JP2004269720A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP2004269720A
JP2004269720A JP2003063165A JP2003063165A JP2004269720A JP 2004269720 A JP2004269720 A JP 2004269720A JP 2003063165 A JP2003063165 A JP 2003063165A JP 2003063165 A JP2003063165 A JP 2003063165A JP 2004269720 A JP2004269720 A JP 2004269720A
Authority
JP
Japan
Prior art keywords
mass
polylactic acid
acid
polymer
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003063165A
Other languages
Japanese (ja)
Inventor
Mari Sekida
真理 関田
Koichi Ito
伊藤  公一
Tadayoshi Sawada
忠義 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003063165A priority Critical patent/JP2004269720A/en
Publication of JP2004269720A publication Critical patent/JP2004269720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polylactic acid thermoplastic resin composition with improved heat resistance while maintaining transparency of polylactic acid polymers. <P>SOLUTION: This thermoplastic resin composition comprises 0.1-99.9 mass% of a polylactic acid polymer (A) and 99.9-0.1 mass% of an acrylic polymer (B) comprising methyl methacrylate (b1) monomer units and alkyl acrylate monomer (b2) units (wherein the sum of A and B is 100 mass%). The composition preferably comprises 50.0-99.9 mass% of the polylactic acid polymer (A) and 50.0-0.1 mass% of the acrylic polymer (B) (wherein the sum of A and B is 100 mass%). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【従来の技術】
近年、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート、塩化ビニル等の膨大な量のプラスチック製品が使用されており、これらの廃棄物処理が環境問題の一つとしてクローズアップされてきている。すなわち、現状の廃棄物処理は焼却処分や埋設処理であるが、例えばポリエチレン等を焼却処分すると、その燃焼カロリーが高いため、焼却炉を傷め寿命を縮める原因となる。また、ポリ塩化ビニル等を焼却処分すると、有害ガスが発生する。
一方、プラスチック製品を埋設処理するには土地も限られている。また自然環境中に廃棄された場合、これらの樹脂は化学的安定性が極めて高く、微生物などによる分解がほとんど起こらず、ほぼ半永久的に残存することになる。そのため、景観を損なう原因となったり、海洋生物の生活環境を汚染するなどの問題を引き起こしている。
【0002】
この様な状況もあり、最近では生分解性又は自然環境下で分解するポリマーが注目されてきている。生分解性プラスチックは、土壌中や水中で、加水分解や生分解により、徐々に樹脂の崩壊・分解が進行し、最終的に微生物の作用により無害な分解物となることが知られている。現在、実用化が検討されている生分解性プラスチックは、天然素材系のバイオセルロースや澱粉主体のプラスチック、脂肪族ポリエステル、変性PVA(ポリビニルアルコール)、セルロースエステル化合物、デンプン変性体、およびこれらのブレンド体に大別される。これら生分解性樹脂の内、加工性、コスト、機械特性、耐水性等の点で比較的バランスがとれていて、様々な用途に使いやすい樹脂としては、脂肪族ポリエステル樹脂が挙げられる。
【0003】
脂肪族ポリエステルとしては、例えば、微生物産出系重合体としてポリ(ヒドロキシ酪酸/吉草酸)が、合成系重合体としてポリカプロラクトンや脂肪族ジカルボン酸と脂肪族ジオールの縮合体が、そして、半合成系重合体としてポリ乳酸系重合体がそれぞれ知られている。
ポリ乳酸系重合体は、非石油系原料、さつまいもやトウモロコシなどの原料を使用して合成していることから、石油資源を使用しない植物系由来の樹脂として注目されており、今まで石油系プラスチックを使用していた用途で、素材を非石油系材料へ置き換えていく動きが盛んである。
ポリ乳酸は透明性を生かし、フィルムやシート用途に使用されている。しかし、ポリ乳酸単体では耐熱性が低いことから、耐熱性が必要とされる用途には使用されていなかったのが現状である。
