the soil of the granular siliceous fertilizer mixed with the soil of the present invention is preferably 60% by weight or less with respect to the powder raw material, and is used alone as a floor soil without using the soil in rice seedlings. When it does, 30 to 55 weight% is more preferable, and 40 to 50 weight% is the most preferable. The more soil is added, the less the effect of supplying silicic acid as a fertilizer to gramineous plants. Therefore, the soil is preferably 60% by weight or less. When a granular siliceous fertilizer containing 40-50% by weight of soil is used alone as it is in the bed soil of a rice seedling test, the growth of rice seedlings is good. Next, the growth was good when the soil contained 30% by weight and 55% by weight.
The particle size of the powder raw material used in the present invention is not limited as long as granulation can be performed, and varies depending on the type and size of the granulation apparatus to be used. In general, the finer the finer, the easier the granulation, but when the fertilized granulated fertilizer collapses over time, if it is too fine, the air permeability will deteriorate and the root growth may be hindered Therefore, it is preferable to contain 70 to 100% by weight, more preferably 80 to 100% by weight, and particularly preferably 100% by weight of the fine particle powder material passing through a sieve having an opening of 250 μm. When many large siliceous material particles that do not pass through a sieve having an opening of 250 μm are contained, not only is it difficult to form granules during granulation, but also the particle hardness of the granular siliceous fertilizer is greatly reduced. The fine particles passing through the sieve having an opening of 250 μm are preferably 70% by weight or more.
Moreover, the coated granular siliceous fertilizer obtained by further coating the above granular siliceous fertilizer with soil is a siliceous fertilizer particularly excellent in root growth. The coated granular siliceous fertilizer coated with the soil of the present invention also has an effect that it can be used alone as a floor soil without using soil or the like in rice seedlings. In particular, as a siliceous raw material, a coated granular siliceous fertilizer using a siliceous material obtained by neutralizing a siliceous raw material obtained by hydrothermal synthesis and adjusting the pH is preferable as a bed soil for raising rice seedlings.
30-60 weight% is preferable with respect to a covering granular siliceous fertilizer, and the ratio of the culture medium used for the covering of the covering granular siliceous fertilizer of this invention has more preferable 40-50 weight%. As the amount of soil to be covered increases, the effect of supplying silicic acid as a fertilizer to gramineous plants is reduced. Therefore, the soil is preferably 60% by weight or less. Moreover, when the granular siliceous fertilizer containing 40-50 weight% of cultivation soil was used alone as it was for the bed soil of a rice seedling test, the growth of the rice seedling was good.
As a binder used when covering culture soil with a granular siliceous fertilizer, the organic polymer used for manufacture of the granular siliceous fertilizer mentioned above can be used as a binder for the same reason. Examples include gelatin, molasses, polyvinyl alcohol, lignin, carboxymethyl cellulose, aqueous acrylic emulsion resin, styrene butadiene copolymer emulsion resin, etc., preferably polyvinyl alcohol, lignin, carboxymethyl cellulose, aqueous acrylic emulsion resin, styrene butadiene. A copolymer emulsion resin, more preferably an aqueous acrylic emulsion resin or a styrene butadiene copolymer emulsion resin. The proportion of the organic polymer added is the same as that of the granular siliceous fertilizer, and the content of the organic polymer is 0.1 to 3% by weight with respect to the dried coated granular siliceous fertilizer, preferably 0. .3 to 2% by weight, more preferably 0.5 to 2% by weight, and particularly preferably 0.8 to 1.5% by weight.
The manufacturing method of the granular siliceous fertilizer of this invention is demonstrated below.
In the present invention, granulation refers to a powder raw material, a solution obtained by diluting an organic polymer with a solvent using a granulator such as a bread granulator, an extrusion granulator, an agitation granulator, a reverse flow strong mixer, or the like. It refers to granulation performed while spraying slurry. In order to obtain a granular siliceous fertilizer having a particle hardness of 2 to 5 kg with a small amount of binder as in the present invention, it is preferable to use a countercurrent strong mixer among the above granulators.
Since the powder raw material used in the present invention contains a porous siliceous raw material, the binder may enter the porous body during granulation, and the consumption of the binder may increase. In order to avoid this, in the present invention, a solution or slurry obtained by spraying a solvent such as water during granulation to fill the voids of the powder raw material with a liquid such as water and then diluting the organic polymer as a binder with the solvent. It is necessary to granulate by spraying. In order to fill the voids of the powder raw material with a liquid such as water before adding the binder, a liquid such as water may be slowly sprayed while the powder raw material is stirred with a stirrer. In addition, the amount of liquid when filling the voids of the powder raw material with a liquid such as water varies depending on the porosity of the powder raw material, but in the powder raw material using lightweight aerated concrete as a siliceous raw material, The amount of the liquid is preferably 10 to 50% by weight, particularly preferably 20 to 40% by weight. If the amount of this liquid is small, a large amount of binder is required to obtain hardness. Moreover, since granulation yield will fall when there is much quantity of this liquid, 10 to 50 weight% is preferable.
The concentration of the organic polymer solution or slurry when spraying and granulating a solution or slurry in which the organic polymer as a binder is diluted with a solvent is 0.5 to 70% by weight, preferably 5 to 70% by weight as the organic polymer solid content concentration. 50% by weight, particularly preferably 10 to 30% by weight. The solution or concentration of the organic polymer slurry is not limited as long as it can be sprayed, but if the concentration of the organic polymer exceeds 70% by weight, the sprayer that can spray must be special. If the concentration of the organic polymer solution or slurry is less than 0.5% by weight, it is necessary to spray a very large amount of slurry, which is inefficient.
In addition, this granulation is preferably performed at room temperature, but in a granulation apparatus that combines drying and granulation by raising the temperature while granulating, granulation may be performed in the range of 0 to 100 ° C. preferable. When the granulation temperature exceeds 100 ° C., the organic polymer as a binder may be decomposed and become an obstacle to plants.
The granular siliceous fertilizer mixed with the soil can be produced in the same manner as the granular siliceous fertilizer using the siliceous material, the soil and the material uniformly stirred with a mixer as a powder material.
In addition, the coated granular siliceous fertilizer is a solution in which the granular siliceous fertilizer is put into an agitation granulator, and the organic polymer as a binder is diluted with a solvent on the surface while the granular silicic acid fertilizer is first stirred. The slurry is sprayed in an amount of about 2 to 10 parts by weight with respect to 100 parts by weight of the granular siliceous fertilizer to wet the entire surface, and then the soil powder is put into a granulator and the organic polymer as a binder is stirred. Granulate by spraying additional solution or slurry.
The granular siliceous fertilizer and coated granular siliceous fertilizer of the present invention are intended to be used for plant cultivation. Therefore, it is preferable that the granular siliceous fertilizer and the coated granular siliceous fertilizer have a size that can be easily adapted to the roots of plants and can be easily applied. Therefore, the sieve particle diameter is preferably 1 to 20 mm, more preferably 1 to 10 mm, and particularly preferably 1 to 6 mm. If the sieve diameter is larger than 20 mm, the particle size is too large for normal machine spraying, and the sprayer may be clogged. When the sieve particle size is larger than 10 mm and not more than 20 mm, mechanical spraying is possible. However, if the size is not a considerably large plant, the particle size is large and it is difficult to adapt to the roots. With a sieve particle size of 1 to 10 mm, it is suitable for use in rice paddy fields and rice seedlings that are in high demand, but with a sieve particle size of 1 to 6 mm, it is excellent in the growth of rice seedlings and can also be used for rice paddy fields. Therefore, it is an effective fertilizer particle size.
As a method of using the granular siliceous fertilizer or coated granular siliceous fertilizer of the present invention,
(1) A method of spraying the granular siliceous fertilizer or coated granular siliceous fertilizer of the present invention to the cultivated soil of a plant containing Gramineae,
(2) A method of laying the granular siliceous fertilizer or coated granular siliceous fertilizer of the present invention on a seedbed of a plant containing the Gramineae, and planting the seedbed together with the seedling in cultivated soil,
(3) A method of locally laying the granular siliceous fertilizer or coated granular siliceous fertilizer of the present invention in one or several places of paddy fields,
Etc.
When the granular siliceous fertilizer or coated granular siliceous fertilizer (1) (hereinafter referred to as (coated) granular silicic fertilizer) of (1) is sprayed on a large area of cultivated soil including plants, silicic acid Since the pH of the soil is not significantly affected by the pH of the fertilizer, the (coated) granular siliceous fertilizer can be used in a wide range of pH 3-11. However, when spraying at the same time as ammonia-based nitrogenous fertilizers such as urea, if the alkalinity is strong, ammonia will volatilize and lose the effect of nitrogenous fertilizers. Use granular siliceous fertilizers with a pH of 8 or less. Is preferred. (Coating) Granular siliceous fertilizer application amount is 1000m of cultivated soil 2 It is preferable to apply 10 to 1000 kg of the (coated) granular siliceous fertilizer of the present invention, and it is particularly preferable to apply 50 to 300 kg. Fertilization amount of the (coated) granular siliceous fertilizer of the present invention is 1000 m of cultivated soil 2 When less than 10 kg per hit, the effect of siliceous fertilizer is small. Moreover, the fertilization amount of the (coated) granular siliceous fertilizer of the present invention is 1000 m of cultivated soil. 2 When the amount is more than 1000 kg, it is not preferable because more fertilizer is applied than necessary.
