JP3914615B2 - Semiconductor light emitting device and manufacturing method thereof - Google Patents

Semiconductor light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP3914615B2
JP3914615B2 JP22209097A JP22209097A JP3914615B2 JP 3914615 B2 JP3914615 B2 JP 3914615B2 JP 22209097 A JP22209097 A JP 22209097A JP 22209097 A JP22209097 A JP 22209097A JP 3914615 B2 JP3914615 B2 JP 3914615B2
Authority
JP
Japan
Prior art keywords
electrode
light emitting
substrate
semiconductor light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22209097A
Other languages
Japanese (ja)
Other versions
JPH1168157A (en
Inventor
勝史 秋田
健作 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22209097A priority Critical patent/JP3914615B2/en
Publication of JPH1168157A publication Critical patent/JPH1168157A/en
Application granted granted Critical
Publication of JP3914615B2 publication Critical patent/JP3914615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は,窒化ガリウム(GaN)系半導体を使用した主に青色および緑色の発光素子及びその製造方法に関する。
【0002】
【従来の技術】
図6は、たとえば日経サイエンス10月号(1994)、p.44に記載された、現在市販されているサファイア基板を用いたGaN系の青色および緑色の発光素子の構造を示す断面図である。
【0003】
この青色および緑色発光素子は、サファイア基板11と、基板11上に形成されたGaNバッファ層12と、GaNバッファ層12上に形成された六方晶のGaNエピタキシャル層13とから構成されたエピタキシャルウェハ上に、クラッド層14、発光層15、クラッド層16およびGaNエピタキシャル層17が順に形成されて窒化物系半導体層が積層された構造となる。GaNエピタキシャル層13、17上には、電極18、19がそれぞれ形成されている。また、この青色および緑色発光素子において、GaNバッファ層12は、サファイア基板11とGaNエピタキシャル層13との格子定数の差による歪を緩和するために設けられている。
【0004】
上記の青色および緑色の発光素子は、基板11として絶縁性のサファイアを用いているため、電極を形成して素子を作成する際には、2種の電極を同一面側に形成する必要あることから、フォトリソグラフィによるパターニングが2回以上必要になり、さらに反応性イオンエッチングによる窒化物のエッチングを行う必要もあり、複雑な工程を要する。
【0005】
また、サファイアは硬度が高いため、素子分離の際に切断しにくいという問題もある。そこで、このような欠点を有するサファイアに代えて、導電性のGaAsを基板として使用するという試みがなされている。
【0006】
たとえばJournal of Crystal Growth164(1996)、p149にはGaAs(100)面上に立方晶のGaNの成長が、Journal of Electronic Materials vol.24No.4(1995)、p213ではMOVPE法(有機金属気相エピタキシャル法)によるGaAs(111)A面上及びGaAs(111)B面上へのGaNの成長が報告されている。
【0007】
また特開平8ー181070号公報には、700℃以上の温度範囲おいて特性のよいGaNエピタキシャル層の成長が得られる有機金属クロライド気相エピタキシャル法が開示されている。この方法ではIII化合物半導体の原料であるIII族有機金属を塩化水素と同時に反応管内に導入することにより、III族元素を塩化物として基板上に供給する。
【0008】
【発明が解決しようとする課題】
従来のGaN系半導体層の発光素子は、絶縁性で硬いサファイアを基板に用いているため、電極作製に複雑なプロセスを要し、素子分離の際の切断等の加工も困難があるのは前述の通りである。そこで、例えば導電性GaAsのような基板を用いれば、このような問題は解決される。
【0009】
しかし、例えばGaAsの基板を用いると、GaN系半導体層の発光層から出た光がGaAsの基板に吸収され、その基板からの反射光の強度が下がる。そのためGaAsの基板を用いた場合には十分な発光強度を得ることができない。それは、GaAsの基板のバンドギャップ(結晶内電子の量子状態エネルギーの差)が、GaN系半導体層のそれよりも小さいためと考えられている。
【0010】
本発明の目的は、上述の問題点を解決した製造が容易で、良好な発光をする半導体発光素子を提供することを目的とする。
【0011】
本発明による半導体発光素子は、p型電極が設けられたp型窒化ガリウム層若しくはn型電極が設けられたn型窒化ガリウム層、前記p型およびn型電極のいずれかの電極に導電性接着剤で接着された導電性基板、並びに前記p型若しくはn型窒化ガリウム層上にあって前記電極が設けられている第1の面とは反対側の第2の面の上に成長した発光層を含む窒化ガリウム系半導体層からなる積層とで構成されており、前記導電性基板が鉄−ニッケル合金または銅−タングステン合金から成る。
