JP2004268509A - ワイヤソーによる単結晶インゴット切断方法 - Google Patents

ワイヤソーによる単結晶インゴット切断方法 Download PDF

Info

Publication number
JP2004268509A
JP2004268509A JP2003065112A JP2003065112A JP2004268509A JP 2004268509 A JP2004268509 A JP 2004268509A JP 2003065112 A JP2003065112 A JP 2003065112A JP 2003065112 A JP2003065112 A JP 2003065112A JP 2004268509 A JP2004268509 A JP 2004268509A
Authority
JP
Japan
Prior art keywords
ingot
face
saw
distance
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003065112A
Other languages
English (en)
Inventor
Shoji Masuyama
尚司 増山
Ei Uematsu
鋭 植松
Hironori Umagami
浩徳 馬上
Masami Mori
政美 森
Tadashi Horiguchi
正 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003065112A priority Critical patent/JP2004268509A/ja
Publication of JP2004268509A publication Critical patent/JP2004268509A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

【課題】単結晶インゴットをインゴット端面と平行に切断する際の、面合わせ作業の作業効率が良好で、かつ、面合わせ精度が高いワイヤソーによる単結晶インゴット切断方法を提供するものである。
【解決手段】本発明に係るワイヤソーによる単結晶インゴット切断方法は、自在テーブル31上に載置・固定された単結晶インゴット32を、ワイヤソー33を用いてインゴット端面32aと平行に切断するものであり、インゴット端面32aの傾きを検知・測定すると共にその傾き角度を計算し、その傾き角度に基づいてインゴット端面32aの傾きを修正するものである。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、ワイヤソーによる単結晶インゴット切断方法に係り、特に、ワイヤソーを用い、単結晶インゴットをインゴット端面と平行に切断する方法に関するものである。
【0002】
【従来の技術】
単結晶インゴット、例えば化合物半導体インゴットを、ワイヤソーなどの切断装置で切断する場合、その切断面が所定の結晶方位となるように、予めインゴット端面を結晶面に合わせて切断している。一般に、結晶面は単結晶インゴットの長手方向に対して垂直となるように調整されている。よって、単結晶インゴットを、インゴット端面と平行に切断すれば、結晶面に合わせて切断されたウェハが得られる。
【0003】
従来の切断装置は、図2に示すように、自在テーブル31上に載置・固定された単結晶インゴット32を、インゴット端面32aと平行に切断するためのワイヤソー33を有している。
【0004】
また、切断装置は、水平に、かつ、インゴット端面32aに向かい合わせて大地系に載置・固定されたダイヤルゲージ35と、ワイヤソー33の切断用ワイヤ(以下、ソーワイヤと表す)34とほぼ平行に配置・固定されたスライドレール36と、スライドレール36に取付けられた距離測定機能を有する顕微鏡37とを有している。
【0005】
この切断装置を用いた単結晶インゴット32の切断方法は、以下に示すステップを有する。
【0006】
ステップ▲1▼ インゴット端面32aにダイヤルゲージ35の測定端子を当接する。その後、自在テーブル31をZ軸方向に移動させ、Z軸に対するインゴット端面32aの傾きをダイヤルゲージ35で測定する。
【0007】
ステップ▲2▼ 自在テーブル31をZ軸方向に移動させてもダイヤルゲージ35の読みが変化しないように、自在テーブル31をX軸を中心に回転させ、Z軸とインゴット端面32aとを平行にする。
【0008】
ステップ▲3▼ 顕微鏡37の台部38aをスライドレール36に沿って移動させながら、ソーワイヤ34が常に顕微鏡37の筒部38bにおける接眼レンズの視野の中央に位置するように、台部38aをY軸と平行に移動させたり、スライドレール36をピン39を中心に回転させ、ソーワイヤ34とスライドレール36とを平行にする。
【0009】
