JP2004268023A - 溶解性有機物含有液の処理方法および処理装置 - Google Patents

溶解性有機物含有液の処理方法および処理装置 Download PDF

Info

Publication number
JP2004268023A
JP2004268023A JP2004028980A JP2004028980A JP2004268023A JP 2004268023 A JP2004268023 A JP 2004268023A JP 2004028980 A JP2004028980 A JP 2004028980A JP 2004028980 A JP2004028980 A JP 2004028980A JP 2004268023 A JP2004268023 A JP 2004268023A
Authority
JP
Japan
Prior art keywords
sludge
biological treatment
soluble organic
organic substance
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004028980A
Other languages
English (en)
Inventor
Takuhei Kimura
拓平 木村
Toshio Otake
要生 大竹
Tsuguhito Itou
世人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004028980A priority Critical patent/JP2004268023A/ja
Publication of JP2004268023A publication Critical patent/JP2004268023A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

【課題】
コンパクトな装置においても生物処理槽での余剰汚泥の引き抜きを必要とせず溶解性有機物含有液を処理して清澄な液体を得ることができる方法および装置を提供する。
【解決手段】
溶解性の有機物を含有する原液を、微生物を含有する汚泥を収容した生物処理槽に導入し好気的に生物処理して膜分離する溶解性有機物含有液の処理方法であって、生物処理槽内の処理液の温度を45℃以上に維持するとともに、発生汚泥を生物処理槽内に滞留させる。
【選択図】図1


