JP2004268000A - Method for recycling chlorine-containing resin waste material and alkali metal-containing glass waste material - Google Patents

Method for recycling chlorine-containing resin waste material and alkali metal-containing glass waste material Download PDF

Info

Publication number
JP2004268000A
JP2004268000A JP2003066425A JP2003066425A JP2004268000A JP 2004268000 A JP2004268000 A JP 2004268000A JP 2003066425 A JP2003066425 A JP 2003066425A JP 2003066425 A JP2003066425 A JP 2003066425A JP 2004268000 A JP2004268000 A JP 2004268000A
Authority
JP
Japan
Prior art keywords
chlorine
waste
alkali metal
glass
containing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003066425A
Other languages
Japanese (ja)
Other versions
JP4163535B2 (en
Inventor
Yoshimasa Muraoka
義正 村岡
Norihiko Misaki
紀彦 三崎
Norifumi Nagata
憲史 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003066425A priority Critical patent/JP4163535B2/en
Publication of JP2004268000A publication Critical patent/JP2004268000A/en
Application granted granted Critical
Publication of JP4163535B2 publication Critical patent/JP4163535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient recycling method for a chlorine-containing resin waste material and an alkali metal-containing glass waste material. <P>SOLUTION: The method for recycling the chlorine-containing resin waste material and the alkali metal-containing glass waste material is to simultaneously charge the chlorine-containing resin waste material with an average particle size of 20 mm or smaller and a powder of the alkali metal-containing glass waste material with an average particle size of 20 μm or smaller into an external heating type rotary kiln, to heat-treat at 350 to 400°C by the external heating type rotary kiln, and then to introduce a heat-treated material into water to recover a low chlorine carbide having a chlorine content of 0.2 wt.% or less and a heat value of 6,000 kcal/kg or more, and a low alkali glass powder having an alkali metal oxide content of 7 wt.% or less. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法に関するもので、更に詳しくは、資源化処理が困難であった塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物とを特定の条件によって同時に熱処理し、燃料やセメント原料等に利用可能な低塩素炭化物と低アルカリガラス粉末を回収する塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法に関するものである。
【0002】
【従来の技術】
大量に消費され、廃棄され続けているプラスチック樹脂類は、その形態や品種が雑多であり、外観だけで分別回収することが難しいため、マテリアルリサイクルするよりも、ゴミとして埋め立て処分されることが一般的であった。
【0003】
しかし、近年、処分場不足や種々の法規制を背景に、プラスチック樹脂材料特有の熱量を利用して、サーマルリサイクルする試みが盛んに行われるようになってきた。しかし、現実的には、廃棄されるプラスチックの6分の1程度を占める塩化ビニル樹脂は、そのまま燃焼した場合、腐食性ガスやダイオキシンを多量に発生するため、塩化ビニル樹脂に代表される塩素含有樹脂が混入した廃棄プラスチックを、サーマルリサイクルするには種々の配慮が必要であった。
【0004】
例えば、特開平9−227882には、塩化ビニル樹脂等の塩素含有可燃物を石灰等と一緒に乾留することによって塩素成分をガス化して除去し、乾留残渣から炭素分を抽出し、固形燃料を得る方法が提案されている。
また、特開平11−116979には、塩化ビニル樹脂等の塩素含有可燃物に生石灰等を混合し、これを不活性雰囲気下で350℃未満の温度で加熱することによって、可水性塩化物を生成させて脱塩すると共に、該可燃性有機成分の大部分を回収して固形燃料とする方法が提案されている。
【0005】
しかしながら、これらの方法では、多量に塩素含有樹脂が混入した廃棄物の場合、規定の中和処理剤量だけでは排ガス中から十分に塩化水素ガスを除去することが出来ず、腐食性ガスやダイオキシンが発生する憂いがあった。また、処理して得られる脱塩化固形燃料は、樹脂の特性を保っているため、被粉砕性に劣り、燃料として使用する場合には二次加工にかかる負担が極めて大きくなってしまうという課題があった。
【0006】
一方、使用済みの瓶ガラスや、建築物の解体で発生する板ガラスなどのガラス廃棄物は、種々の分野において積極的にそのリサイクルが推進されているが、発生量に見合う大量利用技術はいまだ確立されていないのが現状である。また、着色ガラスや医療廃棄物として発生するガラス廃棄物は、ガラスを構成する成分上の問題や安全性の問題から、リサイクルの目処はほとんど立っていないのが現状である。