この半導体発光素子では、前記電極は、前記p型電極であり、前記第1の面の全面に設けられており、前記導電性基板は前記p型電極に前記導電性接着剤で接着されていることが好ましい。
この半導体発光素子では、前記導電性接着剤が金−スズ(Au−Sn)半田または鉛−スズ(Pb−Sn)半田であることが好ましい
本発明による半導体発光素子の製造方法は、成長用ガリウム砒素基板の(111)A面上に成長した発光層を含む窒化ガリウム系半導体層からなる積層の一表面に設けた電極面と、銅−タングステン合金または鉄−ニッケル合金からなる導電性基板とを、導電性接着剤を用いて接着した後に、前記成長用ガリウム砒素基板を除去する。
この製造方法では、該電極の電極面とを前記導電性接着剤を用いて接着した後に、前記積層の他表面上に別の電極を形成することができる。
この製造方法では、前記成長用ガリウム砒素基板を除去した後に、前記窒化ガリウム系半導体層からなる積層および前記導電性基板を加工して半導体発光素子に分離することができる。
この製造方法では、前記窒化ガリウム系半導体層が六方晶であることができる。
この製造方法では、前記成長用ガリウム砒素基板をアンモニア系エッチャントを用いたウエットエッチングにより除去することが好ましい。
本発明による半導体発光素子は、発光層を含む窒化ガリウム系半導体層からなる積層と、該積層の一方の表面に設けたp型電極と、該積層の他方の表面に設けたn型電極と、前記p型電極およびn型電極のいずれか一方の電極に導電性接着剤で接着されており鉄−ニッケル合金または銅−タングステン合金からなる導電性基板とを備える。
この半導体発光素子では、前記電極は、該積層の一方の表面の全体に設けられており、前記電極は前記p型電極である。
この半導体発光素子では、前記導電性接着剤が金−スズ(Au−Sn)半田または鉛−スズ(Pb−Sn)半田であることが好ましい。
また、半導体発光素子は、p型電極が設けられたp型GaN層と、前記p型電極と導電性接着剤により接着された導電性基板と、前記p型GaN層上に形成されたGaN系半導体層の積層構造、あるいは、n型電極がもうけられたn型GaN層と、前記n型電極と導電性接着剤により接着された導電性基板と、前記n型GaN層上に形成されたGaN系半導体層の積層構造とからなる。
【0012】
そして、本発明の半導体発光素子は、前記導電性基板がFe-Ni合金またはCu-W合金であって、前記導電性接着剤がAu-Sn半田またはPb-Sn半田である。
【0013】
本発明による半導体発光素子の製造方法は、GaAs、InP、InAs若しくはGaPである成長用基板にGaN系半導体層の積層を成長した後、導電性接着剤により前記積層の表面に設けた電極面を導電性基板に接着した。そして、前記GaAs、InP、InAs若しくはGaPである成長用基板を除去することを特徴としている。
【0014】
また、前記成長用基板が立方晶(111)基板であり、前記GaN系半導体層が六方晶である。特に成長用基板がGaAs(111)Aであり、GaN系半導体層が六方晶である。成長用基板をアンモニア系エッチャントによってウェットエッチングすることにより除去する
【0015】
【発明の実施の形態】
本発明による半導体発光素子は、発光素子の構造に絶縁層を含まない。従って、絶縁層であるサファイアを基板に用いた場合のように電極形成に複雑なプロセスを必要としない。また、GaN系半導体層の発光層よりもバンドギャップの小さいGaAsのようなものを成長用基板として用いた場合、導電性基板に導電性接着剤を用いて発光層を含むGaN系半導体層の積層を接着した後、その積層を成長させた成長用基板を除去すれば、前記成長用基板による光の吸収がなくなり良好な発光となる。
【0016】
導電性基板として導電性並びに熱伝導性に優れたFe-Ni合金またはCu-W合金を用いると、低消費電力による発光が可能であり、熱の放出もよくなる。
【0017】
導電性接着剤には融点が250℃以上あるAu-Sn半田(例えば、融点280℃の市販品)またはPb-Sn半田(例えば、融点280℃の市販品)を用いると、電極形成のために温度を200℃程度まで上げることができ、良好な電極を容易に作成できる。
【0018】
GaN系半導体層の積層が形成される成長用基板として、GaAs、InP、InAs若しくはGaPを用いると、その成長用基板は容易にエッチング除去できる。また立方晶(111)基板を用いると六方晶GaNをエピタキシャル成長することができる。
【0019】
さらに、GaAs(111)A基板((111)面の上が、全てGaであるGaAs基板)を用いれば、良好なGaN系半導体層の積層を作製することができる。
【0020】
GaAs基板のエッチングにはアンモニア系エッチャントを用いてウェットエッチングを行うと、GaAs基板をエッチング除去することが容易であって、またGaN系半導体層並びにその積層に損傷を与えることがないため、上記エッチャントが好ましい。
【0021】
次に本願発明をどのように実施するかを具体的に示した実施例を記載する。
【0022】
(実施例) 有機金属クロライド気相エピタキシャル法(図4にその装置の概要を示すが、石英からなる反応チャンバー54にGaAs(111)A基板1を設置する。本装置は、ガス導入口51、52、排気口53及び抵抗加熱ヒーター55を備えている。なお、本装置は本願発明者が開示した特開平8ー181070号公報に示した装置と同じである。)を用いて、厚さ350μmのGaAs(111)A基板1上に、厚さ100nmのGaNバッファ層2、厚さ2μmでキャリア濃度1×1019(cm-3)のn型GaN層3、厚さ0.1μmのInGaN発光層4、厚さ0.5μmでキャリア濃度1×1018(cm-3)の0.5μmのp型GaN層5からなるGaN系半導体層の積層を、この順に成長した。