Description

本発明は、溶解性有機物含有液の処理方法および処理装置に関し、詳しくは、溶解性有機物含有液を好気的に生物処理して膜分離することで清澄な透過液を得ることができる処理方法および処理装置に関する。
従来の溶解性有機物含有廃液の処理方法としては活性汚泥法が最も一般的であるが、この方法では大量の余剰汚泥、すなわち、産業廃棄物が発生するため、その低減化が社会的急務とされている。
これに対して、余剰汚泥低減化技術としては、様々な手法が提案され、一部は実用化に至っている。たとえば、発生してしまった大量の余剰汚泥を減容化する技術として、オゾンを利用するもの(特許文献1〜3)、酸、アルカリ、界面活性剤などの薬剤を用いるもの(特許文献4〜7)、微生物を用いるもの(特許文献8、9)などがある。しかしながら、これらはいずれも生物処理槽から発生した余剰汚泥を別の反応槽で一部可溶化処理するものであって、溶解性有機物含有液の処理と同時に発生する汚泥を引き抜いて、その汚泥を別途用意した装置にて処理しなければならない。
また、発生した余剰汚泥との固液分離に関して、近年、従来の活性汚泥法等の好気的生物処理槽の後段に設けられた沈殿槽の代わりに、膜分離装置を用いた処理システムが注目され、普及しつつある。膜を用いることにより、生物処理槽内の汚泥濃度を20g/L程度まで高めることができ、その結果、高負荷でもコンパクトな装置での処理が可能となる。そして、汚泥負荷と余剰汚泥生成率には相関関係があり(非特許文献1)、汚泥濃度が高まれば、同じ負荷を与えた場合、余剰汚泥の生成量を減らすことが可能である。従って、膜分離活性汚泥法においては、汚泥濃度を高めることが出来る分、余剰汚泥を低減することも可能である。さらに、膜分離活性汚泥法においては、汚泥負荷が0.07g−BOD/g−SS・日(BODは生物化学的酸素要求量、SSは汚泥を表す)以下であれば、余剰汚泥は発生しないとされている。
しかしながら、汚泥の引き抜きが不要な程度にまで汚泥の発生を低減しつつ装置をコンパクト化するためには、容積負荷を高めなければならず、例えば3g−BOD/L・日の容積負荷を余剰汚泥無発生で処理するためには、約40g/L以上の汚泥濃度が必要となる。ところが、現在の入手できる分離膜の透過性能から考えると、特に浸漬型の膜分離装置では、処理可能な汚泥濃度は20g/L程度までであり、それ以上の場合には、原液の粘度上昇と発泡性上昇により曝気効率が著しく低下し、膜の目詰まり(ファウリング)が激しくなり実用的ではない。
また、特許文献10には、生物処理槽の槽内混合液を膜分離槽へ導いて膜分離し、膜分離槽の濃縮汚泥を返送汚泥として曝気槽へ返送することにより、生物処理槽の汚泥濃度を50〜100g/Lに維持しながら、生物処理槽の汚泥負荷を0.05〜0.01g−BOD/g−SS・日に調整し、実質上余剰汚泥を発生しない処理を可能とする技術が提案されているが、この場合も、汚泥濃度が高いため、粘度と発泡性が高くなって曝気効率が著しく低下し、膜への負担が大きく、膜の目詰まり(ファウリング)を生じやすいので、実用的でない。
なお、特定の溶解性有機物含有廃液の処理に関しては、活性汚泥法に寄らない方法も提案されている。たとえば、高濃度のテレフタル酸含有廃液を40℃以上で高速に分解する特定の微生物群を用いて好気処理することで、テレフタル酸を効率的に分解処理する方法が提案されている(特許文献11〜13)。これらの微生物群はフロックを形成せず、沈降性もないことから活性汚泥法による処理とは言い難い。
しかしながら、これら方法はテレフタル酸という特定の溶解性有機物を高濃度に含有している廃液の処理には有効であるものの、下水のように種々雑多な成分を低濃度で含有する一般的な廃液には適用することができない。したがって、下水処理場や一般の工場のように各生産工程から出る廃水を集めて一括処理するような場合には依然として活性汚泥法に頼らざるを得ず、大量に発生する余剰汚泥の問題が残される。
特開昭59−105897号公報 特公昭57−19719号公報 特開平6−206088号公報 特開平3−8496号公報 特開平8−229595号公報 特開平8−243595号公報 特開平9−117800号公報 特開平9−253699号公報 特開平11−57793号公報 特開2002−192182号公報 特開平9−174088号公報 特開平9−174089号公報 特開平10−042864号公報 水処理工学、技法堂出版株式会社、1997年5月20日、p.273
本発明は、一般廃水等の溶解性有機物含有液を処理して清澄な液体を得るうえで、コンパクトな装置においても生物処理槽での余剰汚泥の引き抜きを必要としない方法および装置を提供することを目的とするものである。
上記課題を達成するための本発明は、溶解性の有機物を含有する原液を、微生物を含有する汚泥を収容した生物処理槽に導入し好気的に生物処理して膜分離する方法であって、生物処理槽内の処理液の温度を45℃以上に維持するとともに、発生汚泥を生物処理槽に滞留させる溶解性有機物含有液の処理方法を特徴とするものである。
このとき、生物処理槽内の処理液の温度を一定の範囲内に維持することが好ましい。そして、溶解性の有機物を含有する原液は、主成分として有機酸塩、例えばテレフタル酸塩を含むものや、主成分としてエチレングリコールを含むもの、さらには、主成分としてテレフタル酸塩およびエチレングリコールの両方を含むものであることが好ましい。また、溶解性の有機物を含有する原液が、テレフタル酸塩とエチレングリコールの両方を含むポリエステル系繊維織物のアルカリ減量加工処理における廃液であることも好ましい。さらに、生物処理槽における汚泥負荷が0.2g−BOD/g−SS・日以上であることが好ましい。
そして、本発明は、溶解性の有機物を含有する原液を微生物により好気的に生物処理する生物処理槽と、生物処理された処理液を膜分離する膜分離装置とを備え、生物処理槽は45℃以上に維持可能に、かつ、発生汚泥を滞留可能に構成されている溶解性有機物含有液の処理装置を特徴とするものである。
ここで、生物処理槽は、その温度を一定の範囲内に維持可能であることが好ましい。
さらに、上記いずれかの方法または装置を用いる造水方法も好ましい態様である。