この様な課題を解決するため、ポリ乳酸にアクリル系樹脂を添加する検討がなされているが、未だ充分な耐熱性は得られていない。(特許文献1)
【特許文献1】特開2002−155207号公報
【0004】
【発明が解決しようとする課題】
しかしながら前述したポリ乳酸にアクリル系樹脂を添加する方法においても、未だ充分な耐熱性は得られていない。
本発明の目的は、ポリ乳酸系重合体の透明性を生かしつつ、耐熱性を向上させたポリ乳酸系熱可塑性樹脂組成物を提供することにある。
【0005】
【課題を解決するための手段】
本発明の要旨は、ポリ乳酸系重合体(A)0.1〜99.9質量%と、メタクリル酸メチル(b1)単量体単位と、アクリル酸アルキルエステル単量体(b2)単位とを含有するアクリル系重合体(B)99.9〜0.1質量%(AとBの合計量が100質量%)とからなる熱可塑性樹脂組成物にある。
【0006】
【発明の実施の形態】
本発明におけるポリ乳酸系重合体(A)としては、多糖類(デンプン、酢酸セルロースなどが挙げられる。
本発明におけるポリ乳酸系重合体(A)とは、ポリ乳酸または乳酸と他のヒドロキシカルボン酸との共重合体、もしくはこれらの混合物である。
乳酸としては、L−乳酸、D−乳酸が挙げられ、他のヒドロキシカルボン酸としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸等が挙げられる。
ポリ乳酸は従来公知の方法で合成することができる。すなわち、特開平7−33861号公報、特開昭59−96123号公報、高分子討論会予稿集44巻、3198−3199 頁に記載のような乳酸からの直接脱水縮合、または乳酸環状二量体ラクチドの開環重合によって合成することができる。
直接脱水縮合を行なう場合、L−乳酸、D−乳酸、DL−乳酸、又はこれらの混合物のいずれの乳酸を用いても良い。また、開環重合を行なう場合においても、L−ラクチド、D−ラクチド、DL−ラクチド、メソ−ラクチド又はこれらの混合物のいずれのラクチドを用いても良い。
ラクチドの合成、精製及び重合操作は、例えば米国特許4057537号明細書、公開欧州特許出願第261572号明細書、Polymer Bulletin, 14, 491−495 (1985)、及び Makromol Chem., 187, 1611−1628 (1986) 等の文献に様々に記載されている。
ポリ乳酸におけるL乳酸単位、D乳酸単位の構成モル比L/Dは100/0〜0/100のいずれであっても良いが、L/Dが100/0〜60/40であることが好ましい。より好ましいL/Dは100/0〜80/20である。
また、乳酸コポリマーは、乳酸モノマー又はラクチドと共重合可能な他の成分が共重合されたものである。このような他の成分としては、2個以上のエステル結合形成性の官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等が挙げられる。
ジカルボン酸としては、コハク酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸等が挙げられる。
多価アルコールとしては、ビスフェノールにエチレンオキシドを付加反応させたものなどの芳香族多価アルコール、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、トリメチロールプロパン、ネオペンチルグリコールなどの脂肪族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどのエーテルグリコール等が挙げられる。
ヒドロキシカルボン酸としては、グリコール酸、ヒドロキシブチルカルボン酸、その他特開平6−184417号公報に記載されているもの等が挙げられる。
ラクトンとしては、グリコリド、ε−カプロラクトングリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等が挙げられる。
乳酸コポリマーの加水分解性は、コポリマーにおける乳酸単位の含量により影響される。このため、乳酸コポリマー中の乳酸単位の含量は、用いる共重合成分にもよるが、一般に50モル%以上であり、好ましくは70モル%以上である。乳酸単位の含量や共重合成分によって、得られる製品の機械特性や生分解性を調節することが可能である。
これらポリ乳酸系重合体は、特に限定されないが一般に、結晶性の場合は融点60〜200℃、重量平均分子量5万〜50万、好ましくは10万〜30万程度のものである。
また、共重合と同じ効果を得る目的で、ポリ乳酸と他の脂肪族ポリエステルを単にブレンドしても良い。この場合において、他の脂肪族ポリエステルを構成するモノマーやポリ乳酸含量等は、共重合の場合と同様である。
【0007】
本発明におけるアクリル系重合体(B)中は、メタクリル酸メチル(b1)単量体単位を含有する。その含有量は重合体(B)中50質量%以上であることが好ましく、アクリル酸アルキルエステル(b2)単量体単位の含有量は50質量%以下であることが好ましい。
メタクリル酸メチル(b1)単量体単位の含有量が50質量%以上であれば、得られた成型品の透明性も良好になる。
アクリル系重合体(B)の重合方法は特に限定されるものではなく、通常公知の懸濁重合、塊状重合、乳化重合法等の各種方法が適用される。
アクリル系重合体の分子量は特に限定されるものではないが、重量平均分子量10万〜30万が好ましい。
【0008】