【0023】
上記GaN系半導体層からなる積層の最表面であるp型GaN層5の上にNi、Auの順に蒸着してなる電極6を作製し、400℃、5分の合金化を施した。GaAs(111)A基板1、GaN系半導体層からなる積層、及び電極6からなるエピタキシャルウェハの断面を示したのが図2である。
【0024】
この後、融点280℃の市販のAu-Sn半田7を用いて、上記最表面のp型GaN層5の上の電極6にFe-Ni合金(重量%でNiが46%、残部がFe及び不可避的不純物よりなる。)の導電性基板8を接着した。(図3)
【0025】
図3に示すエピタキシャルウェハを、アンモニア水と過酸化水素水を1:2で混合して25℃に保った溶液に90分間浸漬(ウェットエッチング)したところ、GaAs(111)A基板1のみが除去され図1の構造を得た。
【0026】
図1の構造の最表面にあるGaNバッファ層2の上に200℃でインジウム(In)の電極を作成し、Ni、Auの順に蒸着してなる電極6との間に電流を流したところ、青色に発光した。なお、重量%でNiが46%、残部がFe及び不可避的不純物からなるFe-Ni合金に替えて、重量%でW80%、Cu20%の焼結合金を用いても、同様に良好な青色に発光した。
【0027】
(比較例) Fe-Ni合金基板とGaAs基板の2種類の相違する基板によって、その相違する基板の光吸収による発光強度の違いを観察するため、図5に示すエピタキシャルウェハの断面のものを比較例とした。
【0028】
すなわち、図2の構造におけるGaAs(111)A基板1側に、AuGeNi合金層、Ni層、及びAu層からなる積層構造の電極9を作成し、その電極9とNi、Auの順に蒸着してなる電極6との間に電流を流したところ、青色に発光した。もっとも、比較例の発光強度は、上記実施例の発光強度の7割程度の弱いものであった。
【0029】
【発明の効果】
以上説明したように、この発明によれば、基板での光の吸収が少なく、良好に発光する半導体発光素子を、容易に製造することが可能になった。
【図面の簡単な説明】
【図1】実施例においてGaAs基板をエッチング除去したときまでの、エピタキシャルウェハの構造を示す断面図である。
【図2】実施例においてp型電極を作製したときまでの、エピタキシャルウェハの構造を示す断面図である。
【図3】実施例においてp型GaN層側を鉄-ニッケル合金に接着したときまでの、エピタキシャルウェハの構造を示す断面図である。
【図4】有機金属クロライド気相エピタキシャル法の装置の概要を示す図である。
【図5】比較例においてGaAs基板側に電極を作製したときまでの、エピタキシャルウェハの構造を示す断面図である。
【図6】サファイア基板を用いた青色半導体発光素子の一例の構造を示す断面図である。
【符号の説明】
1:GaAs(111)A基板
2:GaNバッファ層
3:n型GaN層
4:InGaN発光層
5:p型GaN層
6:Ni、Auの順に蒸着してなる電極
7:Au-Sn半田
8:Fe-Ni合金の導電性基板
9:AuGeNi合金層、Ni層、Au層からなる積層構造からなる電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blue and green light emitting element using a gallium nitride (GaN) based semiconductor and a method for manufacturing the same.
[0002]
[Prior art]
FIG. 6 shows, for example, the Nikkei Science October issue (1994), p. FIG. 44 is a cross-sectional view showing the structure of a GaN-based blue and green light-emitting element described in 44 using a commercially available sapphire substrate.
[0003]
The blue and green light emitting elements are formed on an epitaxial wafer composed of a sapphire substrate 11, a GaN buffer layer 12 formed on the substrate 11, and a hexagonal GaN epitaxial layer 13 formed on the GaN buffer layer 12. In addition, a cladding layer 14, a light emitting layer 15, a cladding layer 16, and a GaN epitaxial layer 17 are formed in this order, and a nitride semiconductor layer is laminated. Electrodes 18 and 19 are formed on the GaN epitaxial layers 13 and 17, respectively. Further, in the blue and green light emitting elements, the GaN buffer layer 12 is provided to alleviate strain due to a difference in lattice constant between the sapphire substrate 11 and the GaN epitaxial layer 13.