【0007】
ここで、一般に流通しているガラスの多くは、ソーダガラスと呼ばれるもので、アルカリ含有量はNaOとKOの合量で、10〜15重量%と高いため、ガラス廃棄物のリサイクルを考える場合、このアルカリ含有量が障害となるケースは多い。例えば、大量の需要が見込めるセメント用材料に使用する場合、反応性に富むアルカリ金属が多くなり、骨材中のシリカとの反応性を助長して結果的に異常膨張をすることとなり、モルタル・コンクリートの著しい強度低下を起こす危険性が高い。従って、ガラス廃棄物をそのままセメント原料として利用するには、困難な状況にある。
【0008】
【特許文献1】
特開平9−227882号公報
【特許文献2】
特開平11−116979号公報
【0009】
【発明が解決しようとする課題】
本発明は、上述した従来の技術が有する種々問題点に鑑み成されたものであって、その課題は、塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の効率的な資源化方法を提供することにあり、更に詳しくは、資源化処理が困難であった塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物とを同時に資源化処理することによって、燃料代替として使用できる低塩素炭化物、及びセメント原料等への利用が可能な低アルカリガラス粉末を、塩化水素ガスやダイオキシンなどの有害・有毒物を発生させることなく、安全に回収する方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記した課題を達成すべく鋭意研究を行った結果、塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物とを特定の条件によって同時に熱処理することにより、塩化水素ガスやダイオキシンなどの有害・有毒物を発生させることなく、燃料やセメント原料等に利用可能な資源化物を回収し得ることを見出し、本発明を完成させた。
【0011】
即ち、本発明は、塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の粉末とを外熱式ロータリーキルンに同時に投入し、該外熱式ロータリーキルンによって350〜400℃で熱処理し、低塩素炭化物と低アルカリガラス粉末とを回収する塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法とした。
【0012】
また、本発明は、上記外熱式ロータリーキルンから排出される熱処理物を水中に投入し、浮遊物を上記低塩素炭化物として、沈殿物を上記低アルカリガラス粉末として各々回収する上記塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法とした。
【0013】
更に、本発明は、上記外熱式ロータリーキルンに投入する上記塩素含有樹脂廃棄物の平均粒径が20mm以下であり、上記アルカリ金属含有ガラス廃棄物の平均粒径が20μm以下である上記塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法とした。
【0014】
更にまた、本発明は、上記外熱式ロータリーキルンから排出されるガスに含まれる塩化水素濃度が750ppm以下である上記塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法とした。
【0015】
更に、本発明は、上記回収する低塩素炭化物が、塩素含有量0.2重量%以下、発熱量6,000kcal/kg以上の資源化物である上記塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法とした。
【0016】
また、本発明は、上記回収する低アルカリガラス粉末が、アルカリ金属酸化物含有量7重量%以下の資源化物である上記塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法とした。
【0017】
【発明の実施の形態】
以下、上記した本発明に係る塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法の実施の形態を説明する。
【0018】
本発明において言う塩素含有樹脂廃棄物とは、塩化ビニル樹脂、塩化ビニリデン樹脂に代表される塩素含有樹脂の廃棄物を言うが、本発明は、多量に発生する廃棄プラスチックの資源化を究極の目的としているため、実際の資源化処理には塩素含有樹脂廃棄物のみでなく、他の樹脂廃棄物が混入する場合もあるが、こうした目的外の樹脂廃棄物が混入していても、本発明の目的を妨げるものではなくその使用が可能である。また、この塩素含有樹脂廃棄物の大きさは、平均粒径が20mm以下となるように切断、或いは破砕されたものを使用することが好ましい。これは、20mmよりも大きくなると、樹脂廃棄物内部からの脱塩素効率が著しく悪くなるためである。
【0019】
また、本発明において言うアルカリ金属含有ガラス廃棄物とは、一般にソーダガラスと呼ばれている瓶ガラス、板ガラスなどのガラス廃棄物を言い、該ガラス廃棄物を粗砕したガラスカレットを粉末化したものを使用する。この使用するアルカリ金属含有ガラス廃棄物の平均粒径は、20μm以下とすることが好ましく、より好ましくは5μm以下とする。このように粉末化すると、より比表面積が大きくなり、塩素との接触頻度が上がって低アルカリガラスが得られ易くなる。一方、ガラス廃棄物の平均粒径が20μmを越える場合は、比表面積が小さく反応性が乏しくなるため、所望とする低アルカリガラスが得られなくなる。
【0020】
本発明においては、上記した塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の粉末とを、同時に外熱式ロータリーキルンに投入し、熱処理を行う。
ここで、ロータリーキルンには、外熱式と内熱式とがあるが、本発明において使用するアルカリ金属含有ガラス廃棄物は上記したように微粉末で使用するため、熱処理中における被処理物の飛散を防ぐため、外熱式ロータリーキルンを使用する。
【0021】
上記外熱式ロータリーキルンでの熱処理温度は、350〜400℃とする。
この熱処理によって、塩素含有樹脂廃棄物に含まれる塩素と、アルカリ金属含有ガラス廃棄物に含まれるアルカリ金属との反応(例えば、2HCl+NaO→2NaCl+HO)を生じせしめ、低塩素炭化物と低アルカリガラス粉末とを生成する。
【0022】
ここで、外熱式ロータリーキルンでの熱処理温度が上記した350℃に満たない場合には、塩素含有樹脂廃棄物からの塩素の熱分解速度が著しく悪くなるばかりでなく、アルカリ金属含有ガラス廃棄物と塩化水素若しくは塩素との反応性が悪くなり、最終的に回収されるガラスのアルカリ低減率が悪く、更には排ガスの塩化水素・塩素濃度が高まる等の問題が生ずるために好ましくない。
【0023】
一方、外熱式ロータリーキルンでの熱処理温度が上記した400℃を越える場合には、塩素含有樹脂廃棄物、例えば塩化ビニル樹脂廃棄物が溶融して取り扱い性が悪くなるばかりでなく、固形燃料としての生命線であるカーボンが気化して発熱量が低くなってしまう等の問題を生じるため好ましくない。