In the case of laying the (coated) granular siliceous fertilizer of the present invention (2) on a plant nursery including grasses, (coated) granular silicic fertilizer having a pH of 3.5 to 8.0 is preferred. The (coated) granular siliceous fertilizer having a pH of 4.0 to 6.5 is more preferable, and the (coated) granular siliceous fertilizer having a pH of 4.5 to 5.5 is more preferable. In the rice seedling test, the growth of the rice seedling was particularly good when the pH of the (coated) granular siliceous fertilizer was around 5, and the growth tended to decrease as the pH moved away from 5. In addition, when laying on the nursery of a plant including Gramineae, granular siliceous fertilizer may be used, but granular siliceous fertilizer mixed with culture soil is more preferable, and coated granular siliceous material coated with culture soil Fertilizer is more preferable. The growth of rice seedlings is better with granular siliceous fertilizer mixed with soil than with granular siliceous fertilizer, and coated granular siliceous fertilizer coated with soil over granular siliceous fertilizer mixed with soil. Rice seedlings grow well. The reason is presumed that it is better for the seedling to grow when the soil is in contact with the roots.
Nitrogen, phosphoric acid, potash fertilizer is added to the mixture of the granular siliceous fertilizer of the present invention and the soil at an appropriate ratio, and pathogens and pesticides are added as necessary to form a nursery bed. There is a method of sowing sprouting mushrooms and covering with soil. Although the mixing ratio in the case of mixing the granular siliceous fertilizer of this invention and culture soil is not specifically limited, 10-100 weight part of granular siliceous fertilizer of this invention is preferable with respect to 100 weight part of culture soil. When the fertilizer is less than 10 parts by weight, the effect of siliceous fertilizer is small. Further, when the amount of the fertilizer is more than 100 parts by weight, root growth may not be good.
When (3) the (coated) granular siliceous fertilizer of the present invention is locally laid in one or several paddy fields, for example, the (coated) granular silicic acid of the present invention is near the intake of the paddy field. It is preferable to lay fertilizer. The amount of the (coated) granular siliceous fertilizer laid is 1000m paddy 2 It is preferable to apply 10 to 1000 kg of hit (coated) granular siliceous fertilizer, and it is particularly preferable to apply 50 to 300 kg. (Coating) Granular siliceous fertilizer application amount is 1000m paddy field 2 When less than 10 kg per hit, the effect of siliceous fertilizer is small. Moreover, the amount of fertilization of the (coated) granular siliceous fertilizer is 1000m of paddy field. 2 If it is more than 1000 kg, the fertilizer will be applied more than necessary, which is not very suitable.
Hereinafter, the granular siliceous fertilizer of the present invention and the production method thereof will be described by way of examples. In addition, the measuring method used by the Example and the comparative example is as follows.
(1) Porosity measurement
It is the porosity determined by the mercury intrusion method. The method of determining the porosity by the mercury intrusion method is to measure the pore distribution of a sufficiently dried sample by the mercury intrusion method, and the voids per 1 g of the sample corresponding to the pore diameter of pore diameters of 0.006 μm to 100 μm. Let the volume be the void volume F. Further, the true density is measured simultaneously with the pore distribution by the mercury intrusion method, the sample solid volume per 1 g of the sample is obtained from the true density, and the solid volume G is obtained, and the porosity is obtained by the following formula (1).
Porosity (%) = void volume F ÷ (void volume F + solid content volume G) × 100 (1)
The true density here is the true density by the mercury intrusion method, and is the density obtained from the sample weight and the sample volume at a mercury pressure of 207 MPa.
(2) Fertilizer grain hardness measurement
The average hardness of 20 arbitrary grains measured by a Kiya-type hardness meter (manufactured by Fujiwara Seisakusho, utility model registration No. 174886) is shown in kg.
(3) pH measurement of fertilizer and raw materials
It refers to the pH of the liquid phase part measured at 20 ° C. after 3 days, after 10 parts by weight of a sample such as fertilizer and raw material are immersed in 50 parts by weight of distilled water and stirred to such an extent that the shape is not broken.
(4) Tobermorite crystal measurement
The ground sample powder is subjected to X-ray diffraction analysis using a Rigaku Denki RU-200B type X-ray diffraction analyzer to evaluate whether or not a peak appears clearly at a position of about 11 mm corresponding to a tobermorite crystal. did.
(5) Soluble silicic acid content measurement
This is determined by the hydrochloric acid / sodium hydroxide dissolution method according to the following procedure.
(A) After grinding, 1 g of a sample adjusted to a particle size of 0.1 to 0.5 mm by sieving is placed in 200 ml of a 0.5 N hydrochloric acid aqueous solution at 20 ° C., stirred for 8 hours, and then filtered through a membrane filter having a pore size of 1 μm. .
(B) The silicon concentration in the hydrochloric acid filtrate is determined by ICP emission spectrometry, and the amount A of silicic acid in the hydrochloric acid filtrate is determined in grams, assuming that silicon is derived from silicic acid.
(C) A filter residue that does not dissolve in 0.5 N hydrochloric acid is taken, put into 200 ml of 0.5 N aqueous sodium hydroxide solution, stirred for 8 hours, and then filtered through a membrane filter having a pore size of 1 μm.
(D) The silicon concentration in the sodium hydroxide filtrate is determined by ICP emission spectrometry, and the amount B of silicic acid in the sodium hydroxide filtrate is determined in grams, assuming that silicon is derived from silicic acid.
(E) Soluble silicic acid content is calculated | required by following Formula (2).
Soluble silicic acid content (% by weight) = (silicic acid amount A + silicic acid amount B) ÷ 1 × 100
(2)
(6) Rice dry matter weight measurement
The weight obtained by cutting the upper part (stem, leaf, cocoon part) from the soil of rice and drying the cut ground part sufficiently in a 80 ° C. dryer until it reaches a constant weight.
(7) Measurement of silicic acid content in dry matter of rice
The upper part (stem, leaf, cocoon part) is cut from the soil of rice, and the ground part which has been cut is sufficiently dried until it reaches a constant weight in an oven at 80 ° C. After taking 1 kg, it is uniform so that it becomes 1 mm or less. Crush and mix. Take 1 g of pulverized and mixed rice dry matter, add 10 g of anhydrous sodium carbonate, mix, transfer to a platinum crucible, and heat to alkali melt. After standing to cool, dissolve the solid mass in the platinum crucible with hot distilled water. Further, sodium hydroxide and distilled water are added to a solution dissolved in hot distilled water to obtain 200 ml of solution D with 0.5N sodium hydroxide.
The silicon (Si) concentration in the solution D is quantified by ICP emission analysis. All silicon (Si) in solution D is silicic acid (SiO 2 ), The silicic acid weight D in the solution D is determined. Since the silicic acid weight D is the silicic acid weight in 1 g of rice dry matter, the silicic acid content of the above-ground part of the rice is determined from the silicic acid weight D in weight%.
(8) Dry matter weight measurement on the seedling part
Rice seedlings (stems and leaves) that have come up from the cultivation cover soil are cut, and the above-ground 1,000 seedlings of the rice seedlings are sufficiently dried in an 80 ° C drier until they reach a constant weight, and then dried rice seedlings. Measure the weight of 1000 ground units.
(9) Measurement of silicic acid content in seedlings
The rice seedling part (stem, leaf part) that has come out from the cultivation cover soil is cut, and the above-ground part of the rice seedling that has been cut is sufficiently dried in a dryer at 80 ° C. until it reaches a constant weight, then 20 g is taken to 1 mm or less. Crush and mix uniformly. Take 1 g of pulverized and mixed rice dry matter, add 10 g of anhydrous sodium carbonate, mix, transfer to a platinum crucible, and heat to alkali melt. After standing to cool, dissolve the solid mass in the platinum crucible with hot distilled water. Further, sodium hydroxide and distilled water are added to a solution dissolved in hot distilled water to obtain 200 ml of solution D with 0.5N sodium hydroxide.
The silicon (Si) concentration in the solution D is quantified by ICP emission analysis. All silicon (Si) in solution D is silicic acid (SiO 2 ), The silicic acid weight D in the solution D is determined. Since the silicic acid weight D is the silicic acid weight in 1 g of rice dry matter, the silicic acid content of the above-ground part of the rice is determined from the silicic acid weight D in weight%.
(10) Dry matter weight measurement of the seedling basement (root)
The root part of the lower rice seedling is cut off from the cultivation cover soil, and the 1000 rice seedling underground parts that have been harvested are thoroughly dried in a 80 ° C. drier until the weight reaches a constant weight, and then the weight of 1000 dried rice seedling underground parts is measured. taking measurement.
(11) Measurement of shape maintenance in water
100 grains of fertilizer and 200 g of water are placed in a 500 ml container and left in a constant temperature room at 20 ° C. This was gently pulled up at the same time every day, and the standing time in which the number of disintegrated grains exceeded 50 was displayed in days.
Example 1
A slurry of 53 parts by weight of silica, 7.5 parts by weight of quicklime, 37 parts by weight of ordinary Portland cement, 2.5 parts by weight of dry gypsum and 100 parts by weight of these solids, 70 parts by weight of water and 0.060 parts by weight of aluminum powder. Were mixed and injected into the mold. The slurry injected into this mold was placed in a constant temperature room at 40 ° C., the curing time was adjusted, and a semi-cured cellular concrete material having a compressive strength measured according to JIS A5416 of 0.1 MPa was obtained.
This semi-cured cellular concrete material was heated from room temperature to 180 ° C. for 2 hours, at a constant temperature of 180 ° C. for 5 hours, and from 180 ° C. to room temperature for 3 hours to perform autoclave steam curing to obtain a lightweight cellular concrete plate. .
This lightweight cellular concrete board is a siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis as referred to in the present invention. This lightweight cellular concrete board was pulverized and dried for 3 days at 70 ° C. until it reached a constant weight, and passed through a sieve having an opening of 250 μm to obtain a lightweight cellular concrete powder having a sieve diameter of 250 μm or less.
This lightweight cellular concrete powder was used as a siliceous raw material. The porosity of this siliceous raw material, tobermorite crystal measurement, and soluble silicic acid content measurement were performed. The results are shown in Table 1.
