JP2004273201A - Flat battery - Google Patents

Flat battery Download PDF

Info

Publication number
JP2004273201A
JP2004273201A JP2003059956A JP2003059956A JP2004273201A JP 2004273201 A JP2004273201 A JP 2004273201A JP 2003059956 A JP2003059956 A JP 2003059956A JP 2003059956 A JP2003059956 A JP 2003059956A JP 2004273201 A JP2004273201 A JP 2004273201A
Authority
JP
Japan
Prior art keywords
electrode group
flat
flat electrode
battery case
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003059956A
Other languages
Japanese (ja)
Inventor
Hirobumi Sato
博文 佐藤
Hiroaki Kitayama
博章 北山
Kunihiko Bessho
邦彦 別所
Makoto Kaneko
誠 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003059956A priority Critical patent/JP2004273201A/en
Publication of JP2004273201A publication Critical patent/JP2004273201A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat battery reducing breakage of an electrode plate and failure caused by coming off of an active material layer in housing a flat electrode group in a battery case and enhancing discharge rate characteristics by increasing impregnation of a nonaqueous electrolyte into the flat electrode group in the flat battery in which a lower bottom surface and the side surface of the vicinity of the bottom surface of a flat electrode group comprising almost the straight line part and a curvature part in which a positive plate and a negative plate are insulated through a separator are insulated with an insulating tape and housed in a battery case with a bottom in which the upper part is opened, and the opening part of the battery case is sealed. <P>SOLUTION: The side surface in the vicinity of at least the bottom surface of at least the straight line part of the flat electrode group is covered with an insulating tape obtained by sticking an adhesive mass on a base material. Covering of 1/10 to 8/10 of almost the straight line part is preferable. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、扁平電極群を電池ケースに収納する際の扁平電極群の破損や活物質層の脱落を抑制すると共に、電池ケースに収納された扁平電極群への非水電解液の注液性に優れた扁平形電池に関する。
【0002】
【従来の技術】
近年、携帯電話、携帯情報端末等の携帯電子機器の性能は、搭載される半導体素子、電子回路だけでなく、充放電可能な密閉型二次電池の性能に大きく依存しており、搭載される密閉型二次電池の容量アップと共に、軽量・コンパクト化も同時に実現することが望まれている。これらの要望に応える密閉型二次電池として、ニッケルカドミウム蓄電池の約2倍のエネルギー密度を有するニッケル水素蓄電池が開発され、次いで、これを上回るリチウムイオン電池が開発され、使用機器の用途に応じて使い分けされている。
【0003】
これらの密閉型二次電池は、正極板と負極板とをセパレータを介して渦巻状に巻回や積層した極板群と電解液からなる発電要素を円筒形、扁平角形の電池ケース内に収納し、かしめ封口やレーザー封口することによって構成されており、中でもスペースの有効利用の観点から薄形な扁平形電池、特に軽量化要求も満たす扁平角形のアルミニウム製ケースを用いたリチウムイオン電池が脚光を浴びている。
【0004】
この扁平形電池は、正極板と負極板とがセパレーターを介して絶縁されている略直線部と曲率部からなる扁平電極群を上部が開口している有底の電池ケース内に収納し、非水電解液を注入、含浸させた後、前記電池ケースの開口部を密閉することによって扁平形電池を作製している。
【0005】
上記のような略直線部と曲率部からなる扁平電極群を有底の電池ケース内に収納する際に、活物質が多く高密度で充填されている為、電池ケースとの間隔に余裕がなく、電池ケース内面と前記扁平電極群の略直線部との平行度が出ていないと、扁平電極群を電池ケースに収納するのが困難になり、収納する圧力を上げると扁平電極群の最外周側面や底面の破損や活物質層の脱落を招き、脱落した活物質によって短絡に至る場合があった。
【0006】
このような不具合の発生を抑制するために、扁平電極群の最外周の終端部または群全周を絶縁テープにて固定することによって、巻回の緩みに起因する扁平電極群の膨らみを防止し、電池ケースに収納する際の極板のずれ、活物質層の脱落を抑制している(例えば、特許文献1参照)。
【0007】
しかしながら、このような構成において絶縁テープは、扁平電極群の巻回緩みに起因する膨らみを防止しているだけであり、電池ケースに収納する際に、扁平電極群の底面が電池ケースに接触し、扁平電極群の破損や活物質層の脱落を押さえる効果は期待できない。
【0008】
また、シート材を扁平電極群の最外周全面と扁平電極群の下端部より下方に突出させたものを電池ケースに収納する方法の場合(例えば、特許文献2参照)、扁平電極群の下端部より下方に突出させたシート材が外側に湾曲し、電池ケースに収納できない場合がある。
【0009】
電池ケースに収納したシート材の折り曲がりが一定にならない為に、扁平電極群の高さが一定ならない、注液した電解液の扁平電極群への含浸性が悪いといった課題がある。
【0010】
そこで、扁平電極群の収納側に位置する底面に、底面の幅より広く設定された絶縁テープを貼付したものを電池ケースに収納する方法が提案(例えば、特許文献3参照)されており、扁平電極群の底面およびこの底面近傍の側面が被覆されているので、扁平電極群の端面が電池ケースと接触し、活物質層が脱落するのを抑制している。
【0011】
ところが、扁平電極群の底面全体およびこの底面近傍の側面が被覆されているため、扁平電極群を電池ケースに収納した後、電解液を注入する工程において、絶縁テープと扁平電極群の底面全体およびこの底面近傍の側面が密着している為、扁平電極群と電池ケースの間に注入された電解液を扁平電極群に含浸させるのが困難である。特に、高密度で活物質が充填、或いは高い緊縛力で巻回された極板群では、前記現象が顕著である。
【0012】
複数の孔を設けた絶縁テープで扁平電極群の底面およびこの底面近傍の側面を被覆する方法(例えば、特許文献4参照)も提案されているが、あまり電解液を扁平電極群に含浸させる効果がない。
【0013】
【特許文献1】
特開平07−142089号公報
【特許文献2】
特開2002−124293号公報
【特許文献3】
実開平06−054208号公報
【特許文献4】
特開2001−273931号公報
【0014】
【発明が解決しようとする課題】
本発明は、上記問題点を解決すべく、扁平電極群を電池ケースに収納する際の扁平電極群の破損や活物質層の脱落を抑制すると共に、電池ケースに収納された扁平電極群への非水電解液の注液性に優れた扁平形電池を提供することを主たる目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために本発明の扁平型電池は、正極板と負極板とがセパレーターを介して絶縁されている略直線部と曲率部からなる扁平電極群の下部底面およびこの底面近傍の側面が絶縁テープで被覆されてなるものを上部が開口している有底の電池ケース内に収納し、前記電池ケースの開口部を密閉してなる扁平形電池であって、前記略直線部の少なくとも底面近傍の側面が、基材に粘着材を貼付してなる絶縁テープで被覆されていることを特徴とする扁平形電池であり、前記略直線部の1/10〜8/10が基材に粘着材が貼付されている絶縁テープで被覆されていることが好ましい。
【0016】
このような本発明によれば、略直線部と曲率部からなる扁平電極群を電池ケースに収納する際の扁平電極群の破損や活物質層の脱落が無く、非水電解液の注入時に扁平電極群と電池ケースの4隅の空隙部に注入された非水電解液は、扁平電極群底面の基材に粘着材が貼付されていない絶縁テープの曲率部から扁平電極群内部に含浸させることができる。