なお、本発明において、微生物とは、細菌類、酵母およびカビを含む真菌類など、溶解性有機物などの分解に寄与するものをいう。
また、本発明における主成分とは、BOD量あるいはTOC量の含有率が原液中の総BOD量あるいは総TOC量に対して1割以上の有機物質をいう。
本発明によれば、溶解性の有機物を含有する原液を、微生物を含有する汚泥を収容した生物処理槽に導入し、好気的に生物処理して膜分離するにあたり、生物処理槽の温度、さらにはその中の処理液の温度を45℃以上に維持するとともに、発生汚泥を生物処理槽に滞留させることで、高負荷の溶解性有機物含有液を処理しても余剰汚泥の発生量を極めて低い状態に維持し、高汚泥負荷での効率的処理が可能となる。また、生物処理槽内の汚泥の引き抜き、さらにはその汚泥の処理を別途必要としない。
本発明の処理方法は、たとえば図1に示す処理装置において実施される。
図1に示す処理装置は、微生物を含有する汚泥を収容した生物処理槽1と、その生物処理槽1に原液を供給する原液ポンプ5と、生物処理された処理液を固液分離する膜分離装置2と、固液分離の際に分離液を吸引する吸引ポンプ3と、吸引ポンプ3と膜分離装置2との間に設けられた有機物濃度測定装置4とを備えている。膜分離装置2は、生物処理槽1内の処理液に浸漬されており、その膜分離装置2の下方には、酸素を供給し好気処理を進行させるとともに膜面の洗浄を行う、ブロワーに接続された曝気装置6が設けられている。
生物処理槽1には、微生物を含有する汚泥が収容されており、この微生物が、有機物の分解菌、さらにはそれら微生物の分解菌として作用し、生物処理を行う。従って、生物処理槽1は、汚泥が部分的に偏在することがないように、また、酸素が均一に供給され部分的に嫌気性になることがないように、内表面に角がないものや凹凸がないものが好ましい。この結果、生物処理槽1内では処理液の温度やpHが均一になる。また、本発明においては、温度の維持管理が極めて重要であるので、生物処理槽1は、断熱効果の高い素材でできたものが望ましい。さらに、膜を処理液に浸漬させる場合には、膜そのものに汚れにくい素材を用いたり、膜表面に汚れがつきにくくするために膜間に適当な隙間が形成されるように膜を配置することが好ましい。
また、汚泥に含有される微生物は、細菌類、酵母およびカビを含む真菌類など、溶解性有機物などの分解に寄与するもので、土壌、堆肥、汚泥など、自然界から集積培養及び馴養によって取得される。またこの馴養液から分解に関与する主要な微生物群を単離して用いることも可能である。
生物処理槽1には、その他、微生物の生育に必要な成分が収容されていなければならない。そのため、例えば窒素、リン、カリウム、ナトリウム、マグネシウムその他の金属塩を、原液中に既に含まれている場合を除き、生物処理槽に添加する。なお、本発明によれば、後述のように食物連鎖が起き、その際分解される微生物自体もこれらの栄養源となりうるので、添加量は著しく少なくてよい。
さらに、生物処理槽1には、処理状況を把握し、必要に応じて温度を制御し生物処理槽1内の温度が45℃以上に保たれるように、さらには、45℃以上で、かつ、45〜55℃の範囲内といった一定範囲内に保たれるように、温度計8および温調設備11を備えている。温調設備11としては、冬場の外気温の変動等により生物処理槽1内の温度が45℃を下回らないように加温設備を有しているもので、さらに、設置環境によっては、夏場に生物処理槽1内の温度が微生物の生育限界温度を超えてしまわないように冷却設備も有しているものが好ましい。
また、生物処理槽1には、処理液のpHが、処理に関与する微生物の生育限界pHを越えないように制御するために、pH計10、pH調整液槽12およびpH調整ポンプ13が設けられている。pH計10の測定結果に基づいて、pH調整液槽12およびpH調整ポンプ13によるpH調整剤投入量を調整する。さらに、生物処理槽1には、曝気装置6による曝気量を調整するために、溶存酸素計9も設けられている、なお、溶存酸素計9の代わりに酸化還元電位を測定するセンサーを設けてもよい。
そして、生物処理槽1に設けられている膜分離装置2としては、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などを用いて形成されたモジュールを用いることができる。経済性の観点からは、ろ過速度が高くコンパクト化が可能で、メンテナンスが容易である精密ろ過膜、限外ろ過膜を用いたモジュールが好ましい。膜の形状は平膜、中空糸膜等のものが用いられる。モジュールの形態も特に限定されないが、本実施態様においては省スペース化のため浸漬型の膜モジュールを使用している。なお、浸漬型の場合は、曝気装置や撹拌装置との組合せ、配置により、ファウリング物質がうまく除去できるような形状であることが好ましい。さらに、膜分離装置2におけるろ過方法としては、クロスフロー方式や全量ろ過方式があるが、クロスフロー方式を採用すれば膜面の汚れを取りながらろ過できる。
有機物濃度測定装置4としては、透過液の水質が排出基準値を満足するものか否かを判断するために、透過液の有機物濃度を測定できるものであればよく、全有機炭素測定装置(TOC計)や紫外吸収装置(UV計)を用いることができる。
上述の処理装置において、溶解性の有機物を含有する原液は、微生物を含有する汚泥を収容した生物処理槽1に導入され好気的に生物処理されるとともに、吸引ポンプ3によって膜分離装置2を介して吸引される。これにより、生物処理とともに固液分離が行われ、分離膜を透過した清澄液を得ることができる。その後、生物処理、固液分離によって得られた清澄液は、たとえば、全有機炭素測定装置、紫外吸収装置などの有機物濃度測定装置4によって水質が測定され、基準値を満足していることを確認したうえで、系外に取り出される。膜透過後の液体は清澄な液体であるので、有機物濃度測定装置4としてTOC計やUV計を用いてリアルタイムに液質を測定することもでき、透過液の液質が基準値を満足していない場合には、その透過液を系外に流出させないようにすることができる。