本発明においては、ポリ乳酸系重合体に、必要に応じて、本発明の効果を阻害しない範囲内で他の高分子材料が混入されていてもよい。また、成形加工性、製品物性を調整する目的で、滑剤、アンチブロッキング剤、紫外線吸収剤、光安定剤等、必要に応じて、可塑剤(フタル酸エステル等)、安定剤(2−tert− ブチル−6−(3−tert− ブチル−2− ヒドロキシ−5− メチルベンジル)−4−メチルフェニルアクリレート等)、着色剤(赤口黄鉛、酸化チタン等)、充填剤(炭酸カルシウム、クレー、タルク等)、酸化防止剤(アルキルフェノール、有機亜リン酸エステル等)、紫外線吸収剤(サリチル酸エステル、ベンゾトリアゾール等)、難燃剤(リン酸エステル、酸化アンチモン等)、帯電防止剤、滑剤、発泡剤、抗菌・抗カビ剤等の従来公知の各種添加剤を配合することができる。これらの配合量は、使用目的に応じて適宜定めることができる。
【0009】
本発明においてポリ乳酸系重合体に上記各種添加剤を配合する方法は、特に制限されるものではなく、従来公知の方法によって行うことができる。例えば、ミルロール、バンバリーミキサー、スーパーミキサー、単軸あるいは二軸押出機等を用いて混合混練すれば良い。
このようにして混練されたポリマー組成物を、インジェクション法、溶融押出し法、カレンダー法等公知の成形方法により賦型することができる。
【0010】
【実施例】
以下、本発明を実施例、及び比較例を揚げて説明するが、本発明はこれらの実施例に限定されるものではない。実施例に先だって、実施例で用いた押し出し機、成形方法、溶融特性測定方法、成形体の評価方法について説明する。
(1) 押出機
φ30mm、L/D=20の二軸押し出し機を用い、アクリル系重合体とポリ乳酸樹脂を溶融混練し、熱可塑性樹脂組成物ペレットを得た。
(2) 射出成型機
上記熱可塑性樹脂組成物ペレットを射出成型機を用いて100cm角の板を成型した。
(3)メルトフローレート(MFR)
樹脂組成物のペレットを ASTM D1238に準じて荷重37.3N、230℃で測定した。
(4)ガラス転移温度
DSCを用い、昇温速度20℃/min.で測定
(5)還元粘度
サン電子工業製AVL−2C自動粘度計を使用して、溶媒にクロロホルムを用い25℃で測定した。クロロホルム100mlにサンプル0.1gを溶かした物を使用した。
【0011】
実施例1〜12、比較例1〜2
ポリ乳酸系重合体としてラクティ#9031(島津製作所製,重量平均分子量約14万)、ラクティ#5400(島津製作所製,重量平均分子量約20万)を用い、これと熱可塑性重合体▲1▼(MMA/MA共重合体、MMA/MA=99/1、還元粘度:0.06L/g)熱可塑性共重合体▲2▼(MMA/MA共重合体、MMA/MA=90/10、還元粘度:0.05L/g)を表1に示す割合でハンドブレンドした後、二軸押出機(池貝社製PCM−28.5)を用いて、バレル温度200℃、スクリュー回転数150rpmにて溶融混練しペレット状に賦型した。得られたペレットを用いて諸物性を測定した結果を表1に示す。
【0012】
【表1】

Figure 2004269720
【0013】
【発明の効果】
本発明によれば、ポリ乳酸系重合体にアクリル系重合体を添加することによって、透明性を落とさずに樹脂の耐熱性を向上させた熱可塑性樹脂組成物を提供することができ、シート・フィルム成形,発泡成形,異型成形,インジェクション成形など、さまざまな成形を容易に可能とすることが出来る。[0001]
[Prior art]
In recent years, an enormous amount of plastic products such as polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and vinyl chloride have been used, and the disposal of these wastes has been highlighted as one of environmental problems. That is, the current waste treatment is incineration or burial treatment. For example, incineration of polyethylene or the like causes a high burn calorie, which damages the incinerator and shortens its life. Also, when polyvinyl chloride or the like is incinerated, harmful gases are generated.
On the other hand, land is limited for burying plastic products. When discarded in a natural environment, these resins have extremely high chemical stability, are hardly decomposed by microorganisms, and remain almost semi-permanently. This causes problems such as damage to the landscape and pollution of the living environment of marine life.
[0002]