【0024】
また、上記外熱式ロータリーキルンに投入するアルカリ金属含有ガラス廃棄物の量は、同時に投入する上記塩素含有樹脂廃棄物中の塩素量に相対する生成塩のモル等量以上とする。
ここで、投入するアルカリ金属含有ガラス廃棄物の量が上記したモル等量に満たない場合には、アルカリ金属含有ガラス廃棄物による塩化水素の捕捉が不十分となり、結果としてロータリーキルン内における塩化水素濃度が低下しないので好ましくない。
一方、投入するアルカリ金属含有ガラス廃棄物の量が過剰な場合には、ロータリーキルン内における塩化水素濃度は大きく低減できるが、反応に寄与しないアルカリ金属が多く残存し、結果として回収物中におけるアルカリ金属の量が低減できないので好ましくない。
上記のようなことから、投入するアルカリ金属含有ガラス廃棄物の量は、アルカリ金属量として、同時に投入する塩素含有樹脂廃棄物中の塩素量に対して1〜3モルの範囲とすることが好ましい。
【0025】
上記の熱処理によって生成する処理物は、低塩素炭化物と低アルカリガラス粉末であるが、これらは外熱式ロータリーキルンから同時に、即ち両者混在した状態で排出される。
【0026】
そこで、本発明においては、上記外熱式ロータリーキルンから排出される熱処理物を水中に投入し、低塩素炭化物と低アルカリガラス粉末に分離する。即ち、塩素含有樹脂廃棄物は加熱処理時に発泡して軽量化するために、水中に投入すると浮遊する。一方、加熱処理したアルカリ金属含有ガラス廃棄物は、比重が2.6程度であるため水中を沈降する。そこで、両者の比重差を利用して資源化物を各々回収するのである。
【0027】
また、上記熱処理物の水中投入により、ガラス粉末表面に生成した可水性の塩、及び低塩素炭化物表面に付着している塩素及びガラス粉末もほぼ洗い流すことができ、回収される低塩素炭化物には、不純物となるガラスの混入が抑えられ、結果的に発熱量が高く、灰分の低い炭化物を得ることができる。また、回収されるガラス粉末は、塩素含有樹脂廃棄物との同時加熱処理によってアルカリ金属が低減され、且つ水中投入操作によって生成塩の混入が抑えられるため、セメント原料等として有効に利用することが可能となる。
【0028】
ここで、本発明における外熱式ロータリーキルンによる塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物との熱処理時に発生する排気ガス中に含まれる塩化水素濃度は、750ppm以下に抑えることとする。
これを満足するためには、原料の粒子径が重要となり、特に中和材としての機能を有するアルカリ金属含有ガラス廃棄物の平均粒径が上記した20μm以下でなければ、所望とする低アルカリガラスが得られないばかりか、排気ガス中の塩素を捕捉できず、上記した塩化水素濃度を達成できず、環境負荷を高めてしまう結果となる。
【0029】
また、本発明で回収する低塩素炭化物は、脱塩素処理によって炭素濃度が濃縮され、処理前の発熱量に比してその発熱量が高められているが、6,000kcal/kgまで発熱量が高められている場合には、微粉炭代替燃料としての使用が可能な資源化物となり、また9,000kcal/kg以上まで発熱量が高められている場合には、鉱物油代替燃料としての使用が可能な資源化物となる。また、回収した低塩素炭化物中の塩素量が0.2重量%を越える場合には、一般的に燃焼時に塩化水素ガスの発生やダイオキシン類の生成を著しく促進させてしまう問題があるため、塩素含有量は0.2重量%以下である必要があり、限りなくゼロであることが望ましい。
【0030】
また、本発明で回収する低アルカリガラス粉末は、該ガラス粉末に含有されるアルカリ金属酸化物量が7重量%以下とする。これは、7重量%を越えるアルカリ金属酸化物を含んでいる場合は、セメント原料として使用した場合に持ち込まれるアルカリ金属の量が多く、結果としてセメント中のアルカリ金属量を上昇させてしまい、セメント硬化体の強度低下や、アルカリ骨材反応によるひび割れを引き起こすために好ましくない。一方、アルカリ金属酸化物量が7重量%以下であれば、相当量の低アルカリガラス粉末をセメント原料として利用しても問題が無く、この数値が3重量%以下であれば、更に使用量拡大が図られるために好ましい。
【0031】
【試験例】
以下、上記した本発明に係る塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法を見出した試験例を記載する。
【0032】
試験において塩素含有樹脂廃棄物として用いた塩化ビニル樹脂(PVC)、及び種々雑多の合成樹脂が混ざった廃棄プラスチック(廃プラ)の物性を、表1に各々示す。また、試験においては、アルカリ金属含有ガラス廃棄物としてNaOを12.2重量%含有したガラスを用いた。
【0033】
【表1】

Figure 2004268000
【0034】
上記塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物とを表2に示した原料粒径(平均粒径)に各々破砕し、密閉構造型の外熱式ローターリーキルン(直径150mm、長さ1,700mm)を用い、表2に併記した投入割合(アルカリ金属/塩素の化学等量比)、及び熱処理温度で滞留時間約60分間の資源化処理を各々行った。得られた熱処理物を水中に投入(浮選有無「有り」)し、炭化物とガラス粉末とに分離して各々回収した。
【0035】
【表2】
Figure 2004268000
【0036】
回収した炭化物については、塩素量、発熱量及び形態を各々調べ、ガラス粉末については、NaO量及び塩素量を各々調べた。また、各々の条件による熱処理時に外熱式ローターリーキルンから排出されたガス中に含まれる塩化水素濃度(HCL)を測定した。
各々の測定結果を表3に示す。
【0037】
なお、炭化物についての塩素量の測定は、エシュカ法で前処理後、チオシアン水銀法(JIS R5202)で行い、発熱量の測定は、JIS M8812に準じた方法で行った。また、ガラス粉末についてのNaO量及び塩素量は、蛍光X線分析により求めた。また、排気ガス中の塩化水素濃度(HCL)は、排気ガスを吸収びんに導入して吸収液に塩化水素ガスを溶解後、JIS K 0107(1995年)に準拠して測定した。
【0038】
【表3】
Figure 2004268000
【0039】
表3から、塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物とを特定の条件によって同時に熱処理することにより、燃料やセメント原料等に利用可能な低塩素炭化物と低アルカリガラス粉末が得られると共に、排気ガス中の塩化水素濃度も低減できることが判明した。また、得られる低塩素炭化物は発泡体となっており、被粉砕性が極めて良好なものであることが判明した。
【0040】
【発明の効果】