【0017】
【発明の実施の形態】
本発明の好ましい実施の形態について図面を用いて説明する。
【0018】
図1は扁平電極群の斜視図、図2(a)は絶縁テープの平面図、図2(b)は、絶縁テープの断面図、図3は絶縁テープを貼付させた扁平電極群の斜視図、図4は扁平電極群を電池ケースに収納したときの断面図である。
【0019】
図1において、扁平電極群11は、正極板と負極板とがセパレーター13を介して絶縁された状態で巻回され、最外周は正極集電体12が露出しており、この部分に正極リードテープ17で被覆されている正極リード16が取付けられており、最外周の終端部は群固定テープ14で固定されている。
【0020】
略直線部15aと曲率部15bから構成されている扁平電極群の底面15およびこの底面近傍の側面は、図2に示す絶縁テープ21で、図3に示すように被覆されている状態で電池ケース31内に収納し、非水電解液を注入後、電池ケース31の上部開口部と封口板とを密閉してなる扁平形電池である。
【0021】
より詳細に説明すると、絶縁テープ21は、図2に示すように、基材22と粘着材23から構成されており、基材22は扁平電極群の略直線部15aに相対する部分21a、扁平電極群の曲率部15bに相対する部分21b、扁平電極群の曲率部21bの外側に相対する部分21cからなり、扁平電極群の底面15に相対する部分21d、扁平電極群の底面近傍の側面に相対する部分21eである。
【0022】
粘着材23は、少なくとも前記扁平電極群の略直線部15aに相対する部分21aと扁平電極群の底面近傍の側面に相対する部分21eで囲まれる箇所に設けられており、その寸法は底面から2mm〜8mmの範囲が、電池ケース31への収納性と放電率特性の観点から好ましい。
【0023】
また、前記21aと21dで囲まれる箇所には粘着材があっても無くても構わないが、非水電解液の扁平電極群への含浸性から、この部分に粘着材が無い方がより好ましい。そして、粘着材23を前記略直線部15aの1/10〜8/10に相当する部分に貼付することが好ましい。
【0024】
1/10未満の場合には、扁平電極群11と絶縁テープ21との密着性が悪く、電池ケース31に収納する際に、位置ずれ等が発生し、扁平電極群の破損や活物質層の脱落を防止することができない場合がある。逆に、8/10を超える場合には、粘着材23が貼付されている位置の寸法バラツキによって曲率部に粘着材が貼付されることになり、非水電解液の扁平電極群への含浸性が低下する場合がある。
【0025】
このような位置関係になるように扁平電極群の底面15に絶縁テープ21を貼付けした後、上部が開口している有底の電池ケース31に収納することにより、扁平電極群の破損や活物質層の脱落を防止することができる。
【0026】
次に、非水電解液を注入すると、非水電解液は扁平電極群11と電池ケース31との間に流れ込むが、図4に示すように電池ケース31と扁平電極群11との空隙が大きい32a〜32dで示す4隅の空隙部の底面に非水電解液が存在する。
【0027】
この非水電解液は、扁平電極群底面曲率部15bと基材に粘着材が貼付されていない絶縁テープとの界面から扁平電極群内の正負極板及びセパレータに含浸させることができる。
【0028】
基材22の材質としては、特に限定されるものではないが、ポリイミド樹脂、ポリフェニレンサルファイド樹脂、フッ素樹脂、シリコン樹脂、ポリエチレン樹脂やポリプロピレン樹脂等のポリオレフィン樹脂などの単独またはブレンド品を用いることができ、その厚みは、強度との観点から15μm〜40μmの範囲が好ましい。
【0029】
粘着材の材質としては、特に限定されるものではないが、イソブチルゴム、スチレンブタジエンゴム、シリコン樹脂、アクリル系樹脂が好ましく、粘着層の厚みは、扁平電極群の略直線部の底面近傍の側面との粘着性の観点から15μm〜70μmの範囲が好ましい。
【0030】
次に、本発明の扁平電極群を構成する各要素、及び非水電解液の構成について詳述する。
【0031】
この正極板は、例えば、アルミニウムやアルミニウム合金製の箔やラス加工もしくはエッチング処理された厚み10μm〜60μmの正極集電体の片面または両面に、正極ペーストを塗着し、乾燥し、圧延して正極活物質層を形成することにより作製する。正極ペーストは、正極活物質と、結着剤と、導電剤と、必要に応じて増粘剤とを、分散媒に分散させて調製する。正極には活物質層を有さない無地部を設け、ここに正極リードを溶接する。
【0032】
正極活物質としては、特に限定されるものではないが、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物を用いることができる。例えば、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも1種の遷移金属と、リチウムとの複合金属酸化物が使用される。なかでもLiCoO、LiMnO、LiNiO、LiCrO、αLiFeO、LiVO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMn、LiMn2−y(ここで、M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBよりなる群から選ばれる少なくとも1種、x=0〜1.2、y=0〜0.9、z=2.0〜2.3)、遷移金属カルコゲン化物、バナジウム酸化物のリチウム化物、ニオブ酸化物のリチウム化物等が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、上記のx値は充放電により増減する。正極活物質の平均粒径は、1μm〜30μmであることが好ましい。
【0033】
正極ペーストに用いる結着剤、導電剤、必要に応じて添加できる増粘剤は、従来と同様のものを用いることができる。
【0034】
結着剤としては、ペーストの分散媒に溶解または分散できるものであれば特に限定されるものではないが、例えば、フッ素系結着剤、アクリルゴム、変性アクリルゴム、スチレン−ブタジエンゴム(SBR)、アクリル系重合体、ビニル系重合体等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、フッ素系結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンと六フッ化プロピレンの共重合体、ポリテトラフルオロエチレン等が好ましく、これらはディスパージョンとして用いることができる。
【0035】
導電剤としては、アセチレンブラック、グラファイト、炭素繊維等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0036】
増粘剤としては、エチレン−ビニルアルコール共重合体、カルボキシメチルセルロース、メチルセルロースなどが好ましい。
【0037】
分散媒としては、結着剤が溶解可能なものが適切である。有機系結着剤を用いる場合は、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトン等を単独または混合して用いることが好ましい。また、水系結着剤を用いる場合は、水や温水が好ましい。
【0038】
正極活物質、結着剤、導電剤および必要に応じて加える増粘剤を分散媒に分散させて正極ペーストを作製する方法は、特に限定されるものではないが、例えば、プラネタリーミキサー、ホモミキサー、ピンミキサー、ニーダー、ホモジナイザー等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、正極ペーストの混練分散時に、各種分散剤、界面活性剤、安定剤等を必要に応じて添加することも可能である。
【0039】
正極ペーストは、例えば、スリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーター等を用いて、正極集電体へ容易に塗着することができる。正極集電体に塗着された正極ペーストは、自然乾燥に近い乾燥を行うことが好ましいが、生産性を考慮すると、70℃〜200℃の温度で10分間〜5時間乾燥させるのが好ましい。
【0040】
圧延は、ロールプレス機によって正極板が130μm〜200μmの所定の厚みになるまで、線圧1000〜2000kg/cmで数回を行うか、線圧を変えて圧延するのが好ましい。
【0041】
負極は、例えば、普通の銅箔やラス加工もしくはエッチング処理された銅箔からなる厚み10μm〜50μmの負極集電体の片面または両面に、負極ペーストを塗着し、乾燥し、圧延して負極活物質層を形成することにより作製される。負極ペーストは、負極活物質と、結着剤と、必要に応じて導電剤と、増粘剤とを、分散媒に分散させて調製される。負極には活物質層を有さない無地部を設け、ここに負極リードが溶接される。
【0042】
負極活物質としては、特に限定されるものではないが、充電・放電によりリチウムイオンを放出・吸蔵できる炭素材料を用いることができる。例えば、有機高分子化合物(フェノール樹脂、ポリアクリロニトリル、セルロース等)を焼成することにより得られる炭素材料、コークスやピッチを焼成することにより得られる炭素材料、人造黒鉛、天然黒鉛、ピッチ系炭素繊維、PAN系炭素繊維等が好ましく、その形状としては、繊維状、球状、鱗片状、塊状のものが好ましい。
【0043】
結着剤、必要に応じて用いられる導電剤、増粘剤には、正極板と同様の結着剤、導電剤、増粘剤を用いることができる。
【0044】
セパレータ13としては、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエーテル(ポリエチレンオキシドやポリプロピレンオキシド)、セルロース(カルボキシメチルセルロースやヒドロキシプロピルセルロース)、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル等の高分子からなる微多孔フィルムが好ましく用いられる。また、これらの微多孔フィルムを重ね合わせた多層フィルムも用いられる。なかでもポリエチレン、ポリプロピレン、ポリフッ化ビニリデン等からなる微多孔フィルムが好適であり、厚みは15μm〜30μmが好ましい。