Under such circumstances, a polymer that is biodegradable or decomposes in a natural environment has recently attracted attention. It is known that biodegradable plastics gradually decompose and decompose in a soil or water due to hydrolysis or biodegradation, and eventually become harmless decomposition products due to the action of microorganisms. Currently, biodegradable plastics that are being considered for practical use include biocellulose based on natural materials, plastics mainly composed of starch, aliphatic polyester, modified PVA (polyvinyl alcohol), cellulose ester compounds, modified starch, and blends thereof. It is roughly divided into the body. Among these biodegradable resins, aliphatic polyester resins are relatively balanced in terms of processability, cost, mechanical properties, water resistance and the like, and are easy to use for various applications.
[0003]
Examples of the aliphatic polyester include poly (hydroxybutyric acid / valeric acid) as a microbial-produced polymer, polycaprolactone or a condensate of an aliphatic dicarboxylic acid and an aliphatic diol as a synthetic polymer, and a semi-synthetic polymer. Polylactic acid-based polymers are known as polymers.
Polylactic acid-based polymers are synthesized using raw materials such as non-petroleum-based raw materials such as sweet potatoes and corn, so they have attracted attention as plant-based resins that do not use petroleum resources. There is a growing movement to replace non-petroleum-based materials in applications that used to be.
Polylactic acid is used for film and sheet applications, taking advantage of its transparency. However, since polylactic acid alone has low heat resistance, it has not been used for applications requiring heat resistance at present.
In order to solve such problems, studies have been made to add an acrylic resin to polylactic acid, but sufficient heat resistance has not yet been obtained. (Patent Document 1)
[Patent Document 1] Japanese Patent Application Laid-Open No. 2002-155207
[Problems to be solved by the invention]
However, even in the above-mentioned method of adding an acrylic resin to polylactic acid, sufficient heat resistance has not yet been obtained.
An object of the present invention is to provide a polylactic acid-based thermoplastic resin composition having improved heat resistance while utilizing the transparency of the polylactic acid-based polymer.
[0005]
[Means for Solving the Problems]
The gist of the present invention is that a polylactic acid-based polymer (A) is 0.1 to 99.9% by mass, a methyl methacrylate (b1) monomer unit, and an alkyl acrylate monomer (b2) unit. The thermoplastic resin composition comprises 99.9 to 0.1% by mass of the acrylic polymer (B) (the total amount of A and B is 100% by mass).