[0004]
Since the blue and green light emitting elements described above use insulating sapphire as the substrate 11, when forming an element by forming an electrode, it is necessary to form two types of electrodes on the same surface side. Therefore, it is necessary to perform patterning by photolithography twice or more, and further, it is necessary to perform nitride etching by reactive ion etching, which requires a complicated process.
[0005]
Further, since sapphire has a high hardness, there is also a problem that it is difficult to cut during element isolation. Therefore, an attempt has been made to use conductive GaAs as a substrate instead of sapphire having such defects.
[0006]
For example, in Journal of Crystal Growth 164 (1996), p149, the growth of cubic GaN on a GaAs (100) surface was reported in Journal of Electronic Materials vol. 24No. 4 (1995), p213 reports the growth of GaN on the GaAs (111) A and GaAs (111) B surfaces by the MOVPE method (metal organic vapor phase epitaxy).
[0007]
Japanese Patent Application Laid-Open No. 8-181070 discloses an organometallic chloride vapor phase epitaxy method in which a GaN epitaxial layer having good characteristics can be grown in a temperature range of 700 ° C. or higher. In this method, a group III organic metal, which is a raw material for a III compound semiconductor, is introduced into a reaction tube simultaneously with hydrogen chloride, thereby supplying a group III element as a chloride onto a substrate.
[0008]
[Problems to be solved by the invention]
The conventional GaN-based semiconductor layer light-emitting elements use insulating and hard sapphire for the substrate, which requires a complicated process for electrode preparation and difficult processing such as cutting during element separation. It is as follows. Therefore, such a problem can be solved by using a substrate such as conductive GaAs.
[0009]
However, when a GaAs substrate is used, for example, light emitted from the light emitting layer of the GaN-based semiconductor layer is absorbed by the GaAs substrate, and the intensity of reflected light from the substrate is lowered. Therefore, when a GaAs substrate is used, sufficient light emission intensity cannot be obtained. This is thought to be because the band gap of the GaAs substrate (difference in quantum state energy of electrons in the crystal) is smaller than that of the GaN-based semiconductor layer.
[0010]
An object of the present invention is to provide a semiconductor light emitting device that can be easily manufactured and solves the above-described problems and emits light with good quality.
[0011]
The semiconductor light-emitting device according to the present invention includes a p-type gallium nitride layer provided with a p-type electrode, an n-type gallium nitride layer provided with an n-type electrode, and conductive adhesion to any one of the p-type and n-type electrodes. And a light emitting layer grown on a second surface opposite to the first surface on which the electrode is provided on the p-type or n-type gallium nitride layer. The conductive substrate is made of an iron-nickel alloy or a copper-tungsten alloy.
In this semiconductor light emitting device, the electrode is the p-type electrode and is provided on the entire surface of the first surface, and the conductive substrate is bonded to the p-type electrode with the conductive adhesive. It is preferable.
In this semiconductor light emitting device, the conductive adhesive is preferably gold-tin (Au—Sn) solder or lead-tin (Pb—Sn) solder .
A method of manufacturing a semiconductor light emitting device according to the present invention includes an electrode surface provided on one surface of a stack of gallium nitride based semiconductor layers including a light emitting layer grown on a (111) A surface of a growth gallium arsenide substrate, and a copper- After bonding the conductive substrate made of tungsten alloy or iron-nickel alloy using a conductive adhesive, the growth gallium arsenide substrate is removed.
In this manufacturing method, after the electrode surface of the electrode is bonded using the conductive adhesive, another electrode can be formed on the other surface of the laminate.
In this manufacturing method, after the growth gallium arsenide substrate is removed, the stack of gallium nitride based semiconductor layers and the conductive substrate can be processed and separated into semiconductor light emitting devices.
In this manufacturing method, the gallium nitride based semiconductor layer may be hexagonal.
In this manufacturing method, it is preferable that the growth gallium arsenide substrate is removed by wet etching using an ammonia-based etchant.
A semiconductor light emitting device according to the present invention includes a stack composed of a gallium nitride based semiconductor layer including a light emitting layer, a p-type electrode provided on one surface of the stack, an n-type electrode provided on the other surface of the stack, A conductive substrate made of an iron-nickel alloy or a copper-tungsten alloy is attached to one of the p-type electrode and the n-type electrode with a conductive adhesive.
In this semiconductor light emitting device, the electrode is provided on the entire surface of one of the layers, and the electrode is the p-type electrode.