【0045】
電池ケース31は、上部が開口している有底の扁平角形の電池ケースであり、その材質はアルミニウム合金からなり、耐圧強度の観点からマンガン、銅等の金属を微量含有するアルミニウム合金が好ましく、合金No.3000系のアルミニウム合金が好ましい。
【0046】
非水電解液としては、非水溶媒と溶質からなり、非水溶媒としては、主成分として環状カーボネートおよび鎖状カーボネートが含有される。前記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびブチレンカーボネート(BC)から選ばれる少なくとも一種であることが好ましい。また、前記鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)等から選ばれる少なくとも一種であることが好ましい。
【0047】
溶質としては、例えば、電子吸引性の強いリチウム塩を使用し、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(SOCF、LiN(SO、LiC(SOCF等が挙げられる。これらの電解質は、一種類で使用しても良く、二種類以上組み合わせて使用しても良い。これらの溶質は、前記非水溶媒に対して0.5〜1.5Mの濃度で溶解させることが好ましい。
【0048】
【実施例】
以下、本発明を実施例および比較例を用いて詳細に説明するが、これらは本発明を何ら限定するものではない。
【0049】
(実施例1)
正極活物質としてコバルト酸リチウム(LiCoO)粉末50質量部に、導電剤としてアセチレンブラック1.5質量部、結着剤として50質量%ポリフッ化エチレン(PTFE)ディスパージョン水溶液7質量部、増粘剤として1質量%カルボキシメチルセルローズのアンモニウム塩水溶液41.5質量部をそれぞれ加え、混錬分散させて正極用ペーストを調合した。この正極用ペーストを厚さ20μmのアルミニウム箔からなる正極集電体12の両面にダイコータを用いて0.35mmの厚みになるように塗布し、乾燥後、200℃に加熱して、結着剤のPTFE粒子相互間を焼結させた。尚、扁平電極群を構成した際に最外周に相当する部位は、正極集電体が露出する構成としている。その後、正極板の厚さが0.15mmになるまで圧延し、幅42mm、長さ466mmの所定寸法に裁断して帯状の正極板を得た。この正極集電体12にはアルミニウム製のリード16を溶接し、その上に正極リード被覆テープ17を貼付して被覆した。
【0050】
一方、負極活物質として、黒鉛粉末100質量部にスチレン−ブタジエン共重合体からなる結着剤溶液5質量部を加えて混錬分散させて負極用ペーストを調合した。この負極用ペーストを厚さ10μmの銅箔からなる負極集電体の両面にダイコータを用いて塗布し、乾燥後、厚さが0.15mmになるまで圧延し、幅44mm、長さ447mmの所定寸法に裁断し、帯状の負極板を得た。負極集電体にはニッケル製のリード18を溶接し、その上に負極リード被覆テープ19を貼付して被覆した。また、セパレータ13は、幅46mm、厚さ27μmに切断されたポリエチレン樹脂製の微多孔膜を用いた。
【0051】
次に、断面が楕円形の巻芯治具のスリットにセパレータの一方の先端を挟持させ、巻芯治具を回転させて、巻芯治具の外周にセパレータを介して各1枚の正極板と負極板とを巻回し、断面が楕円状の扁平電極群を構成した。この扁平電極群の最外周の正極集電体12をポリプロピレン樹脂製の基材で幅40mm、長さ16mmの群固定テープ14で固定した。
【0052】
そして、巻芯治具から扁平電極群を抜き取り、この扁平電極群を扁平電極群の長軸に平行な1対の平板間に挟んだ状態のまま5MPaの圧力で加圧、変形させて、扁平電極群11を構成した。
【0053】
さらに、図2に示すような長軸38mm、短軸16mmで、扁平電極群11の略直線部15aに相対する部分21aと扁平電極群の底面近傍の側面に相対する部分21eで囲まれる箇所の内、前記21aの中央部に、略直線部の5/10の寸法に相当する12mmの寸法になるように粘着材23を形成し、その他の箇所には粘着材が無く、基材22のみからなる絶縁テープ21を、前記21aの中央部の底面近傍の一方の側面に底面から5mmの寸法で貼付し、点線部分で折り曲げて、アルミニウム合金製の電池ケース31への収納側に位置する底面を介して反対側の底面近傍の側面に底面から5mmの寸法で貼付した。
【0054】
なお、絶縁テープ21は、基材22がポリプロピレン樹脂製の厚みが30μmで、基材上に形成する粘着材23が、シリコン樹脂の厚み30μmのものを用いた。
【0055】
その後、アルミニウム合金製の電池ケース31に上記扁平電極群11を収納し、次いで、正極リード16を封口板に、負極リード18を封口板の中央部の取付孔に絶縁ガスケットを介して電気的に絶縁した状態で取付けられたワッシャに、それぞれレーザー溶接した。この封口板を、電池ケース31の開口部の所定位置に嵌入して、その周囲を電池ケースの内周面とレーザー溶接することによって固着した。その後、封口板の注液孔から電池ケース31内に、3.4gの非水電解液を注入し含浸させた後、封口板の注液孔に封栓部材を収納し、封栓部材の周囲と封口板とをレーザー溶接することにより、幅34mm、厚み6mm、高さ50mmの容量950mAhの実施例1の扁平形電池を作製した。
【0056】
なお、非水電解液は、エチレンカーボネート、エチルメチルカーボネートの等量混合溶媒中に、電解質としてヘキサフルオロリン酸リチウム(LiPF)を1.0モル/lの濃度としたものを用いた。
【0057】
(実施例2〜実施例5)
扁平電極群の略直線部15aの底面近傍の両側面に、粘着材が貼付されている寸法が略直線部の1/20、1/10、8/10、10/10となるように絶縁テープを略直線部の中央部に貼付した以外は、実施例1と同様にして、それぞれ実施例2〜実施例5の扁平形電池を作製した。
【0058】
(実施例6)
扁平電極群の略直線部15aの底面近傍の両側面に、粘着材が貼付されている寸法が略直線部の3/10づつ、合計6/10となる絶縁テープを略直線部を5等分したときの2番目及び4番目の位置に相当する中央部に貼付した以外は、実施例1と同様にして、実施例6の扁平形電池を作製した。
【0059】
(実施例7)
扁平電極群の略直線部に相対する部分21aと扁平電極群の底面近傍の側面に相対する部分21eおよび扁平電極群の底面に相対する部分21dで囲まれた部分の中央部に略直線部の5/10の寸法に相当する12mmの寸法になるように粘着材23を形成し、その他の箇所には粘着材が無く、基材22のみからなる絶縁テープ21を、前記21aの中央部の底面近傍の一方の側面に底面から5mmの寸法で貼付し、点線部分で折り曲げて、アルミニウム合金製の電池ケース31への収納側に位置する底面と反対側の底面近傍の側面に底面から5mmの寸法で貼付した以外は、実施例1と同様にして、実施例7の扁平形電池を作製した。
【0060】
(比較例1)
図5(a)、(b)に示すように、粘着材が基材全面に貼付されている絶縁テープを用い扁平電極群の底面およびその近傍の側面全体を被覆した以外は、実施例1と同様にして、比較例1の扁平形電池を作製した。
【0061】
(比較例2)
図5(b)、(c)に示すように、粘着材が基材全面に貼付され、直径1.0mmの穴が開いている絶縁テープを用い扁平電極群の底面およびその近傍の側面を被覆し、これら全体の9/10が被覆されるようにした以外は、実施例1と同様にして、比較例2の扁平形電池を作製した。
【0062】
このようにして得られた実施例1〜実施例7、比較例1〜比較例2の扁平形電池各20セルについて、電池を分解し、電池ケースから扁平電極群を抜き、電池ケースの底面に残存する非水電解液の質量を測定すると共に、各1000セルについて、扁平電極群を電池ケースに収納した後の極板破損や活物質層の剥離、脱落による不良率を目視にて調べて比較した結果を、表1に示す。
【0063】
また、上記扁平形電池各20セルについて、20℃における2Cの放電率を次のようにして求めた結果を表1に示す。充電は4.2Vで2時間の定電流−定電圧充電を行い、電池電圧が4.2Vに達するまでは950mA(1ItA)の定電流充電を行い、その後、電流値が減衰して45mA(0.05ItA)になるまで充電した後、190mA(0.2ItA)の定電流で3.0Vの放電終止電圧まで放電した。次に、上記と同様に充電した後、1900mA(2ItA)の定電流で3.0Vの放電終止電圧まで放電し、2Cの放電率を(2ItA放電時の容量)/(0.2ItA放電時の容量)から求めた。
【0064】
【表1】

Figure 2004273201
【0065】
表1から明らかなように、正極板と負極板とがセパレーターを介して絶縁されている略直線部と曲率部からなる扁平電極群の少なくとも略直線部の下部底面近傍の両側面を基材に粘着材を貼付してなる絶縁テープで被覆してなる実施例の場合、電池ケース内に収納する際の極板の破損や活物質層の脱落による不良を低減すると同時に、扁平電極群への非水電解液の含浸性を向上させることにより放電率特性にも優れた扁平形電池が得られるが、比較例の場合、粘着材が基材全面に貼付されている為、扁平電極群と電池ケースの4隅の空隙部に注入された非水電解液が、扁平電極群底面の曲率部から扁平電極群内部の正負極板及びセパレータ中に含浸させるのが困難な為に、電池ケースの底面に非水電解液が残存し、2Cの放電率特性が低下することがわかった。
【0066】
また、実施例2より、基材に粘着材を貼付してなる寸法が略直線部の下部底面近傍の側面の1/10未満の場合には、扁平電極群と絶縁テープとの密着性が悪く、電池ケースに収納する際に、位置ずれ等が発生し、活物質層が脱落する不良率が0.1%発生した。
【0067】