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the polylactic acid-based polymer (A) in the present invention include polysaccharides (starch, cellulose acetate, and the like).
The polylactic acid-based polymer (A) in the present invention is polylactic acid, a copolymer of lactic acid and another hydroxycarboxylic acid, or a mixture thereof.
Lactic acid includes L-lactic acid and D-lactic acid, and other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid and 6-hydroxyvaleric acid. Hydroxycaproic acid and the like.
Polylactic acid can be synthesized by a conventionally known method. That is, direct dehydration condensation from lactic acid or cyclic dimer of lactic acid as described in JP-A-7-33861, JP-A-59-96123, and Proceedings of the Society of Polymer Discussion, Vol. 44, pp. 3198-3199. It can be synthesized by ring-opening polymerization of lactide.
When performing direct dehydration condensation, any lactic acid of L-lactic acid, D-lactic acid, DL-lactic acid, or a mixture thereof may be used. In the case of performing ring-opening polymerization, any of lactide of L-lactide, D-lactide, DL-lactide, meso-lactide or a mixture thereof may be used.
Lactide synthesis, purification and polymerization procedures are described, for example, in US Pat. No. 4,057,537, published European Patent Application No. 261572, Polymer Bulletin, 14, 491-495 (1985), and Makromol Chem. , 187, 1611-1628 (1986).
The constituent molar ratio L / D of the L-lactic acid unit and the D-lactic acid unit in the polylactic acid may be any of 100/0 to 0/100, but the L / D is preferably 100/0 to 60/40. . More preferred L / D is 100/0 to 80/20.
The lactic acid copolymer is obtained by copolymerizing another component copolymerizable with a lactic acid monomer or lactide. Examples of such other components include dicarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and lactones having two or more ester bond-forming functional groups.
Examples of the dicarboxylic acid include succinic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid.
Polyhydric alcohols include aromatic polyhydric alcohols such as those obtained by adding ethylene oxide to bisphenol, ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, glycerin, sorbitan, trimethylolpropane, neopentyl glycol, etc. Aliphatic polyhydric alcohols, ether glycols such as diethylene glycol, triethylene glycol, polyethylene glycol and polypropylene glycol.
Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutylcarboxylic acid, and those described in JP-A-6-184417.
Examples of the lactone include glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, δ-valerolactone and the like.
The hydrolyzability of a lactic acid copolymer is affected by the content of lactic acid units in the copolymer. For this reason, the content of the lactic acid unit in the lactic acid copolymer is generally at least 50 mol%, preferably at least 70 mol%, although it depends on the copolymerization component used. The mechanical properties and biodegradability of the obtained product can be adjusted by the content of the lactic acid unit and the copolymer component.
These polylactic acid-based polymers are not particularly limited, but generally have a melting point of 60 to 200 ° C. and a weight average molecular weight of 50,000 to 500,000, and preferably about 100,000 to 300,000 when crystalline.
Further, polylactic acid and another aliphatic polyester may be simply blended for the purpose of obtaining the same effect as the copolymerization. In this case, the monomers and polylactic acid content of the other aliphatic polyester are the same as in the case of the copolymerization.
[0007]
The acrylic polymer (B) in the present invention contains a methyl methacrylate (b1) monomer unit. The content is preferably 50% by mass or more in the polymer (B), and the content of the alkyl acrylate (b2) monomer unit is preferably 50% by mass or less.
When the content of the methyl methacrylate (b1) monomer unit is 50% by mass or more, the transparency of the obtained molded product is improved.
The polymerization method of the acrylic polymer (B) is not particularly limited, and various methods such as generally known suspension polymerization, bulk polymerization, and emulsion polymerization are applied.
Although the molecular weight of the acrylic polymer is not particularly limited, a weight average molecular weight of 100,000 to 300,000 is preferable.