ステップ▲4▼ ソーワイヤ34とゲージ40の上端とを同時に接眼レンズで観察できるように、ゲージ40の上端をソーワイヤ34に近付けた状態で、ゲージ40をインゴット端面32aに貼り付ける。ここで、顕微鏡37でインゴット端面32aの位置を測定する際、インゴット端面32aはY軸方向に位置ずれがあるため、面を代表する位置がバラバラである。よって、インゴット端面32aの上端にゲージ40を貼り付け、ゲージ40の上端をインゴット端面32aの代わりとし、間接的にインゴット端面32aの位置を測定している。
【0010】
ステップ▲5▼ 顕微鏡37の台部38aをスライドレール36に沿って移動させても、ゲージ40の上端が常に筒部38bの接眼レンズの視野の中央に位置するように、台部38aをY軸と平行に移動させたり、自在テーブル31をZ軸を中心に回転させ、ソーワイヤ34とゲージ40の上端(インゴット端面32a)とを平行にする。
【0011】
【発明が解決しようとする課題】
ところで、上述した単結晶インゴット32の切断方法においては、以下に示す問題があった。
【0012】
ステップ▲2▼において、自在テーブル31をX軸を中心に回転させると、インゴット端面32aがY軸方向にずれてしまうため、Z軸とインゴット端面32aとの平行出しが困難であった。具体的には、インゴット端面32aの上端が下端よりもY軸方向の一方側に3mm突出していた場合、自在テーブル31をX軸を中心に回転させて、インゴット端面32aの上端をY軸方向の他方側に3mm引っ込めると、インゴット端面32aの下端もY軸方向の他方側に僅かに引っ込んでしまい、Z軸とインゴット端面32aとが平行にならない。このため、このステップ▲2▼の作業を何度か繰り返さないと、つまりトライ&エラーを繰り返さないと、Z軸とインゴット端面32aとが平行にならない。
【0013】
ステップ▲3▼において、筒部38bの対物レンズの中心とピン39とが一致しておらず、また、それらを一致させることは物理的に極めて困難であるため、ソーワイヤ34とスライドレール36との平行出しが困難であった。具体的には、スライドレール36の左端でソーワイヤ34が接眼レンズの視野の中央に位置するように調整した後、台部38aをスライドレール36に沿って右端に移動させ、その位置においてもソーワイヤ34が接眼レンズの視野の中央に位置するように調整しても、対物レンズの中心と、スライドレール36の回転中心(ピン39)とが一致していないため、ソーワイヤ34とスライドレール36とは平行にならない。このため、このステップ▲3▼の作業を何度か繰り返さないと、ソーワイヤ34とスライドレール36とが平行にならない。
【0014】
ステップ▲4▼において、インゴット端面32aにゲージ40を貼り付ける際、インゴット端面32aに異物が付着していた場合、インゴット端面32aとゲージ40との間に異物が混入してしまうおそれがある。この場合、ゲージ40はインゴット端面32aの傾きを正確に反映しなくなることから、ステップ▲5▼における平行出しの精度低下を招いてしまう。これが、従来の切断方法における最大の問題点であった。
【0015】
ステップ▲5▼において、筒部38bの対物レンズの中心と、ゲージ40の回転中心(Z軸)とが一致していないため、ソーワイヤ34とゲージ40の上端との平行出しが困難であった。具体的には、スライドレール36の左端でゲージ40の上端が接眼レンズの視野の中央に位置するように調整した後、台部38aをスライドレール36に沿って右端に移動させ、その位置においてもゲージ40の上端が接眼レンズの視野の中央に位置するように調整しても、筒部38bの対物レンズの中心と、ゲージ40の回転中心(Z軸)とが一致していないため、ソーワイヤ34とゲージ40の上端とは平行にならない。このため、ステップ▲5▼の作業を何度か繰り返さないと、ソーワイヤ34とゲージ40の上端とが平行にならない。
【0016】
また、ステップ▲5▼において、ソーワイヤ34とゲージ40の上端との平行出しの精度を上げることが困難であった。具体的には、ソーワイヤ34とゲージ40の上端との平行出しを行うには、ソーワイヤ34とゲージ40の上端とを同時に顕微鏡37で観察する必要がある。ここで、ソーワイヤ34及びゲージ40の上端の、対物レンズからの距離はそれぞれ異なる。このため、対物レンズとして、焦点深度の深いレンズを用いる必要があるが、一般的に焦点深度の深いレンズの拡大率は小さくなる。その結果、顕微鏡37の拡大倍率が小さくなるため、平行出しの測定精度を上げることができない。また、インゴット端面32aにゲージ40を傾けて貼り付けてしまうと、ソーワイヤ34とゲージ40の上端との平行出しの誤差が大きくなってしまうことは言うまでもない。
【0017】
以上の事情を考慮して創案された本発明の目的は、単結晶インゴットをインゴット端面と平行に切断する際の、面合わせ作業の作業効率が良好で、かつ、面合わせ精度が高いワイヤソーによる単結晶インゴット切断方法を提供することにある。
【0018】
【課題を解決するための手段】