逆に、実施例5より、基材に粘着材を貼付してなる寸法が略直線部の下部底面近傍の側面の8/10を超える場合には、20セル中1セル電池ケースの底面に数滴の非水電解液が残存するものがあり、粘着材23が貼付されている位置の寸法バラツキによって曲率部15bに粘着材が貼付されていた為に、非水電解液の扁平電極群への含浸性が低下したと思われる。
【0068】
さらに、実施例7より、扁平電極群の略直線部の下部底面およびこの底面近傍の両側面を基材に粘着材を貼付してなる絶縁テープで被覆した場合、注入された非水電解液が電池ケースの底面に残存することはなかったが、扁平電極群内部の正負極板及びセパレータ中に均一に含浸できていない為に、2Cの放電率特性が僅かに低下したと思われる。
【0069】
【発明の効果】
以上説明したように本発明の扁平形電池によれば、扁平電極群を電池ケース内に収納する際の扁平電極群の破損や活物質層の脱落による不良を大幅に抑制できる。さらに、非水電解液の注入時に扁平電極群と電池ケースとの4隅の空隙部に流れ込んだ電解液は、扁平電極群底面曲率部と基材に粘着材が貼付されていない絶縁テープとの界面から扁平電極群内の正負極板及びセパレータに含浸させることができ高率放電特性にも優れた扁平形電池を提供することができる。
【図面の簡単な説明】
【図1】本願の扁平電極群の外観形状を示す斜視図
【図2】(a)本願の絶縁テープの平面図
(b)本願の絶縁テープの断面図
【図3】本願の絶縁テープを扁平電極群に貼付した状態を示す斜視図
【図4】扁平電極群を電池ケースに収納した場合の断面図
【図5】(a)従来の絶縁テープの平面図
(b)従来の絶縁テープの断面図
(c)従来の別の絶縁テープの平面図
【符号の説明】
11 扁平電極群
12 正極集電体
13 セパレータ
14 群固定テープ
15 扁平電極群の底面
15a 略直線部
15b 曲率部部
16 正極リード
17 正極リードテープ
18 負極リード
19 負極リードテープ
21 絶縁テープ
21a 扁平電極群の略直線部に相対する部分
21b 扁平電極群の曲率部に相対する部分
21c 扁平電極群の曲率部の外側に相対する部分
21d 扁平電極群の底面に相対する部分
21e 扁平電極群の底面近傍の側面に相対する部分
22 基材
23 粘着材
24 絶縁テープに設けた穴
31 電池ケース
32a、32b、32c、32d 電池ケースと扁平電極群との空隙部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention suppresses the breakage of the flat electrode group and the falling off of the active material layer when the flat electrode group is housed in the battery case, and also allows the non-aqueous electrolyte to be injected into the flat electrode group housed in the battery case. The present invention relates to a flat battery having excellent characteristics.
[0002]
[Prior art]
In recent years, the performance of portable electronic devices such as mobile phones and personal digital assistants largely depends on the performance of not only semiconductor elements and electronic circuits to be mounted, but also the performance of chargeable and dischargeable sealed secondary batteries. It is desired that the capacity of the sealed secondary battery be increased and the weight and size be reduced at the same time. As a sealed secondary battery that meets these demands, a nickel-metal hydride storage battery with an energy density about twice that of a nickel-cadmium storage battery has been developed, and then a lithium-ion battery that exceeds this has been developed. It is used properly.
[0003]
These sealed secondary batteries house a positive electrode plate and a negative electrode plate spirally wound or laminated via a separator in a cylindrical or flat prismatic battery case with a power generation element consisting of an electrode group and an electrolyte. It is formed by caulking or laser sealing, and among other things, a thin flat battery from the viewpoint of effective use of space, especially a lithium ion battery using a flat aluminum case that also satisfies the demand for weight reduction, is in the spotlight. Is taking a bath.
[0004]
In this flat battery, a flat electrode group including a substantially linear portion and a curved portion in which a positive electrode plate and a negative electrode plate are insulated via a separator is housed in a bottomed battery case having an open top. After the water electrolyte is injected and impregnated, the opening of the battery case is sealed to produce a flat battery.
[0005]
When the flat electrode group consisting of the substantially straight part and the curvature part as described above is housed in the bottomed battery case, the active material is filled at a high density, so there is no room for the space between the battery case and the battery case. If the degree of parallelism between the inner surface of the battery case and the substantially straight portion of the flat electrode group is not obtained, it becomes difficult to store the flat electrode group in the battery case, and when the pressure for housing is increased, the outermost periphery of the flat electrode group is reduced. In some cases, the side and bottom surfaces were damaged, the active material layer was dropped, and the dropped active material was short-circuited.
[0006]
In order to suppress the occurrence of such inconveniences, the outermost terminal portion of the flat electrode group or the entire circumference of the flat electrode group is fixed with an insulating tape, thereby preventing the flat electrode group from bulging due to loose winding. In addition, the displacement of the electrode plate when housed in the battery case and the falling off of the active material layer are suppressed (for example, see Patent Document 1).