[0008]
In the present invention, if necessary, other polymer materials may be mixed into the polylactic acid-based polymer as long as the effects of the present invention are not impaired. For the purpose of adjusting the moldability and product properties, lubricants, anti-blocking agents, ultraviolet absorbers, light stabilizers, etc., if necessary, plasticizers (phthalate esters, etc.) and stabilizers (2-tert- Butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, etc.), coloring agent (red-mouthed graphite, titanium oxide, etc.), filler (calcium carbonate, clay, talc) ), Antioxidants (such as alkylphenols and organic phosphites), ultraviolet absorbers (such as salicylates and benzotriazoles), flame retardants (such as phosphates and antimony oxide), antistatic agents, lubricants, and foaming agents. Various conventionally known additives such as antibacterial and antifungal agents can be blended. These blending amounts can be appropriately determined according to the purpose of use.
[0009]
In the present invention, the method of blending the above various additives with the polylactic acid-based polymer is not particularly limited, and can be performed by a conventionally known method. For example, mixing and kneading may be performed using a mill roll, a Banbury mixer, a super mixer, a single screw or twin screw extruder, or the like.
The polymer composition kneaded in this manner can be shaped by a known molding method such as an injection method, a melt extrusion method, and a calender method.
[0010]
【Example】
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Prior to the examples, an extruder, a molding method, a melting property measuring method, and a method for evaluating a molded body used in the examples will be described.
(1) An acrylic polymer and a polylactic acid resin were melt-kneaded using a biaxial extruder having an extruder of φ30 mm and L / D = 20 to obtain a thermoplastic resin composition pellet.
(2) Injection molding machine The above thermoplastic resin composition pellets were molded into a 100 cm square plate using an injection molding machine.
(3) Melt flow rate (MFR)
The pellets of the resin composition were measured at a load of 37.3 N and 230 ° C. according to ASTM D1238.
(4) Using a glass transition temperature DSC, the temperature was raised at a rate of 20 ° C./min. (5) Reduced viscosity The reduced viscosity was measured at 25 ° C. using chloroform as a solvent by using an AVL-2C automatic viscometer manufactured by Sun Electronics Industry. A solution prepared by dissolving 0.1 g of a sample in 100 ml of chloroform was used.
[0011]
Examples 1 to 12, Comparative Examples 1 and 2
Lacty # 9031 (manufactured by Shimadzu Corporation, weight average molecular weight: about 140,000) and Lacty # 5400 (manufactured by Shimadzu Corporation, weight average molecular weight: about 200,000) were used as the polylactic acid-based polymer, and the thermoplastic polymer (1) ( MMA / MA copolymer, MMA / MA = 99/1, reduced viscosity: 0.06 L / g) Thermoplastic copolymer (2) (MMA / MA copolymer, MMA / MA = 90/10, reduced viscosity) : 0.05 L / g) at a ratio shown in Table 1, and then melt-kneaded using a twin-screw extruder (PCM-28.5 manufactured by Ikegai Co., Ltd.) at a barrel temperature of 200 ° C and a screw rotation speed of 150 rpm. Then, it was shaped into pellets. Table 1 shows the results of measuring various physical properties using the obtained pellets.
[0012]
[Table 1]
Figure 2004269720
[0013]
【The invention's effect】
According to the present invention, by adding an acrylic polymer to a polylactic acid-based polymer, it is possible to provide a thermoplastic resin composition in which the heat resistance of the resin is improved without lowering the transparency. Various moldings such as film molding, foam molding, irregular molding, and injection molding can be easily performed.