このとき、処理液が越流したり膜分離装置2の分離膜が露出したりするのを防ぐために、吸引ポンプ3による吸引力を制御して、生物処理槽1内の液位が一定範囲内に維持されるようにする。さらに、固液分離によって得られた清澄液の有機物濃度を有機物濃度測定装置4により測定しているが、この値が一定の値を超えた場合には原液ポンプ5や吸引ポンプ3の加圧力、吸引力を調整する。
また、処理に際しては、曝気装置6により酸素を供給することで、生物処理槽1内を好気的に維持するとともに膜分離装置2の膜面の洗浄を行う。酸素供給源としては、通常の空気のほか、酸素ガス、酸素富化ガスでもよく、これらを生物処理槽1内に供給し、機械的攪拌、通気攪拌、さらにはドラフターを用いたエアリフト方式などによって、処理液を攪拌する。酸素の供給量は、溶存酸素計9で測定した生物処理槽1内の溶存酸素量に応じて制御する。なお、溶存酸素の代わりに酸化還元電位により酸素の供給量を決定してもよい。
さらに、処理状況を把握するために、生物処理槽1内に設けられた温度計8、pH計10により、温度、pHを測定する。そして、この測定結果に応じて温調設備11、pH調整液槽12およびpH調整ポンプ13により温度、pH調整剤の投入量を調整する。
特に温度は生物処理槽1内の処理液(汚泥)中の生存微生物に大きく影響する。処理液の温度が著しく低下すると、微生物の分解活性が低下し、場合によっては他の微生物に置き換わってしまうことになるので、安定な処理が維持できなくなる。そのため、生物処理槽1内の処理液が45℃を下回らないように温調設備11により維持する必要がある。
余剰汚泥を別途引き抜く従来方式の活性汚泥法において、生物処理槽は、外気温や処理により発生する代謝熱によって、通常10〜30℃、最高でも40℃前後になっている。しかしながら、本発明においては、生物処理槽1内の処理液を微生物の生育にあまり好ましくないとされる45℃以上に保ち、その条件にて溶解性有機物を分解するとともに、発生する汚泥を引き抜かずにその系内に滞留させるのである。これにより、負荷に対する汚泥濃度を著しく低く抑えることが出来、通常の2倍以上の高い汚泥負荷率での高効率処理を達成することができる。また、45℃以上の温度を維持することにより、大腸菌などの病原性を有する微生物の生育を抑制できる利点もある。
有機物の種類によっても異なるが、一般に30℃以下の生物処理では有機炭素の約50%が菌体の増殖に用いられる。ところが、高温になると炭素当たりの菌体生成量、すなわち汚泥転換率は低下する傾向にあり、例えば50℃では30%程度にまで低下する。したがって、汚泥の発生率が3/5程度となり、計算上は同じ汚泥濃度に維持したときの汚泥負荷を5/3倍まで上げることが期待できるが、本発明の構成によれば、現実には、汚泥負荷を2倍以上に上げることも可能であることが判明した。これは、次のような理由によるものではないかと推定される。
まず、原液に含まれる溶解性有機物を直接分解する細菌(第1次分解菌と呼ぶ)が分解によって有機物炭素の30%を菌体に変換する。しかし、高温下では分解反応速度が高いため、原液の有機物濃度分解に必要な第1次分解菌の菌体量が少なくて良く、それ以外は過剰に存在していることになる。これらの菌体は高温下であるため死滅速度も高くなり、次にこれらの菌体を栄養源として生育する細菌(第2次分解菌)が増えることになる。この様な食物連鎖が順次高速に起こり、食物連鎖の回数が増えれば増えるほど全体の汚泥濃度を著しく低めることが可能となる。
この様に、本発明においては、生物処理槽1内の処理液の温度を45℃以上に維持するとともに発生汚泥を滞留させることで、高温下で生育する微生物だけで十分な食物連鎖が起こり、新たな汚泥の発生量を極めて低く抑えることができ、負荷当たりの汚泥濃度を著しく低くすることが可能となるものと推定される。なお、45℃未満での処理では通常食物連鎖の中に藻類や微小動物が含まれ、藻類や微小動物が食物連鎖に関与すると、藻類や微少動物の生育速度が細菌の生育速度に比べて極めて低いため、ある程度以上の汚泥発生率低減が望めない。しかしながら、本発明のように45℃以上ではこれらの藻類や微小動物がほとんど生育せず、食物連鎖の一員とはなり得ない状態となるので、汚泥発生率を極めて低く抑えることができると推定される。なお、ここでいう微小動物とは、原生動物や微小後生動物をいう。
さらに、食物連鎖に含まれる細菌群の中には、高分子多糖など非常に高粘度の物質を生産する細菌が含まれている場合が考えられる。粘度が高いことは膜分離によって透過液を得ようとする場合に透水速度の著しい低下という致命的な要因となる。また高粘度物質は曝気によって発泡するため、処理の継続が極めて困難となる。従って、膜分離によって透過液を得る好気的生物処理法においては、汚泥濃度が高まるに伴って高粘度物質濃度が高まり、正常な膜分離が損なわれる可能性がある。しかしながら、本発明のように45℃以上に維持して処理すれば、温度に依存して汚泥の粘度が低下するとともに、たとえ食物連鎖中に高粘度物質生産菌が存在してもその量が極めて低く抑えられ、透水速度の著しい低下や高粘度物質の発泡を防ぐことができると推定される。これは、高粘性物質を生産する細菌がその物質を分解する酵素の生産能も有し、高温下ではより耐熱性の高い分解酵素の活性が向上するため、高粘度物質の生産と分解の平衡がくずれ粘度低下に傾くためと考えられる。
この結果、たとえば分離膜に導かれる汚泥濃度が20g/L以下、汚泥負荷にしては0.2g−BOD/g−SS・日以上であっても、余剰汚泥を定期的に引き抜く必要が実質的に無い状態で、膜のろ過速度を維持し効率的な処理を継続できるのである。なお、実質とは、分解処理が不可能な不溶性無機物が蓄積してしまった場合などには引き抜きを要するが、通常の溶解性有機物を処理する場合には汚泥の引き抜きは必要ないということである。
また高温下では、最大溶存酸素濃度が低下するが、それ以上に酸素移動速度が向上し、酸素の溶解効率はむしろ効率的となる。これによって、好気性生物処理に必要な曝気の量や曝気エネルギーを節約することができる。
なお、最大汚泥濃度は、用いる分離膜の透水性能に依存するので、現在市販されている膜の透水性能を考慮すると通常は20g/L程度である。しかしながら、最大汚泥濃度は、分離する汚泥の性状によっても影響を受けるので、粘性の低いフロックを形成する場合はより高い汚泥濃度でも分離が可能となる。すなわち、汚泥の性状は被処理物質によっても異なるが、たとえばエチレングリコールの場合、45℃以上では汚泥の一部が低粘性のフロックを形成するため、最大汚泥濃度が25g/Lでも膜分離が可能となる。