[0007]
However, in such a configuration, the insulating tape only prevents swelling due to loose winding of the flat electrode group, and when the flat electrode group is stored in the battery case, the bottom surface of the flat electrode group contacts the battery case. However, the effect of suppressing damage to the flat electrode group and falling off of the active material layer cannot be expected.
[0008]
Further, in the case of a method in which a sheet material is projected from the entire outermost periphery of the flat electrode group and lower than the lower end of the flat electrode group into a battery case (for example, see Patent Document 2), the lower end of the flat electrode group is used. In some cases, the sheet material projecting downward may be curved outward and cannot be stored in the battery case.
[0009]
Since the bending of the sheet material accommodated in the battery case is not constant, the height of the flat electrode group is not constant, and the impregnating property of the injected electrolyte into the flat electrode group is poor.
[0010]
In view of this, there has been proposed a method in which an insulating tape having a width wider than the width of the bottom surface is attached to the bottom surface located on the storage side of the flat electrode group and stored in the battery case (for example, see Patent Document 3). Since the bottom surface of the electrode group and the side surface near the bottom surface are covered, the end surface of the flat electrode group comes into contact with the battery case, and the active material layer is prevented from falling off.
[0011]
However, since the entire bottom surface of the flat electrode group and the side surface near the bottom surface are covered, after the flat electrode group is stored in the battery case, in the step of injecting the electrolyte, the entire bottom surface of the insulating tape and the flat electrode group and Since the side surface near the bottom surface is in close contact, it is difficult to impregnate the flat electrode group with the electrolyte injected between the flat electrode group and the battery case. In particular, the above phenomenon is remarkable in an electrode group that is filled with an active material at a high density or wound with a high binding force.
[0012]
A method of covering the bottom surface of the flat electrode group and the side surface near the bottom surface with an insulating tape provided with a plurality of holes (for example, see Patent Document 4) has also been proposed, but the effect of impregnating the flat electrode group with the electrolyte is not so much. There is no.
[0013]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 07-142089 [Patent Document 2]
JP 2002-124293 A [Patent Document 3]
Japanese Utility Model Publication No. 06-0554208 [Patent Document 4]
JP-A-2001-273931
[Problems to be solved by the invention]
The present invention, in order to solve the above problems, while suppressing the flat electrode group damage and fall of the active material layer when storing the flat electrode group in the battery case, and to the flat electrode group housed in the battery case A main object of the present invention is to provide a flat battery having excellent non-aqueous electrolyte injectability.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the flat battery according to the present invention has a lower bottom surface and a side surface near the bottom surface of a flat electrode group including a substantially linear portion and a curvature portion in which a positive electrode plate and a negative electrode plate are insulated via a separator. A flat battery, which is covered with an insulating tape, is housed in a bottomed battery case having an open top, and hermetically seals the opening of the battery case, wherein at least the substantially straight portion is A flat battery, wherein a side surface near a bottom surface is covered with an insulating tape obtained by attaching an adhesive material to a base material, wherein 1/10 to 8/10 of the substantially straight line portion is applied to the base material. It is preferably covered with an insulating tape to which an adhesive material is attached.
[0016]
According to the present invention, there is no breakage of the flat electrode group or dropout of the active material layer when the flat electrode group including the substantially straight portion and the curved portion is housed in the battery case, and the flat electrode group is flat when the nonaqueous electrolyte is injected. The non-aqueous electrolyte injected into the gaps at the four corners of the electrode group and the battery case should be impregnated into the flat electrode group from the curvature of the insulating tape where the adhesive is not attached to the base material on the bottom of the flat electrode group. Can be.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of the present invention will be described with reference to the drawings.
[0018]
1 is a perspective view of a flat electrode group, FIG. 2A is a plan view of an insulating tape, FIG. 2B is a cross-sectional view of the insulating tape, and FIG. 3 is a perspective view of a flat electrode group to which the insulating tape is attached. FIG. 4 is a sectional view when the flat electrode group is housed in a battery case.
[0019]
In FIG. 1, a flat electrode group 11 is wound in a state where a positive electrode plate and a negative electrode plate are insulated with a separator 13 interposed therebetween, and a positive electrode current collector 12 is exposed on the outermost periphery. A positive electrode lead 16 covered with a tape 17 is attached, and the outermost end is fixed with a group fixing tape 14.
[0020]
The bottom surface 15 of the flat electrode group composed of the substantially straight portion 15a and the curvature portion 15b and the side surface near this bottom surface are covered with the insulating tape 21 shown in FIG. 2 as shown in FIG. The battery is a flat battery that is housed in the inside of the battery case 31, infused with a non-aqueous electrolyte, and sealed the upper opening of the battery case 31 and the sealing plate.
[0021]
More specifically, as shown in FIG. 2, the insulating tape 21 includes a base material 22 and an adhesive 23, and the base material 22 has a flat portion 21a facing the substantially straight portion 15a of the flat electrode group, and a flat portion 21a. A portion 21b opposed to the curvature portion 15b of the electrode group and a portion 21c opposed to the outside of the curvature portion 21b of the flat electrode group are provided, and a portion 21d opposed to the bottom surface 15 of the flat electrode group and a side surface near the bottom surface of the flat electrode group. This is the opposing portion 21e.
[0022]
The adhesive material 23 is provided at least at a portion surrounded by a portion 21a facing the substantially straight portion 15a of the flat electrode group and a portion 21e facing the side surface near the bottom surface of the flat electrode group, and has a dimension of 2 mm from the bottom surface. The range of 88 mm is preferable from the viewpoint of storability in the battery case 31 and discharge rate characteristics.
[0023]
In addition, the portion surrounded by 21a and 21d may or may not have an adhesive, but it is more preferable that there is no adhesive in this portion because of the impregnation of the nonaqueous electrolyte into the flat electrode group. . And it is preferable to stick the adhesive material 23 to a portion corresponding to 1/10 to 8/10 of the substantially straight portion 15a.
[0024]
If the ratio is less than 1/10, the adhesion between the flat electrode group 11 and the insulating tape 21 is poor, and when the flat electrode group 11 is stored in the battery case 31, a displacement or the like occurs. In some cases, dropout cannot be prevented. On the other hand, if it exceeds 8/10, the adhesive is attached to the curvature portion due to dimensional variations at the position where the adhesive 23 is attached, and the impregnation of the nonaqueous electrolyte into the flat electrode group is performed. May decrease.
[0025]
After the insulating tape 21 is attached to the bottom surface 15 of the flat electrode group so as to have such a positional relationship, the insulating tape 21 is housed in the bottomed battery case 31 having an open upper portion, so that the flat electrode group may be damaged or the active material may be damaged. The layer can be prevented from falling off.
[0026]
Next, when the non-aqueous electrolyte is injected, the non-aqueous electrolyte flows between the flat electrode group 11 and the battery case 31, but the gap between the battery case 31 and the flat electrode group 11 is large as shown in FIG. A non-aqueous electrolyte exists on the bottom surface of the voids at the four corners indicated by 32a to 32d.
[0027]
The nonaqueous electrolyte can be impregnated into the positive / negative electrode plate and the separator in the flat electrode group from the interface between the flat electrode group bottom surface curvature portion 15b and the insulating tape on which the adhesive is not attached to the base material.
[0028]
The material of the base material 22 is not particularly limited, and a polyimide resin, a polyphenylene sulfide resin, a fluororesin, a silicone resin, a polyolefin resin such as a polyethylene resin or a polypropylene resin, or a blended product can be used. The thickness is preferably in the range of 15 μm to 40 μm from the viewpoint of strength.
