JP2004282106A - Semiconductor light emitting device and its manufacturing method - Google Patents

Semiconductor light emitting device and its manufacturing method Download PDF

Info

Publication number
JP2004282106A
JP2004282106A JP2004202399A JP2004202399A JP2004282106A JP 2004282106 A JP2004282106 A JP 2004282106A JP 2004202399 A JP2004202399 A JP 2004202399A JP 2004202399 A JP2004202399 A JP 2004202399A JP 2004282106 A JP2004282106 A JP 2004282106A
Authority
JP
Japan
Prior art keywords
substrate
light emitting
layer
electrode
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004202399A
Other languages
Japanese (ja)
Other versions
JP4479388B2 (en
Inventor
Katsushi Akita
勝史 秋田
Kensaku Motoki
健作 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004202399A priority Critical patent/JP4479388B2/en
Publication of JP2004282106A publication Critical patent/JP2004282106A/en
Application granted granted Critical
Publication of JP4479388B2 publication Critical patent/JP4479388B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which can easily be worked and has an excellent function in luminescence. <P>SOLUTION: A conductive substrate 8 is made of iron-nickel alloy, and a conductive adhesive is made of Au-Sn solder 7. The manufacturing method of a semiconductor light emitting device comprises the steps of, laminating GaN based semiconductor layers including light emitting layer on a GaAs (111) A substrate 1, fixing an electrode surface provided on the above-mentioned lamination surface and the conductive substrate with a conductive adhesive, and removing the GaAs (111) A substrate 1. The GaAs (111) A substrate 1 is removed by wet etching by ammonia based etchant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は,窒化ガリウム(GaN)系半導体を使用した主に青色および緑色の発光素子及びその製造方法に関する。   The present invention relates to mainly blue and green light emitting devices using a gallium nitride (GaN) semiconductor and a method for manufacturing the same.

図6は、たとえば日経サイエンス10月号(1994)、p.44に記載された、現在市販されているサファイア基板を用いたGaN系の青色および緑色の発光素子の構造を示す断面図である。   FIG. 6 is, for example, the Nikkei Science October issue (1994), p. FIG. 44 is a cross-sectional view showing a structure of a GaN-based blue and green light-emitting device using a currently commercially available sapphire substrate described in No. 44.

この青色および緑色発光素子は、サファイア基板11と、基板11上に形成されたGaNバッファ層12と、GaNバッファ層12上に形成された六方晶のGaNエピタキシャル層13とから構成されたエピタキシャルウェハ上に、クラッド層14、発光層15、クラッド層16およびGaNエピタキシャル層17が順に形成されて窒化物系半導体層が積層された構造となる。GaNエピタキシャル層13、17上には、電極18、19がそれぞれ形成されている。また、この青色および緑色発光素子において、GaNバッファ層12は、サファイア基板11とGaNエピタキシャル層13との格子定数の差による歪を緩和するために設けられている。   The blue and green light emitting elements are formed on an epitaxial wafer composed of a sapphire substrate 11, a GaN buffer layer 12 formed on the substrate 11, and a hexagonal GaN epitaxial layer 13 formed on the GaN buffer layer 12. Then, a clad layer 14, a light emitting layer 15, a clad layer 16, and a GaN epitaxial layer 17 are sequentially formed to form a structure in which nitride-based semiconductor layers are stacked. Electrodes 18 and 19 are formed on the GaN epitaxial layers 13 and 17, respectively. In the blue and green light-emitting elements, the GaN buffer layer 12 is provided to reduce distortion due to a difference in lattice constant between the sapphire substrate 11 and the GaN epitaxial layer 13.

上記の青色および緑色の発光素子は、基板11として絶縁性のサファイアを用いているため、電極を形成して素子を作成する際には、2種の電極を同一面側に形成する必要あることから、フォトリソグラフィによるパターニングが2回以上必要になり、さらに反応性イオンエッチングによる窒化物のエッチングを行う必要もあり、複雑な工程を要する。   Since the above blue and green light emitting elements use insulating sapphire as the substrate 11, it is necessary to form two kinds of electrodes on the same surface side when forming an element by forming electrodes. Therefore, patterning by photolithography is required twice or more, and it is also necessary to perform nitride etching by reactive ion etching, which requires a complicated process.