一方、生物処理槽1の温度の上限に関して、夏場には、装置の設置環境等によっては、生物処理槽1内の温度が微生物の生育限界温度を超え、微生物が死滅してしまうおそれがある。そのため、必要に応じて冷却装置を設けるか、希釈するなどして原水の有機物濃度を下げて処理することによって、生物処理槽1の温度を分解に関与する微生物の生育限界温度以下に制御することが好ましい。一般的な微生物の場合、70℃以下が好ましく、より好ましくは65℃以下、さらに好ましくは60℃以下である。
さらに、生物処理槽1内の温度は、処理に関与する微生物群の状態を安定に維持するために、一定範囲の温度に制御することが好ましい。一般の化学反応式と同様、微生物の酵素反応も10℃低下すれば反応速度は1/2となる。その条件下でより分解速度の高い酵素を保有する細菌が存在し優占化することが十分に考えられる。この結果、それまで安定に維持されてきた食物連鎖が崩れることになり、安定な処理が維持されない虞がある。したがって、生物処理槽1内の温度は、処理に関与する微生物の生育最適温度をTpとすると、Tp−5℃〜Tpの範囲内に維持することが好ましい。
そして、処理液のpHは、処理する有機物質、分解に関与する微生物群の生育限界やその他の条件で著しく異なる。例えば、炭水化物などのように、元々中性物質であれば、最終的に炭酸ガスに全て分解されるのでpHは若干酸性となる。逆に有機酸塩の場合は、分解された後に炭酸ナトリウムが残存するので、pHは高くなる。したがって、酸やアルカリを添加することは経済性の点から好ましくないので、処理液のpHが、微生物の生育範囲内である場合にはpH調整を行わず、微生物の生育範囲を逸脱する場合にはpH調整を行うことが好ましい。
さらにまた、本発明においては、生物処理槽1における原液の滞留時間が長い程、有機物の分解に関与する一連の微生物の必要量が低くなり、汚泥濃度を低く抑えることができるので好ましいが、あまり長いと容積負荷、汚泥負荷が低下し、非効率的となるので、通常0.5〜3日の範囲内が良く、さらに1〜2日の範囲内が好ましい。
本発明において、原液としては、溶解性の有機物を含有するものであればよいが、微生物を効率的に培養し生物処理を促進するために、窒素、リン、カリウム、ナトリウム、マグネシウムその他の金属塩が含まれていることが好ましい。これらの栄養分が不足すると、分解に関与する微生物群の正常な生育、代謝が損なわれ、膜分離を阻害する高粘性の多糖類等を生成蓄積することがあるので好ましくなく、従って原液に含まれていないあるいは不足している場合には、別途、原液に添加する。
また、本発明において処理可能な、原液に含有される溶解性の有機物とは、現在実際に下水処理や産業廃水処理にて処理されている易分解性有機物をいい、たとえば、水溶性の、炭水化物、有機酸、脂肪酸などである。なお、有機ハロゲン系化合物や難溶性の芳香族化合物、殺菌剤、合成高分子化合物などに代表される、難分解性有機物は本発明における溶解性有機物には含まれない。
原液に含有される有機物が多種にわたると、成分濃度が低いにもかかわらずそれぞれを分解する微生物が必要となるので、好ましくない。従って原液中に含有される主成分となる有機物は、多くとも5種以内であることが好ましく、さらには3種以内であることが好ましい。なお、本発明における主成分とは、BOD量あるいはTOC量の含有率が原液中の総BOD量あるいは総TOC量に対して1割以上(好ましくは2割)の有機物質をいう。そして、これら主成分として数える物質のBOD量あるいはTOC量は、原液中の総BOD量あるいは総TOC量に対して9割以上となることが好ましい。
また、有機物の汚泥転換率(炭素当たりの菌体生成量)は千差万別であるので、原液に含有される有機物としては、汚泥転換率の低い有機物であることがより好ましい。そのような例としてはテレフタル酸などの有機酸塩やエチレングリコールとその代謝物、もしくはそれらの混合物が挙げられる。テレフタル酸塩とエチレングリコールの両方を含む液体としては、ポリエステル系繊維織物のアルカリ減量加工処理から出される廃液が挙げられる。これはポリエステル系繊維織物の表面を高温下苛性ソーダで加水分解する際に発生し、たとえば有機物としてテレフタル酸塩とエチレングリコールを1:1のモル比で含有する。
さらに、原液中の有機物の濃度は、高濃度であればあるほど分解時の発熱量が高くなり、本発明の処理温度を維持するための必要熱エネルギーを抑えることが出来、経済的である。従ってBOD量で4g/L以上であることが好ましく、より好ましくは6g/L以上、さらに好ましくは10g/L以上である。一方、あまり高濃度になると、有機物自体が微生物の活性を阻害することがあること、また気温が高い夏期には発熱によって分解菌の最適生育温度を超え、分解菌の活性をやはり低下させてしまうので、それぞれの分解菌の性質によっては冷却する必要があり、エネルギーコスト的に不利となる。従って、BOD量で60g/L以下が好ましく、より好ましくは40g/L以下、さらに好ましくは20g/L以下である。
以下に、実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
<実施例1>
図1に示す処理装置を用いて溶解性有機物含有液を分解処理した。
その際、まず、炭素源としてテレフタル酸2g、水酸化ナトリウム1gと無機塩溶液(硫酸アンモニウム240g、リン酸25g、塩化カリウム20g、硫酸マグネシウム・7水和物20g、硫酸第1鉄・7水和物0.5gを1Lの脱イオン水に溶解したもの)5mlを400mlの脱イオン水に溶解し、pH8に調整して、500ml容の生物処理槽1に入れた。同時に、数カ所の工場廃水処理場で採取した返送汚泥を生物処理槽1に少量ずつ加え、微生物の培養を行った。この間、生物処理槽1を温度が45〜50℃になるように制御した。