上記目的を達成すべく本発明に係るワイヤソーによる単結晶インゴット切断方法は、自在テーブル上に載置・固定された単結晶インゴットを、ワイヤソーを用いてインゴット端面と平行に切断する方法において、上記インゴット端面の傾きを検知・測定すると共にその傾き角度を計算し、その傾き角度に基づいてインゴット端面の傾きを修正するものである。
【0019】
具体的には、本発明に係るワイヤソーによる単結晶インゴット切断方法は、自在テーブル上に載置・固定された単結晶インゴットを、ワイヤソーを用いてインゴット端面と平行に切断する方法において、
水平に、かつ、上記インゴット端面に向かい合わせて配置・固定された第1測距器を用い、第1測距器からインゴット端面までの距離YT1を測定した後、自在テーブルをZ軸方向にZT1移動させ、その位置で第1測距器からインゴット端面までの距離YT2を測定するステップAと、
ステップAの測定値より、α=tan−1〔(YT1−YT2)/ZT1〕で与えられる角度αを計算するステップBと、
上記ワイヤソーのソーワイヤの形成面の垂直方向成分に対してインゴット端面が平行になるように、自在テーブルをX軸を中心に角度α揺動回転させるステップCと、
上記ソーワイヤとほぼ平行に配置・固定されたスライドレールに係合して設けた第2測距器を用い、第2測距器からソーワイヤまでの距離YS1を測定した後、第2測距器の係合部をスライドレールに沿ってXS1スライド移動させ、その位置で第2測距器からソーワイヤまでの距離YS2を測定するステップDと、
ステップDの測定値より、β=tan−1〔(YS1−YS2)/XS1〕で与えられる角度βを計算するステップEと、
ソーワイヤの形成面の水平方向成分に対してスライドレールが平行になるように、スライドレールを角度β回転させるステップFと、
上記第2測距器の係合部に取付けられた第3測距器を用い、第3測距器からインゴット端面までの距離YT3を測定した後、第2測距器の係合部をスライドレールに沿ってXS2スライド移動させ、その位置で第3測距器からインゴット端面までの距離YT4を測定するステップGと、
ステップGの測定値より、γ=tan−1〔(YT3−YT4)/XS2〕で与えられる角度γを計算するステップHと、
ソーワイヤの形成面の水平方向成分に対してインゴット端面が平行になるように、自在テーブルをZ軸を中心に角度γ回転させるステップIと、
自在テーブルをZ軸方向に上昇させ、単結晶インゴットをソーワイヤでインゴット端面と平行に切断してウェハを形成するステップJとを備えたものである。
【0020】
ここで、請求項3に示すように、第1及び第3測距器としてダイヤルゲージを用い、第2測距器として距離測定機能を有する顕微鏡を用いることが好ましい。
【0021】
これによって、自在テーブル上に載置・固定された単結晶インゴットを、ワイヤソーを用いてインゴット端面と平行に切断する際、インゴット端面と切断面との面合わせ作業の作業効率が、従来と比較して良好となり、また、その面合わせの精度も、従来と比較して高くなる。
【0022】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基いて説明する。
【0023】
本発明に係るワイヤソーによる単結晶インゴット切断方法に用いる切断装置の斜視図を図1に示す。尚、図2と同様の部材については同じ符号を付しており、これらの部材については詳細な説明を省略する。
【0024】
切断装置は、図1に示すように、自在テーブル31上に載置・固定された単結晶インゴット32を、インゴット端面32aと平行に切断するためのワイヤソー33を有している。また、切断装置は、水平に、かつ、インゴット端面32aに向かい合わせて大地系に載置・固定されたダイヤルゲージ(第1測距器)35と、ワイヤソー33の切断用ワイヤ(以下、ソーワイヤと表す)34とほぼ平行に配置・固定されたスライドレール16と、スライドレール16に係合して設けられた距離測定機能を有する顕微鏡(第2測距器)17と、顕微鏡17の台部18aに水平に取付けられ、かつ、インゴット端面32aに向かい合わせて配置・固定されたダイヤルゲージ(第3測距器)15とを有している。ワイヤソー33は、各ソーワイヤ34の形成面(図1中の斜線領域)Aが鉛直となるように配置される。
【0025】
自在テーブル31には、揺動回転軸(X軸周りの回転軸)としてのロッド22が一体に設けられており、このロッド22を大地系に載置された基台21に軸支することで、自在テーブル31は揺動可能となっている。また、自在テーブル31の下面には、水平方向回転手段としての筒体23aが連結して設けられており、この筒体23aと筒体23bとを入れ子式にスライドさせることで、Z軸方向に伸縮自在となっている。筒体23bには、Z軸方向の移動距離を計測するための目盛りSが形成される。自在テーブル31の下面と筒体23aとは、筒体23aの回転トルク、及び筒体23aの延長方向(各ソーワイヤ34の形成面Aの鉛直方向)の変位のみを伝えるように連結される。
【0026】