[0029]
The material of the adhesive is not particularly limited, but is preferably isobutyl rubber, styrene butadiene rubber, silicone resin, or acrylic resin, and the thickness of the adhesive layer is a side surface near the bottom of the substantially linear portion of the flat electrode group. From the viewpoint of adhesiveness, the range of 15 μm to 70 μm is preferable.
[0030]
Next, the components of the flat electrode group of the present invention and the configuration of the non-aqueous electrolyte will be described in detail.
[0031]
This positive electrode plate, for example, on one or both sides of a positive electrode current collector having a thickness of 10 μm to 60 μm that has been subjected to foil or lath processing or etching processing made of aluminum or an aluminum alloy, applying a positive electrode paste, drying and rolling. It is manufactured by forming a positive electrode active material layer. The positive electrode paste is prepared by dispersing a positive electrode active material, a binder, a conductive agent, and, if necessary, a thickener in a dispersion medium. The positive electrode is provided with a solid portion having no active material layer, and a positive electrode lead is welded to the uncoated portion.
[0032]
The positive electrode active material is not particularly limited, but a lithium-containing transition metal compound that can accept lithium ions as a guest can be used. For example, a composite metal oxide of lithium and at least one transition metal selected from cobalt, manganese, nickel, chromium, iron and vanadium is used. Of these Li x CoO 2, Li x MnO 2, Li x NiO 2, LiCrO 2, αLiFeO 2, LiVO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1-y M y O z , Li x Mn 2 O 4, Li x Mn 2-y M y O 4 ( where, M = Na, Mg, Sc , Y, Mn, Fe, Co, Ni, Cu, At least one selected from the group consisting of Zn, Al, Cr, Pb, Sb and B, x = 0 to 1.2, y = 0 to 0.9, z = 2.0 to 2.3), transition metal Preference is given to chalcogenides, lithiated vanadium oxides, lithiated niobium oxides and the like. These may be used alone or in combination of two or more. In addition, the above-mentioned x value increases and decreases by charging and discharging. The average particle size of the positive electrode active material is preferably 1 μm to 30 μm.
[0033]
As the binder, the conductive agent, and the thickener that can be added as needed, the same materials as those used in the related art can be used for the positive electrode paste.
[0034]
The binder is not particularly limited as long as it can be dissolved or dispersed in the dispersion medium of the paste. For example, a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR) , An acrylic polymer, a vinyl polymer, and the like. These may be used alone or in combination of two or more. As the fluorine-based binder, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, polytetrafluoroethylene, and the like are preferable, and these can be used as a dispersion.
[0035]
As the conductive agent, acetylene black, graphite, carbon fiber, or the like can be used. These may be used alone or in combination of two or more.
[0036]
As the thickener, ethylene-vinyl alcohol copolymer, carboxymethylcellulose, methylcellulose and the like are preferable.
[0037]
As the dispersion medium, those in which the binder can be dissolved are suitable. When an organic binder is used, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethylsulfoxide, hexamethylsulfonamide, tetramethylurea, acetone, methylethylketone or the like may be used alone or It is preferable to use a mixture. In the case where an aqueous binder is used, water or warm water is preferred.
[0038]
The method for preparing the positive electrode paste by dispersing the positive electrode active material, the binder, the conductive agent, and the thickener to be added as necessary in a dispersion medium is not particularly limited. For example, a planetary mixer, a homogenizer, and the like. A mixer, pin mixer, kneader, homogenizer and the like can be used. These may be used alone or in combination of two or more. Further, at the time of kneading and dispersing the positive electrode paste, various dispersants, surfactants, stabilizers and the like can be added as necessary.
[0039]
The positive electrode paste can be easily applied to the positive electrode current collector using, for example, a slit die coater, a reverse roll coater, a lip coater, a blade coater, a knife coater, a gravure coater, a dip coater, or the like. The positive electrode paste applied to the positive electrode current collector is preferably dried close to natural drying, but is preferably dried at a temperature of 70 ° C to 200 ° C for 10 minutes to 5 hours in consideration of productivity.
[0040]
Rolling is preferably performed several times at a linear pressure of 1000 to 2000 kg / cm or by changing the linear pressure until the positive electrode plate has a predetermined thickness of 130 μm to 200 μm using a roll press machine.
[0041]
The negative electrode is coated with a negative electrode paste on one or both sides of a negative electrode current collector having a thickness of 10 μm to 50 μm made of, for example, ordinary copper foil or lath-processed or etched copper foil, dried, and rolled to form a negative electrode. It is manufactured by forming an active material layer. The negative electrode paste is prepared by dispersing a negative electrode active material, a binder, and if necessary, a conductive agent and a thickener in a dispersion medium. The negative electrode is provided with a solid portion having no active material layer, to which a negative electrode lead is welded.
[0042]
The negative electrode active material is not particularly limited, but a carbon material that can release and occlude lithium ions by charging and discharging can be used. For example, carbon materials obtained by firing organic polymer compounds (phenol resin, polyacrylonitrile, cellulose, etc.), carbon materials obtained by firing coke and pitch, artificial graphite, natural graphite, pitch-based carbon fibers, PAN-based carbon fibers and the like are preferable, and the shape is preferably fibrous, spherical, scale-like, or lump-like.
[0043]
As the binder, the conductive agent and the thickener used as needed, the same binder, conductive agent and thickener as those used for the positive electrode plate can be used.
[0044]
Examples of the separator 13 include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyether (polyethylene oxide and polypropylene oxide), A microporous film composed of a polymer such as cellulose (carboxymethylcellulose or hydroxypropylcellulose), poly (meth) acrylic acid, or poly (meth) acrylate is preferably used. Further, a multilayer film in which these microporous films are overlapped is also used. Among them, a microporous film made of polyethylene, polypropylene, polyvinylidene fluoride or the like is preferable, and the thickness is preferably 15 μm to 30 μm.
[0045]
The battery case 31 is a flat rectangular battery case with a bottom that has an open top. The material is made of an aluminum alloy. From the viewpoint of pressure resistance, manganese and an aluminum alloy containing a small amount of a metal such as copper are preferable. Alloy No. A 3000 series aluminum alloy is preferred.
[0046]
The non-aqueous electrolyte contains a non-aqueous solvent and a solute, and the non-aqueous solvent contains a cyclic carbonate and a chain carbonate as main components. The cyclic carbonate is preferably at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). In addition, the chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like.
[0047]
As the solute, for example, a lithium salt having a strong electron-withdrawing property is used. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C) 2 F 5) 2, LiC ( SO 2 CF 3) 3 and the like. These electrolytes may be used alone or in combination of two or more. These solutes are preferably dissolved in the non-aqueous solvent at a concentration of 0.5 to 1.5M.
[0048]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but these do not limit the present invention at all.
[0049]
(Example 1)
50 parts by mass of lithium cobalt oxide (LiCoO 2 ) powder as a positive electrode active material, 1.5 parts by mass of acetylene black as a conductive agent, 7 parts by mass of a 50% by mass polyfluoroethylene (PTFE) dispersion aqueous solution as a binder, and thickening As an agent, 41.5 parts by mass of a 1% by mass aqueous solution of ammonium salt of carboxymethyl cellulose was added, kneaded and dispersed to prepare a paste for a positive electrode. This positive electrode paste was applied to both surfaces of a positive electrode current collector 12 made of aluminum foil having a thickness of 20 μm using a die coater so as to have a thickness of 0.35 mm, dried, and then heated to 200 ° C. to obtain a binder. Of PTFE particles were sintered. When the flat electrode group is formed, a portion corresponding to the outermost periphery has a configuration in which the positive electrode current collector is exposed. Thereafter, the positive electrode plate was rolled to a thickness of 0.15 mm, and cut into predetermined dimensions of 42 mm in width and 466 mm in length to obtain a belt-shaped positive electrode plate. An aluminum lead 16 was welded to the positive electrode current collector 12, and a positive electrode lead covering tape 17 was attached thereon to cover the lead 16.
[0050]
On the other hand, as a negative electrode active material, 5 parts by mass of a binder solution comprising a styrene-butadiene copolymer was added to 100 parts by mass of graphite powder, kneaded and dispersed to prepare a paste for a negative electrode. This negative electrode paste is applied to both surfaces of a negative electrode current collector made of copper foil having a thickness of 10 μm using a die coater, dried, and then rolled to a thickness of 0.15 mm, and a predetermined width of 44 mm and a length of 447 mm is obtained. It was cut into dimensions to obtain a strip-shaped negative electrode plate. A lead 18 made of nickel was welded to the negative electrode current collector, and a negative electrode lead covering tape 19 was adhered thereon to cover. As the separator 13, a microporous film made of polyethylene resin cut into a width of 46 mm and a thickness of 27 μm was used.
[0051]
Next, one end of the separator is sandwiched between slits of a core jig having an elliptical cross section, and the core jig is rotated, and one positive electrode plate is provided on the outer periphery of the core jig via the separator. And a negative electrode plate were wound to form a flat electrode group having an elliptical cross section. The outermost positive electrode current collector 12 of the flat electrode group was fixed with a group fixing tape 14 having a width of 40 mm and a length of 16 mm with a base made of polypropylene resin.
[0052]
Then, the flat electrode group is extracted from the core jig, and the flat electrode group is pressed and deformed at a pressure of 5 MPa while being sandwiched between a pair of flat plates parallel to the long axis of the flat electrode group, and is flattened. The electrode group 11 was configured.
[0053]
Furthermore, as shown in FIG. 2, a portion surrounded by a portion 21 a facing the substantially straight portion 15 a of the flat electrode group 11 and a portion 21 e facing the side surface near the bottom surface of the flat electrode group 11 having a major axis of 38 mm and a minor axis of 16 mm as shown in FIG. Among them, an adhesive 23 is formed at a central portion of the 21a so as to have a size of 12 mm corresponding to a size of 5/10 of a substantially straight portion, and there is no adhesive at other portions, and only the base 22 is used. The insulating tape 21 is attached to one side near the bottom of the central portion of the 21a at a size of 5 mm from the bottom, bent at the dotted line, and the bottom located on the storage side in the aluminum alloy battery case 31 is removed. 5 mm from the bottom surface on the opposite side surface near the bottom surface.
[0054]
The insulating tape 21 used had a base material 22 made of a polypropylene resin and had a thickness of 30 μm, and the adhesive material 23 formed on the base material had a silicon resin thickness of 30 μm.
[0055]
Thereafter, the flat electrode group 11 is housed in a battery case 31 made of an aluminum alloy, and then the positive electrode lead 16 is electrically connected to a sealing plate with the negative electrode lead 18 through an insulating gasket in a mounting hole at the center of the sealing plate. Each washer was laser-welded to a washer attached in an insulated state. This sealing plate was fitted into a predetermined position of the opening of the battery case 31, and the periphery thereof was fixed to the inner peripheral surface of the battery case by laser welding. Thereafter, 3.4 g of the non-aqueous electrolyte is injected into and impregnated into the battery case 31 from the liquid injection hole of the sealing plate, and then the plugging member is stored in the liquid injection hole of the sealing plate. The flat battery of Example 1 having a width of 34 mm, a thickness of 6 mm, and a height of 50 mm and a capacity of 950 mAh was produced by laser welding the plate and the sealing plate.
[0056]
The non-aqueous electrolyte used was a mixture of ethylene carbonate and ethyl methyl carbonate in an equal amount of lithium hexafluorophosphate (LiPF 6 ) having a concentration of 1.0 mol / l as an electrolyte.
[0057]
(Examples 2 to 5)
Insulating tape so that the size of the adhesive material attached to both sides near the bottom surface of the substantially straight portion 15a of the flat electrode group is 1/20, 1/10, 8/10, and 10/10 of the substantially straight portion. Was affixed to the center of the substantially linear portion, and flat batteries of Examples 2 to 5 were produced in the same manner as in Example 1.
[0058]
(Example 6)
On both sides near the bottom surface of the substantially linear portion 15a of the flat electrode group, an insulating tape whose adhesive material is attached is 3/10 of the substantially linear portion, and the total is 6/10, and the substantially linear portion is divided into five equal parts. A flat battery of Example 6 was produced in the same manner as in Example 1, except that the flat battery was affixed to the central portions corresponding to the second and fourth positions.
[0059]
(Example 7)
A substantially straight portion is formed at the center of a portion surrounded by a portion 21a facing the substantially straight portion of the flat electrode group, a portion 21e facing the side surface near the bottom surface of the flat electrode group, and a portion 21d facing the bottom surface of the flat electrode group. An adhesive material 23 is formed so as to have a size of 12 mm corresponding to the size of 5/10, and an insulating tape 21 consisting of only the base material 22 is provided with no adhesive material in other places, and a bottom surface of the central portion of the 21a is formed. Affixed to one side in the vicinity at a dimension of 5 mm from the bottom, bent at the dotted line, and sized 5 mm from the bottom on the side near the bottom opposite to the bottom positioned on the storage side in the aluminum alloy battery case 31. A flat battery of Example 7 was made in the same manner as Example 1 except that the battery was adhered.
[0060]
(Comparative Example 1)
As shown in FIGS. 5 (a) and 5 (b), Example 1 was the same as Example 1 except that the entire bottom surface of the flat electrode group and the side surface in the vicinity thereof were covered using an insulating tape to which an adhesive was applied over the entire surface of the base material. Similarly, a flat battery of Comparative Example 1 was manufactured.
[0061]
(Comparative Example 2)
As shown in FIGS. 5 (b) and 5 (c), an adhesive is stuck on the entire surface of the base material, and the bottom surface of the flat electrode group and the side surface in the vicinity thereof are covered with an insulating tape having a hole of 1.0 mm in diameter. Then, a flat battery of Comparative Example 2 was produced in the same manner as in Example 1 except that 9/10 of the whole was covered.
[0062]
For each of the thus obtained flat batteries of Examples 1 to 7 and Comparative Examples 1 and 2, the battery was disassembled, the flat electrode group was removed from the battery case, and the battery was placed on the bottom surface of the battery case. Measure the mass of the remaining non-aqueous electrolyte and visually inspect and compare the defect rate due to electrode plate breakage, peeling of the active material layer, and falling off after storing the flat electrode group in the battery case for each 1000 cells. The results are shown in Table 1.
[0063]
Table 1 shows the results obtained by calculating the discharge rate of 2C at 20 ° C. as follows for each of the 20 flat batteries. Charging is performed at 4.2 V for 2 hours with constant current-constant voltage charging, and until the battery voltage reaches 4.2 V, constant current charging of 950 mA (1 ItA) is performed. Then, the battery was discharged to a discharge termination voltage of 3.0 V at a constant current of 190 mA (0.2 ItA). Next, after charging as described above, the battery was discharged at a constant current of 1900 mA (2 ItA) to a discharge end voltage of 3.0 V, and the discharge rate of 2 C was calculated as (capacity at 2 ItA discharge) / (0.2 ItA discharge at the time of discharge). Capacity).
[0064]
[Table 1]
Figure 2004273201
[0065]
As is clear from Table 1, both sides near the lower bottom surface of at least the substantially linear portion of the flat electrode group including the substantially linear portion and the curved portion where the positive electrode plate and the negative electrode plate are insulated via the separator are used as the base material. In the case of the embodiment in which the electrode is covered with an insulating tape to which an adhesive material is adhered, failure due to breakage of the electrode plate and falling off of the active material layer when housed in the battery case is reduced, and at the same time, non-contact to the flat electrode group is reduced. By improving the impregnation of the water electrolyte, a flat battery having excellent discharge rate characteristics can be obtained, but in the case of the comparative example, since the adhesive is adhered to the entire surface of the base material, the flat electrode group and the battery case are formed. It is difficult for the nonaqueous electrolyte injected into the voids at the four corners of the flat electrode group to impregnate the positive and negative electrode plates and the separator inside the flat electrode group from the curvature section of the flat electrode group bottom face. Non-aqueous electrolyte remains and 2C discharge rate characteristics decrease It was found.
[0066]
Further, according to Example 2, when the dimension obtained by attaching the adhesive to the base material is less than 1/10 of the side surface near the lower bottom surface of the substantially straight portion, the adhesion between the flat electrode group and the insulating tape is poor. When the battery was housed in the battery case, misregistration occurred and the active material layer fell off, resulting in a 0.1% defective rate.
[0067]
Conversely, according to Example 5, when the size of the adhesive material adhered to the base material exceeds 8/10 of the side surface near the lower bottom surface of the substantially straight portion, the number of cells on the bottom surface of the 1-cell battery case out of 20 cells increases. Some of the non-aqueous electrolyte remains as drops, and the adhesive is attached to the curvature portion 15b due to dimensional variation at the position where the adhesive 23 is attached. It is thought that the impregnation property was reduced.
[0068]
Further, from Example 7, when the lower bottom surface of the substantially linear portion of the flat electrode group and both side surfaces near this bottom surface were covered with an insulating tape formed by attaching an adhesive to a base material, the injected non-aqueous electrolyte was Although it did not remain on the bottom surface of the battery case, it was considered that the discharge rate characteristics of 2C were slightly lowered because the positive and negative electrode plates and the separator inside the flat electrode group were not uniformly impregnated.
[0069]
【The invention's effect】
As described above, according to the flat battery of the present invention, when the flat electrode group is housed in the battery case, failure due to breakage of the flat electrode group or falling off of the active material layer can be significantly suppressed. Further, the electrolyte flowing into the gaps at the four corners of the flat electrode group and the battery case during the injection of the non-aqueous electrolyte is formed by the flat electrode group bottom surface curvature portion and the insulating tape on which the adhesive is not attached to the base material. It is possible to provide a flat battery that can be impregnated from the interface into the positive and negative electrode plates and the separator in the flat electrode group and has excellent high-rate discharge characteristics.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an external shape of a flat electrode group of the present application. FIG. 2 (a) is a plan view of an insulating tape of the present application. FIG. 1 (b) is a sectional view of the insulating tape of the present application. FIG. 4 is a perspective view showing a state where the flat electrode group is attached to a battery case. FIG. 5 (a) is a plan view of a conventional insulating tape. FIG. 5 (b) is a cross-sectional view of a conventional insulating tape. Figure (c) Plan view of another conventional insulating tape
DESCRIPTION OF SYMBOLS 11 Flat electrode group 12 Positive electrode collector 13 Separator 14 Group fixing tape 15 Bottom surface 15a of flat electrode group Substantially linear portion 15b Curvature portion 16 Positive electrode lead 17 Positive electrode lead tape 18 Negative lead 19 Negative electrode lead tape 21 Insulating tape 21a Flat electrode group A portion 21b facing the curved portion of the flat electrode group 21c a portion facing the outside of the curved portion of the flat electrode group 21d a portion facing the bottom surface of the flat electrode group 21e a portion near the bottom surface of the flat electrode group Portion 22 facing the side surface Base material 23 Adhesive material 24 Hole 31 provided in insulating tape Battery case 32a, 32b, 32c, 32d Gap between battery case and flat electrode group

Claims (2)

正極板と負極板とがセパレーターを介して絶縁されている略直線部と曲率部からなる扁平電極群の下部底面およびこの底面近傍の側面が絶縁テープで被覆されてなるものを上部が開口している有底の電池ケース内に収納し、前記電池ケースの開口部を密閉してなる扁平形電池であって、前記略直線部の少なくとも底面近傍の側面が、基材に粘着材を貼付してなる絶縁テープで被覆されていることを特徴とする扁平形電池。The lower and lower sides of the flat electrode group consisting of a substantially linear portion and a curved portion in which the positive electrode plate and the negative electrode plate are insulated via a separator and the side near this bottom surface are covered with insulating tape, and the upper portion is opened. A flat battery that is housed in a bottomed battery case and has an opening in the battery case sealed, and at least a side surface near the bottom surface of the substantially linear portion is formed by attaching an adhesive to a base material. A flat battery characterized by being covered with an insulating tape. 前記略直線部の1/10〜8/10が基材に粘着材を貼付してなる絶縁テープで被覆されていることを特徴とする請求項1に記載の扁平形電池。The flat battery according to claim 1, wherein 1/10 to 8/10 of the substantially straight portion is covered with an insulating tape obtained by attaching an adhesive to a base material.
JP2003059956A 2003-03-06 2003-03-06 Flat battery Pending JP2004273201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059956A JP2004273201A (en) 2003-03-06 2003-03-06 Flat battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059956A JP2004273201A (en) 2003-03-06 2003-03-06 Flat battery

Publications (1)

Publication Number Publication Date
JP2004273201A true JP2004273201A (en) 2004-09-30

Family

ID=33122640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059956A Pending JP2004273201A (en) 2003-03-06 2003-03-06 Flat battery

Country Status (1)

Country Link
JP (1) JP2004273201A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243336A (en) * 2004-02-25 2005-09-08 Sanyo Electric Co Ltd Battery equipped with spiral electrode group
JP2007172975A (en) * 2005-12-21 2007-07-05 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2010092673A (en) * 2008-10-07 2010-04-22 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
KR101243435B1 (en) * 2006-05-08 2013-03-13 삼성에스디아이 주식회사 Secondary battery
KR101446152B1 (en) * 2010-12-20 2014-10-01 주식회사 엘지화학 Secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243336A (en) * 2004-02-25 2005-09-08 Sanyo Electric Co Ltd Battery equipped with spiral electrode group
JP2007172975A (en) * 2005-12-21 2007-07-05 Nec Tokin Corp Nonaqueous electrolyte secondary battery
KR101243435B1 (en) * 2006-05-08 2013-03-13 삼성에스디아이 주식회사 Secondary battery
JP2010092673A (en) * 2008-10-07 2010-04-22 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
KR101446152B1 (en) * 2010-12-20 2014-10-01 주식회사 엘지화학 Secondary battery

Similar Documents

Publication Publication Date Title
US20200235354A1 (en) Battery and method for manufacturing battery
US8460812B2 (en) Lithium secondary battery
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
JP4236308B2 (en) Lithium ion battery
KR100587437B1 (en) Nonaqueous Secondary Battery
JP4380201B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2009129553A (en) Battery
WO2011016183A1 (en) Non-aqueous electrolyte secondary battery
JP4097443B2 (en) Lithium secondary battery
JP2003187874A (en) Flat battery
JP2008027831A (en) Battery
JP4017376B2 (en) Lithium secondary battery
JP2000173657A (en) Solid electrolyte battery
JP2003132894A (en) Negative electrode collector, negative electrode plate using the same, and nonaqueous electrolyte secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP7003775B2 (en) Lithium ion secondary battery
JP2001357874A (en) Nonaqueous electrolyte secondary battery
JP2004273201A (en) Flat battery
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
JP2004186117A (en) Sealed type rechargeable battery
JP2007172878A (en) Battery and its manufacturing method
JPH09293535A (en) Nonaqueous secondary battery
US20200313241A1 (en) Cylindrical secondary battery
JP2004241222A (en) Manufacturing method of nonaqueous electrolytic solution battery
JP2010205739A (en) Lithium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407