また、サファイアは硬度が高いため、素子分離の際に切断しにくいという問題もある。そこで、このような欠点を有するサファイアに代えて、導電性のGaAsを基板として使用するという試みがなされている。   In addition, sapphire has a high hardness, and thus has a problem in that it is difficult to cut the element during element isolation. Therefore, an attempt has been made to use conductive GaAs as a substrate instead of sapphire having such a defect.

たとえばJournal of Crystal Growth164(1996)、p149にはGaAs(100)面上に立方晶のGaNの成長が、Journal of Electronic Materials vol.24 No.4(1995)、p213ではMOVPE法(有機金属気相エピタキシャル法)によるGaAs(111)A面上及びGaAs(111)B面上へのGaNの成長が報告されている。   For example, in Journal of Crystal Growth 164 (1996), p149, growth of cubic GaN on a GaAs (100) plane is described in Journal of Electronic Materials vol. 24 No. 4 (1995), p213, reports the growth of GaN on GaAs (111) A and GaAs (111) B surfaces by MOVPE (metal organic vapor phase epitaxy).

また特開平8ー181070号公報には、700℃(摂氏700度)以上の温度範囲おいて特性のよいGaNエピタキシャル層の成長が得られる有機金属クロライド気相エピタキシャル法が開示されている。この方法ではIII化合物半導体の原料であるIII族有機金属を塩化水素と同時に反応管内に導入することにより、III族元素を塩化物として基板上に供給する。
特開平8ー181070号公報 日経サイエンス10月号(1994)、p.44 Journal of Crystal Growth 164(1996)、p149 Journal of Electronic Materials vol.24 No.4(1995)、p213
Further, Japanese Patent Application Laid-Open No. 8-181070 discloses an organometallic chloride vapor phase epitaxial method capable of growing a GaN epitaxial layer having good characteristics in a temperature range of 700 ° C. (700 ° C.) or higher. In this method, a group III organic metal, which is a raw material of a III compound semiconductor, is introduced into a reaction tube at the same time as hydrogen chloride, whereby a group III element is supplied as chloride on a substrate.
JP-A-8-181070 Nikkei Science October issue (1994), p. 44 Journal of Crystal Growth 164 (1996), p149 Journal of Electronic Materials vol. 24 No. 4 (1995), p. 213

従来のGaN系半導体層の発光素子は、絶縁性で硬いサファイアを基板に用いているため、電極作製に複雑なプロセスを要し、素子分離の際の切断等の加工も困難があるのは前述の通りである。そこで、例えば導電性GaAsのような基板を用いれば、このような問題は解決される。   Conventional GaN-based semiconductor light-emitting elements use insulating and hard sapphire for the substrate, which requires a complicated process for electrode fabrication and difficulties such as cutting during element isolation are also difficult. It is as follows. Thus, such a problem can be solved by using a substrate such as conductive GaAs.

しかし、例えばGaAsの基板を用いると、GaN系半導体層の発光層から出た光がGaAsの基板に吸収され、その基板からの反射光の強度が下がる。そのためGaAsの基板を用いた場合には十分な発光強度を得ることができない。それは、GaAsの基板のバンドギャップ(結晶内電子の量子状態エネルギーの差)が、GaN系半導体層のそれよりも小さいためと考えられている。   However, when a GaAs substrate is used, for example, light emitted from the light emitting layer of the GaN-based semiconductor layer is absorbed by the GaAs substrate, and the intensity of light reflected from the substrate decreases. Therefore, when a GaAs substrate is used, a sufficient emission intensity cannot be obtained. It is considered that the band gap (difference in quantum state energy of electrons in the crystal) of the GaAs substrate is smaller than that of the GaN-based semiconductor layer.

本発明の目的は、上述の問題点を解決した製造が容易で、良好な発光をする半導体発光素子を提供することを目的とする。   An object of the present invention is to provide a semiconductor light emitting device which can easily be manufactured and solves the above-mentioned problems and emits good light.