スライドレール16は基台21にピン39を介して連結されており、ピン39の周りにスライドレール16は回転自在となっている。また、顕微鏡17は、スライドレール16の長手方向に沿ってスライド自在に係合された台部18aと、台部18に係合して設けられた筒部38bとで構成され、筒部38bは台部18aに対してY軸方向にスライド自在である。スライドレール16にはX軸方向の移動距離を計測するための目盛りSが、顕微鏡17の台部18aには筒部38bのY軸方向のスライド距離を計測するための目盛りSが形成される。
【0027】
図1においては、第1及び第3測距器として、ダイヤルゲージ35,15を用いた場合について説明を行ったが、これに特に限定するものではなく、1/100mm以下の精度で距離の測定が可能なものであればよい。
【0028】
次に、本発明に係るワイヤソーによる単結晶インゴット切断方法を、添付図面に基いて説明する。
【0029】
本発明に係るワイヤソーによる単結晶インゴット切断方法は、インゴット端面32aの、各ソーワイヤ34の形成面(鉛直面)Aに対する傾きを検知・測定すると共にその傾き角度を計算し、その傾き角度に基づいてインゴット端面32aの傾きを修正するものである。
【0030】
より具体的には、以下に示す3つの手順で構成される。
【0031】
1つ目の手順は、
水平に、かつ、インゴット端面32aに向かい合わせて配置・固定されたダイヤルゲージ35を用い、ダイヤルゲージ35からインゴット端面32aまでの距離YT1(Y軸(X軸及びZ軸と直交する軸)方向の離間距離)を測定した後、自在テーブル31をZ軸方向にZT1上昇(又は下降)移動させ、その位置でダイヤルゲージ35からインゴット端面32aまでの距離YT2を測定するステップA、
ステップAの測定値より、α=tan−1〔(YT1−YT2)/ZT1〕で与えられる角度αを計算するステップB、
および、自在テーブル31に一体に設けたロッド22を角度α揺動回転させるステップCである。
【0032】
この1つ目の手順により、インゴット端面32aは、各ソーワイヤ34の形成面Aの鉛直方向成分に対して平行となる。
【0033】
ここで、ステップAにおけるZT1の測定は、目盛りSの読み取りにより行うが、この読み取りは、目視による読み取り、変位センサ(例えば、マグネスケール等)25による自動読み取りのいずれであってもよい。また、ステップB及び後述するステップE,Hにおける角度α及び角度β,γの計算は、各数値を演算装置などに入力して自動で行うようにしてもよい。また、ステップCにおいて、ロッド22を正確に角度α揺動回転させるべく、ロッド22に自動制御の回転手段(図示せず)を連結して設け、この回転手段に揺動回転角度αを入力するようにしてもよい。
【0034】
2つ目の手順は、
ワイヤソー33のソーワイヤ34とほぼ平行に配置・固定されたスライドレール16に係合して設けた顕微鏡17を用い、顕微鏡17の対物レンズ38cからソーワイヤ34までの距離YS1を測定した後、顕微鏡17の台部(係合部)18aをスライドレール16に沿ってXS1スライド移動させ、その位置で対物レンズ38cからソーワイヤ34までの距離YS2を測定するステップD、
ステップDの測定値より、β=tan−1〔(YS1−YS2)/XS1〕で与えられる角度βを計算するステップE、
および、スライドレール16をピン39を中心に角度β回転させるステップFである。
【0035】
この2つ目の手順により、スライドレール16は、各ソーワイヤ34の形成面Aの水平方向成分に対して平行となる。
【0036】
ここで、ステップDにおけるYS1,YS2及びXS1の測定及び後述するステップGにおけるXS2の測定は、目盛りS及び目盛りSの読み取りにより行うが、この読み取りは、目視による読み取り、変位センサ(例えば、マグネスケール等)による自動読み取りのいずれであってもよい。また、ステップFにおいて、スライドレール16をピン39を中心に、正確に角度β回転させるべく、ピン39に自動制御の回転手段(図示せず)を連結して設け、この回転手段に回転角度βを入力するようにしてもよい。
【0037】
3つ目の手順は、
顕微鏡17の台部18aに水平に取付けられ、かつ、インゴット端面32aに向かい合わせて配置・固定されたダイヤルゲージ15を用い、ダイヤルゲージ15からインゴット端面32aまでの距離YT3を測定した後、顕微鏡17の台部18aをスライドレールに沿ってXS2スライド移動させ、その位置でダイヤルゲージ15からインゴット端面32aまでの距離YT4を測定するステップG、
ステップGの測定値より、γ=tan−1〔(YT3−YT4)/XS2〕で与えられる角度γを計算するステップH、
および、自在テーブル31をZ軸を中心に角度γ回転させるステップIである。
この3つ目の手順により、インゴット端面32aは、各ソーワイヤ34の形成面Aの水平方向成分に対して平行となる。
【0038】