培養液のテレフタル酸が消失(10,000rpm、5分の遠心分離で得られた上清の240nmの吸光度を測定)した時点で一度培地を交換し、元の培養液の一部を添加して集積培養を同じ条件で行った。再度培養液のテレフタル酸が消失した時点から、5g/Lのテレフタル酸を滞留時間が36時間となるよう連続添加して、馴養を続けた。この間、生物処理槽1には無機酸と無機塩溶液を添加して処理液のpHを8.5に制御した。通気は散気用エアストーンを用い、槽内の溶存酸素が0.1以下にならないように通気量を調整(約1.2L/分)して行った。
膜分離装置2としては、長さが10〜15cmのポリフッ化ビニリデン製の中空糸膜(平均孔径0.1μm)を20〜30本束ね、一方を閉塞し、もう一方から吸引ろ過できるようにしたエレメントを生物処理槽1に浸漬し、生物処理槽1内の処理液の容量が350〜400mlになるよう、チューブポンプで吸引して透過液を得た。
馴養開始当初は時間と共に汚泥濃度が上昇したが、1ヶ月経過した時点で汚泥濃度は約11g/Lで、テレフタル酸の分解率も99.5%以上で安定した。汚泥は、ピンク色をしており、沈降性が無く均一な懸濁液で、粘性も発泡性もなかった。この結果における汚泥負荷は0.4g−BOD/g−SS・日(テレフタル酸のBOD値を1.4g/gとする)である。
なお、沈降性がないことは、この槽内の汚泥を50mlのメスシリンダーに入れ、30分間静置した後も均一状態に変化が無いことで確認した。
<比較例1>
生物処理槽1の温度を20〜25℃の範囲内になるように制御した以外は、実施例1と同様にして、溶解性有機物含有液を分解処理した。
この結果、時間の経過と共に汚泥濃度が上昇し、滞留時間が36時間となるよう培地を連続添加し始めてから2週間経過した時点で汚泥濃度は12g/Lを越え、膜のつまりが激しくなり、槽内の液循環が悪化してテレフタル酸の処理率が84%に低下した。また、生物処理槽1内の処理液は、沈降性を有し(50mlのメスシリンダーの下部50〜60%の範囲に汚泥が沈降し、上部40〜50%がやや濁った液体であった)、さらに通気状態などから明らかに槽内の粘度が著しく上昇しており、これは高分子多糖などの高粘度物質を生成する細菌が大量に発生したためと考えられた。この様に、比較例1では、実施例1とは全く異なる汚泥性状を有し、高粘度物質の存在によって発泡が激しく、処理の継続は困難となった。
<実施例2>
実施例1の実験後、テレフタル酸濃度が8g/Lの原液を連続添加して、さらに馴養を続けた。この際、負荷の増加を考慮して通気量を2L/分とした以外は、実施例1と全く同じ条件で行った。
この結果、テレフタル酸濃度が8g/Lの原液を連続添加し始めてからも汚泥濃度や処理性に大きな変化はなく、2週間の平均的汚泥濃度は11g/L以下であり、沈降性もなく、均一で、汚泥負荷が0.7g−BOD/g−SS・日と増加したにもかかわらず、実施例1と実質的に何ら変わることがなかった。
<実施例3>
実施例2の実験後、テレフタル酸濃度が5g/Lの原液を連続添加して、さらに馴養を続けた。この際、滞留時間を24時間とした以外は、実施例2と同じ条件で行った。
この結果、テレフタル酸濃度が5g/Lの原液を連続添加し始めてからも汚泥濃度やテレフタル酸の分解率は変わることなく、処理は常に安定したていた。汚泥濃度が11g/L以下であり、沈降性もなく、均一で、汚泥負荷が0.6g−BOD/g−SS・日と増加したにもかかわらず、実施例1、2と実質的に何ら変わることがなかった。
<実施例4>
脱イオン水に炭素源として8g/Lのテレフタル酸および3g/Lのエチレングリコールを加えた原水を用いた以外は実施例1と同じ条件で、集積培養および馴養を行った。馴養は原水を滞留時間が36時間となるよう連続添加し、無機酸と無機塩溶液を加えてpH8.5に維持した。また温度は45〜50℃になるよう制御した。実施例1で用いた膜エレメントを浸漬し、槽内の汚泥量が350〜400mlになるようにチューブポンプで吸引して透過液を得た。
馴養開始当初は時間の経過と共に槽内の汚泥濃度が上昇したが、1ヶ月を経過した時点で汚泥濃度は10g/L前後で一定となり、透過液の全有機炭素量(TOC)を測定した結果処理率は99%以上あった。その後2週間汚泥濃度と処理率の測定を継続したがほとんど変化無かった。この結果における汚泥負荷は1.0g−BOD/g−SS・日である(テレフタル酸のBOD値は1.4g/g、エチレングリコールのBOD値は1.1g/gとする)。
また、無機塩溶液量の添加をやめると処理率が低下したが、少なくとも原水1Lに対して2.4ml添加すれば、安定に処理された。
<比較例2>
膜分離装置2を用いず、微生物を含んだままの均一な処理液をオーバーフローさせた以外は実施例4と同じ条件で溶解性有機物含有液を分解処理した。遠心分離し得られた上清液の処理率はTOCの測定結果から97%であったが、その処理液には2.8g/Lの汚泥を含有しており、汚泥もまたTOCやBODの対象となることから、オーバーフローで得られた処理液をそのままTOC計で測定した結果、処理率は75%であった。さらに、この処理率を維持するのに必要な無機塩溶液の添加量は、原水1Lに対して最低7.2mlであった。
<実施例5>
脱イオン水に炭素源として5g/Lのエチレングリコールを加えた原水を用い、かつ、馴養時のpHを7.0に維持するように変更した以外は実施例1と同じ条件で集積培養および馴養を行った。また温度は45〜50℃になるよう制御した。実施例1で用いた膜エレメントを浸漬し、槽内の汚泥量が350〜400mlになるようにチューブポンプで吸引して透過液を得た。
22日間良好に処理が行われていることを確認し、汚泥濃度が12g/Lになった時点でエチレングリコール濃度を10g/Lとし、さらに1ヶ月処理を継続した結果、透過液のTOC処理率は97〜98%で推移した。この際汚泥濃度は20〜25g/Lと高かったが、汚泥の一部は低粘度のフロックを形成しており、膜の透水性が低下することはなかった。この結果における汚泥負荷は0.3〜0.4g−BOD/g−SS・日(エチレングリコールのBOD値を1.1g/gとする)である。
本発明の一実施態様を示す溶解性有機物含有液の処理装置の模式図である。
符号の説明
1:生物反応槽 2:膜分離装置
3:吸引ポンプ 4:有機物濃度測定装置
5:原液ポンプ 6:曝気装置
7:ブロワー 8:温度計
9:溶存酸素計 10:pH計
11:温調設備 12:pH調整液槽
13:pH調整ポンプ