Claims (2)

ポリ乳酸系重合体(A)0.1〜99.9質量%と、メタクリル酸メチル(b1)単量体単位と、アクリル酸アルキルエステル単量体(b2)単位とを含有するアクリル系重合体(B)99.9〜0.1質量%(AとBの合計量が100質量%)とからなる熱可塑性樹脂組成物。Acrylic polymer containing 0.1 to 99.9% by mass of a polylactic acid-based polymer (A), a methyl methacrylate (b1) monomer unit, and an alkyl acrylate monomer (b2) unit (B) A thermoplastic resin composition comprising 99.9 to 0.1% by mass (the total amount of A and B is 100% by mass). ポリ乳酸系重合体(A)50.0〜99.9質量%と、アクリル系重合体(B)50.0〜0.1質量%(AとBの合計量が100質量%)とからなる熱可塑性樹脂組成物。50.0 to 99.9% by mass of polylactic acid-based polymer (A) and 50.0 to 0.1% by mass of acrylic polymer (B) (the total amount of A and B is 100% by mass) Thermoplastic resin composition.
JP2003063165A 2003-03-10 2003-03-10 Thermoplastic resin composition Pending JP2004269720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063165A JP2004269720A (en) 2003-03-10 2003-03-10 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063165A JP2004269720A (en) 2003-03-10 2003-03-10 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JP2004269720A true JP2004269720A (en) 2004-09-30

Family

ID=33124816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063165A Pending JP2004269720A (en) 2003-03-10 2003-03-10 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP2004269720A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same
WO2006121011A1 (en) * 2005-05-09 2006-11-16 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
WO2006121147A1 (en) * 2005-05-13 2006-11-16 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
JP2006328190A (en) * 2005-05-25 2006-12-07 Fujifilm Holdings Corp Transparent member for electronic equipment
JP2007092026A (en) * 2005-08-31 2007-04-12 Tokyo Institute Of Technology Molded product formed out of lactic acid-based resin composition containing lactic acid-based polymer and having transparency and heat resistance
WO2007060930A1 (en) * 2005-11-25 2007-05-31 Kuraray Co., Ltd. Polylactic acid composition
WO2008096798A1 (en) 2007-02-06 2008-08-14 Mitsubishi Plastics, Inc. Thermally shrinkable film, molded article and thermally shrinkable label both using the thermally shrinkable film, and container using the molded article or having the label attached thereon
JP2009524726A (en) * 2006-01-27 2009-07-02 アーケマ・インコーポレイテッド Blends of biopolymers and acrylic copolymers
EP1667138A3 (en) * 2004-11-26 2009-07-22 SANYO ELECTRIC Co., Ltd. Optical disc and material for substrate thereof
US7799412B2 (en) * 2005-11-30 2010-09-21 Toray Industries, Inc. Polylactic acid-based resin laminate sheet and molded product therefrom
CN101142282B (en) * 2005-03-11 2013-10-02 富士通株式会社 Plant resin composition and plant resin molded product
EP2740767A1 (en) 2005-07-08 2014-06-11 Toray Industries, Inc. Resin composition and molded article comprising of the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same
EP1667138A3 (en) * 2004-11-26 2009-07-22 SANYO ELECTRIC Co., Ltd. Optical disc and material for substrate thereof
US7785688B2 (en) 2004-11-26 2010-08-31 Sanyo Electric Co., Ltd. Optical disc and material for substrate thereof
CN101142282B (en) * 2005-03-11 2013-10-02 富士通株式会社 Plant resin composition and plant resin molded product
JP5183203B2 (en) * 2005-05-09 2013-04-17 株式会社カネカ Biodegradable resin composition and molded body thereof
WO2006121011A1 (en) * 2005-05-09 2006-11-16 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
US7919549B2 (en) 2005-05-09 2011-04-05 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
JP5183204B2 (en) * 2005-05-13 2013-04-17 株式会社カネカ Biodegradable resin composition and molded article thereof
WO2006121147A1 (en) * 2005-05-13 2006-11-16 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
US7973101B2 (en) 2005-05-13 2011-07-05 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
JP2006328190A (en) * 2005-05-25 2006-12-07 Fujifilm Holdings Corp Transparent member for electronic equipment