本発明による半導体発光素子は、p型電極が設けられたp型GaN層と、前記p型電極と導電性接着剤により接着された導電性基板と、前記p型GaN層上に形成されたGaN系半導体層の積層構造、あるいは、n型電極がもうけられたn型GaN層と、前記n型電極と導電性接着剤により接着された導電性基板と、前記n型GaN層上に形成されたGaN系半導体層の積層構造とからなる。   The semiconductor light emitting device according to the present invention includes a p-type GaN layer provided with a p-type electrode, a conductive substrate bonded to the p-type electrode with a conductive adhesive, and a GaN layer formed on the p-type GaN layer. A stacked structure of a base semiconductor layer, or an n-type GaN layer provided with an n-type electrode, a conductive substrate bonded to the n-type electrode with a conductive adhesive, and formed on the n-type GaN layer. It has a laminated structure of GaN-based semiconductor layers.

そして、本発明の半導体発光素子は、前記導電性基板がFe-Ni合金またはCu-W合金であって、前記導電性接着剤がAu-Sn半田またはPb-Sn半田である。   In the semiconductor light emitting device of the present invention, the conductive substrate is an Fe-Ni alloy or a Cu-W alloy, and the conductive adhesive is Au-Sn solder or Pb-Sn solder.

本発明による半導体発光素子の製造方法は、GaAs、InP、InAs若しくはGaPである成長用基板にGaN系半導体層の積層を成長した後、導電性接着剤により前記積層の表面に設けた電極面を導電性基板に接着した。そして、前記GaAs、InP、InAs若しくはGaPである成長用基板を除去することを特徴としている。   The method for manufacturing a semiconductor light emitting device according to the present invention includes growing a GaN-based semiconductor layer stack on a growth substrate of GaAs, InP, InAs or GaP, and then forming an electrode surface provided on the surface of the stack with a conductive adhesive. It adhered to the conductive substrate. Then, the growth substrate made of GaAs, InP, InAs or GaP is removed.

また、前記成長用基板が立方晶(111)基板であり、前記GaN系半導体層が六方晶である。特に成長用基板がGaAs(111)Aであり、GaN系半導体層が六方晶である。成長用基板をアンモニア系エッチャントによってウェットエッチングすることにより除去する。   Further, the growth substrate is a cubic (111) substrate, and the GaN-based semiconductor layer is hexagonal. In particular, the growth substrate is GaAs (111) A, and the GaN-based semiconductor layer is hexagonal. The growth substrate is removed by wet etching with an ammonia-based etchant.

本発明に係る半導体発光素子は、p型電極が設けられたp型窒化ガリウム層若しくはn型電極が設けられたn型窒化ガリウム層、前記p型若しくはn型電極に導電性接着剤で接着された導電性基板、及び前記p型若しくはn型窒化ガリウム層上であってp型若しくはn型電極が設けられている面とは反対面の上に成長した発光層を含む窒化ガリウム系半導体層からなる積層とで構成されている。   The semiconductor light emitting device according to the present invention is a p-type gallium nitride layer provided with a p-type electrode or an n-type gallium nitride layer provided with an n-type electrode, and is bonded to the p-type or n-type electrode with a conductive adhesive. A conductive substrate, and a gallium nitride-based semiconductor layer including a light-emitting layer grown on the p-type or n-type gallium nitride layer and on the surface opposite to the surface on which the p-type or n-type electrode is provided. And a laminate.

本発明の半導体発光素子では、導電性基板が鉄-ニッケル(Fe-Ni)合金または銅-タングステン(Cu-W)合金であることが好ましい。   In the semiconductor light emitting device of the present invention, the conductive substrate is preferably an iron-nickel (Fe-Ni) alloy or a copper-tungsten (Cu-W) alloy.

本発明の半導体発光素子では、導電性接着剤が金-スズ半田または鉛-スズ半田であることようにしてもよい。   In the semiconductor light emitting device of the present invention, the conductive adhesive may be gold-tin solder or lead-tin solder.