Claims (9)

  1. 溶解性の有機物を含有する原液を、微生物を含有する汚泥を収容した生物処理槽に導入し好気的に生物処理して膜分離する方法であって、生物処理槽内の処理液の温度を45℃以上に維持するとともに、発生汚泥を生物処理槽内に滞留させることを特徴とする溶解性有機物含有液の処理方法。
  2. 生物処理槽内の処理液の温度を一定の範囲内に維持する、請求項1に記載の溶解性有機物含有液の処理方法。
  3. 溶解性の有機物を含有する原液は、主成分として有機酸塩を含むものである、請求項1または2に記載の溶解性有機物含有液の処理方法。
  4. 溶解性の有機物を含有する原液は、主成分としてテレフタル酸塩を含むものである、請求項1〜3のいずれかに記載の溶解性有機物含有液の処理方法。
  5. 溶解性の有機物を含有する原液は、主成分としてエチレングリコールを含むものである、請求項1〜3のいずれかに記載の溶解性有機物含有液の処理方法。
  6. 溶解性の有機物を含有する原液は、主成分としてテレフタル酸塩およびエチレングリコールの両方を含むものである、請求項1〜3のいずれかに記載の溶解性有機物含有液の処理方法。
  7. 生物処理槽における汚泥負荷が0.2g−BOD/g−SS・日以上である、請求項1〜6のいずれかに記載の溶解性有機物含有液の処理方法。
  8. 溶解性の有機物を含有する原液を微生物により好気的に生物処理する生物処理槽と、生物処理された処理液を膜分離する膜分離装置とを備え、生物処理槽は45℃以上に維持可能に、かつ、発生汚泥を滞留可能に構成されていることを特徴とする溶解性有機物含有液の処理装置。
  9. 生物処理槽は、その温度を一定の範囲内に維持可能である、請求項8に記載の溶解性有機物含有液の処理装置。
JP2004028980A 2003-02-21 2004-02-05 溶解性有機物含有液の処理方法および処理装置 Pending JP2004268023A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028980A JP2004268023A (ja) 2003-02-21 2004-02-05 溶解性有機物含有液の処理方法および処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003043737 2003-02-21
JP2004028980A JP2004268023A (ja) 2003-02-21 2004-02-05 溶解性有機物含有液の処理方法および処理装置