Using this siliceous raw material as a powder raw material, granulation was carried out using a mixer (Eirich Mixer R-02, manufactured by Nihon Eirich Co., Ltd.) and using an aqueous acrylic emulsion resin as a binder to produce a granulated product. As an aqueous acrylic emulsion resin, Polytron U154 manufactured by Asahi Kasei Kogyo Co., Ltd. (the resin solid content of the product was 60% by weight) was used. Granulation is performed by first spraying 375 g of water little by little while rotating 1500 g of the powder raw material with the mixer, and then adjusting the aqueous acrylic emulsion resin by diluting with water so that the resin solid content is 12% by weight. Granulation was carried out while spraying 152 g of the acrylic emulsion resin slurry solution. After granulation, the granulated product was dried in a 60 ° C. drier for 3 days until a constant weight was obtained, whereby a granular siliceous fertilizer was obtained. The granular siliceous fertilizer was sieved using sieves having an opening of 1 mm and 10 mm to obtain a granular siliceous fertilizer having a sieve diameter of 1 to 10 mm. The content of the organic polymer in this granular siliceous fertilizer was determined from the amount of spray added to the aqueous acrylic emulsion resin slurry during granulation. The results are shown in Table 2.
Moreover, the granular hardness measurement, pH measurement, and soluble silicic acid content measurement of this granular siliceous fertilizer were performed. The results are also shown in Table 2.
This granular silicic fertilizer was transported. The granular silicic acid fertilizer was packed in a 20 kg bag, and 10 bags were stacked on the truck bed. The truck was transported from Fuji City, Shizuoka Prefecture to Sendai City, Miyagi Prefecture. After truck transportation, the weight percentage was measured as the chipping ratio passing through a sieve diameter of 1 mm. The chipping ratio was 0 weight%, and there was no chipping or powder falling off by truck transportation.
200m of this granular siliceous fertilizer 2 40 kg of the test paddy was sprayed evenly using Iseki Agricultural Machinery Co., Ltd. riding type rice transplanter PA53D, and a mechanical spraying test was conducted. In this machine spraying test, it was found that there was no clogging due to granular siliceous fertilizer, and there was no problem with machine spraying. Although the granular siliceous fertilizer was handled with bare hands, it was easier to handle than the crushed lightweight aerated concrete of Comparative Example 7 shown below because the hands were not damaged and the powder did not enter the eyes. understood.
Next, 200 kg of granular silicic acid fertilizer 40 kg 2 The rice paddy cultivation test was carried out evenly on the test paddy field. The soil of the test paddy field is non-allophane black soil. Koshihikari seedlings grown in this paddy field in the middle of May, planting density 18 strains / m 2 I transplanted with. All fertilizers other than silicic acid are basic fertilizers, and the nitrogen content is 7 g / m. 2 Coated urea-containing granular composite fertilizer (N: P) 2 O 5 : K 2 O = 16: 16: 16, of which coated urea N = 70%) was applied on the side strips.
Raise these seedlings in paddy fields and harvest rice in mid-September. 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 3.
As can be seen from Table 3, when the obtained granular siliceous fertilizer is fertilized, the silicic acid fertilizer is not fertilized. Compared to Comparative Example 8 shown below, the dry matter weight of the rice above-ground part, the silicic acid content of the above-ground dry matter of rice , And the weight of the obtained unpolished rice was large and was extremely effective in improving the silicic acid nutrition of paddy rice. Moreover, it turned out that it is a fertilizer effect substantially equivalent to the comparative example 7 which fertilized crushed lightweight aerated concrete, if a granular siliceous fertilizer is fertilized.
Example 2
In the granulation of Example 1, first, only 520 g of water was sprayed, and then an aqueous acrylic emulsion resin (Polytron U154 (product resin solid content: 60% by weight) manufactured by Asahi Kasei Kogyo Co., Ltd.) was diluted with water to obtain a resin solid content. Granulation was carried out in the same manner as in Example 1 except that 30 g of the slurry solution adjusted to 20% by weight of the slurry was granulated while sprayed, and a sieve having an organic polymer content of 0.4% by weight was obtained. A granular siliceous fertilizer having a diameter of 1 to 10 mm was obtained. The content of the organic polymer in the granular siliceous fertilizer is a value obtained from the spray addition amount of the aqueous acrylic emulsion resin slurry during granulation. The results are shown in Table 2. Moreover, the granular hardness measurement, pH measurement, and soluble silicic acid content measurement of this granular siliceous fertilizer were performed. The results are also shown in Table 2.
When this granular siliceous fertilizer was subjected to a transportation test in the same manner as in Example 1, the chipping rate was 0% by weight, and there was almost no chipping or powder falling off by truck transportation.
Using the obtained granular siliceous fertilizer, a mechanical spraying test was conducted in the same manner as in Example 1. As a result, clogging by the granular siliceous fertilizer did not occur, and it was found that there was no problem in mechanical spraying. Although this granular siliceous fertilizer was handled with bare hands, it was found that it was easier to handle than the crushed lightweight lightweight concrete of Comparative Example 7 because there was no problem that the hands were not damaged and the powder entered the eyes. .
Using this granular siliceous fertilizer, rice paddy field cultivation test was conducted in the same manner as in Example 1, and 1m of paddy field was measured. 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 3.
As can be seen from Table 3, when the obtained granular siliceous fertilizer was fertilized, the dry matter weight of the rice top part, the silicic acid content of the dry part of the rice top part, and All of the obtained unpolished rice weight was large, and it was extremely effective in improving the silicic acid nutrition of paddy rice. Moreover, when this granular siliceous fertilizer was fertilized, it turned out that it is a fertilizer effect substantially equivalent to the comparative example 7 which fertilized crushed lightweight aerated concrete.
Example 3
In the granulation of Example 1, using an aqueous acrylic emulsion resin slurry solution prepared by diluting with water so that the weight percent of the resin solid content of the aqueous acrylic emulsion resin was 20 wt%, this was granulated while spraying 232 g. A granular siliceous fertilizer having a sieve diameter of 1 to 10 mm was obtained in the same manner as in Example 1 except that the granulation was performed. The content of the organic polymer in this granular siliceous fertilizer was determined from the amount of spray added to the aqueous acrylic emulsion resin slurry during granulation. The results are shown in Table 2. Moreover, the granular hardness measurement, pH measurement, and soluble silicic acid content measurement of this granular siliceous fertilizer were performed. The results are also shown in Table 2.
When this granular siliceous fertilizer was subjected to a transportation test in the same manner as in Example 1, the chipping rate was 0% by weight, and there was no chipping or powder falling off by truck transportation.
Using the obtained granular siliceous fertilizer, a mechanical spraying test was conducted in the same manner as in Example 1. As a result, clogging by the granular silicic fertilizer did not occur, and this granular siliceous fertilizer was a problem in mechanical spraying. It turns out that there is no. Although the granular siliceous fertilizer was handled with bare hands, it was found that it was easier to handle than the crushed lightweight aerated concrete of Comparative Example 7 because it did not hurt the hand and there was no problem of powder getting into the eyes.
Using this granular siliceous fertilizer, rice paddy field cultivation test was conducted in the same manner as in Example 1, and 1m of paddy field was measured. 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 3.
As can be seen from Table 3, when this granular siliceous fertilizer was fertilized, the dry matter weight of the rice above-ground part, the silicic acid content of the above-ground dry part of rice were obtained, and compared with Comparative Example 8 in which no silicic acid fertilizer was applied. The weight of the refined brown rice was large and it was extremely effective in improving the silicic acid nutrition of paddy rice. Moreover, it turned out that it is a fertilizer effect substantially equivalent to the comparative example 7 which fertilized crushed lightweight aerated concrete when this granular siliceous fertilizer is fertilized.
Example 4
Instead of the lightweight cellular concrete powder of Example 1, Example 1 was used except that the lightweight concrete waste material powder obtained by pulverizing the construction site waste material of Asahi Kasei Kogyo Hebellite, which is a lightweight cellular concrete waste material, was used. Similarly, a granular siliceous fertilizer having a sieve diameter of 1 to 10 mm was obtained.
Asahi Kasei Kogyo Co., Ltd. Hebellite construction site waste was hit with a hammer and coarsely pulverized to separate the internal reinforcing lath mesh part and the lightweight cellular concrete part. This lightweight cellular concrete part was pulverized and sieved with a sieve having an opening of 250 μm, and lightweight cellular concrete waste material powder that passed through the sieve was obtained. This lightweight cellular concrete waste powder was used as a siliceous raw material. The porosity of this siliceous raw material, tobermorite crystal measurement, and soluble silicic acid content measurement were performed. The results are shown in Table 1. Granular siliceous fertilizer was obtained in the same manner as in Example 1 using this siliceous raw material as it was as a powder raw material. The content of the organic polymer in this granular siliceous fertilizer was determined from the amount of spray added to the aqueous acrylic emulsion resin slurry used for granulation. The results are shown in Table 2. Moreover, the granular hardness measurement, pH measurement, and soluble silicic acid content measurement of this granular siliceous fertilizer were performed. The results are also shown in Table 2.
When this granular siliceous fertilizer was subjected to a transportation test in the same manner as in Example 1, the chipping rate was 0% by weight, and there was no chipping or powder falling off by truck transportation.
Using the obtained granular siliceous fertilizer, a mechanical spraying test was conducted in the same manner as in Example 1. As a result, clogging by the granular siliceous fertilizer did not occur, and it was found that there was no problem in mechanical spraying. Although the granular siliceous fertilizer was handled with bare hands, it was found that it was easier to handle than the crushed lightweight aerated concrete of Comparative Example 7 because it did not hurt the hand and there was no problem that the powder could get into the eyes.
Using this granular siliceous fertilizer, rice paddy field cultivation test was conducted in the same manner as in Example 1, and 1m of paddy field was measured. 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 3.