上記に詳述した本発明によれば、資源化処理が困難であった塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物とを、同時に本発明で定める特定の条件によって熱処理することにより、燃料代替として使用できる低塩素炭化物、及びセメント原料等への利用が可能な低アルカリガラス粉末を、塩化水素ガスやダイオキシンなどの有害・有毒物を発生させることなく、安全に回収することができ、廃棄物リサイクルの観点、及び環境保全の観点から、絶大な効果を発揮する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for recycling chlorine-containing resin waste and alkali metal-containing glass waste, and more specifically, a method for recycling chlorine-containing resin waste and alkali metal-containing glass waste, which has been difficult to recycle. The present invention relates to a method for recycling chlorine-containing resin waste and alkali metal-containing glass waste, which are simultaneously heat-treated under specific conditions and recover low-chloride carbide and low-alkali glass powder that can be used as a fuel or a cement raw material.
[0002]
[Prior art]
Plastic resins that are consumed and discarded in large quantities are in various forms and varieties, and it is difficult to separate and collect them only by appearance.Therefore, plastic resins are generally landfilled rather than recycled. It was a target.
[0003]
However, in recent years, due to the shortage of disposal sites and various laws and regulations, attempts to thermally recycle using the amount of heat specific to plastic resin materials have been actively made. However, in reality, vinyl chloride resin, which accounts for about one-sixth of plastic discarded, generates a large amount of corrosive gas and dioxin when burned as it is. Various considerations were required for thermal recycling of waste plastic mixed with resin.
[0004]
For example, JP-A-9-227882 discloses that chlorine components are gasified and removed by dry-distilling chlorine-containing combustibles such as vinyl chloride resin together with lime and the like, and carbon components are extracted from the dry-distilled residue to obtain a solid fuel. How to get it has been proposed.
Japanese Patent Application Laid-Open No. H11-11679 discloses a method of producing a water-soluble chloride by mixing quick lime and the like with a chlorine-containing combustible material such as a vinyl chloride resin and heating the mixture at a temperature lower than 350 ° C. in an inert atmosphere. A method has been proposed in which the fuel is desalted and most of the combustible organic components are recovered to produce a solid fuel.
[0005]
However, in these methods, in the case of waste containing a large amount of chlorine-containing resin, it is not possible to sufficiently remove hydrogen chloride gas from exhaust gas only with a specified amount of the neutralizing agent, and it is difficult to remove corrosive gas or dioxin. There was a worry that would occur. In addition, since the dechlorinated solid fuel obtained by processing retains the properties of the resin, it is inferior in crushability, and when used as a fuel, the burden of secondary processing becomes extremely large. there were.
[0006]
On the other hand, the recycling of glass waste such as used bottle glass and flat glass generated by dismantling buildings has been actively promoted in various fields. It is not done at present. At present, there is almost no prospect of recycling of colored glass and glass waste generated as medical waste due to problems in components constituting glass and safety problems.