US8829099B2 (en) 2005-07-08 2014-09-09 Toray Industries, Inc. Resin composition and molded article composed of the same
EP2740767A1 (en) 2005-07-08 2014-06-11 Toray Industries, Inc. Resin composition and molded article comprising of the same
JP2007092026A (en) * 2005-08-31 2007-04-12 Tokyo Institute Of Technology Molded product formed out of lactic acid-based resin composition containing lactic acid-based polymer and having transparency and heat resistance
KR101236026B1 (en) * 2005-11-25 2013-02-21 가부시키가이샤 구라레 Polylactic acid composition
WO2007060930A1 (en) * 2005-11-25 2007-05-31 Kuraray Co., Ltd. Polylactic acid composition
US8022139B2 (en) 2005-11-25 2011-09-20 Kuraray Co., Ltd. Polylactic acid composition
JP5466823B2 (en) * 2005-11-25 2014-04-09 株式会社クラレ Polylactic acid composition
US7799412B2 (en) * 2005-11-30 2010-09-21 Toray Industries, Inc. Polylactic acid-based resin laminate sheet and molded product therefrom
US7666946B2 (en) * 2006-01-27 2010-02-23 Arkema Inc. Blends of biopolymers with acrylic copolymers
TWI422643B (en) * 2006-01-27 2014-01-11 Arkema Inc Blends of biopolymers with acrylic copolymers
JP2009524726A (en) * 2006-01-27 2009-07-02 アーケマ・インコーポレイテッド Blends of biopolymers and acrylic copolymers
US8420193B2 (en) 2007-02-06 2013-04-16 Mitsubishi Plastics, Inc. Heat-shrinkable film, molded product and heat-shrinkable label employing the film, and container employing the molded product or having the label fitted thereon
WO2008096798A1 (en) 2007-02-06 2008-08-14 Mitsubishi Plastics, Inc. Thermally shrinkable film, molded article and thermally shrinkable label both using the thermally shrinkable film, and container using the molded article or having the label attached thereon
US9206312B2 (en) 2007-02-06 2015-12-08 Mitsubishi Plastics, Inc. Heat-shrinkable film, molded product and heat-shrinkable label employing the film, and container employing the molded product or having the label fitted thereon

Similar Documents

Publication Publication Date Title
JP4644667B2 (en) Thermoplastic resin composition and molded article using the same
JP5867406B2 (en) Biodegradable film
JP4773958B2 (en) Thermoplastic resin composition
KR20050025593A (en) Biodegradable sheet, molded object obtained from the sheet, and process for producing the molded object
Kushwah et al. RETRACTED ARTICLE: Towards understanding polyhydroxyalkanoates and their use
JP2004269720A (en) Thermoplastic resin composition
JPWO2013038770A1 (en) the film
JP2008239645A (en) Polylactic acid-based resin composition, method for producing the same and molded article
JP4034596B2 (en) Injection molded body
JP3984440B2 (en) Resin composition, film and disposal method
JP2006045487A (en) Thermoplastic resin composition
JP2005041980A (en) Plasticizer for resin and resin composition containing the plasticizer, and molded form obtained by molding the resin composition
JP4281860B2 (en) Polylactic acid resin composition, molded article and plasticizer for resin
JP3235968B2 (en) Three-component biodegradable resin composition
JP2003231798A (en) Lactic acid resin composition and sheet product of the same, and bag product
JP2006045366A (en) Poly(3-hydroxybutylate-co-3-hydroxyhexanoate) composition and its molding
JP2005306984A (en) Thermoplastic resin composition
Wang Poly (Lactic Acid)(PLA), Poly (ε-Caprolactone)(PCL) and Thermoplastic Starch (TPS) Blends for Compostable Packaging Applications
JP5957908B2 (en) Biodegradable film
JP3759530B2 (en) Biodegradable film
JP3477642B2 (en) Molded body with controlled biodegradation period and method for producing the same
JP2003253106A (en) Resin composition and molded product made of the same
JPH10120890A (en) Polylactic resin composition for transparent molding
JP2006052257A (en) Polylactic acid composition
JP3546593B2 (en) Biodegradable lactic acid-based polymer composition