In this semiconductor light emitting device, the conductive adhesive is preferably gold-tin (Au—Sn) solder or lead-tin (Pb—Sn) solder.
The semiconductor light emitting device includes a p-type GaN layer provided with a p-type electrode, a conductive substrate bonded to the p-type electrode with a conductive adhesive, and a GaN-based layer formed on the p-type GaN layer. A laminated structure of semiconductor layers, or an n-type GaN layer provided with an n-type electrode, a conductive substrate bonded to the n-type electrode with a conductive adhesive, and GaN formed on the n-type GaN layer And a laminated structure of a semiconductor layer.
[0012]
In the semiconductor light emitting device of the present invention, the conductive substrate is an Fe—Ni alloy or a Cu—W alloy, and the conductive adhesive is Au—Sn solder or Pb—Sn solder.
[0013]
A method for manufacturing a semiconductor light emitting device according to the present invention includes a method of growing a stacked layer of a GaN-based semiconductor layer on a growth substrate of GaAs, InP, InAs, or GaP, and then forming an electrode surface provided on the surface of the stacked layer with a conductive adhesive. Bonded to a conductive substrate. Then, the growth substrate made of GaAs, InP, InAs or GaP is removed.
[0014]
The growth substrate is a cubic (111) substrate, and the GaN-based semiconductor layer is a hexagonal crystal. In particular, the growth substrate is GaAs (111) A, and the GaN-based semiconductor layer is hexagonal. The growth substrate is removed by wet etching with an ammonia-based etchant .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The semiconductor light emitting device according to the present invention does not include an insulating layer in the structure of the light emitting device. Therefore, a complicated process is not required for electrode formation unlike the case where sapphire which is an insulating layer is used for a substrate. In addition, when a growth substrate using GaAs or the like having a smaller band gap than the light emitting layer of the GaN-based semiconductor layer is used, the GaN-based semiconductor layer including the light-emitting layer is stacked on the conductive substrate using a conductive adhesive. If the growth substrate on which the laminate is grown is removed after bonding, light is not absorbed by the growth substrate, and good light emission is obtained.
[0016]
When an Fe—Ni alloy or Cu—W alloy having excellent conductivity and thermal conductivity is used as the conductive substrate, light emission with low power consumption is possible and heat release is improved.
[0017]
When using Au-Sn solder (for example, a commercial product with a melting point of 280 ° C) or Pb-Sn solder (for example, a commercial product with a melting point of 280 ° C) with a melting point of 250 ° C or higher for the conductive adhesive, The temperature can be raised to about 200 ° C., and a good electrode can be easily produced.
[0018]
When GaAs, InP, InAs, or GaP is used as a growth substrate on which a stack of GaN-based semiconductor layers is formed, the growth substrate can be easily removed by etching. Further, when a cubic (111) substrate is used, hexagonal GaN can be epitaxially grown.
[0019]
Furthermore, if a GaAs (111) A substrate (a GaAs substrate in which all of the (111) surface is Ga) is used, a good stack of GaN-based semiconductor layers can be produced.
[0020]
Etching the GaAs substrate with an ammonia-based etchant makes it easy to remove the GaAs substrate by etching and does not damage the GaN-based semiconductor layer and its stack. Is preferred.
[0021]
Next, examples that specifically show how the present invention is implemented will be described.
[0022]
(Example) Organometallic chloride vapor phase epitaxial method (FIG. 4 shows an outline of the apparatus, in which a GaAs (111) A substrate 1 is placed in a reaction chamber 54 made of quartz. 52, an exhaust port 53 and a resistance heater 55. The apparatus is the same as the apparatus disclosed in Japanese Patent Application Laid-Open No. 8-181070 disclosed by the present inventor. A GaN buffer layer 2 having a thickness of 100 nm, an n-type GaN layer 3 having a carrier concentration of 1 × 10 19 (cm −3 ), and an InGaN light emitting layer having a thickness of 0.1 μm. 4. A stack of GaN-based semiconductor layers composed of a p-type GaN layer 5 having a thickness of 0.5 μm and a carrier concentration of 1 × 10 18 (cm −3 ) of 0.5 μm was grown in this order.
[0023]
An electrode 6 was prepared by depositing Ni and Au in this order on the p-type GaN layer 5 which is the outermost surface of the laminate composed of the GaN-based semiconductor layer, and alloyed at 400 ° C. for 5 minutes. FIG. 2 shows a cross section of an epitaxial wafer composed of a GaAs (111) A substrate 1, a laminate composed of a GaN-based semiconductor layer, and an electrode 6.