本発明の半導体発光素子の製造方法は、成長用基板の上に成長した発光層を含む窒化ガリウム系半導体層からなる積層の表面に設けた電極面と導電性基板とを、導電性接着剤を用いて接着した後、前記成長用基板を除去して製造する。   The method for manufacturing a semiconductor light emitting device of the present invention includes the steps of: forming a conductive adhesive on an electrode surface provided on the surface of a stack of gallium nitride-based semiconductor layers including a light emitting layer grown on a growth substrate; After that, the substrate for growth is removed to manufacture.

本発明の製造方法では、成長用基板がガリウム砒素(GaAs)、インジウム燐(InP)、インジウム砒素(InAs)若しくはガリウム燐(GaP)であることが好ましい。   In the manufacturing method of the present invention, the growth substrate is preferably gallium arsenide (GaAs), indium phosphide (InP), indium arsenide (InAs), or gallium phosphide (GaP).

本発明の製造方法では、成長用基板がガリウム砒素(GaAs)、インジウム燐(InP)、インジウム砒素(InAs)若しくはガリウム燐(GaP)からなる立方晶(111)基板であって、窒化ガリウム系半導体層が六方晶であることが好ましい。   In the manufacturing method of the present invention, the growth substrate is a cubic (111) substrate made of gallium arsenide (GaAs), indium phosphide (InP), indium arsenide (InAs) or gallium phosphide (GaP), and the gallium nitride-based semiconductor Preferably, the layer is hexagonal.

本発明の製造方法では、成長用基板がガリウム砒素(GaAs)からなる立方晶(111)A基板であることが好ましい。   In the manufacturing method of the present invention, the growth substrate is preferably a cubic (111) A substrate made of gallium arsenide (GaAs).

本発明の製造方法では、成長用基板をアンモニア系エッチャントを用いたウェットエッチングにより除去するようにしてもよい。   In the manufacturing method of the present invention, the growth substrate may be removed by wet etching using an ammonia-based etchant.

本発明に係る半導体発光素子は、発光層を含む窒化ガリウム系半導体層からなる積層と、該積層の表面に設けた電極と、前記電極に導電性接着剤で接着された導電性基板とを備える。   A semiconductor light-emitting device according to the present invention includes a stack including a gallium nitride-based semiconductor layer including a light-emitting layer, an electrode provided on a surface of the stack, and a conductive substrate bonded to the electrode with a conductive adhesive. .

本発明の半導体発光素子では、導電性基板が鉄−ニッケル(Fe−Ni)合金または銅−タングステン(Cu−W)合金であることが好ましい。   In the semiconductor light emitting device of the present invention, the conductive substrate is preferably made of an iron-nickel (Fe-Ni) alloy or a copper-tungsten (Cu-W) alloy.

本発明の半導体発光素子では、導電性接着剤が金−スズ(Au−Sn)半田または鉛−スズ(Pb−Sn)半田であるようにしてもよい。   In the semiconductor light emitting device of the present invention, the conductive adhesive may be gold-tin (Au-Sn) solder or lead-tin (Pb-Sn) solder.

以上説明したように、この発明によれば、基板での光の吸収が少なく、良好に発光する半導体発光素子を提供でき、該半導体発光素子を容易に製造することが可能になった。   As described above, according to the present invention, it is possible to provide a semiconductor light-emitting element that emits light with low absorption of light on a substrate and can easily manufacture the semiconductor light-emitting element.