[0007]
Here, most of the commonly distributed glass is called soda glass, and the alkali content is as high as 10 to 15% by weight in the total amount of Na 2 O and K 2 O, so that the glass waste is recycled. When considering the above, there are many cases where this alkali content becomes an obstacle. For example, when used as a cement material, which is expected to have a large amount of demand, the amount of highly reactive alkali metal increases and promotes the reactivity with silica in the aggregate, resulting in abnormal expansion, resulting in mortar and There is a high risk of causing a significant decrease in concrete strength. Therefore, it is difficult to directly use glass waste as a raw material for cement.
[0008]
[Patent Document 1]
JP-A-9-227882 [Patent Document 2]
Japanese Patent Application Laid-Open No. H11-116979
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned various problems of the related art, and an object of the present invention is to provide a method for efficiently recycling chlorine-containing resin waste and alkali metal-containing glass waste. More specifically, low-chloride carbides that can be used as fuel substitutes and cement raw materials by simultaneously recycling resources of chlorine-containing resin waste and alkali metal-containing glass waste, which were difficult to recycle, It is an object of the present invention to provide a method for safely recovering a low alkali glass powder that can be used for the like without generating harmful or toxic substances such as hydrogen chloride gas and dioxin.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive research to achieve the above-mentioned object, and as a result, by simultaneously heat-treating chlorine-containing resin waste and alkali metal-containing glass waste under specific conditions, hydrogen chloride gas, dioxin, etc. The present inventors have found that recyclable materials that can be used as fuels and cement raw materials can be recovered without generating harmful and toxic substances, and completed the present invention.
[0011]
That is, in the present invention, the chlorine-containing resin waste and the powder of the alkali metal-containing glass waste are simultaneously charged into an externally heated rotary kiln, and heat-treated at 350 to 400 ° C. by the externally heated rotary kiln to reduce the low-chloride carbide and low-carbonized waste. A method for recycling chlorine-containing resin waste and alkali metal-containing glass waste for recovering alkali glass powder.
[0012]
Further, the present invention provides the chlorine-containing resin waste, wherein the heat-treated product discharged from the externally heated rotary kiln is put into water, suspended matter is collected as the low-chlorine carbide, and precipitate is collected as the low-alkali glass powder. And a method for recycling alkali metal-containing glass waste.
[0013]
Further, the present invention provides the above-mentioned chlorine-containing resin, wherein the average particle diameter of the chlorine-containing resin waste introduced into the externally heated rotary kiln is 20 mm or less, and the average particle diameter of the alkali metal-containing glass waste is 20 μm or less. A method for recycling waste and glass waste containing alkali metals was adopted.
[0014]
Furthermore, the present invention provides a method for recycling the chlorine-containing resin waste and the alkali metal-containing glass waste, wherein the concentration of hydrogen chloride contained in the gas discharged from the externally heated rotary kiln is 750 ppm or less.
[0015]
Further, the present invention provides the chlorine-containing resin waste and the alkali metal-containing glass waste, wherein the low-chloride carbide to be recovered is a recycle material having a chlorine content of 0.2% by weight or less and a calorific value of 6,000 kcal / kg or more. Resource recycling method.
[0016]
The present invention also provides a method for recycling the above-mentioned chlorine-containing resin waste and alkali-metal-containing glass waste, wherein the low alkali glass powder to be recovered is a resource having an alkali metal oxide content of 7% by weight or less.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the method for recycling chlorine-containing resin waste and alkali metal-containing glass waste according to the present invention will be described below.
[0018]
The chlorine-containing resin waste referred to in the present invention is a chlorine-containing resin waste typified by vinyl chloride resin and vinylidene chloride resin. Therefore, not only chlorine-containing resin waste, but also other resin waste may be mixed in the actual resource recycling process, even if such unintended resin waste is mixed, the present invention Its use is possible without obstructing the purpose. The size of the chlorine-containing resin waste is preferably cut or crushed so that the average particle size is 20 mm or less. This is because if it is larger than 20 mm, the efficiency of dechlorination from the inside of the resin waste will be significantly deteriorated.
[0019]
Further, the alkali metal-containing glass waste referred to in the present invention refers to glass waste such as bottle glass and plate glass generally called soda glass, and is obtained by pulverizing a glass cullet obtained by coarsely crushing the glass waste. Use The average particle size of the alkali metal-containing glass waste used is preferably 20 μm or less, more preferably 5 μm or less. Such powdering increases the specific surface area, increases the frequency of contact with chlorine, and makes it easier to obtain low alkali glass. On the other hand, when the average particle size of the glass waste exceeds 20 μm, the specific surface area is small and the reactivity is poor, so that a desired low alkali glass cannot be obtained.
[0020]
In the present invention, the above-described chlorine-containing resin waste and alkali metal-containing glass waste powder are simultaneously charged into an externally heated rotary kiln and subjected to heat treatment.