[0024]
Thereafter, using a commercially available Au—Sn solder 7 having a melting point of 280 ° C., the electrode 6 on the p-type GaN layer 5 on the outermost surface was coated with Fe—Ni alloy (46% by weight of Ni and the balance of Fe and Ni). A conductive substrate 8 made of inevitable impurities) was adhered. (Figure 3)
[0025]
When the epitaxial wafer shown in FIG. 3 is immersed for 90 minutes (wet etching) in a solution maintained at 25 ° C. by mixing ammonia water and hydrogen peroxide water in a ratio of 1: 2, only the GaAs (111) A substrate 1 is removed. The structure shown in FIG. 1 was obtained.
[0026]
When an indium (In) electrode was formed at 200 ° C. on the GaN buffer layer 2 on the outermost surface of the structure of FIG. 1 and a current was passed between the electrode 6 formed by depositing Ni and Au in this order, Blue light was emitted. It should be noted that even if a sintered alloy of 80% by weight and 20% Cu is used instead of the Fe-Ni alloy consisting of 46% by weight of Ni and the balance being Fe and inevitable impurities, the same blue color will be obtained. Emitted light.
[0027]
(Comparative example) In order to observe the difference in emission intensity due to light absorption of two different types of substrates, an Fe-Ni alloy substrate and a GaAs substrate, the cross-sections of the epitaxial wafer shown in FIG. 5 are compared. As an example.
[0028]
That is, an electrode 9 having a laminated structure composed of an AuGeNi alloy layer, a Ni layer, and an Au layer is formed on the GaAs (111) A substrate 1 side in the structure of FIG. 2, and the electrode 9 is deposited in the order of Ni and Au. When an electric current was passed between the electrode 6 and the electrode 6, blue light was emitted. However, the emission intensity of the comparative example was as weak as about 70% of the emission intensity of the above example.
[0029]
【The invention's effect】
As described above, according to the present invention, it is possible to easily manufacture a semiconductor light-emitting element that emits light satisfactorily with little light absorption by the substrate.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of an epitaxial wafer until a GaAs substrate is removed by etching in an embodiment.
FIG. 2 is a cross-sectional view showing a structure of an epitaxial wafer until a p-type electrode is produced in an example.
FIG. 3 is a cross-sectional view showing the structure of an epitaxial wafer until the p-type GaN layer side is bonded to an iron-nickel alloy in an example.
FIG. 4 is a diagram showing an outline of an apparatus for organometallic chloride vapor phase epitaxy.
FIG. 5 is a cross-sectional view showing the structure of an epitaxial wafer until an electrode is formed on the GaAs substrate side in a comparative example.
FIG. 6 is a cross-sectional view showing a structure of an example of a blue semiconductor light emitting element using a sapphire substrate.
[Explanation of symbols]
1: GaAs (111) A substrate 2: GaN buffer layer 3: n-type GaN layer 4: InGaN light emitting layer 5: p-type GaN layer 6: Ni and Au deposited in this order 7: Au-Sn solder 8: Fe-Ni alloy conductive substrate 9: electrode having a laminated structure composed of an AuGeNi alloy layer, a Ni layer, and an Au layer

Claims (11)

p型電極が設けられたp型窒化ガリウム層若しくはn型電極が設けられたn型窒化ガリウム層、前記p型およびn型電極のいずれかの電極に導電性接着剤で接着された導電性基板、並びに前記p型若しくはn型窒化ガリウム層上にあって前記電極が設けられている第1の面とは反対側の第2の面の上に成長した発光層を含む窒化ガリウム系半導体層からなる積層とで構成されており、
前記導電性基板が鉄−ニッケル合金または銅−タングステン合金から成ることを特徴とする半導体発光素子。
a p-type gallium nitride layer provided with a p-type electrode, an n-type gallium nitride layer provided with an n-type electrode , and a conductive substrate bonded to any one of the p-type and n-type electrodes with a conductive adhesive And a gallium nitride based semiconductor layer including a light emitting layer on the p-type or n-type gallium nitride layer and grown on a second surface opposite to the first surface on which the electrode is provided. laminated with is composed of comprising,
The semiconductor light emitting device, wherein the conductive substrate is made of an iron-nickel alloy or a copper-tungsten alloy .
前記電極は、前記p型電極であり、前記第1の面の全面に設けられており、The electrode is the p-type electrode and provided on the entire surface of the first surface;
前記導電性基板は前記p型電極に前記導電性接着剤で接着されている、請求項1に記載された半導体発光素子。The semiconductor light-emitting element according to claim 1, wherein the conductive substrate is bonded to the p-type electrode with the conductive adhesive.