発明の実施の形態の説明は,窒化ガリウム(GaN)系半導体を使用した主に青色および緑色の発光素子及びその製造方法に関する。本発明の実施の形態による半導体発光素子は、発光素子の構造に絶縁層を含まない。従って、絶縁層であるサファイアを基板に用いた場合のように電極形成に複雑なプロセスを必要としない。また、GaN系半導体層の発光層よりもバンドギャップの小さいGaAsのようなものを成長用基板として用いた場合、導電性基板に導電性接着剤を用いて発光層を含むGaN系半導体層の積層を接着した後、その積層を成長させた成長用基板を除去すれば、前記成長用基板による光の吸収がなくなり良好な発光となる。   The description of the embodiments of the present invention mainly relates to a blue and green light emitting device using a gallium nitride (GaN) based semiconductor and a method of manufacturing the same. The semiconductor light emitting device according to the embodiment of the present invention does not include an insulating layer in the structure of the light emitting device. Therefore, a complicated process is not required for forming an electrode unlike the case where sapphire, which is an insulating layer, is used for a substrate. When a growth substrate is made of GaAs having a band gap smaller than that of the GaN-based semiconductor light-emitting layer, the GaN-based semiconductor layer including the light-emitting layer is stacked on the conductive substrate using a conductive adhesive. Then, if the growth substrate on which the stack is grown is removed, light is no longer absorbed by the growth substrate, resulting in good light emission.

導電性基板として導電性並びに熱伝導性に優れたFe-Ni合金またはCu-W合金を用いると、低消費電力による発光が可能であり、熱の放出もよくなる。   When an Fe—Ni alloy or a Cu—W alloy having excellent conductivity and thermal conductivity is used as the conductive substrate, light emission with low power consumption is possible and heat is released well.

導電性接着剤には融点が250℃(摂氏250度)以上あるAu-Sn半田(例えば、融点280℃(摂氏280度)の市販品)またはPb-Sn半田(例えば、融点280℃(摂氏280度)の市販品)を用いると、電極形成のために温度を200℃(摂氏200度)程度まで上げることができ、良好な電極を容易に作成できる。   Au-Sn solder having a melting point of 250 ° C. (250 ° C.) or more (for example, a commercial product having a melting point of 280 ° C. (280 ° C.)) or Pb-Sn solder (eg, a melting point of 280 ° C. (280 ° C.)) is used for the conductive adhesive. The use of a commercial product of (degree)) can raise the temperature to about 200 ° C. (200 degrees Celsius) for electrode formation, and a good electrode can be easily formed.

GaN系半導体層の積層が形成される成長用基板として、GaAs、InP、InAs若しくはGaPを用いると、その成長用基板は容易にエッチング除去できる。また立方晶(111)基板を用いると六方晶GaNをエピタキシャル成長することができる。   When GaAs, InP, InAs or GaP is used as a growth substrate on which a stack of GaN-based semiconductor layers is formed, the growth substrate can be easily removed by etching. When a cubic (111) substrate is used, hexagonal GaN can be epitaxially grown.

さらに、GaAs(111)A基板((111)面の上が、全てGaであるGaAs基板)を用いれば、良好なGaN系半導体層の積層を作製することができる。   Furthermore, when a GaAs (111) A substrate (a GaAs substrate in which the (111) plane is entirely Ga) is used, a good stack of GaN-based semiconductor layers can be manufactured.

GaAs基板のエッチングにはアンモニア系エッチャントを用いてウェットエッチングを行うと、GaAs基板をエッチング除去することが容易であって、またGaN系半導体層並びにその積層に損傷を与えることがないため、上記エッチャントが好ましい。   When wet etching is performed using an ammonia-based etchant for etching the GaAs substrate, the GaAs substrate can be easily removed by etching, and the GaN-based semiconductor layer and its lamination are not damaged. Is preferred.

次に本願発明をどのように実施するかを具体的に示した実施例を記載する。   Next, an embodiment that specifically shows how to implement the present invention will be described.