ここで、ステップIにおいて、自在テーブル31をZ軸を中心に、正確に角度γ回転させるべく、筒体23bに自動制御の回転手段(図示せず)を連結して設け、この回転手段に回転角度γを入力するようにしてもよい。
【0039】
これらの手順の後、ステップJにおいて、自在テーブル31をZ軸方向に上昇させ、単結晶インゴット32をソーワイヤ34でインゴット端面32aと平行に切断してウェハ(図示せず)を得る。
【0040】
従来の切断方法においては、トライ&エラーの繰り返しにより、インゴット端面32aの傾きの修正を行っていたため、初心者ではインゴット端面32aとソーワイヤ34の形成面との平行出しの調整が困難であり、調整には熟練を要していた。これに対して、本発明に係る切断方法によれば、インゴット端面32aの、各ソーワイヤ34の形成面Aに対する傾きを検知・測定すると共にその傾き角度α,γを計算し、その傾き角度α,γに基づいてロッド22及び筒体23aを回転させることで、インゴット端面32aの傾きが修正されるため、ソーワイヤ34の形成面Aとインゴット端面32aとの平行出しが容易となる。また、傾き角度α,γの計算、及び傾き角度α,γに基づいたインゴット端面32aの傾きの修正については、自動化が容易であるため、平行出しの各作業においては特に熟練を必要としない。
【0041】
また、従来の切断方法では、インゴット端面32aにゲージ40を貼り付け、ソーワイヤ34とゲージ40の上端とを同時に顕微鏡37で観察し、ソーワイヤ34とゲージ40の上端とを平行にすることで、ソーワイヤ34の形成面とインゴット端面32aとの平行出しを行っていた。ここで、前述したように、顕微鏡37における対物レンズの焦点深度の関係から、観察の際の拡大倍率に制約が生じてしまい、ソーワイヤ34とゲージ40の上端とを平行にする際の精度があまり良好ではなかった。これに対して、本発明に係る切断方法によれば、ソーワイヤ34の形成面Aとインゴット端面32aとの平行出しには、従来のように顕微鏡37及びゲージ40を用いるのではなく、ダイヤルゲージ15を用いている。その結果、1/100mm以下の精度で、ソーワイヤ34の形成面Aとインゴット端面32aとの平行出しを行うことができる。
【0042】
また、従来の切断方法では、インゴット端面32aにゲージ40を貼り付ける際、インゴット端面32aに異物(例えば、切断の際に用いる砥粒懸濁液中の砥粒など)が付着していた場合、インゴット端面32aとゲージ40との間に異物が混入してしまうおそれがあった。これに対して、本発明に係る切断方法によれば、インゴット端面32aを、直接、検知・測定することで、ソーワイヤ34の形成面Aとインゴット端面32aとの平行出しを行っているため、インゴット端面32aに異物が付着していたとしても、インゴット端面32aの傾きを検知・測定する上で全く問題がない。
【0043】
また、従来の切断方法では、ソーワイヤ34でインゴット端面32aと平行に切断する際、若干の誤差が生じるため、切断前の工程(切断装置とは別の装置でなされ、結晶面に合わせて単結晶インゴット32の端面32aを形成する工程)に要求される精度が高くなってしまい、切断前の工程に長時間を要していた。これに対して、本発明に係る切断方法によれば、ソーワイヤ34でインゴット端面32aと平行に切断する際、殆ど全く誤差が生じないことから、切断前の工程に要求される精度も従来と比較して低く、切断前の工程に長時間を要することもない。
【0044】
以上より、切断前の平行出し調整作業(面合わせ作業)が容易になると共に、その作業効率が著しく向上するため、ウェハの生産効率が向上する。また、ソーワイヤ34の形成面Aとインゴット端面32aとの平行出しの精度が、従来と比較して著しく向上するため、ウェハの歩留りも向上する。
【0045】
また、このようにして得られたウェハ、すなわち結晶面と平行に、精度良く切断されたウェハを用いることで、優れた性能の半導体素子を得ることができる。
【0046】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0047】
【発明の効果】
以上要するに本発明によれば、自在テーブル上に載置・固定された単結晶インゴットを、ワイヤソーを用いてインゴット端面と平行に切断する際、インゴット端面と切断面との面合わせ作業の作業効率が従来と比較して良好となり、また、その面合わせの精度も従来と比較して高くなるという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明に係るワイヤソーによる単結晶インゴット切断方法に用いる切断装置の斜視図である。
【図2】従来のワイヤソーによる単結晶インゴット切断方法に用いる切断装置の斜視図である。
【符号の説明】
15 ダイヤルゲージ(第3測距器)
16 スライドレール
17 顕微鏡(第2測距器)
18a 台部(係合部)
31 自在テーブル
32 単結晶インゴット
32a インゴット端面
33 ワイヤソー
34 ソーワイヤ
35 ダイヤルゲージ(第1測距器)