前記導電性接着剤が金−スズ(Au−Sn)半田または鉛−スズ(Pb−Sn)半田であることを特徴とする請求項1または請求項2に記載の半導体発光素子。 The conductive adhesive gold - tin (Au-Sn) solder or a lead - tin (Pb-Sn) semiconductor light-emitting device according to claim 1 or claim 2, characterized in that a solder. 成長用ガリウム砒素基板の(111)A面上に成長した発光層を含む窒化ガリウム系半導体層からなる積層の表面に設けた電極面と、銅−タングステン合金または鉄−ニッケル合金からなる導電性基板とを、導電性接着剤を用いて接着した後に、前記成長用ガリウム砒素基板を除去することを特徴とする半導体発光素子の製造方法。An electrode surface provided on one surface of a stack composed of a gallium nitride based semiconductor layer including a light emitting layer grown on a (111) A surface of a growth gallium arsenide substrate , and a conductivity composed of a copper-tungsten alloy or an iron-nickel alloy A method of manufacturing a semiconductor light emitting device, comprising: removing a growth gallium arsenide substrate after bonding the substrate to the substrate using a conductive adhesive. 該電極の電極面とを前記導電性接着剤を用いて接着した後に、前記積層の他表面上に別の電極を形成することを特徴とする請求項4に記載された半導体発光素子の製造方法。 5. The method of manufacturing a semiconductor light emitting element according to claim 4 , wherein another electrode is formed on the other surface of the stacked layer after the electrode surface of the electrode is bonded using the conductive adhesive. 6. . 前記成長用ガリウム砒素基板を除去した後に、前記窒化ガリウム系半導体層からなる積層および前記導電性基板を加工して半導体発光素子に分離することを特徴とする請求項4または請求項5に記載された半導体発光素子の製造方法。 6. The semiconductor light emitting device according to claim 4 , wherein after the growth gallium arsenide substrate is removed, the stack of the gallium nitride based semiconductor layers and the conductive substrate are processed and separated into semiconductor light emitting devices. A method for manufacturing a semiconductor light emitting device. 前記窒化ガリウム系半導体層が六方晶であることを特徴とする請求項4から6のいずれか一項に記載の半導体発光素子の製造方法。The method of manufacturing a semiconductor light-emitting device according to any one of claims 4 to 6, wherein the gallium nitride based semiconductor layer is a hexagonal crystal. 前記成長用ガリウム砒素基板をアンモニア系エッチャントを用いたウエットエッチングにより除去することを特徴とする請求項4〜7のいずれか1項に記載の半導体発光素子の製造方法。 8. The method of manufacturing a semiconductor light-emitting element according to claim 4, wherein the growth gallium arsenide substrate is removed by wet etching using an ammonia-based etchant. 発光層を含む窒化ガリウム系半導体層からなる積層と、
該積層の一方の表面に設けたp型電極と、
該積層の他方の表面に設けたn型電極と、
前記p型電極およびn型電極のいずれか一方の電極に導電性接着剤で接着されており鉄−ニッケル合金または銅−タングステン合金からなる導電性基板と
を備える半導体発光素子。
A stack of gallium nitride based semiconductor layers including a light emitting layer;
A p-type electrode provided on one surface of the laminate;
An n-type electrode provided on the other surface of the laminate;
A semiconductor light emitting device comprising: a conductive substrate made of an iron-nickel alloy or a copper-tungsten alloy, which is bonded to one of the p-type electrode and the n-type electrode with a conductive adhesive.
前記電極は、該積層の一方の表面の全体に設けられており、
前記電極は前記p型電極であることを特徴とする請求項9に記載された半導体発光素子。
The electrode is provided on the entire surface of one side of the stack,
The semiconductor light emitting device according to claim 9, wherein the electrode is the p-type electrode .
前記導電性接着剤が金−スズ(Au−Sn)半田または鉛−スズ(Pb−Sn)半田であることを特徴とする請求項9または請求項10に記載の半導体発光素子。The semiconductor light emitting device according to claim 9 or 10, wherein the conductive adhesive is gold-tin (Au-Sn) solder or lead-tin (Pb-Sn) solder.