As can be seen from Table 3, when this granular siliceous fertilizer was fertilized, the dry matter weight of the rice above-ground part, the silicic acid content of the above-ground dry part of rice were obtained, and compared with Comparative Example 8 in which no silicic acid fertilizer was applied. The weight of the refined brown rice was large and it was extremely effective in improving the silicic acid nutrition of paddy rice. Moreover, it turned out that it is a fertilizer effect substantially equivalent to the comparative example 7 which fertilized crushed lightweight aerated concrete when this granular siliceous fertilizer is fertilized.
Example 5
A granular siliceous fertilizer having a sieve diameter of 1 to 10 mm was obtained in the same manner as in Example 1 except that the sieve diameter of the powder raw material used for granulation in Example 1 was changed.
The lightweight cellular concrete powder produced in the same manner as in Example 1 was divided by a sieve and divided into fine particles that passed through a sieve having an opening of 250 μm and medium particles having a sieve diameter of 250 to 475 μm. Part by weight was mixed uniformly to obtain a siliceous raw material. The porosity of this siliceous raw material, tobermorite crystal measurement, and soluble silicic acid content measurement were performed. The results are shown in Table 1. Granular siliceous fertilizer was obtained in the same manner as in Example 1 using this siliceous raw material as it was as a powder raw material. The content of the organic polymer in this granular siliceous fertilizer was determined from the amount of spray added to the aqueous acrylic emulsion resin slurry during granulation. The results are shown in Table 2. Moreover, the granular hardness measurement, pH measurement, and soluble silicic acid content measurement of this granular siliceous fertilizer were performed. The results are also shown in Table 2.
When this granular siliceous fertilizer was subjected to a transportation test in the same manner as in Example 1, the chipping rate was 0% by weight, and there was no chipping or powder falling off by truck transportation.
Using the obtained granular siliceous fertilizer, a mechanical spraying test was conducted in the same manner as in Example 1. As a result, clogging by the granular siliceous fertilizer did not occur, and it was found that there was no problem in mechanical spraying. Although this granular siliceous fertilizer was handled with bare hands, it was found that it was easier to handle than the crushed lightweight lightweight concrete of Comparative Example 7 because there was no problem that the hands were not damaged and the powder entered the eyes. .
Using this granular siliceous fertilizer, rice paddy field cultivation test was conducted in the same manner as in Example 1, and 1m of paddy field was measured. 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 3.
As can be seen from Table 3, when the obtained granular siliceous fertilizer is fertilized, the dry matter weight of the rice above-ground part, the silicic acid content of the rice above-ground dry matter, and the obtained refined brown rice, compared with Comparative Example 8 where fertilization is not applied All of the weights were large and it was extremely effective in improving the silicic acid nutrition of paddy rice. Moreover, when this granular siliceous fertilizer was fertilized, it turned out that it is a fertilizer effect substantially equivalent to the comparative example 7 which fertilized crushed lightweight aerated concrete.
Example 6
9 kg of lightweight aerated concrete powder passed through a 250 μm sieve prepared in the same manner as in Example 1 and 50 kg of distilled water were mixed, and 4170 ml of 12 N sulfuric acid was added and stirred. After 7 days, 20 of the slurry supernatant was mixed. The pH measured at ° C was 8.0. This neutralized lightweight cellular concrete slurry is filtered with 5 C filter paper, and the solid part on the filter paper is dried at 60 ° C. for 3 days to obtain a lightweight lightweight concrete powder neutralized by removing moisture until a constant weight is obtained. It was. The neutralized lightweight cellular concrete powder was sieved to obtain a neutralized lightweight cellular concrete powder that passed through a sieve having an opening of 250 μm. This neutralized lightweight cellular concrete powder was used as a siliceous raw material. The porosity of this siliceous raw material was measured and the content of soluble silicic acid was measured. The results are shown in Table 4. Using this siliceous raw material as a powder raw material, a granular siliceous fertilizer having a pH of 8.0 was obtained in the same manner as in Example 1. The content of the organic polymer in the granular siliceous fertilizer was determined from the amount of spray addition of the aqueous acrylic emulsion resin slurry solution used for granulation. The results are shown in Table 5. Table 5 shows the measurement results of the grain hardness, pH, and soluble silicic acid content of the granular siliceous fertilizer.
When this granular siliceous fertilizer was subjected to a transportation test in the same manner as in Example 1, the chipping rate was 0% by weight, and there was no chipping or powder falling off by truck transportation.
Using the obtained granular siliceous fertilizer, a mechanical spraying test was conducted in the same manner as in Example 1. As a result, clogging by the granular silicic fertilizer did not occur, and this granular siliceous fertilizer was a problem in mechanical spraying. It turns out that there is no. Although the granular siliceous fertilizer was handled with bare hands, it did not hurt the hands and there was no problem of powder getting into the eyes.
Using this granular siliceous fertilizer, rice paddy field cultivation test was conducted in the same manner as in Example 1, and 1m of paddy field was measured. 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 6.
As can be seen from Table 6, when the obtained granular siliceous fertilizer was fertilized, the dry matter weight of the above-ground part of rice, the silicic acid content of the above-ground part of dry matter of rice, and the obtained precision The weight of brown rice was large and it was extremely effective for improving silicic acid nutrition of paddy rice. Moreover, when fertilizing this granular siliceous fertilizer, it turned out that it is a fertilizer effect superior to the comparative example 7 which fertilized crushed lightweight aerated concrete.
Example 7
9 kg of lightweight cellular concrete powder that passed through a 250 μm sieve prepared in the same manner as in Example 1 and 50 kg of distilled water were mixed, and 5800 ml of 12 N sulfuric acid was added and stirred. After 7 days, 20 ° C. of the slurry supernatant was added. The pH was measured to be 5.0. This neutralized lightweight cellular concrete slurry is filtered with 5 C filter paper, and the solid part on the filter paper is dried at 60 ° C. for 3 days to obtain a lightweight lightweight concrete powder neutralized by removing moisture until a constant weight is obtained. It was. The neutralized lightweight cellular concrete powder was sieved to obtain a neutralized lightweight cellular concrete powder that passed through a sieve having an opening of 250 μm. This neutralized lightweight cellular concrete powder was used as a siliceous raw material. The porosity of this siliceous raw material was measured and the content of soluble silicic acid was measured. The results are shown in Table 4. Using this siliceous raw material as a powder raw material, a granular siliceous fertilizer having a pH of 5.0 was obtained in the same manner as in Example 1. The content of the organic polymer in the granular siliceous fertilizer was determined from the amount of spray addition of the aqueous acrylic emulsion resin slurry solution used for granulation. The results are shown in Table 5. Table 5 shows the results of grain hardness measurement, pH measurement, and soluble silicic acid content measurement of this granular siliceous fertilizer.
When this granular siliceous fertilizer was subjected to a transportation test in the same manner as in Example 1, the chipping rate was 0% by weight, and there was no chipping or powder falling off by truck transportation.
Using the obtained granular siliceous fertilizer, a mechanical spraying test was conducted in the same manner as in Example 1. As a result, clogging by the granular siliceous fertilizer did not occur, and it was found that there was no problem in mechanical spraying. Moreover, although this granular siliceous fertilizer was handled with bare hands, it did not hurt the hands and there was no problem of powder getting into the eyes.
Using this granular siliceous fertilizer, rice paddy field cultivation test was conducted in the same manner as in Example 1, and 1m of paddy field was measured. 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 6. As can be seen from Table 6, when the obtained granular siliceous fertilizer is fertilized, the dry matter weight of the rice above-ground part, the silicic acid content of the above-ground part dry matter, and the obtained refined brown rice compared to Comparative Example 8 where fertilization is not applied All of the weights were large and it was extremely effective in improving the silicic acid nutrition of paddy rice. Moreover, when this granular siliceous fertilizer was fertilized, it turned out that it is a fertilizer effect superior to the comparative example 7 which fertilized crushed lightweight aerated concrete.
Example 8
9 kg of lightweight aerated concrete powder passed through a 250 μm sieve prepared in the same manner as in Example 1 and 50 kg of distilled water were mixed, and 6142 ml of 12N sulfuric acid was added and stirred. After 7 days, 20 ° C. of the slurry supernatant was added. The pH was measured to be 3.5. This neutralized lightweight cellular concrete slurry is filtered with 5 C filter paper, and the solid part on the filter paper is dried at 60 ° C. for 3 days to obtain a lightweight lightweight concrete powder neutralized by removing moisture until a constant weight is obtained. It was. The neutralized lightweight cellular concrete powder was sieved to obtain a neutralized lightweight cellular concrete powder that passed through a sieve having an opening of 250 μm. This neutralized lightweight cellular concrete powder was used as a siliceous raw material. The porosity of this siliceous raw material was measured and the content of soluble silicic acid was measured. The results are shown in Table 4. Granular siliceous fertilizer was obtained in the same manner as in Example 1 using this siliceous raw material as it was as a powder raw material. The content of the organic polymer in the granular siliceous fertilizer was determined from the amount of spray addition of the aqueous acrylic emulsion resin slurry solution used for granulation. The results are shown in Table 5. Moreover, the granular hardness measurement, pH measurement, and soluble silicic acid content measurement of this granular siliceous fertilizer were performed. The results are also shown in Table 5.
When this granular siliceous fertilizer was subjected to a transportation test in the same manner as in Example 1, the chipping rate was 0% by weight, and there was no chipping or powder falling off by truck transportation.
Using the obtained granular siliceous fertilizer, a mechanical spraying test was conducted in the same manner as in Example 1. As a result, clogging by the granular siliceous fertilizer did not occur, and it was found that there was no problem in mechanical spraying. Moreover, although this granular siliceous fertilizer was handled with bare hands, it did not hurt the hands and there was no problem of powder getting into the eyes.