Claims (3)

  1. 自在テーブル上に載置・固定された単結晶インゴットを、ワイヤソーを用いてインゴット端面と平行に切断する方法において、上記インゴット端面の傾きを検知・測定すると共にその傾き角度を計算し、その傾き角度に基づいてインゴット端面の傾きを修正することを特徴とするワイヤソーによる単結晶インゴット切断方法。
  2. 自在テーブル上に載置・固定された単結晶インゴットを、ワイヤソーを用いてインゴット端面と平行に切断する方法において、
    水平に、かつ、上記インゴット端面に向かい合わせて配置・固定された第1測距器を用い、第1測距器からインゴット端面までの距離YT1を測定した後、自在テーブルをZ軸方向にZT1移動させ、その位置で第1測距器からインゴット端面までの距離YT2を測定するステップAと、
    ステップAの測定値より、α=tan−1〔(YT1−YT2)/ZT1〕で与えられる角度αを計算するステップBと、
    上記ワイヤソーのソーワイヤの形成面の垂直方向成分に対してインゴット端面が平行になるように、自在テーブルをX軸を中心に角度α揺動回転させるステップCと、
    上記ソーワイヤとほぼ平行に配置・固定されたスライドレールに係合して設けた第2測距器を用い、第2測距器からソーワイヤまでの距離YS1を測定した後、第2測距器の係合部をスライドレールに沿ってXS1スライド移動させ、その位置で第2測距器からソーワイヤまでの距離YS2を測定するステップDと、
    ステップDの測定値より、β=tan−1〔(YS1−YS2)/XS1〕で与えられる角度βを計算するステップEと、
    ソーワイヤの形成面の水平方向成分に対してスライドレールが平行になるように、スライドレールを角度β回転させるステップFと、
    上記第2測距器の係合部に取付けられた第3測距器を用い、第3測距器からインゴット端面までの距離YT3を測定した後、第2測距器の係合部をスライドレールに沿ってXS2スライド移動させ、その位置で第3測距器からインゴット端面までの距離YT4を測定するステップGと、
    ステップGの測定値より、γ=tan−1〔(YT3−YT4)/XS2〕で与えられる角度γを計算するステップHと、
    ソーワイヤの形成面の水平方向成分に対してインゴット端面が平行になるように、自在テーブルをZ軸を中心に角度γ回転させるステップIと、
    自在テーブルをZ軸方向に上昇させ、単結晶インゴットをソーワイヤでインゴット端面と平行に切断してウェハを形成するステップJとを備えたことを特徴とするワイヤソーによる単結晶インゴット切断方法。
  3. 第1及び第3測距器としてダイヤルゲージを用い、第2測距器として距離測定機能を有する顕微鏡を用いる請求項2記載のワイヤソーによる単結晶インゴット切断方法。
JP2003065112A 2003-03-11 2003-03-11 ワイヤソーによる単結晶インゴット切断方法 Pending JP2004268509A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065112A JP2004268509A (ja) 2003-03-11 2003-03-11 ワイヤソーによる単結晶インゴット切断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003065112A JP2004268509A (ja) 2003-03-11 2003-03-11 ワイヤソーによる単結晶インゴット切断方法