(実施例) 有機金属クロライド気相エピタキシャル法(図4にその装置の概要を示すが、石英からなる反応チャンバー54にGaAs(111)A基板1を設置する。本装置は、ガス導入口51、52、排気口53及び抵抗加熱ヒーター55を備えている。なお、本装置は本願発明者が開示した特開平8ー181070号公報に示した装置と同じである。)を用いて、厚さ350マイクロメートル(μm)のGaAs(111)A基板1上に、厚さ100nmのGaNバッファ層2、厚さ2マイクロメートル(μm)でキャリア濃度1×1019(cm-3)のn型GaN層3、厚さ0.1マイクロメートル(μm)のInGaN発光層4、厚さ0.5マイクロメートル(μm)でキャリア濃度1×1018(cm-3)の0.5マイクロメートル(μm)のp型GaN層5からなるGaN系半導体層の積層を、この順に成長した。 (Example) Organometal chloride vapor phase epitaxial method (The outline of the apparatus is shown in FIG. 4, but a GaAs (111) A substrate 1 is placed in a reaction chamber 54 made of quartz. 52, an exhaust port 53, and a resistance heater 55. This apparatus is the same as the apparatus disclosed in Japanese Patent Application Laid-Open No. 8-181070 disclosed by the present inventors. A GaN buffer layer 2 having a thickness of 100 nm and a n-type GaN layer having a carrier concentration of 1 × 10 19 (cm −3 ) having a thickness of 2 μm on a GaAs (111) A substrate 1 having a micrometer (μm). 3. From the InGaN light emitting layer 4 having a thickness of 0.1 μm (μm), from the p-type GaN layer 5 having a thickness of 0.5 μm (μm) and a carrier concentration of 1 × 10 18 (cm −3 ) 0.5 μm (μm) GaN-based semiconductor layers were grown in this order.

上記GaN系半導体層からなる積層の最表面であるp型GaN層5の上にNi、Auの順に蒸着してなる電極6を作製し、400℃(摂氏400度)、5分の合金化を施した。GaAs(111)A基板1、GaN系半導体層からなる積層、及び電極6からなるエピタキシャルウェハの断面を示したのが図2である。   An electrode 6 is formed by evaporating Ni and Au in this order on the p-type GaN layer 5 which is the outermost surface of the GaN-based semiconductor layer stack, and alloyed at 400 ° C. (400 degrees Celsius) for 5 minutes. gave. FIG. 2 shows a cross section of an epitaxial wafer composed of a GaAs (111) A substrate 1, a lamination composed of a GaN-based semiconductor layer, and an electrode 6.

この後、融点280℃(摂氏280度)の市販のAu-Sn半田7を用いて、上記最表面のp型GaN層5の上の電極6にFe-Ni合金(重量%でNiが46%、残部がFe及び不可避的不純物よりなる。)の導電性基板8を接着した。(図3)
図3に示すエピタキシャルウェハを、アンモニア水と過酸化水素水を1:2で混合して25℃(摂氏25度)に保った溶液に90分間浸漬(ウェットエッチング)したところ、GaAs(111)A基板1のみが除去され図1の構造を得た。
Thereafter, using a commercially available Au-Sn solder 7 having a melting point of 280 ° C. (280 degrees Celsius), the electrode 6 on the p-type GaN layer 5 on the outermost surface is made of an Fe—Ni alloy (46% by weight of Ni). The remaining portion is made of Fe and unavoidable impurities.). (FIG. 3)
The epitaxial wafer shown in FIG. 3 was immersed (wet-etched) for 90 minutes in a solution of ammonia water and hydrogen peroxide mixed at a ratio of 1: 2 and maintained at 25 ° C. (25 degrees Celsius). Only the substrate 1 was removed to obtain the structure shown in FIG.

図1の構造の最表面にあるGaNバッファ層2の上に200℃(摂氏200度)でインジウム(In)の電極を作成し、Ni、Auの順に蒸着してなる電極6との間に電流を流したところ、青色に発光した。なお、重量%でNiが46%、残部がFe及び不可避的不純物からなるFe-Ni合金に替えて、重量%でW80%、Cu20%の焼結合金を用いても、同様に良好な青色に発光した。   An indium (In) electrode is formed at 200 ° C. (200 degrees Celsius) on the GaN buffer layer 2 on the outermost surface of the structure in FIG. 1, and a current is applied between the electrode 6 and Ni and Au deposited in this order. And emitted blue light. In addition, instead of using an Fe-Ni alloy consisting of 46% by weight of Ni and the balance being Fe and unavoidable impurities, a good blue color can be obtained by using a sintered alloy of 80% by weight and 20% of Cu. Emitted.