Using this granular siliceous fertilizer, rice paddy field cultivation test was conducted in the same manner as in Example 1, and 1m of paddy field was measured. 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 6. As can be seen from Table 6, when the obtained granular siliceous fertilizer is fertilized, the dry matter weight of the rice above-ground part, the silicic acid content of the above-ground part dry matter, and the obtained refined brown rice compared to Comparative Example 8 where fertilization is not applied All of the weights were large and it was extremely effective in improving the silicic acid nutrition of paddy rice. Moreover, when this granular siliceous fertilizer was fertilized, it turned out that it is a fertilizer effect superior to the comparative example 7 which fertilized crushed lightweight aerated concrete.
Example 9
The same as in Example 1 except that 10 kg of neutralized light-weight concrete with pH 5.0 and 10 kg of soil soil powder mixed with a mortar mixer for 10 minutes was passed through a sieve having an opening of 250 μm, which was prepared in the same manner as in Example 7. In the same manner as in Example 1, granulated siliceous fertilizer mixed with a soil having a sieve diameter of 1 to 10 mm was obtained. The used soil powder was a soil powder that passed through a sieve having an opening of 250 μm after pulverizing and drying paddy rice seedling culture soil (Katakura Chikkarin Co., Ltd., granular pallet). The content of the organic polymer in the granular siliceous fertilizer mixed with this soil was determined from the spray addition amount of the aqueous acrylic emulsion resin slurry solution used for granulation. The results are shown in Table 5. Moreover, the particle | grain hardness measurement of the granular siliceous fertilizer which mixed this culture soil, pH measurement, and soluble silicic acid content measurement were performed. The results are also shown in Table 5.
When a transportation test was conducted on the granular siliceous fertilizer mixed with this soil in the same manner as in Example 1, the chipping rate was 0% by weight, and there was no chipping or powder falling off by truck transportation.
Using the granular siliceous fertilizer mixed with the obtained cultivated soil, a mechanical spraying test was conducted in the same manner as in Example 1. As a result, clogging by the granular siliceous fertilizer did not occur and there was no problem with mechanical spraying. I understood. In addition, the granular silicic fertilizer mixed with the soil was handled with bare hands, but there was no problem that the hands could be damaged and the powder could get into the eyes.
A rice paddy cultivation test was conducted in the same manner as in Example 1 except that 80 kg of granular siliceous fertilizer mixed with culture soil was applied, and 1 m of paddy field 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 6. The reason why the amount of the granular siliceous fertilizer mixed with the soil was doubled as compared to Example 1 in the rice paddy field growth test is to apply the same amount of soluble silicic acid as in Example 1. As can be seen from Table 6, when this granular siliceous fertilizer was fertilized, the dry matter weight of the rice above-ground part, the silicic acid content of the above-ground dry matter of rice, and the weight of the refined brown rice obtained compared to Comparative Example 8 where fertilization was not applied All were large and extremely effective in improving the silicic acid nutrition of rice. Moreover, when this granular siliceous fertilizer was fertilized, it turned out that it is a fertilizer effect superior to the comparative example 7 which fertilized crushed lightweight aerated concrete.
Example 10
750 g of granular siliceous fertilizer having a pH of 5.0 prepared in the same manner as in Example 7 was put into a mixer (Nippon Eirich Co., Ltd., Eirich Mixer R-02 type). Aqueous acrylic emulsion resin slurry solution prepared by diluting aqueous acrylic emulsion resin (Polytron U154 manufactured by Asahi Kasei Kogyo Co., Ltd. (product solid content of 60% by weight)) with water so that the resin solid content becomes 12% by weight on the surface. Was sprayed to wet the surface of the granular siliceous fertilizer, and then 750 g of the soil soil powder was put into the Eirich mixer, and 66 g of an aqueous acrylic emulsion resin slurry solution was further sprayed to perform granulation. After granulation, a coated granular siliceous fertilizer coated with a soil having a sieve diameter of 1 to 10 mm was obtained in the same manner as in Example 1. The culture powder used at this time was a culture powder that passed through a sieve having a mesh opening of 250 μm after pulverizing and drying the rice seedling culture medium (Katakura Chikkarin Co., Ltd., granular pallet). The organic polymer content of the coated granular siliceous fertilizer was determined from the amount of spray added to the aqueous acrylic emulsion resin slurry solution used for granulation and coating. The results are shown in Table 5. The coated siliceous fertilizer was subjected to grain hardness measurement, pH measurement, and soluble silicic acid content measurement. The results are also shown in Table 5.
When this coated granular siliceous fertilizer was subjected to a transportation test in the same manner as in Example 1, the chipping rate was 0% by weight, and there was no chipping or powder falling off by truck transportation. Using the obtained coated granular siliceous fertilizer, a machine spray test was conducted in the same manner as in Example 1. As a result, clogging due to the coated granular siliceous fertilizer did not occur, and the present coated granular siliceous fertilizer was used as a machine. It turns out that there is no problem in spraying.
A rice paddy field growth test was conducted in the same manner as in Example 1 except that 80 kg of this coated granular siliceous fertilizer was applied. 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 6. The reason why the amount of the coated granular siliceous fertilizer applied in the rice paddy field growth test was doubled from that in Example 1 was to apply the same amount of soluble silicic acid as in Example 1. As can be seen from Table 6, when this coated granular siliceous fertilizer was fertilized, compared to Comparative Example 8 where no fertilization was applied, the dry matter weight of the rice above-ground part, the silicic acid content of the rice above-ground dry matter, and the obtained unpolished rice weight Both of these are large and are extremely effective in improving silicic acid nutrition in paddy rice. It was also found that when the coated granular siliceous fertilizer was fertilized, the fertilizer effect was superior to that of Comparative Example 7 in which crushed lightweight aerated concrete was fertilized.
Example 11
Except that 5280 ml of 12 N sulfuric acid was used, the same procedure as in Example 6 was performed to obtain a neutralized lightweight cellular concrete powder having a pH of 6.8. This neutralized lightweight cellular concrete powder was used as a siliceous raw material. The porosity of this siliceous raw material was measured and the content of soluble silicic acid was measured. The results are shown in Table 7. Using this siliceous raw material as a powder raw material, granulation is carried out in the same manner as in Example 1, and a granular siliceous fertilizer having a sieve diameter of 1 to 6 mm and a pH of 6.8 is obtained using sieves having an opening of 1 mm and 6 mm. It was. The content of the organic polymer in the granular siliceous fertilizer was determined from the amount of spray addition of the aqueous acrylic emulsion resin slurry solution used for granulation. The results are shown in Table 8. In addition, Table 8 shows the measurement results of the grain hardness, pH, soluble silicic acid content and underwater shape maintenance of this granular siliceous fertilizer. Furthermore, this granular siliceous fertilizer was left in a room at 20 ° C. and a humidity of 70%, and the grain hardness was measured immediately after production, one month after production, six months after production, and one year after production. The results are shown in Table 9.
A rice seedling test was conducted using this granular silicate fertilizer. A mixture of 1500 g of this granular silicate fertilizer and 1500 g of paddy rice seedling culture (Katakura Chikkarin Co., Ltd., Granite Parimato) and an initial inhibition type coated fertilizer (Asahi Kasei Kogyo Co., Ltd., seedling box leave NK301- 100 (N: 30% -P 2 O 5 : 0% -K 2 O: 10%) 700 g and 6 g of an anti-withering agent (Tachigalase manufactured by Sankyo Co., Ltd.) were mixed to form a floor soil for a seedling box. Furthermore, ammonium sulfate, phosphoric acid-lime, and potassium chloride were added to the bed soil as quick fertilizers, and corrected so that nitrogen, phosphoric acid, and potash were 1.5 g each per seedling box.
On this, 140 g of sprouting rice cake (Koshihikari) was uniformly sown, sufficiently irrigated, and covered with 1200 g of paddy rice seedling cultivation soil (granular pamarito manufactured by Katakura Chikkarin Co., Ltd.), and the seedling was installed. Three days after sowing, the ratio of seed exposure or rooting in the budding seedlings and the germination rate were measured. The results are shown in Table 10. Furthermore, seedlings were grown for 35 days after sowing. There were no appearance problems such as leaf color of seedlings or obstacles. Table 11 shows the results of dry matter weight measurement of the rice seedling above-ground part, silicic acid content measurement of the seedling above-ground part, and dry matter weight measurement of the seedling underground part (root).
As can be seen from Table 10, the ratio of seed exposure or uprooting and germination rate are the same good results for those with granular siliceous fertilizer and those without siliceous fertilizer. As can be seen, in the seedling test, fertilized with granular siliceous fertilizer compared to Comparative Example 9 in which this was not used, the dry matter weight of the seedling part, the silicic acid content of the seedling part, the root part of the seedling (root The dry weight of the rice seedlings was large, and the rice seedlings grew well.
Examples 12-15
12N sulfuric acid was added in the same manner as in Example 11 except that the amount added was 5686 ml in Example 12, 5724 ml in Example 13, 5875 ml in Example 14, and 5913 ml in Example 15. An acid fertilizer was obtained. Table 7 shows the measurement results of the porosity and soluble silicic acid content of the siliceous raw material. The content of the organic polymer in the granular siliceous fertilizer was determined from the amount of spray addition of the aqueous acrylic emulsion resin slurry solution used for granulation. The results are shown in Table 8. In addition, Table 8 shows the measurement results of the grain hardness, pH, soluble silicic acid content and underwater shape maintenance of this granular siliceous fertilizer. Furthermore, this granular siliceous fertilizer was left in a room at 20 ° C. and a humidity of 70%, and the grain hardness was measured immediately after production, one month after production, six months after production, and one year after production. The results are shown in Table 9.