Here, the rotary kiln has an external heat type and an internal heat type, but the alkali metal-containing glass waste used in the present invention is used as a fine powder as described above. To prevent this, use an externally heated rotary kiln.
[0021]
The heat treatment temperature in the externally heated rotary kiln is set to 350 to 400 ° C.
By this heat treatment, a reaction (eg, 2HCl + Na 2 O → 2NaCl + H 2 O) between chlorine contained in the chlorine-containing resin waste and alkali metal contained in the alkali metal-containing glass waste occurs, and low chlorine carbide and low alkali To produce glass powder.
[0022]
Here, when the heat treatment temperature in the externally heated rotary kiln is less than the above 350 ° C., not only does the thermal decomposition rate of chlorine from the chlorine-containing resin waste significantly deteriorate, but also the alkali metal-containing glass waste is reduced. It is not preferable because reactivity with hydrogen chloride or chlorine deteriorates, the alkali reduction rate of the finally recovered glass deteriorates, and further, the concentration of hydrogen chloride and chlorine in the exhaust gas increases.
[0023]
On the other hand, when the heat treatment temperature in the externally heated rotary kiln exceeds 400 ° C., not only chlorine-containing resin waste, for example, vinyl chloride resin waste is melted and handleability is deteriorated, but also as solid fuel. It is not preferable because carbon, which is a lifeline, is vaporized and a calorific value is reduced.
[0024]
The amount of the alkali metal-containing glass waste to be charged into the externally heated rotary kiln is at least equal to the molar equivalent of the produced salt relative to the amount of chlorine in the chlorine-containing resin waste to be charged at the same time.
Here, when the amount of the alkali metal-containing glass waste to be charged is less than the above molar equivalent, the capture of hydrogen chloride by the alkali metal-containing glass waste becomes insufficient, and as a result, the concentration of hydrogen chloride in the rotary kiln is reduced. Is not preferred since it does not decrease.
On the other hand, when the amount of the alkali metal-containing glass waste to be charged is excessive, the concentration of hydrogen chloride in the rotary kiln can be greatly reduced, but a large amount of alkali metal that does not contribute to the reaction remains, and as a result, the alkali metal in the recovered material Is not preferred because the amount of
From the above, the amount of the alkali metal-containing glass waste to be charged is preferably in the range of 1 to 3 mols as the amount of alkali metal with respect to the amount of chlorine in the chlorine-containing resin waste to be charged at the same time. .
[0025]
The processed products generated by the above heat treatment are low chlorine carbide and low alkali glass powder, and these are discharged simultaneously from the externally heated rotary kiln, that is, in a state where both are mixed.
[0026]
Therefore, in the present invention, the heat-treated product discharged from the externally heated rotary kiln is put into water and separated into low-chloride carbide and low-alkali glass powder. That is, the chlorine-containing resin waste is floated when put into water in order to foam and reduce the weight during the heat treatment. On the other hand, the heat-treated alkali metal-containing glass waste sediments in water because the specific gravity is about 2.6. Therefore, each resource is recovered using the difference in specific gravity between the two.
[0027]
In addition, the water-soluble salt formed on the surface of the glass powder, and chlorine and the glass powder adhering to the surface of the low-chloride carbide can be almost washed away by charging the heat-treated product in water. Further, mixing of glass as an impurity is suppressed, and as a result, a carbide having a high calorific value and a low ash content can be obtained. In addition, the recovered glass powder can be effectively used as a cement raw material or the like because the alkali metal is reduced by the simultaneous heating treatment with the chlorine-containing resin waste and the mixing of the generated salt is suppressed by the operation of injecting in water. It becomes possible.
[0028]
Here, the concentration of hydrogen chloride contained in the exhaust gas generated during the heat treatment of the chlorine-containing resin waste and the alkali metal-containing glass waste by the externally heated rotary kiln in the present invention is suppressed to 750 ppm or less.
In order to satisfy this, the particle size of the raw material is important. In particular, if the average particle size of the alkali metal-containing glass waste having a function as a neutralizing agent is not 20 μm or less, the desired low alkali glass Not only cannot be obtained, but also the chlorine in the exhaust gas cannot be captured, the above-mentioned hydrogen chloride concentration cannot be achieved, and the environmental load is increased.
[0029]
In the low-chloride carbide recovered in the present invention, the carbon concentration is increased by the dechlorination treatment, and the calorific value is increased as compared with the calorific value before the treatment, but the calorific value is reduced to 6,000 kcal / kg. When it is increased, it becomes a recyclable material that can be used as a pulverized coal alternative fuel, and when its calorific value is increased to 9,000 kcal / kg or more, it can be used as a mineral oil alternative fuel Natural resources. Further, when the amount of chlorine in the recovered low-chloride carbide exceeds 0.2% by weight, there is a problem that the generation of hydrogen chloride gas and the generation of dioxins are remarkably accelerated during combustion. The content must be 0.2% by weight or less, and desirably zero.