JP22209097A 1997-08-19 1997-08-19 Semiconductor light emitting device and manufacturing method thereof Expired - Lifetime JP3914615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22209097A JP3914615B2 (en) 1997-08-19 1997-08-19 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22209097A JP3914615B2 (en) 1997-08-19 1997-08-19 Semiconductor light emitting device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004202399A Division JP4479388B2 (en) 2004-07-08 2004-07-08 Manufacturing method of semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH1168157A JPH1168157A (en) 1999-03-09
JP3914615B2 true JP3914615B2 (en) 2007-05-16

Family

ID=16776977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22209097A Expired - Lifetime JP3914615B2 (en) 1997-08-19 1997-08-19 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3914615B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501225B2 (en) * 2000-02-21 2010-07-14 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
WO2001084640A1 (en) * 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Gan-based light-emitting-diode chip and a method for producing a luminescent diode component
DE10051465A1 (en) * 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Method for producing a GaN-based semiconductor component
EP2270875B1 (en) * 2000-04-26 2018-01-10 OSRAM Opto Semiconductors GmbH Sermiconductor light emitting device and method of manufacturing the same
DE10020464A1 (en) * 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor element has a semiconductor body formed by a stack of different semiconductor layers based on gallium nitride
DE10040448A1 (en) * 2000-08-18 2002-03-07 Osram Opto Semiconductors Gmbh Semiconductor chip and method for its production
DE10042947A1 (en) 2000-08-31 2002-03-21 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component based on GaN
JP2002110865A (en) 2000-09-27 2002-04-12 Toshiba Corp Circuit device
EP1437776B1 (en) 2001-10-12 2011-09-21 Nichia Corporation Light emitting device and method for manufacture thereof
US20030189215A1 (en) 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
US8294172B2 (en) 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
JP4233268B2 (en) * 2002-04-23 2009-03-04 シャープ株式会社 Nitride-based semiconductor light-emitting device and manufacturing method thereof
JP2006324685A (en) * 2002-07-08 2006-11-30 Nichia Chem Ind Ltd Nitride semiconductor element and manufacturing method thereof
KR101030068B1 (en) 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 Method of Manufacturing Nitride Semiconductor Device and Nitride Semiconductor Device
KR100495215B1 (en) 2002-12-27 2005-06-14 삼성전기주식회사 VERTICAL GaN LIGHT EMITTING DIODE AND METHOD OF PRODUCING THE SAME
JP4218597B2 (en) 2003-08-08 2009-02-04 住友電気工業株式会社 Manufacturing method of semiconductor light emitting device
JP2005223165A (en) 2004-02-06 2005-08-18 Sanyo Electric Co Ltd Nitride-based light emitting element
KR100541104B1 (en) 2004-02-18 2006-01-11 삼성전기주식회사 Nitride based semiconductor light emitting device
JP4868709B2 (en) * 2004-03-09 2012-02-01 三洋電機株式会社 Light emitting element
WO2005088666A1 (en) * 2004-03-12 2005-09-22 Hamamatsu Photonics K.K. Process for producing layered member and layered member
TWI244748B (en) * 2004-10-08 2005-12-01 Epistar Corp A light-emitting device with a protecting structure
KR100661717B1 (en) 2005-06-16 2006-12-26 엘지전자 주식회사 Manufacturing Process of Light Emitting Diode Using Aluminium Buffer Layer
CN102361052B (en) 2006-06-23 2015-09-30 Lg电子株式会社 There is light-emitting diode and the manufacture method thereof of vertical topology
US8643195B2 (en) * 2006-06-30 2014-02-04 Cree, Inc. Nickel tin bonding system for semiconductor wafers and devices
KR100921466B1 (en) 2007-08-30 2009-10-13 엘지전자 주식회사 Nitride light emitting device and method of making the same

Also Published As

Publication number Publication date
JPH1168157A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
JP3914615B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3230638B2 (en) Light emitting diode manufacturing method
US8829488B2 (en) Process for preparing a bonding type semiconductor substrate
JP5390063B2 (en) Single crystal nitride semiconductor substrate and high quality nitride light emitting device manufacturing method using the same
US6887770B2 (en) Method for fabricating semiconductor device
JP3700872B2 (en) Nitride III-V compound semiconductor device and method for manufacturing the same
JP4225510B2 (en) Compound semiconductor light emitting diode and method for manufacturing the same
WO2006121000A1 (en) Nitride semiconductor element and production method therefor
JP2008543032A (en) InGaAlN light emitting device and manufacturing method thereof
JP3917223B2 (en) Manufacturing method of semiconductor light emitting device
US20070105260A1 (en) Nitride-based semiconductor device and production method thereof
JP2004207508A (en) Light emitting element and its manufacturing method thereof
JP2000091637A (en) Manufacture of semiconductor light emitting element
JPH11177134A (en) Manufacture of semiconductor element, semiconductor, manufacture of light emitting element, and light emitting element
US7063997B2 (en) Process for producing nitride semiconductor light-emitting device
US20230343890A1 (en) Epitaxial wafer for ultraviolet light emitting device, method for producing metal bonded substrate for ultraviolet light emitting device, method for producing ultraviolet light emitting device, and method for producing ultraviolet light emitting device array
JP3706448B2 (en) Semiconductor light emitting device
JP4313478B2 (en) AlGaInP light emitting diode
JP3642199B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP2004235581A (en) Process for fabricating light emitting element
JP3566476B2 (en) Method for manufacturing semiconductor light emitting device
JP3214367B2 (en) Method for manufacturing semiconductor light emitting device
JP3577463B2 (en) III-nitride semiconductor light emitting diode
TW201727939A (en) Light-emitting element and manufacturing method therefor
JP4479388B2 (en) Manufacturing method of semiconductor light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040414

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050117

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term