A rice seedling test was conducted in the same manner as in Example 11 using the obtained granular siliceous fertilizer. Three days after sowing, the ratio of seed exposure or rooting in the budding seedlings and the germination rate were measured. The results are shown in Table 10. Furthermore, seedlings were grown for 35 days after sowing. There were no appearance problems such as leaf color of seedlings or obstacles. Table 11 shows the results of dry matter weight measurement of the rice seedling on the seedling, measurement of the silicic acid content on the seedling, and measurement of the dry matter weight on the seedling base (root).
As can be seen from Table 10, in the germination test, those obtained by applying the obtained granular siliceous fertilizer and those using no siliceous fertilizer are the same good results, but as can be seen from Table 11, In the seedling test, the fertilized with granular siliceous fertilizer, compared with Comparative Example 9 not using this, dry matter weight of the seedling part, silicic acid content of the seedling part, dry matter weight of the seedling part (root) All of them were big and the growth of rice seedlings was good.
Example 16
A powder raw material was prepared by mixing 10 kg of neutralized lightweight cellular concrete powder having a pH of 6.8 and 10 kg of soil soil powder, which was passed through a sieve having an opening of 250 μm, prepared in the same manner as in Example 11, with a normal mortar mixer. The soil powder used at this time is the same as the soil powder of Example 9. Using this powder raw material, granulation was carried out in the same manner as in Example 1 to obtain a granular siliceous fertilizer mixed with culture soil having a sieve diameter of 1 to 6 mm as in Example 11. The content of the organic polymer in the granular siliceous fertilizer mixed with this soil was determined from the spray addition amount of the aqueous acrylic emulsion resin slurry solution used for granulation. The results are shown in Table 12. Moreover, the granular hardness measurement, pH measurement, soluble silicic acid content measurement, and measurement of the shape maintenance property in water of the granular siliceous fertilizer mixed with this soil were performed. The results are also shown in Table 12.
It is obtained in this example instead of using a uniform mixture of 1500 g of granular silicic acid fertilizer and 1500 g of paddy rice seedling-grown soil (Katakura Chikkarin Co., Ltd., granular pallet) used in the rice seedling test of Example 11. A rice seedling test was conducted in the same manner as in Example 11 except that 3000 g of the granular silicate fertilizer mixed with the soil was used. Three days after sowing, the ratio of seed exposure or rooting in the budding seedlings and the germination rate were measured. The results are shown in Table 13. Furthermore, as a result of raising seedlings for 35 days after sowing, there were no problems in appearance such as leaf color of seedlings or obstacles. Table 14 shows the dry matter weight measurement of the rice seedling above-ground part, the silicic acid content measurement of the seedling above-ground part, and the dry matter weight measurement of the seedling underground part (root).
As can be seen from Table 13, in this germination test, the result of applying the granular siliceous fertilizer of this example and that without using the siliceous fertilizer are the same good results. In addition, in the seedling test, the fertilizer applied with the granular siliceous fertilizer of this example was compared with Comparative Example 9 in which this was not used, the dry matter weight of the seedling part, the silicic acid content of the seedling part, the seedling basement part The dry weight of (root) was large, and the growth of rice seedlings was good.
Examples 17-18
A granular siliceous fertilizer mixed with culture soil was produced in the same manner as in Example 16 except that neutralized lightweight cellular concrete powder having a different pH was used. In Example 17, neutralized lightweight cellular concrete powder having a pH of 5.2 prepared in the same manner as in Example 13 was used. In Example 18, neutralized lightweight cellular concrete powder having a pH of 4.1 produced in the same manner as in Example 14 was used. The content of the organic polymer in the granular siliceous fertilizer mixed with this soil was determined from the spray addition amount of the aqueous acrylic emulsion resin slurry solution used for granulation. The results are shown in Table 12. Table 12 shows the measurement results of the grain hardness, pH, soluble silicic acid content, and underwater shape maintenance of the granular siliceous fertilizer mixed with this soil.
A rice seedling test was conducted in the same manner as in Example 16 using a granular silicate fertilizer mixed with these cultivated soils. Three days after sowing, the ratio of seed exposure or rooting in the budding seedlings and the germination rate were measured. The results are shown in Table 13. Furthermore, seedlings were grown for 35 days after sowing. There were no appearance problems such as leaf color of seedlings or obstacles. Table 14 shows the dry matter weight measurement of the rice seedling above-ground part, the silicic acid content measurement of the seedling above-ground part, and the dry matter weight measurement of the seedling underground part (root). As can be seen from Table 13, in the germination test, the one with the granular silicic acid fertilizer and the one without the siliceous fertilizer are the same good results. In comparison with Comparative Example 9 in which the granular siliceous fertilizer was applied, all of the dry matter weight of the seedling part, the silicic acid content of the seedling part, and the dry matter weight of the seedling part (root) The rice seedlings were growing well.
Example 19
Using 750 g of granular silicate fertilizer having a pH of 6.8 prepared in the same manner as in Example 11, it was covered with soil in the same manner as in Example 10, and the sieve diameter was 1 to 6 mm using a sieve having an opening of 1 mm and 6 mm. A coated granular siliceous fertilizer was obtained. The organic polymer content of the coated granular siliceous fertilizer was determined from the amount of spray added to the aqueous acrylic emulsion resin slurry used for granulation and coating. The results are shown in Table 12. Moreover, the granular hardness measurement, pH measurement, soluble silicic acid content measurement, and underwater shape maintenance of this coated granular siliceous fertilizer were performed. The results are also shown in Table 12.
A rice seedling test was conducted in the same manner as in Example 16 except that the obtained coated granular silicate fertilizer was used instead of the granular silicate fertilizer mixed with the soil of Example 16. Three days after sowing, the ratio of seed exposure or rooting in the budding seedlings and the germination rate were measured. The results are shown in Table 13. Furthermore, seedlings were grown for 35 days after sowing. There were no appearance problems such as leaf color of seedlings or obstacles. Table 14 shows the dry matter weight measurement of the rice seedling above-ground part, the silicic acid content measurement of the seedling above-ground part, and the dry matter weight measurement of the seedling underground part (root).
As can be seen from Table 13, in this germination test, the same results were obtained for both the coated granular siliceous fertilizer of this example and those without the siliceous fertilizer. Thus, in the seedling raising test, the fertilized with the coated granular siliceous fertilizer of this example was compared with Comparative Example 9 in which this was not used, the dry matter weight of the seedling part, the silicic acid content of the seedling part, the seedling The dry weight of the underground part (root) was large, and the growth of rice seedlings was good.
Examples 20-21
A coated granular siliceous fertilizer having a different pH was obtained in the same manner as in Example 19, except that a granular siliceous fertilizer having a different pH was used. In Example 20, a granular siliceous fertilizer having a pH of 5.2 produced in the same manner as in Example 13 was used. In Example 21, a granular siliceous fertilizer having a pH of 4.2 produced in the same manner as in Example 15 was used. The content of the organic polymer in these coated granular siliceous fertilizers was determined from the amount of spray addition of the aqueous acrylic emulsion resin slurry solution used for granulation and coating. The results are shown in Table 12. In addition, Table 12 shows the measurement results of the grain hardness, pH, soluble silicic acid content and underwater shape maintenance of these coated granular siliceous fertilizers.
A rice seedling test was conducted in the same manner as in Example 19 using these coated granular silicate fertilizers. Three days after sowing, the ratio of seed exposure or rooting in the budding seedlings and the germination rate were measured. The results are shown in Table 13. Furthermore, seedlings were grown for 35 days after sowing. There were no appearance problems such as leaf color of seedlings or obstacles. Table 14 shows the dry matter weight measurement of the rice seedling above-ground part, the silicic acid content measurement of the seedling above-ground part, and the dry matter weight measurement of the seedling underground part (root).
As can be seen from Table 13, in this germination test, the same results were obtained with the coated granular siliceous fertilizer and those without the siliceous fertilizer. In the test, the fertilized with the coated granular siliceous fertilizer, compared with Comparative Example 9 not using this, the dry matter weight of the seedling part, the silicic acid content of the seedling part, the dry matter weight of the seedling part (root) All of them were big and the growth of rice seedlings was good.
Comparative Example 1
In the granulation of Example 1, without spraying water, water-based acrylic emulsion resin (Asahi Kasei Kogyo Co., Ltd. Polytron U154 (product resin solid content 60% by weight)) was diluted with water to reduce the resin solids by weight%. Except for granulating while spraying 663 g of the slurry solution adjusted to 7% by weight, granulation was performed in the same manner as in Example 1, and the sieve diameter of the organic polymer content 3.0% by weight was 1 to 10 mm. Of granular siliceous fertilizer was obtained. The grain hardness was measured and found to be 1.4 kg.
When this granular siliceous fertilizer was subjected to a transportation test in the same manner as in Example 1, the chipping rate was 3%, and there were many chippings and powder falling off due to transportation compared to the Examples.
Comparative Example 2
In the granulation of Example 1, without spraying water, water-based acrylic emulsion resin (Asahi Kasei Kogyo Co., Ltd. Polytron U154 (product resin solid content 60% by weight)) was diluted with water to reduce the resin solids by weight%. Except that the granulation operation was performed while spraying 928 g of the slurry solution adjusted to 5 wt%, the granulation operation was performed in the same manner as in Example 1, and the organic polymer content was 3.0 wt% or less. An attempt was made to obtain a granular siliceous fertilizer with a grain hardness of 2 to 5 kg, but the raw material became a large lump during granulation, and a granulated product could not be produced.
Comparative Example 3
The siliceous fertilizer was granulated by a conventional method using lightweight cellular concrete powder.
After 90.5 parts by weight of water was added to 7.7 parts by weight of corn starch, the mixture was stirred and suspended, and then gradually heated to 80 ° C. Thereafter, 1.2 parts by weight of 48% sodium hydroxide solution was added, and the mixture was stirred for 30 minutes while being heated. After that, the cooled product was used as a granulating agent (hereinafter referred to as a “Constar granulator”).