[0030]
In the low alkali glass powder recovered in the present invention, the amount of alkali metal oxide contained in the glass powder is 7% by weight or less. This is because, when containing alkali metal oxides exceeding 7% by weight, the amount of alkali metal brought in when used as a cement raw material is large, and as a result, the amount of alkali metal in the cement increases, and It is not preferable because the strength of the cured product is reduced and cracks are caused by an alkali-aggregate reaction. On the other hand, if the amount of alkali metal oxide is 7% by weight or less, there is no problem even if a considerable amount of low alkali glass powder is used as a cement raw material. It is preferable to be achieved.
[0031]
[Test example]
Hereinafter, test examples in which a method for recycling the chlorine-containing resin waste and the alkali metal-containing glass waste according to the present invention described above will be described.
[0032]
Table 1 shows the physical properties of the vinyl chloride resin (PVC) used as the chlorine-containing resin waste in the test and the waste plastic (waste plastic) mixed with various synthetic resins. In the test, glass containing 12.2% by weight of Na 2 O was used as alkali metal-containing glass waste.
[0033]
[Table 1]
Figure 2004268000
[0034]
The above-mentioned chlorine-containing resin waste and alkali metal-containing glass waste are each crushed to a raw material particle size (average particle size) shown in Table 2, and an externally heated rotory kiln (150 mm in diameter, length 1 in a closed structure type) is used. , 700 mm), and resource recycling treatment was carried out at a charging ratio (alkali metal / chlorine chemical equivalent ratio) shown in Table 2 and a residence time of about 60 minutes at the heat treatment temperature. The obtained heat-treated product was put into water (with or without flotation), separated into carbide and glass powder, and collected.
[0035]
[Table 2]
Figure 2004268000
[0036]
For the collected carbide, the amount of chlorine, the amount of heat generation and the form were examined, and for the glass powder, the amount of Na 2 O and the amount of chlorine were examined. Further, the concentration of hydrogen chloride (HCL) contained in the gas discharged from the externally heated rotary kiln during the heat treatment under each condition was measured.
Table 3 shows the measurement results.
[0037]
The amount of chlorine in the carbide was measured by the thiocyanic mercury method (JIS R5202) after pretreatment by the Eshka method, and the calorific value was measured by a method according to JIS M8812. Further, the amount of Na 2 O and the amount of chlorine in the glass powder were determined by fluorescent X-ray analysis. The concentration of hydrogen chloride (HCL) in the exhaust gas was measured according to JIS K 0107 (1995) after introducing the exhaust gas into an absorption bottle and dissolving the hydrogen chloride gas in the absorbing solution.
[0038]
[Table 3]
Figure 2004268000
[0039]
From Table 3, by simultaneously heat-treating chlorine-containing resin waste and alkali-metal-containing glass waste under specific conditions, low-chloride carbide and low-alkali glass powder that can be used as fuel and cement raw materials are obtained, It has been found that the concentration of hydrogen chloride in the exhaust gas can also be reduced. Further, it was found that the obtained low chlorine carbide was a foam, and the pulverizability was extremely good.
[0040]
【The invention's effect】
According to the present invention described in detail above, the chlorine-containing resin waste and the alkali-metal-containing glass waste, which have been difficult to recycle, are simultaneously heat-treated under the specific conditions specified in the present invention, so that fuel replacement can be performed. Low-carbon carbide that can be used as a material and low-alkali glass powder that can be used as a cement raw material can be safely collected without generating harmful or toxic substances such as hydrogen chloride gas or dioxin, and waste It exerts tremendous effects from the viewpoints of recycling and environmental conservation.