(比較例) Fe-Ni合金基板とGaAs基板の2種類の相違する基板によって、その相違する基板の光吸収による発光強度の違いを観察するため、図5に示すエピタキシャルウェハの断面のものを比較例とした。   (Comparative Example) In order to observe the difference in light emission intensity due to light absorption of the two different substrates of the Fe-Ni alloy substrate and the GaAs substrate, the cross-section of the epitaxial wafer shown in FIG. 5 was compared. Example.

すなわち、図2の構造におけるGaAs(111)A基板1側に、AuGeNi合金層、Ni層、及びAu層からなる積層構造の電極9を作成し、その電極9とNi、Auの順に蒸着してなる電極6との間に電流を流したところ、青色に発光した。もっとも、比較例の発光強度は、上記実施例の発光強度の7割程度の弱いものであった。   That is, an electrode 9 having a laminated structure including an AuGeNi alloy layer, a Ni layer, and an Au layer is formed on the GaAs (111) A substrate 1 side in the structure of FIG. 2, and the electrode 9, Ni, and Au are deposited in this order. When a current was applied between the electrodes 6 and 6, the device emitted blue light. However, the light emission intensity of the comparative example was about 70% weaker than the light emission intensity of the above example.

実施例においてGaAs基板をエッチング除去したときまでの、エピタキシャルウェハの構造を示す断面図である。FIG. 4 is a cross-sectional view showing the structure of the epitaxial wafer up to when the GaAs substrate is removed by etching in the example. 実施例においてp型電極を作製したときまでの、エピタキシャルウェハの構造を示す断面図である。It is sectional drawing which shows the structure of an epitaxial wafer until a p-type electrode is produced in an Example. 実施例においてp型GaN層側を鉄-ニッケル合金に接着したときまでの、エピタキシャルウェハの構造を示す断面図である。FIG. 3 is a cross-sectional view showing the structure of the epitaxial wafer up to when the p-type GaN layer side is bonded to an iron-nickel alloy in the example. 有機金属クロライド気相エピタキシャル法の装置の概要を示す図である。FIG. 1 is a diagram showing an outline of an apparatus of an organic metal chloride vapor phase epitaxial method. 比較例においてGaAs基板側に電極を作製したときまでの、エピタキシャルウェハの構造を示す断面図である。FIG. 4 is a cross-sectional view showing a structure of an epitaxial wafer up to when an electrode is formed on a GaAs substrate side in a comparative example. サファイア基板を用いた青色半導体発光素子の一例の構造を示す断面図である。It is sectional drawing which shows the structure of an example of the blue semiconductor light emitting element using a sapphire substrate.

符号の説明Explanation of reference numerals

1:GaAs(111)A基板
2:GaNバッファ層
3:n型GaN層
4:InGaN発光層
5:p型GaN層
6:Ni、Auの順に蒸着してなる電極
7:Au-Sn半田
8:Fe-Ni合金の導電性基板
9:AuGeNi合金層、Ni層、Au層からなる積層構造からなる電極
1: GaAs (111) A substrate 2: GaN buffer layer 3: n-type GaN layer 4: InGaN light-emitting layer 5: p-type GaN layer 6: electrode 7 deposited in the order of Ni and Au 7: Au-Sn solder 8: Fe-Ni alloy conductive substrate 9: Electrode having a laminated structure composed of AuGeNi alloy layer, Ni layer and Au layer

Claims (3)