10 parts by weight of corn starch granulating agent was added to 100 parts by weight of lightweight aerated concrete powder having a sieve diameter of 250 μm or less prepared in the same manner as in Example 1, and 25 parts by weight of water was added and mixed well, followed by granulation with a bread granulator. Went. The resulting granules were dried at 105 ° C. for 12 hours, and then a granulated product having a sieve diameter of 1 to 4 mm was obtained using a sieve having an opening of 4 mm and 1 mm.
When the hardness of this granulated product was measured, it was 0 kg. When the granulated product was packed in a 20 kg bag and taken out, 90% of the grains collapsed during the bagging operation, and powders and the like were difficult to handle.
Comparative Example 4
A granulated product having a sieve diameter of 1 to 4 mm was obtained in the same manner as in Comparative Example 1 except that 25 parts by weight of corn starch granulating agent was added to 100 parts by weight of lightweight cellular concrete powder. When the hardness of this granulated product was measured, it was 0.2 kg, and when it was packed in a 20 kg bag and taken out, 30% of the particles collapsed during the bagging operation, and powders and the like were difficult to handle.
Comparative Example 5
Using lightweight aerated concrete powder, granulation was performed using sodium alginate as a binder.
90.5 parts by weight of water was added to 7.7 parts by weight of sodium alginate, and the mixture was stirred and suspended, and then heated gradually to 80 ° C. Thereafter, 1.2 parts by weight of 48% sodium hydroxide solution was added, and the mixture was stirred for 30 minutes while being heated. Thereafter, the cooled product was used as a sodium alginate granulating agent.
7 parts by weight of sodium alginate granulating agent was added to 100 parts by weight of lightweight aerated concrete powder having a sieve diameter of 250 μm or less prepared in the same manner as in Example 1, and 28 parts by weight of water was added and mixed well. Done the grain. The resulting granules were dried at 105 ° C. for 12 hours, and then a granulated product having a sieve diameter of 1 to 4 mm was obtained using a sieve having an opening of 4 mm and 1 mm. When the hardness of this granulated product was measured, it was 0 kg. When the granulated product was packed in a 20 kg bag and taken out, 80% of the particles collapsed during the bagging operation, and powders and the like were difficult to handle.
Comparative Example 6
A granulated product having a sieve diameter of 1 to 4 mm was obtained in the same manner as in Comparative Example 3 except that 54 parts by weight of sodium alginate granulating agent was added to 100 parts by weight of lightweight cellular concrete powder. When the hardness of this granulated product was measured, it was 0.2 kg, and when it was packed in a 20 kg bag and taken out, 30% of the particles collapsed during the bagging operation, and powders and the like were difficult to handle.
Comparative Example 7
A paddy field test using crushed lightweight aerated concrete as crushed silicate fertilizer is shown. As a lightweight cellular concrete, Heberlite manufactured by Asahi Kasei Kogyo Co., Ltd. was hit with a hammer and coarsely pulverized to separate an internal reinforcing lath mesh portion and a lightweight cellular concrete portion. This lightweight cellular concrete part was pulverized and sieved using sieves having an opening of 1.00 mm and 10 mm to obtain a crushed silicate fertilizer having a sieve diameter of 1 to 10 mm. The crushed silicic acid fertilizer was subjected to grain hardness measurement, pH measurement, and soluble silicic acid content measurement. The results are shown in Table 2.
When this granular siliceous fertilizer was subjected to a transportation test in the same manner as in Example 1, the chip rate was 6.5% by weight.
Using the obtained crushed siliceous fertilizer, fertilizer was mechanically sprayed in the same manner as in Example 1. However, the crushed silicic acid fertilizer was clogged at the fertilizer spraying hopper outlet and could not be sprayed by the machine. Therefore, rice paddy cultivation was carried out in the same manner as in Example 1 except that the crushed siliceous fertilizer was sprayed by hand. When the crushed siliceous fertilizer was handled with bare hands in the same manner as in Example 1, there was a problem that the hands were finely scratched and the powder entered the eyes.
Rice paddy cultivation was carried out in the same manner as in Example 1 except that crushed siliceous fertilizer was used instead of the granular siliceous fertilizer of Example 1. As in Example 1, rice harvesting was performed in mid-September and 1m of paddy field 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 3. When crushed lightweight cellular concrete was fertilized, the fertilizer effect was almost the same as in Examples 1-5.
Comparative Example 8
Rice paddy cultivation was carried out in the same manner as in Example 1 except that the granular siliceous fertilizer of Example 1 was not applied. As in Example 1, rice harvesting was performed in mid-September and 1m of paddy field 2 Rice dry matter weight per hit, silicic acid content of rice dry matter, and 1m of paddy field obtained 2 The weight of each refined brown rice was determined. The results are shown in Table 3.
As can be seen from Table 3, unless fertilized with siliceous fertilizer, compared to fertilized Examples 1-5, the dry matter weight of the rice above-ground part, the silicic acid content of the above-ground dry part of rice, and the weight of the obtained unpolished rice All of these were small, and were not as good as Examples 1-5 in terms of rice nutrition.
Comparative Example 9
The result of having conducted the rice seedling test without using siliceous fertilizer is shown.
Uniform mixing of 3000g of rice seedling culture soil (Katakura Chikkarin Co., Ltd. Granular Parimato) with 1500g of granular silicate fertilizer of Example 11 and paddy rice seedling cultivation soil (Katakura Chikkalin Co., Ltd. Granular Parimato) A rice seedling test similar to that in Example 11 was conducted except that it was used instead of the above.
Three days after sowing, the ratio of seed exposure or rooting in the budding seedlings and the germination rate were measured and shown in Table 10. Furthermore, seedlings were grown for 35 days after sowing. There were no appearance problems such as leaf color of seedlings or obstacles. Table 11 shows the results of dry matter weight measurement of the rice seedling on the seedling, measurement of the silicic acid content on the seedling, and measurement of the dry matter weight on the seedling base (root).
Comparative Example 10
The result of having conducted the rice seedling test using crushed lightweight aerated concrete as crushed silicate fertilizer is shown.
In the same manner as in Example 11 except that 1500 g of crushed silicate fertilizer having a sieve diameter of 1 to 6 mm obtained in the same manner as in Comparative Example 7 was used instead of 1500 g of granular silicate fertilizer in Example 11, rice A seedling test was conducted.
Three days after sowing, the ratio of seed exposure or rooting in the budding seedlings and the germination rate were measured and shown in Table 10. Furthermore, seedlings were grown for 35 days after sowing. The leaf color of the seedlings was yellow and was a problem. In appearance, the growth was slow and the leaf color became yellow, but no disease was observed. Table 11 shows the results of dry matter weight measurement of the rice seedling on the seedling, measurement of the silicic acid content on the seedling, and measurement of the dry matter weight on the seedling base (root). Germination of rice seedlings and growth after seedling were not good.
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Figure 0004651257
Industrial applicability
The granular siliceous fertilizer of the present invention has few binders and has a sufficiently high grain hardness, so that it is difficult to chip, and is difficult to fall off during transportation and spraying. Moreover, the granular siliceous fertilizer of this invention has a large fertilizer effect as a siliceous fertilizer. Since the granular siliceous fertilizer of the present invention is granular, it can be easily sprayed by a machine, easily spread by hand, and has little fear of getting in your eyes or scratching your hands when you rub. In addition, since it is granular, it has good root breathability and root growth.
Furthermore, since a waste material containing silicic calcium hydrate crystals obtained by hydrothermal synthesis such as lightweight aerated concrete as a fertilizer raw material can be used as a recycled raw material, the amount of waste can be reduced. Furthermore, the manufacturing process is simple, and as a result, the siliceous fertilizer can be supplied at low cost.
Moreover, the granular siliceous fertilizer which neutralized the siliceous material with the acid and adjusted pH to 3.5-8.0 has a high effect as a siliceous fertilizer in both rice paddy field and raising seedlings. It was.