Claims (6)

塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の粉末とを外熱式ロータリーキルンに同時に投入し、該外熱式ロータリーキルンによって350〜400℃で熱処理し、低塩素炭化物と低アルカリガラス粉末とを回収することを特徴とする、塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法。The chlorine-containing resin waste and the alkali metal-containing glass waste powder are simultaneously charged into an externally heated rotary kiln, and heat-treated at 350 to 400 ° C. by the externally heated rotary kiln to recover low chlorine carbide and low alkali glass powder. Recycling chlorine-containing resin waste and alkali metal-containing glass waste. 上記外熱式ロータリーキルンから排出される熱処理物を水中に投入し、浮遊物を上記低塩素炭化物として、沈殿物を上記低アルカリガラス粉末として各々回収することを特徴とする、請求項1記載の塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法。2. The chlorine according to claim 1, wherein the heat-treated material discharged from the externally heated rotary kiln is poured into water, and the suspended matter is recovered as the low-chlorine carbide and the precipitate is recovered as the low-alkali glass powder. To recycle resin-containing resin waste and alkali-metal-containing glass waste. 上記外熱式ロータリーキルンに投入する上記塩素含有樹脂廃棄物の平均粒径が20mm以下であり、上記アルカリ金属含有ガラス廃棄物の平均粒径が20μm以下であることを特徴とする、請求項1又は2記載の塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法。The average particle diameter of the chlorine-containing resin waste to be charged into the external heat rotary kiln is 20 mm or less, and the average particle diameter of the alkali metal-containing glass waste is 20 μm or less, wherein 2. A method for recycling chlorine-containing resin waste and alkali metal-containing glass waste according to item 2. 上記外熱式ロータリーキルンから排出されるガスに含まれる塩化水素濃度が750ppm以下であることを特徴とする、請求項1、2又は3記載の塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法。4. The resource of chlorine-containing resin waste and alkali metal-containing glass waste according to claim 1, wherein the concentration of hydrogen chloride contained in the gas discharged from the externally heated rotary kiln is 750 ppm or less. Method. 上記回収する低塩素炭化物が、塩素含有量0.2重量%以下、発熱量6,000kcal/kg以上の資源化物であることを特徴とする、請求項1、2、3又は4記載の塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法。The chlorine-containing material according to claim 1, 2, 3 or 4, wherein the low-carbon carbide to be recovered is a resource having a chlorine content of 0.2% by weight or less and a calorific value of 6,000 kcal / kg or more. Resource recycling method for resin waste and glass waste containing alkali metal. 上記回収する低アルカリガラス粉末が、アルカリ金属酸化物含有量7重量%以下の資源化物であることを特徴とする、請求項1、2、3又は4記載の塩素含有樹脂廃棄物とアルカリ金属含有ガラス廃棄物の資源化方法。5. The chlorine-containing resin waste according to claim 1, 2, 3 or 4, wherein the low alkali glass powder to be recovered is a recycle material having an alkali metal oxide content of 7% by weight or less. How to recycle glass waste.
JP2003066425A 2003-03-12 2003-03-12 Recycling of chlorine-containing resin waste and alkali metal-containing glass waste Expired - Lifetime JP4163535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066425A JP4163535B2 (en) 2003-03-12 2003-03-12 Recycling of chlorine-containing resin waste and alkali metal-containing glass waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066425A JP4163535B2 (en) 2003-03-12 2003-03-12 Recycling of chlorine-containing resin waste and alkali metal-containing glass waste

Publications (2)

Publication Number Publication Date
JP2004268000A true JP2004268000A (en) 2004-09-30
JP4163535B2 JP4163535B2 (en) 2008-10-08

Family

ID=33127151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066425A Expired - Lifetime JP4163535B2 (en) 2003-03-12 2003-03-12 Recycling of chlorine-containing resin waste and alkali metal-containing glass waste

Country Status (1)

Country Link
JP (1) JP4163535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118229A (en) * 2017-01-27 2018-08-02 三菱マテリアル株式会社 Method for removing sodium from sodium-containing glass and method for producing cement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118229A (en) * 2017-01-27 2018-08-02 三菱マテリアル株式会社 Method for removing sodium from sodium-containing glass and method for producing cement

Also Published As

Publication number Publication date
JP4163535B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
Tian et al. Recent development of recycling lead from scrap CRTs: A technological review
JP6989844B2 (en) Friedel salt removal method and Friedel salt removal system
KR102263613B1 (en) Detoxification of asbestos by mechano-chemical treating method
CN113943116A (en) Process for producing high-alumina cement by using aluminum ash and fly ash generated after waste incineration
JP4313936B2 (en) Method and apparatus for producing fired product
JP2006281150A (en) Refuse incinerator equipped with incineration ash reforming apparatus
US20100130806A1 (en) Method of treating asbestos-containing waste material
JP3856711B2 (en) Method and apparatus for recycling inorganic waste containing inorganic chemical components that can be reused as ceramic raw materials
JP4087657B2 (en) Waste treatment method and cement raw material manufacturing method
JP2002177924A (en) Detoxification treatment process of incineration ash by diffusing and decomposing incineration ash atoms and equipment for the same process
JP2018158324A (en) Method and apparatus for recycling waste glass
JP4814445B2 (en) Waste disposal method
JP2004268000A (en) Method for recycling chlorine-containing resin waste material and alkali metal-containing glass waste material
CN111085529A (en) Industrial waste salt vitrification method
JP2001342045A (en) Method of manufacturing cement clinker
JP4283701B2 (en) Calcium sulfide manufacturing method, ground improvement material manufacturing method, and processing object processing method
Kakimoto et al. Use of fine-grained shredder dust as a cement admixture after a melting, rapid-cooling and pulverizing process
JP2019122949A (en) Method of disposing of incineration fly ash and other waste
JPH09122617A (en) Treatment method for shredder dust of large-sized industrial waste
JP4968141B2 (en) Method for detoxifying asbestos-containing material and method for producing cement
Qi et al. Complementary vitrification of municipal solid waste incineration fly ash from grate furnaces and fluidised bed incinerators via a co-reduction process
KR102246061B1 (en) Method for manufacturing high purity aluminum oxide and high purity aluminum oxide produced by the method
JPH11286685A (en) Preparation of carbide
JP5583359B2 (en) Detoxification equipment for asbestos products
JP5378901B2 (en) Refractory brick manufacturing method and fireproof brick made from asbestos detoxified material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4163535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term