p型電極が設けられたp型窒化ガリウム層若しくはn型電極が設けられたn型窒化ガリウム層、前記p型若しくはn型電極に導電性接着剤で接着された導電性基板、および前記p型若しくはn型窒化ガリウム層上にあってp型若しくはn型電極が設けられている面とは反対面の上に成長した発光層を含む窒化ガリウム系半導体層からなる積層とで構成されていることを特徴とする半導体発光素子。   a p-type gallium nitride layer provided with a p-type electrode or an n-type gallium nitride layer provided with an n-type electrode; a conductive substrate bonded to the p-type or n-type electrode with a conductive adhesive; Or, a stacked structure of a gallium nitride-based semiconductor layer including a light-emitting layer grown on a surface opposite to the surface on which the p-type or n-type electrode is provided on the n-type gallium nitride layer A semiconductor light emitting device characterized by the above-mentioned. 成長用基板の上に成長した発光層を含む窒化ガリウム系半導体層からなる積層の表面に設けた電極面と、導電性基板とを、導電性接着剤を用いて接着した後に、前記成長用基板を除去して製造することを特徴とする請求項1に記載の半導体発光素子の製造方法。   After bonding an electrode surface provided on the surface of a stack of gallium nitride-based semiconductor layers including a light emitting layer grown on a growth substrate and a conductive substrate using a conductive adhesive, the growth substrate The method for manufacturing a semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is manufactured by removing. 発光層を含む窒化ガリウム系半導体層からなる積層と、
該積層の表面に設けた電極と、
前記電極に導電性接着剤で接着された導電性基板と
を備える半導体発光素子。
A stack of gallium nitride based semiconductor layers including a light emitting layer,
An electrode provided on the surface of the laminate;
And a conductive substrate bonded to the electrode with a conductive adhesive.
JP2004202399A 2004-07-08 2004-07-08 Manufacturing method of semiconductor light emitting device Expired - Lifetime JP4479388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202399A JP4479388B2 (en) 2004-07-08 2004-07-08 Manufacturing method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202399A JP4479388B2 (en) 2004-07-08 2004-07-08 Manufacturing method of semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22209097A Division JP3914615B2 (en) 1997-08-19 1997-08-19 Semiconductor light emitting device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009191383A Division JP2009272656A (en) 2009-08-20 2009-08-20 Semiconductor light-emitting element, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004282106A true JP2004282106A (en) 2004-10-07
JP4479388B2 JP4479388B2 (en) 2010-06-09

Family

ID=33297194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202399A Expired - Lifetime JP4479388B2 (en) 2004-07-08 2004-07-08 Manufacturing method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4479388B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009476A (en) * 2009-06-26 2011-01-13 Nec Tokin Corp Lower-surface electrode type solid electrolytic capacitor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009476A (en) * 2009-06-26 2011-01-13 Nec Tokin Corp Lower-surface electrode type solid electrolytic capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JP4479388B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP3914615B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5189681B2 (en) Support substrate for manufacturing semiconductor light emitting device and semiconductor light emitting device using this support substrate
US6156584A (en) Method of manufacturing a semiconductor light emitting device
US6887770B2 (en) Method for fabricating semiconductor device
TWI377697B (en) Method for growing a nitride-based iii-v group compound semiconductor
US8420426B2 (en) Method of manufacturing a light-emitting device
JP2007266577A (en) Nitride semiconductor device and manufacturing method thereof
JP2004363532A (en) Manufacturing method for vertically structured gallium nitride light emitting diode
JP2008543032A (en) InGaAlN light emitting device and manufacturing method thereof
US20070105260A1 (en) Nitride-based semiconductor device and production method thereof
JP2013542608A (en) Method for forming composite substrate
JP2009141093A (en) Light emitting element and method of manufacturing the same
JP2012028547A (en) Semiconductor element and manufacturing method of the same
JP2000091637A (en) Manufacture of semiconductor light emitting element
JP5128335B2 (en) GaN-based semiconductor substrate, manufacturing method thereof, and semiconductor device
CN104620397B (en) Luminescent device including shaped substrates
JP4313478B2 (en) AlGaInP light emitting diode
CN102301548A (en) Semiconductor light-emitting device and method for manufacturing the same
JP2004235581A (en) Process for fabricating light emitting element
JP3642199B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP2007142345A (en) Nitride semiconductor light-emitting element
JP4479388B2 (en) Manufacturing method of semiconductor light emitting device
JPH10178201A (en) Manufacture of semiconductor light-emitting element
JP2006100793A (en) Compound semiconductor light-emitting element
JP2007103894A (en) (Al, Ga, In) N COMPOUND SEMICONDUCTOR AND ITS MANUFACTURE

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term