Publications (1)

Publication Number Publication Date
JP2004268023A true JP2004268023A (ja) 2004-09-30

Family

ID=33134211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028980A Pending JP2004268023A (ja) 2003-02-21 2004-02-05 溶解性有機物含有液の処理方法および処理装置

Country Status (1)

Country Link
JP (1) JP2004268023A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218435A (ja) * 2005-02-14 2006-08-24 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 活性汚泥処理システム
JP2006263642A (ja) * 2005-03-25 2006-10-05 Sumitomo Chemical Co Ltd 微生物の馴養方法および馴養した微生物による有機性排水の処理方法
JP2007160229A (ja) * 2005-12-14 2007-06-28 Toyota Central Res & Dev Lab Inc エチレングリコールを含有する排水を処理する方法及びその装置
JP2007268468A (ja) * 2006-03-31 2007-10-18 Toyo Eng Corp 炭化水素もしくは含酸素化合物の製造プラント廃水の高温処理方法
JP2009297611A (ja) * 2008-06-11 2009-12-24 Japan Organo Co Ltd 過酸化水素含有有機性水の処理方法および処理装置
JP2013202525A (ja) * 2012-03-28 2013-10-07 Mitsubishi Rayon Co Ltd 排水処理システムおよび排水処理方法
JP2013202524A (ja) * 2012-03-28 2013-10-07 Mitsubishi Rayon Co Ltd 排水処理システムおよび排水処理方法
JP5399065B2 (ja) * 2006-02-23 2014-01-29 旭化成ケミカルズ株式会社 廃水の処理方法
WO2014087991A1 (ja) * 2012-12-07 2014-06-12 東レ株式会社 有機性汚水の処理方法および処理装置
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218435A (ja) * 2005-02-14 2006-08-24 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 活性汚泥処理システム
JP2006263642A (ja) * 2005-03-25 2006-10-05 Sumitomo Chemical Co Ltd 微生物の馴養方法および馴養した微生物による有機性排水の処理方法
JP2007160229A (ja) * 2005-12-14 2007-06-28 Toyota Central Res & Dev Lab Inc エチレングリコールを含有する排水を処理する方法及びその装置
JP5399065B2 (ja) * 2006-02-23 2014-01-29 旭化成ケミカルズ株式会社 廃水の処理方法
JP2007268468A (ja) * 2006-03-31 2007-10-18 Toyo Eng Corp 炭化水素もしくは含酸素化合物の製造プラント廃水の高温処理方法
JP4679413B2 (ja) * 2006-03-31 2011-04-27 東洋エンジニアリング株式会社 炭化水素もしくは含酸素化合物の製造プラント廃水の高温処理方法
JP2009297611A (ja) * 2008-06-11 2009-12-24 Japan Organo Co Ltd 過酸化水素含有有機性水の処理方法および処理装置
JP2013202524A (ja) * 2012-03-28 2013-10-07 Mitsubishi Rayon Co Ltd 排水処理システムおよび排水処理方法
JP2013202525A (ja) * 2012-03-28 2013-10-07 Mitsubishi Rayon Co Ltd 排水処理システムおよび排水処理方法
WO2014087991A1 (ja) * 2012-12-07 2014-06-12 東レ株式会社 有機性汚水の処理方法および処理装置
JPWO2014087991A1 (ja) * 2012-12-07 2017-01-05 東レ株式会社 有機性汚水の処理方法および処理装置
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Similar Documents

Publication Publication Date Title
JP4602615B2 (ja) 活性汚泥に含まれる硝化細菌の高濃度培養方法
US6555002B2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
EP1900417B1 (en) Method of bacteriostasis or disinfection for permselective membrane
JP5194771B2 (ja) 有機物含有水の生物処理方法および装置
Sheldon et al. Multi-stage EGSB/MBR treatment of soft drink industry wastewater
CN103112991A (zh) 焦化废水处理系统及焦化废水处理方法
Sun et al. Stabilization of source-separated urine by biological nitrification process: treatment performance and nitrite accumulation
JP4679413B2 (ja) 炭化水素もしくは含酸素化合物の製造プラント廃水の高温処理方法
JP2004268023A (ja) 溶解性有機物含有液の処理方法および処理装置
Ashadullah et al. Wastewater treatment by microalgal membrane bioreactor: evaluating the effect of organic loading rate and hydraulic residence time
Visvanathan et al. Hydrogenotrophic denitrification of synthetic aquaculture wastewater using membrane bioreactor
WO2010076794A1 (en) Method of denitrifying brine and systems capable of same
JP5066487B2 (ja) 過酸化水素含有有機性水の処理方法および処理装置
US20100044304A1 (en) Method of treating wastewater containing organic compound
KR100942053B1 (ko) 회분식 생물반응조에 의한 하폐수 고도처리방법 및 처리장치
CN203173936U (zh) 焦化废水氧化及生化处理设备
CN203173917U (zh) 焦化废水煤焦油处理设备
KR20180031085A (ko) 유기성 배수의 생물 처리 방법 및 장치
KR100912562B1 (ko) 회분식 생물반응조에 의한 하폐수 고도처리방법 및 처리장치
CA2425147A1 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
JP2006263642A (ja) 微生物の馴養方法および馴養した微生物による有機性排水の処理方法
CN203173900U (zh) 焦化废水深度处理设备
CN203173937U (zh) 焦化废水处理系统
Saroso et al. Biodegradation Chemical COD and Phenol Using Bacterial Consortium in AF2B Reactor Batch
KR100817792B1 (ko) 우점 배양한 바실러스 종 세균 등과 중공사막 정밀여과장치를 이용한 하, 폐수의 고도처리 방법 및 장치