Publications (1)

Publication Number Publication Date
JP2004268509A true JP2004268509A (ja) 2004-09-30

Family

ID=33126218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065112A Pending JP2004268509A (ja) 2003-03-11 2003-03-11 ワイヤソーによる単結晶インゴット切断方法

Country Status (1)

Country Link
JP (1) JP2004268509A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023233A (ja) * 2008-07-15 2010-02-04 Sumitomo Metal Mining Co Ltd 単結晶材料の面方位合わせ装置および面方位合わせ方法
JP2013183046A (ja) * 2012-03-02 2013-09-12 Sumitomo Electric Ind Ltd 半導体基板の製造方法
KR101918176B1 (ko) * 2017-03-27 2018-11-13 김학만 2개의 잉곳을 동시 커팅방식으로 사각형상재로 절단하는 와이어 소오 머신
CN114454345A (zh) * 2022-01-18 2022-05-10 长沙百川超硬材料工具有限公司 一种异形绳锯机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023233A (ja) * 2008-07-15 2010-02-04 Sumitomo Metal Mining Co Ltd 単結晶材料の面方位合わせ装置および面方位合わせ方法
JP2013183046A (ja) * 2012-03-02 2013-09-12 Sumitomo Electric Ind Ltd 半導体基板の製造方法
KR101918176B1 (ko) * 2017-03-27 2018-11-13 김학만 2개의 잉곳을 동시 커팅방식으로 사각형상재로 절단하는 와이어 소오 머신
CN114454345A (zh) * 2022-01-18 2022-05-10 长沙百川超硬材料工具有限公司 一种异形绳锯机

Similar Documents

Publication Publication Date Title
KR100869110B1 (ko) 형상 측정 장치 및 방법, 및 피측정물의 제조 방법
US5822213A (en) Method and apparatus for determining the center and orientation of a wafer-like object
KR101629545B1 (ko) 형상 측정 장치, 형상 측정 방법, 구조물의 제조 방법 및 프로그램
JP6986166B2 (ja) レベルセンサーのポジショニングに基づく結晶体の方向調整加工法
JP2004317159A (ja) 真円度測定機用基準治具
CN103791836B (zh) 基于激光扫描共聚焦技术的数控刀具刃口测量方法
CN103424088A (zh) 一种倒角测试方法及倒角测量仪
CN102927018A (zh) 一种用于离心泵piv相机测准及调节装置及其方法
CN104515487B (zh) 二合一全自动三z轴测量仪
CN108805940B (zh) 一种变倍相机在变倍过程中跟踪定位的方法
JP4099367B2 (ja) プレーナー型導波路デバイス及びシステムに対して光学的に整列させるために、複数の多軸動作ステージを較正し及び整列させるための方法
CN115692229A (zh) 一种刀片位置偏移检测结构及其检测方法、切割装置
JP2004268508A (ja) ワイヤソーによる単結晶インゴット切断方法
CN202926660U (zh) 一种用于离心泵piv相机测准及调节装置
JP2004268509A (ja) ワイヤソーによる単結晶インゴット切断方法
JP5211904B2 (ja) 単結晶材料の面方位合わせ装置および面方位合わせ方法
JP2009122065A (ja) 校正用治具及び校正方法
JP4996263B2 (ja) 結晶方位測定装置
CN112683165A (zh) 摄影测量标准尺和图像采集设备标定系统
CN107607061B (zh) 一种用于虚光轴和结构靠面的高精度角度测量方法
TWI801807B (zh) 真直度計測系統、位移感測器校正方法及真直度計測方法
CN115964818A (zh) 一种四轴精密测量用调整台的自动调平方法
JP2016186958A (ja) ダイシング装置及びダイシング装置によるダイシング方法
JP3780841B2 (ja) インゴットのオリエンテーションフラット加工方法及びオリエンテーションフラット加工装置
CN109539956A (zh) 平面检测仪