Claims (12)

空隙率が50〜90%のケイ酸質原料を40重量%以上100重量%以下含む粉末原料に、水性アクリルエマルジョン樹脂をバインダーとして添加し造粒して得られる粒状ケイ酸質肥料であって、該バインダーの含有量が0.1重量%以上3重量%以下であり、粒硬度が2〜5kgである上記粒状ケイ酸質肥料。A granular siliceous fertilizer obtained by granulating by adding an aqueous acrylic emulsion resin as a binder to a powder raw material containing 40 to 100% by weight of a siliceous raw material having a porosity of 50 to 90%, The granular siliceous fertilizer, wherein the binder content is 0.1 wt% or more and 3 wt% or less, and the grain hardness is 2 to 5 kg. ケイ酸質原料が水熱合成により得られるケイ酸カルシウム水和結晶を含有するケイ酸質材である請求項1記載の粒状ケイ酸質肥料。  2. The granular siliceous fertilizer according to claim 1, wherein the siliceous raw material is a siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis. ケイ酸質原料が、水熱合成により得られるケイ酸カルシウム水和結晶を含有するケイ酸質材を酸で中和し、pHを3.5〜8.0に調整したものである請求項1記載の粒状ケイ酸質肥料。  The siliceous material is prepared by neutralizing a siliceous material containing calcium silicate hydrate crystals obtained by hydrothermal synthesis with an acid and adjusting the pH to 3.5 to 8.0. The granular siliceous fertilizer described. 粉末原料がケイ酸質原料と培土とを含む請求項1〜のいずれか一項に記載の粒状ケイ酸質肥料。The granular siliceous fertilizer according to any one of claims 1 to 3 , wherein the powder raw material includes a siliceous raw material and a soil. 粉末原料が、目開き250μmのふるいを通過する粒子を70〜100重量%含む請求項1〜のいずれか一項に記載の粒状ケイ酸質肥料。The granular siliceous fertilizer according to any one of claims 1 to 4 , wherein the powder raw material contains 70 to 100% by weight of particles passing through a sieve having an opening of 250 µm. 粒状ケイ酸質肥料のふるい粒径が1〜20mmである請求項1〜のいずれか一項に記載の粒状ケイ酸質肥料。The granular siliceous fertilizer according to any one of claims 1 to 5 , wherein the granular particle size of the granular siliceous fertilizer is 1 to 20 mm. 請求項1〜のいずれか一項に記載の粒状ケイ酸質肥料に、さらに培土を被覆してなる被覆粒状ケイ酸質肥料。A coated granular siliceous fertilizer obtained by coating the granular siliceous fertilizer according to any one of claims 1 to 6 with a culture soil. 粉末原料に、該粉末原料の10〜50重量%の量の液体を散布して含浸させた後、水性アクリルエマルジョン樹脂を添加し、撹拌することにより造粒することを含む請求項1〜のいずれか一項に記載の粒状ケイ酸質肥料の製造方法。The powder material is impregnated by spraying 10-50 weight% of the amount of liquid in the powder raw material, and adding an aqueous acrylic emulsion resin of claim 1-6, which comprises granulating by stirring The manufacturing method of the granular siliceous fertilizer as described in any one. 請求項1〜のいずれか一項に記載の粒状ケイ酸質肥料を、栽培土壌用肥料として用いることを含む植物の栽培方法。The cultivation method of the plant including using the granular siliceous fertilizer as described in any one of Claims 1-6 as a fertilizer for cultivation soil. 請求項1〜のいずれか一項に記載の粒状ケイ酸質肥料を、イネ栽培土壌用肥料として用いることを含むイネの栽培方法。The cultivation method of rice including using the granular siliceous fertilizer as described in any one of Claims 1-6 as a fertilizer for rice cultivation soil. 請求項3記載の粒状ケイ酸質肥料を、イネ育苗栽培用土壌用肥料として用いることを含むイネの栽培方法。  A method for cultivating rice, comprising using the granular siliceous fertilizer according to claim 3 as a fertilizer for soil for growing rice seedlings. 請求項記載の被覆粒状ケイ酸質肥料を、イネ育苗栽培用床土として用いることを含むイネの栽培方法。A method for cultivating rice, comprising using the coated granular siliceous fertilizer according to claim 7 as bed soil for rice seedling cultivation.
JP2001546604A 1999-12-21 2000-12-19 Granular siliceous fertilizer Expired - Fee Related JP4651257B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP36222999 1999-12-21
PCT/JP2000/008994 WO2001046089A1 (en) 1999-12-21 2000-12-19 Granular silica fertilizers

Publications (1)

Publication Number Publication Date
JP4651257B2 true JP4651257B2 (en) 2011-03-16

Family

ID=18476323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001546604A Expired - Fee Related JP4651257B2 (en) 1999-12-21 2000-12-19 Granular siliceous fertilizer

Country Status (4)

Country Link
JP (1) JP4651257B2 (en)
KR (1) KR100503703B1 (en)
AU (1) AU1894801A (en)
WO (1) WO2001046089A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074446A1 (en) * 2002-03-05 2003-09-12 Ewan Malcolm Campbell Silica based fertiliser
KR101010777B1 (en) * 2003-07-19 2011-01-25 주식회사 포스코 Rotary complex lance
JP6671327B2 (en) * 2017-03-24 2020-03-25 エムシー・ファーティコム株式会社 Method for producing granular oxamide
KR102139699B1 (en) * 2017-09-08 2020-07-31 주식회사 경농 Composition for soil humecting and flocculating, and method for preparing thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS346208B1 (en) * 1956-06-25 1959-07-17
JPS463088B1 (en) * 1965-06-28 1971-01-26
JPS487057B1 (en) * 1969-08-29 1973-03-02
JPS4837457B1 (en) * 1969-12-29 1973-11-12
JPS4890851A (en) * 1972-03-01 1973-11-27
JPS55130888A (en) * 1979-03-30 1980-10-11 Chisso Corp Chemical fertilizer from silicic acid glue and its manufacture
JPS57149885A (en) * 1981-03-13 1982-09-16 Nippon Chemical Ind Fused phosphate pellets and manufacture
JPS6144712A (en) * 1984-08-10 1986-03-04 Onoda Kagaku Kogyo Kk Production of porous lightweight calcium silicate
JPH01270583A (en) * 1988-04-18 1989-10-27 Iida Kogyosho:Kk Granular fertilizer and production thereof
JPH01286986A (en) * 1988-05-13 1989-11-17 Onoda Autoclaved Light Weight Concrete Co Ltd Production of organic fertilizer
JPH01317185A (en) * 1988-06-17 1989-12-21 Nisshin Oil Mills Ltd:The Production of fertilizer of oil cake
JPH02129086A (en) * 1988-11-08 1990-05-17 Onoda Autoclaved Light Weight Concrete Co Ltd Organic fertilizer of bark-like matter
JPH0375287A (en) * 1989-08-11 1991-03-29 Onoda Kagaku Kogyo Kk Porous siliceous granule
JPH06293583A (en) * 1992-09-18 1994-10-21 Onoda Autoclaved Light Weight Concrete Co Ltd Silica fertilizer for mechanical spraying
JPH06340464A (en) * 1991-12-02 1994-12-13 Isolite Kogyo Kk Improving material water permeability and water retaining property of soil and its production
JPH11103702A (en) * 1997-10-03 1999-04-20 Sasagu Terao Porous ceramic medium material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212906A (en) * 1988-06-30 1990-01-17 Fujitsu General Ltd Method for trimming thin-film resistance body

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS346208B1 (en) * 1956-06-25 1959-07-17
JPS463088B1 (en) * 1965-06-28 1971-01-26
JPS487057B1 (en) * 1969-08-29 1973-03-02
JPS4837457B1 (en) * 1969-12-29 1973-11-12
JPS4890851A (en) * 1972-03-01 1973-11-27
JPS55130888A (en) * 1979-03-30 1980-10-11 Chisso Corp Chemical fertilizer from silicic acid glue and its manufacture
JPS57149885A (en) * 1981-03-13 1982-09-16 Nippon Chemical Ind Fused phosphate pellets and manufacture
JPS6144712A (en) * 1984-08-10 1986-03-04 Onoda Kagaku Kogyo Kk Production of porous lightweight calcium silicate
JPH01270583A (en) * 1988-04-18 1989-10-27 Iida Kogyosho:Kk Granular fertilizer and production thereof
JPH01286986A (en) * 1988-05-13 1989-11-17 Onoda Autoclaved Light Weight Concrete Co Ltd Production of organic fertilizer
JPH01317185A (en) * 1988-06-17 1989-12-21 Nisshin Oil Mills Ltd:The Production of fertilizer of oil cake
JPH02129086A (en) * 1988-11-08 1990-05-17 Onoda Autoclaved Light Weight Concrete Co Ltd Organic fertilizer of bark-like matter
JPH0375287A (en) * 1989-08-11 1991-03-29 Onoda Kagaku Kogyo Kk Porous siliceous granule
JPH06340464A (en) * 1991-12-02 1994-12-13 Isolite Kogyo Kk Improving material water permeability and water retaining property of soil and its production
JPH06293583A (en) * 1992-09-18 1994-10-21 Onoda Autoclaved Light Weight Concrete Co Ltd Silica fertilizer for mechanical spraying
JPH11103702A (en) * 1997-10-03 1999-04-20 Sasagu Terao Porous ceramic medium material

Also Published As

Publication number Publication date
WO2001046089A1 (en) 2001-06-28
KR100503703B1 (en) 2005-07-25
KR20020062978A (en) 2002-07-31
AU1894801A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
AU2008312121B2 (en) Improvements in and relating to soil treatments
AU2006207886B2 (en) Fertiliser
EP1612200A2 (en) Fertilising composition and process for the obtainment thereof
JP3969810B2 (en) Fertilizer medium
US20060117655A1 (en) Agglomerated volcanic ash
WO2017175017A1 (en) Eco-friendly surface-treatment composition for the treatment of solid fertilizers to prevent agglutination and pulverization, to retard water uptake and at the same time to enhance the availability of nutrients
JP4651257B2 (en) Granular siliceous fertilizer
US20220204417A1 (en) Phosphogypsum containing fertilizer granules
JP5401656B2 (en) Clay heat treatment granular material
JP4153587B2 (en) Granular medium and mixed medium using the same
JP2000139207A (en) Granular medium and mixed medium using the same
CN109071369A (en) mineral fertilizer
JP2000004670A (en) Granular phosphoric acid medium and material for fertilizing seedling raising vessel using the same
TW567179B (en) Granular silica fertilizers
JP3882142B2 (en) Disintegrating granular plaster
JP2002291332A (en) Culture medium, granular culture medium, method for producing granular culture medium and method for culturing crop
JP2001340017A (en) Granular medium, material for fertilizer application to seedling raising vessel using the same, and method for cultivating crop
JP4141528B2 (en) Lightweight medium and mixed medium using the same
CN115261029B (en) Alkaline soil conditioner, preparation method thereof and alkaline soil conditioning method
JP2001181073A (en) Granular culture soil-mixed siliceous fertilizer
JP4932503B2 (en) Disintegrating granular phosphate medium
JP2001172092A (en) Granulated product of siliceous fertilizer
JP2003265053A (en) Granular culture soil, material for fertilizing raising pot and using the same, and method for cultivating crop plant
JP2001340018A (en) Granular medium, material for fertilizer application to seeding raising vessel using the same, and method for cultivating crop
JP2005067923A (en) Slow releasing fertilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20061220

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees