JP2006281150A - Refuse incinerator equipped with incineration ash reforming apparatus - Google Patents

Refuse incinerator equipped with incineration ash reforming apparatus Download PDF

Info

Publication number
JP2006281150A
JP2006281150A JP2005107232A JP2005107232A JP2006281150A JP 2006281150 A JP2006281150 A JP 2006281150A JP 2005107232 A JP2005107232 A JP 2005107232A JP 2005107232 A JP2005107232 A JP 2005107232A JP 2006281150 A JP2006281150 A JP 2006281150A
Authority
JP
Japan
Prior art keywords
incineration ash
ash
exhaust gas
reformer
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005107232A
Other languages
Japanese (ja)
Other versions
JP4649256B2 (en
Inventor
Hiroyuki Hikita
浩之 引田
Kenichi Shishida
健一 宍田
Ryoji Samejima
良二 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2005107232A priority Critical patent/JP4649256B2/en
Publication of JP2006281150A publication Critical patent/JP2006281150A/en
Application granted granted Critical
Publication of JP4649256B2 publication Critical patent/JP4649256B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recycle incineration ash from a refuse incinerator by efficiently reforming it at a low cost, as safe and high-quality civil engineering and building materials, with no elution of toxic substance such as lead to the outside, and to separate and recover hydrogen from gas produced in a reforming process to use as an energy source. <P>SOLUTION: The refuse incinerator provided with an incinerator ash reforming apparatus is constituted of a refuse incinerator having a waste heat boiler and an exhaust gas cleaning apparatus, the incineration ash reforming apparatus receiving the incineration ash, moisture and carbon dioxide from the incinerator and agitating and mixing these in a heated state for a fixed time, and a hydrogen separator separating hydrogen generated in the incineration ash reforming apparatus. By reforming the incineration ash into a substance hardly soluble in acid, elution of lead in the incineration ash to the outside is suppressed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、都市ごみ焼却灰や焼却飛灰等(以下焼却灰と総称する)を経済的に効率よくより安全性の高い有価物に変換すると共に、焼却灰から発生した水素の回収利用を可能とした焼却灰改質装置を備えたごみ焼却炉に関するものである。   The present invention can convert municipal waste incineration ash, incineration fly ash, etc. (hereinafter collectively referred to as incineration ash) into valuable materials that are economically efficient and safer, and can recover and use hydrogen generated from incineration ash. The present invention relates to a waste incinerator equipped with an incineration ash reformer.

都市ごみ焼却炉等から排出される焼却灰中には、土壌汚染対策法等に示されている特定有害物質が多量に含有されており、特に鉛は、その溶出量及び含有量基準値を上回ることが多い。そのため、焼却灰をそのまま建築用資材等としてリサイクルすることは困難で、焼却灰の大部分は埋立により処分されて来た。
しかし、埋立処分場の確保が困難になって来たこと及び資源循環型社会の構築が要請されていること等の理由から、近年各方面で焼却灰を改質処理してこれを資源化し、その有効利用を図ることが行われている。
Incineration ash discharged from municipal waste incinerators, etc. contains a large amount of specific hazardous substances indicated in the Soil Contamination Countermeasures Law, etc., especially lead exceeds its elution amount and content standard value There are many cases. For this reason, it is difficult to recycle the incineration ash as building materials and the like, and most of the incineration ash has been disposed of by landfill.
However, due to the fact that it has become difficult to secure a landfill site and there is a demand for the establishment of a resource recycling society, incineration ash has been reformed in various areas in recent years to make it a resource. The effective use is being attempted.

ところで、上記焼却灰の改質処理方法としては、イ.焼却灰を溶融又は焼成処理する方式、ロ.焼却灰をエージング処理する方式、ハ.焼却灰を水熱処理する方式等が多く利用されている。
しかし、上記イ.の焼却灰の溶融によるスラグ化や焼成によるエコセメント化の処理は、多くのエネルギー消費を伴うと共に高度な運転技術を必要とすると云う問題がある。
By the way, the reforming method of the incineration ash is as follows. A method of melting or firing incinerated ash; b. A method for aging the incineration ash, c. Many methods such as hydrothermal treatment of incinerated ash are used.
However, a. The treatment of slag by melting incinerated ash and ecocementing by firing has a problem that it involves a lot of energy consumption and requires advanced operation techniques.

これに対して、上記ロ.の方式は、焼却灰にCO2を含有するガスを接触させ、焼却灰中のアルカリ成分を中和すると共に灰中の鉛を水に難溶性の炭酸鉛等にするものであり、土壌汚染対策法に規定されている所謂鉛溶出量基準を充足することができると云う特徴を有している。(特開2002−018392号等)。
また、上記ハ.の方式は、100℃〜300℃の飽和水蒸気の下で焼却灰を養生することにより、アルミノケイ酸カルシウム水和物(例えばトバモライト)を合成し、その構造内に鉛を封じ込めることにより鉛の溶出量を低減させるものであり、前記ロ.の方式の場合と同様の特徴を有している(特許第3263045号等)。
しかし、上記ロ.及びハ.の方式は、前述の通り鉛の溶出量についての基準は充足することができるものの、炭酸塩やアルミノケイ酸カルシウム水和物は1規定濃度の塩酸に対して可溶であるため、塩酸抽出により計量される鉛含有量は減少せず、土壌汚染対策法に規定される塩酸抽出量基準を充足することができないと云う難点がある。その結果、上記ロ.及びハ.の方式により改質処理された焼却灰は、土木建築用資材としてリサイクル利用することが出来ないと云う問題がある。
In contrast, b. In this method, CO 2 -containing gas is brought into contact with the incinerated ash to neutralize the alkali components in the incinerated ash and to convert the lead in the ash into insoluble water-soluble lead carbonate, etc. It has a feature that it can satisfy the so-called lead elution standard defined in the law. (Japanese Patent Laid-Open No. 2002-018392, etc.).
In addition, c. The method of synthesize | combining calcium aluminosilicate hydrate (for example, tobermorite) by curing incineration ash under saturated steam of 100 ° C to 300 ° C, and the amount of lead elution by containing lead in its structure. And b. It has the same characteristics as the case of the method (Japanese Patent No. 3263045).
However, the above b. And c. This method can meet the criteria for lead elution as described above, but carbonate and calcium aluminosilicate hydrates are soluble in 1N hydrochloric acid, so measure by hydrochloric acid extraction. The lead content does not decrease, and there is a drawback that the hydrochloric acid extraction amount standard stipulated in the Soil Contamination Countermeasures Law cannot be satisfied. As a result, the above b. And c. The incineration ash modified by this method has a problem that it cannot be recycled as a civil engineering material.

一方、都市ごみ焼却炉の焼却灰等には、水素の発生と云う特有の問題が付随的に発生する。即ち、都市ごみ焼却炉等で発生する焼却灰や灰溶融処理により生成されたスラグは、アルカリ性水溶液と接触することにより水素を発生する(特開2000−220816号、特開平11−141849号、特開平4−265188号等)。具体的には、通常の焼却灰の改質処理においては、焼却灰1トンから、75VO l%の水素を含むガスが約23m3 N程度発生することが確認されている。 On the other hand, the incineration ash of municipal waste incinerators has a specific problem of hydrogen generation. That is, incineration ash generated in municipal waste incinerators or the like and slag generated by ash melting treatment generate hydrogen by contacting with an alkaline aqueous solution (Japanese Patent Laid-Open No. 2000-220816, Japanese Patent Laid-Open No. 11-1418449, special features). Kaihei 4-265188 etc.). Specifically, it has been confirmed that in an ordinary incineration ash reforming process, about 23 m 3 N of gas containing 75 V O 1% hydrogen is generated from 1 ton of incineration ash.

これ等の発生水素は、最終的には灰ピットや灰シュート内に充満することになり、金属類同士の接触により生ずる火花や静電気等により、引火、爆発を起こすと云う問題がある。   The generated hydrogen eventually fills in the ash pits and ash chutes, and there is a problem that ignition or explosion occurs due to sparks or static electricity generated by contact between metals.

特開2002−018392号JP 2002-018392 A 特許第3263045号Japanese Patent No. 3263045 特開2000−220816号JP2000-220816 特開平11−141849号JP 11-141849 A 特開平04−265188号JP 04-265188 A

本発明は、従前の焼却灰を資源として有効利用するための各種処理方式(以下、焼却灰の改質処理と呼ぶ)における上述の如き問題、即ちa.エネルギー消費量が多大であり、高い運転技術を必要とすること、b.構造内に封じ込めした鉛が塩酸等により溶出することになり、土木建築用資材としてのリサイクルが困難なこと、及びc.アルカリ性水溶液との接触により水素が発生し、ガス爆発等の危険があること等の問題を解決せんとするものであり、焼却灰をより少ない消費エネルギーでもって効率的に1規定濃度の塩酸に難溶な物質に改質すると共に、改質処理により発生した水素を回収することにより、焼却灰の土建用資材としての再利用と水素の分離回収とを可能とした焼却灰の改質装置を備えたごみ焼却炉を提供することを発明の主たる目的とするものである。   The present invention relates to the above-mentioned problems in various treatment methods (hereinafter referred to as incineration ash reforming treatment) for effectively using conventional incineration ash as a resource. High energy consumption and high driving skills; b. Lead contained in the structure will be eluted by hydrochloric acid, etc., and it will be difficult to recycle as civil engineering materials, and c. It is intended to solve problems such as the occurrence of hydrogen explosion due to contact with alkaline aqueous solution and the danger of gas explosion, etc., making it difficult to efficiently incinerate incinerated ash with less energy consumption to 1 normal concentration hydrochloric acid. Incineration ash reforming equipment that enables reuse of incinerated ash as earthwork material and separation / recovery of hydrogen by recovering hydrogen generated by the reforming process while reforming into a soluble material The main object of the invention is to provide a waste incinerator.

請求項1の発明は、廃熱ボイラと排ガス浄化装置とを備えたごみ焼却炉と、当該ごみ焼却炉からの焼却灰と水分と二酸化炭素とを受け入れすると共に、これ等を一定時間加熱状態下で撹拌混合する焼却灰改質装置と、焼却灰改質装置の内部で発生したガスから水素を分離する水素分離装置とから成り、焼却灰を酸に難溶な物質に改質することにより、焼却灰内の鉛等重金属類の外部への溶出を抑制する構成としたことを特徴とするものである。   The invention of claim 1 is a waste incinerator provided with a waste heat boiler and an exhaust gas purification device, and receives incineration ash, moisture and carbon dioxide from the waste incinerator, and these are heated for a certain period of time. It consists of an incineration ash reformer that stirs and mixes in and a hydrogen separator that separates hydrogen from the gas generated inside the incineration ash reformer, and by reforming the incineration ash into a substance that is hardly soluble in acid, It is characterized by having a structure that suppresses elution of heavy metals such as lead in the incineration ash to the outside.

請求項2の発明は、請求項1の発明において、水分を廃熱ボイラから水蒸気として供給するようにしたものである。   According to a second aspect of the present invention, in the first aspect of the invention, moisture is supplied as steam from a waste heat boiler.

請求項3の発明は、請求項1の発明において、二酸化炭素源として燃焼排ガスを利用し、その燃焼排ガスを排ガス浄化装置の出口側から引き抜くようにしたものである。   According to a third aspect of the invention, in the first aspect of the invention, combustion exhaust gas is used as a carbon dioxide source, and the combustion exhaust gas is extracted from the outlet side of the exhaust gas purification device.

請求項4の発明は、請求項1の発明において、ごみ焼却炉をストーカ式ごみ焼却炉としたものである。   The invention of claim 4 is the invention of claim 1, wherein the waste incinerator is a stoker-type waste incinerator.

請求項5の発明は、請求項1の発明において、燃焼排ガスを酸素分離装置により高酸素濃度ガスと高CO2濃度ガスとに分離し、分離した高CO2濃度ガスを焼却灰改質装置へ供給するようにしたものである。 The invention of claim 5 is the invention of claim 1, wherein the combustion exhaust gas is separated into a high oxygen concentration gas and a high CO 2 concentration gas by an oxygen separator, and the separated high CO 2 concentration gas is supplied to an incineration ash reformer. It is to be supplied.

請求項6の発明は、請求項1の発明において、ごみ焼却灰を焼却灰選別装置により選別し、鉄片及び大型固形物を除いたごみ焼却灰を焼却灰改質装置へ供給するようにしたものである。   The invention of claim 6 is the invention of claim 1, wherein the waste incineration ash is sorted by the incineration ash sorting device, and the waste incineration ash from which the iron pieces and large solids are removed is supplied to the incineration ash reformer It is.

請求項7の発明は、請求項1の発明において、焼却灰と水分蒸気と燃焼排ガスの混合物を50℃〜600℃の温度下に一定時間保持するようにしたものである。   The invention of claim 7 is the invention of claim 1, wherein the mixture of incinerated ash, moisture vapor and combustion exhaust gas is maintained at a temperature of 50 ° C. to 600 ° C. for a certain period of time.

請求項8の発明は、請求項1の発明において、焼却灰と水分蒸気と燃焼排ガスの混合物を50℃〜600℃の温度下に30分〜10時間保持するようにしたものである。   The invention of claim 8 is the invention of claim 1, wherein the mixture of incinerated ash, moisture vapor and combustion exhaust gas is maintained at a temperature of 50 ° C. to 600 ° C. for 30 minutes to 10 hours.

請求項9の発明は、請求項1の発明において、焼却灰にけい素とアルミニウムの何れか一方又は両方を加え、けい素とアルミニウムの含有比を所定値に調整した焼却灰を焼却灰改質装置へ供給するようにしたものである。   The invention according to claim 9 is the invention according to claim 1, wherein either one or both of silicon and aluminum is added to the incinerated ash, and the incinerated ash is modified by adjusting the content ratio of silicon and aluminum to a predetermined value. It is intended to be supplied to the device.

請求項10の発明は、請求項5の発明において、排ガスを酸素分離装置で分離することにより生じた高酸素濃度ガスをごみ焼却炉の二次燃焼空気内へ供給するようにしたものである。   According to a tenth aspect of the present invention, in the fifth aspect of the invention, the high oxygen concentration gas generated by separating the exhaust gas by the oxygen separation device is supplied into the secondary combustion air of the refuse incinerator.

請求項11の発明は、請求項9の発明において、焼却灰改質装置へ酸性薬剤或いはアルカリ性薬剤を供給し、改質処理をする焼却灰のPHを調整するようにしたものである。   The invention of claim 11 is the invention of claim 9, wherein an acidic chemical or an alkaline chemical is supplied to the incineration ash reformer to adjust the PH of the incineration ash to be reformed.

本願発明においては、焼却灰に水分とCO2 と熱を加えて焼却灰改質装置内で撹拌混合することにより、アルミノケイ酸カルシウム水和物等をアルミノケイ酸水和物等の酸に難溶性の鉱物質の物質、例えば鉱物性のものでアルミナとシリカから成る物質に変換し、その内部に鉛等の有害物質を封じ込めると共に、改質装置内で発生した発生ガスから水素を分離して回収する構成としている。その結果、従前の焼却灰の改質処理方式により改質した改質灰のように、酸に溶解されて内部の鉛等の重金属が外部へ溶出するようなことが殆どなくなり、焼却灰を土木建築用資材としてリサイクルすることができると共に、回収した水素を燃焼等に活用することができる。 In the present invention, by adding water, CO 2 and heat to the incineration ash and stirring and mixing in the incineration ash reformer, calcium aluminosilicate hydrate is hardly soluble in acids such as aluminosilicate hydrate. It is converted into a mineral substance, for example, a mineral substance made of alumina and silica, containing harmful substances such as lead inside, and separating and recovering hydrogen from the generated gas generated in the reformer It is configured. As a result, unlike the modified ash modified by the conventional treatment method of incineration ash, it is almost impossible for heavy metals such as internal lead to dissolve out in the acid, and the incineration ash is removed from civil engineering. It can be recycled as building materials and the recovered hydrogen can be used for combustion.

また、灰の改質処理にごみ焼却炉の排熱や排ガスを利用するため、エネルギー消費が少なくなり、その結果処理費用の大幅な引下げが可能となる。   Further, since waste heat and exhaust gas from the waste incinerator are used for the ash reforming process, energy consumption is reduced, and as a result, the processing cost can be significantly reduced.

更に、ごみ焼却炉からの焼却灰を焼却灰改質装置へ受け入れするため、焼却灰の保有熱を有効に利用することができ、改質反応のみならず、焼却灰からの水素の発生も一層促進されることになる。   Furthermore, since the incineration ash from the waste incinerator is received by the incineration ash reformer, the retained heat of the incineration ash can be used effectively, and not only the reforming reaction but also the generation of hydrogen from the incineration ash Will be promoted.

加えて、ごみ焼却炉と灰改質装置と酸素分離装置とを組み合せ使用する場合には、短時間で焼却灰の改質処理を効率よく行うことができる。   In addition, when a waste incinerator, an ash reformer, and an oxygen separator are used in combination, the incineration ash can be efficiently reformed in a short time.

以下、図面に基づいて本発明の実施形態を説明する。
図1は、本発明の第1実施形態に係る焼却灰の改質装置を備えたごみ焼却炉の断面概要図であり、図2は、第2実施形態に係る焼却灰改質装置を備えたごみ焼却炉の断面概要図である。
図1及び図2において、1はごみ焼却炉、2は焼却灰改質装置、3は水素分離装置、4は水素タンク、5は焼却灰選別装置、6は酸素分離装置であり、焼却灰改質装置を備えたごみ焼却炉は前記ごみ焼却炉1、焼却灰改質装置2、水素分離装置3等を有機的に連結することにより構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a waste incinerator equipped with an incineration ash reforming apparatus according to the first embodiment of the present invention, and FIG. 2 includes an incineration ash reforming apparatus according to the second embodiment. It is a cross-sectional schematic diagram of a waste incinerator.
1 and 2, 1 is a waste incinerator, 2 is an incineration ash reformer, 3 is a hydrogen separator, 4 is a hydrogen tank, 5 is an incinerator ash separator, and 6 is an oxygen separator. A waste incinerator equipped with a quality device is constituted by organically connecting the waste incinerator 1, the incineration ash reformer 2, the hydrogen separator 3 and the like.

前記ごみ焼却炉1には主としてストーカ式ごみ焼却炉や流動層式ごみ焼却炉が用いられており、本実施形態においては公知のストーカ式ごみ焼却炉がごみ焼却炉1として使用されている。尚、ごみ焼却1としては、如何なる形式のものであってもよいことは勿論である。
即ち、図1及び図2において、A1 は1次空気、A2 は2次空気、Gは燃焼排ガス、Wはごみ、Sは水蒸気、GOは排ガス、G1は燃焼ガス、Dは1次燃焼室と2次燃焼室との中間部分、7は焼却灰、8はCO2又はCO2含有ガス(燃焼排ガス)、9は改質物質(改質灰)、10は鉄片等、11はN2又はCo2、12は水素、13は水素負荷、14はごみ投入ホッパ、15はごみ供給装置、16は乾燥ストーカ、17は燃焼ストーカ、18は後燃焼ストーカ、19は炉本体、20は1次燃焼室、21は2次燃焼室、22は灰出口、24は水分蒸気供給ライン、24aはバルブ、25aは1次空気供給ライン、25bは2次空気供給ライン、26は廃熱ボイラ、27は排ガス浄化装置、28は排ガス供給ライン、28aは排ガス送風機、28bはダンパ、29は誘引通風機、30は煙突、31は燃焼ガス吸引口、32は送風機、33は燃焼ガス供給ライン、33aはダンパ、34は排出ガス搬送ラインである。
The waste incinerator 1 is mainly a stoker type waste incinerator or a fluidized bed type waste incinerator. In this embodiment, a known stoker type incinerator is used as the waste incinerator 1. Of course, the garbage incineration 1 may be of any type.
That is, in FIGS. 1 and 2, A 1 is primary air, A 2 is the secondary air, G combustion gas, W Wagomi, S is water vapor, G O exhaust gas, G 1 is a combustion gas, D is 1 An intermediate portion between the secondary combustion chamber and the secondary combustion chamber, 7 is incinerated ash, 8 is a CO 2 or CO 2 -containing gas (combustion exhaust gas), 9 is a reforming substance (modified ash), 10 is a piece of iron, 11 is N 2 or Co 2 , 12 is hydrogen, 13 is a hydrogen load, 14 is a waste charging hopper, 15 is a waste supply device, 16 is a dry stoker, 17 is a combustion stoker, 18 is a post combustion stoker, 19 is a furnace body, and 20 is Primary combustion chamber, 21 secondary combustion chamber, 22 ash outlet, 24 moisture vapor supply line, 24a valve, 25a primary air supply line, 25b secondary air supply line, 26 waste heat boiler, 27 is an exhaust gas purification device, 28 is an exhaust gas supply line, 28a is an exhaust gas blower, 28b Damper 29 induced draft fan, 30 a chimney, 31 a combustion gas suction port, 32 a blower, 33 a combustion gas supply line, 33a damper, 34 is a discharge gas conveying line.

尚、ストーカ式ごみ焼却炉そのものは公知であるため、ここではその詳細な説明を省略するが、本実施形態のごみ焼却炉1においては、後燃焼ストーカ18上方の炉本体19に燃焼ガス吸引口31を設け、当該吸引口31を介して吸引した後燃焼ストーカ18の上方空間部の燃焼ガスG1を、送風機32により燃焼ガス供給ライン33を通して1次燃焼室22と2次燃焼室21との中間部(厳密には、2次燃焼空気A2の供給位置より上流側の燃焼室内)Dへ供給するように構成されている。
そして、上記燃焼ガスG1 が中間部分Dへ供給されることにより、当該中間19部分Dが所謂還元領域となり、その結果、当該還元領域を通過する燃焼排ガス内の窒素酸化物やダイオキシン類及びその前駆体物質の生成が抑制されると共に、燃焼排ガスの撹拌混合が促進され、未燃物の完全な燃焼が可能となる。
In addition, since the stoker type waste incinerator itself is well-known, the detailed description is abbreviate | omitted here, but in the waste incinerator 1 of this embodiment, a combustion gas suction port is provided in the furnace main body 19 above the post combustion stoker 18. 31 is provided, and after suctioned through the suction port 31, the combustion gas G 1 in the upper space portion of the combustion stoker 18 is blown between the primary combustion chamber 22 and the secondary combustion chamber 21 through the combustion gas supply line 33 by the blower 32. It is configured to be supplied to an intermediate portion (strictly speaking, a combustion chamber upstream from the supply position of the secondary combustion air A 2 ) D.
Then, by supplying the combustion gas G 1 to the intermediate portion D, the intermediate 19 portion D becomes a so-called reduction region, and as a result, nitrogen oxides and dioxins in the combustion exhaust gas passing through the reduction region, and their The generation of the precursor material is suppressed, and the stirring and mixing of the combustion exhaust gas is promoted, so that the unburned material can be completely burned.

前記焼却灰改質装置2は、ロータリキルン、流動層反応器等の焼却灰7を一定時間撹拌・混合し乍ら加熱するものである。尚、当該焼却灰改質装置2は、焼却灰7を一定時間撹拌・混合及び加熱できる構造のものであれば如何なる構造の装置であってもよい。
また、当該焼却灰改質装置2へは、廃熱ボイラ26から水分供給ライン24を通して所定量の蒸気(水分蒸気)Sが水分供給源として供給されると共に、排ガス浄化装置27の出口側より引き抜いた排ガスGoがCO2の供給源として供給される。
更に、図示されていないが、焼却灰改質装置2の本体へは、内部の被処理物(焼却灰7)を50℃〜600℃(好ましくは100℃〜400℃)に保持するのに必要な熱が加えられており、通常はごみ焼却炉からの排ガスの熱や加熱ガス発生炉(図示省略)により別途に発生した燃焼ガスの熱等が多く利用される。
The incineration ash reforming apparatus 2 heats the incineration ash 7 such as a rotary kiln, a fluidized bed reactor or the like while stirring and mixing for a predetermined time. The incineration ash reforming apparatus 2 may be an apparatus having any structure as long as the incineration ash 7 has a structure capable of stirring, mixing, and heating the incineration ash 7 for a predetermined time.
In addition, a predetermined amount of steam (moisture vapor) S is supplied from the waste heat boiler 26 through the moisture supply line 24 to the incineration ash reformer 2 as a moisture supply source, and is extracted from the outlet side of the exhaust gas purification device 27. Exhaust gas Go is supplied as a CO 2 supply source.
Further, although not shown in the figure, the main body of the incineration ash reformer 2 is necessary for maintaining the object to be treated (incineration ash 7) at 50 ° C. to 600 ° C. (preferably 100 ° C. to 400 ° C.). Usually, heat of exhaust gas from a waste incinerator, heat of combustion gas separately generated by a heating gas generation furnace (not shown), and the like are often used.

前記焼却灰改質装置2へは、後述する如く焼却灰選別装置5により予め鉄片や大型固形物10を除いた焼却灰7が被処理物として供給される。
また、焼却灰改質装置2の運転上の安全性を高めるために、N2やCO2等の不活性ガス11が適宜に供給される。何故なら、焼却灰改質装置2の内部における発生水素ガス濃度が爆発限界濃度(4〜75%)に達するのを防止する必要があるからである。
As described later, the incineration ash 7 excluding iron pieces and large solids 10 is supplied to the incineration ash reforming apparatus 2 as an object to be processed by the incineration ash sorting apparatus 5.
Moreover, in order to improve the operational safety of the incineration ash reformer 2 , an inert gas 11 such as N 2 or CO 2 is appropriately supplied. This is because it is necessary to prevent the generated hydrogen gas concentration inside the incineration ash reformer 2 from reaching the explosion limit concentration (4 to 75%).

前記水素分離装置3は公知の装置であり、焼却灰改質装置2の内部より引き抜いた発生ガスから水素を分離し、分離した水素12を水素タンク4へ貯留すると共に、水素以外の分離ガスを排ガスラインへ排出する。   The hydrogen separation device 3 is a known device, separates hydrogen from the generated gas drawn from the inside of the incineration ash reformer 2, stores the separated hydrogen 12 in the hydrogen tank 4, and separates the separation gas other than hydrogen. Discharge to the exhaust gas line.

前記焼却灰改質装置2内へ焼却灰7を投入し、これに廃熱ボイラ26からの蒸気(又はは水蒸気)Sと排ガス(CO2 又はCO2 含有ガス)Goを加え、これ等を撹拌混合し乍ら一定時間(約0.1〜10時間)150〜600℃、好ましくは100℃〜400℃の温度下に保持することにより、焼却灰改質装置2内では、例えば下記の如き反応が起生する。
4CaO・3Al23・6SiO2・H2O(エピドート)+4CO2+5H2O→3(Al23・6SiO・2H2O(カオリナイト)+4CaCO3
The incineration ash 7 is put into the incineration ash reformer 2, and steam (or steam) S and exhaust gas (CO 2 or CO 2 containing gas) Go from the waste heat boiler 26 are added thereto, and these are agitated. By mixing and maintaining at a temperature of 150 to 600 ° C., preferably 100 to 400 ° C. for a certain time (about 0.1 to 10 hours), in the incineration ash reformer 2, for example, the following reaction Is born.
4CaO · 3Al 2 O 3 · 6SiO 2 · H 2 O ( epidote) + 4CO 2 + 5H 2 O → 3 (Al 2 O 3 · 6SiO · 2H 2 O ( kaolinite) + 4CaCO 3

即ち、焼却灰7内にはAlやSi、CaOやCaCO3等が多量残留している。これらが加熱下で水分と反応することにより、従前の水熱反応処理の場合と同様にアルミノケイ酸カルシウム水和物(例えばエピドート)が形成される。
また、焼却灰改質装置2内へは排ガスGo内のCO2 が供給されているため、CO2 とH2 Oとが前記ケイ酸カルシウム水和物と反応することにより、ケイ酸カルシウム水和物(エピドート)からカルシウム成分が除去されて、アルミノケイ酸水和物(雲母、スメクタイト、カオリナイト等)が形成される。
That is, a large amount of Al, Si, CaO, CaCO 3, etc. remains in the incineration ash 7. By reacting with moisture under heating, calcium aluminosilicate hydrate (e.g. epidote) is formed as in the case of the conventional hydrothermal reaction treatment.
In addition, since CO 2 in the exhaust gas Go is supplied into the incineration ash reformer 2, CO 2 and H 2 O react with the calcium silicate hydrate, so that calcium silicate hydration is achieved. The calcium component is removed from the product (epidote) to form aluminosilicate hydrate (mica, smectite, kaolinite, etc.).

この形成されたアルミノケイ酸水和物(雲母、スメクタイト、カオリナイト等)は、所謂鉱物性の物性を有する物質であり、塩酸に難溶性の物質である。その結果、その網目構造内に取り込まれた鉛は、規定濃度の塩酸溶液でも抽出されなくなり、環境省告示第19号に規定されている検査方法により測定された鉛含有量は、大幅に低減する。即ち、本発明により改質した改質灰9は、土木・建築用資材として安全にリサイクルすることができる。   The formed aluminosilicate hydrate (mica, smectite, kaolinite, etc.) is a substance having so-called mineral physical properties and is hardly soluble in hydrochloric acid. As a result, the lead taken into the network structure is no longer extracted even with a hydrochloric acid solution having a prescribed concentration, and the lead content measured by the inspection method prescribed in the Ministry of the Environment Notification No. 19 is greatly reduced. . That is, the modified ash 9 modified according to the present invention can be safely recycled as a civil engineering / building material.

また、改質処理を行うことにより、焼却灰改質装置2内では焼却灰7内のAlやZn等とアルカリ性水溶液との接触により水素12が発生する。この発生した水素12は、水素タンクに回収される。尚、焼却灰改質装置2内にはCO2 が充満しているため、焼却灰改質装置2内のH2濃度は約5%以下の爆発限界以下の濃度に保持されえおり、その結果、水素爆発が起生する虞れは皆無である。 Further, by performing the reforming treatment, hydrogen 12 is generated in the incineration ash reforming apparatus 2 by the contact of Al, Zn or the like in the incineration ash 7 with the alkaline aqueous solution. The generated hydrogen 12 is collected in a hydrogen tank. Since the incineration ash reformer 2 is filled with CO 2 , the H 2 concentration in the incineration ash reformer 2 can be maintained at a concentration below the explosion limit of about 5% or less. There is no risk of a hydrogen explosion.

前記、焼却灰7の加熱温度は50℃以上を必要とする。50℃以下になると、上記水和反応及び水和物の鉱物化反応が効率的に進行しないからである。
また、加熱温度が高温になるほど反応効率は向上するが、反応効率の上昇の飽和や熱消費量を考慮すると、300℃〜400℃位までの温度上昇で十分である。
The heating temperature of the incineration ash 7 requires 50 ° C. or higher. This is because when the temperature is 50 ° C. or lower, the hydration reaction and the mineralization reaction of the hydrate do not proceed efficiently.
In addition, the reaction efficiency improves as the heating temperature increases, but considering the saturation of the increase in reaction efficiency and the heat consumption, a temperature increase from about 300 ° C. to about 400 ° C. is sufficient.

前記図1の実施形態では、焼却灰7を改質装置5内でバッチ方式により改質処理するようにしているが、焼却灰7の供給及び改質物質9の取出しを連続的に行うようにしてもよいことは勿論である。   In the embodiment shown in FIG. 1, the incineration ash 7 is reformed by the batch method in the reformer 5. However, the incineration ash 7 is supplied and the reforming substance 9 is continuously taken out. Of course, it may be.

また、前記図1の実施形態では、選別装置5により焼却灰7の破砕や含有する鉄分の除去を行ったあと、これを焼却灰改質装置2内へ供給するようにしているが、選別装置5を除いて、ごみ焼却炉からの焼却灰7をそのまま焼却灰改質装置2内へ供給するようにしてもよい。   In the embodiment of FIG. 1, after the incineration ash 7 is crushed and the iron content contained is removed by the sorting device 5, this is supplied into the incineration ash reformer 2. Except for 5, the incineration ash 7 from the waste incinerator may be supplied as it is into the incineration ash reformer 2.

更に、前記図1の実施形態では、焼却灰改質装置2内で焼却灰7と水蒸気Sと排ガス(CO2 )Goとの混合を同時に行う構成としているが、別装置により予め焼却灰7と水蒸気Sとを加熱混合したあと、当該混合物と排ガス(CO2 )Goとを別装置により加熱混合する分離混合方式とすることも可能である。 Furthermore, in the embodiment of FIG. 1, the incineration ash reformer 2 is configured to simultaneously mix the incineration ash 7, the steam S, and the exhaust gas (CO 2 ) Go. It is also possible to adopt a separation and mixing method in which after mixing the steam S with heat, the mixture and the exhaust gas (CO 2 ) Go are heated and mixed with another apparatus.

図2は、本発明の第2実施形態を示すものである。当該第2実施形態では、酸素分離装置6を用い、排ガス浄化装置27の出口側から引き抜いた低温排ガス(150〜200℃、CO25〜15%)GoからCO2を分離すると共に、分離した高CO2濃度ガスを燃焼灰改質装置2へ、また高酸素濃度ガスを2次燃焼空気A2内へ混合する構成としている。尚、前記酸素分離装置6の使用を除くその他の構成は、第1実施形態の場合と同一であるため、ここではその説明を省略する。 FIG. 2 shows a second embodiment of the present invention. In the second embodiment, the oxygen separation device 6 is used to separate and separate CO 2 from low-temperature exhaust gas (150 to 200 ° C., 5 to 15% CO 2 ) Go extracted from the outlet side of the exhaust gas purification device 27. The high CO 2 concentration gas is mixed into the combustion ash reformer 2 and the high oxygen concentration gas is mixed into the secondary combustion air A 2 . Since the other configuration except for the use of the oxygen separation device 6 is the same as that of the first embodiment, the description thereof is omitted here.

図3は、ごみ焼却炉1からの焼却灰7を焼却灰改質装置2へ供給する前に、所謂灰改質調整を行う場合の説明図である。
図3において、35は灰質調整装置、36はけい素化合物、37はアルミ化合物、38は調質焼却灰、39はアルカリ剤である。
FIG. 3 is an explanatory diagram when so-called ash reforming adjustment is performed before the incineration ash 7 from the waste incinerator 1 is supplied to the incineration ash reformer 2.
In FIG. 3, 35 is an ash adjusting device, 36 is a silicon compound, 37 is an aluminum compound, 38 is a tempered incineration ash, and 39 is an alkaline agent.

この図3の実施形態は、イ.灰質調整装置35を用いて、被処理物である焼却灰7内のけい素とアルミニウムの含有比Si/Alが目的とする改質物質(改質灰)9のSi/Al比と同一になるように、焼却灰7内へけい素化合物36(例えばSiO2 等)とアルミ化合物37(例えばAl2 3 等)の何れか一方又は両方を加え、調質焼却灰38を形成するようにした点、及びロ.焼却灰改質装置2へ前記調質焼却灰38を供給すると共に、アルカリ性薬剤(例えばNaOHやCa(OH)2 等)或いは酸性薬剤(例えばHClやH2SO4)39を供給して被処理物のPHを調整するようにした点で、前記図1及び図2の実施形態と異なっており、その他の点は図1及び図2の場合と全く同一である。 This embodiment of FIG. Using the ash adjusting device 35, the silicon / aluminum content ratio Si / Al in the incinerated ash 7 that is the object to be treated is the same as the Si / Al ratio of the target modified substance (modified ash) 9. As described above, either one or both of a silicon compound 36 (for example, SiO 2 ) and an aluminum compound 37 (for example, Al 2 O 3 ) are added to the incineration ash 7 to form a tempered incineration ash 38. Point, and b. In addition to supplying the tempered incineration ash 38 to the incineration ash reformer 2, an alkaline chemical (for example, NaOH or Ca (OH) 2 ) or an acidic chemical (for example, HCl or H 2 SO 4 ) 39 is supplied to be treated. It differs from the embodiment of FIGS. 1 and 2 in that the PH of the object is adjusted, and the other points are exactly the same as those in FIGS. 1 and 2.

尚、焼却灰7内のSi/Al比を所定値に調整するのは、改質物9の品質を高める(即ち、鉱物化されたアルミノケイ酸水和物の含有量を高める)ためであり、改質反応をさせる原料灰をSi/Al比を調整した調質焼却灰38とすることにより、目的物質であるアルミノケイ酸水和物が効率的に生成され、改質物質9の品質がより一層向上するからである。   The reason why the Si / Al ratio in the incinerated ash 7 is adjusted to a predetermined value is to improve the quality of the modified product 9 (that is, to increase the content of mineralized aluminosilicate hydrate). By using the tempered incineration ash 38 with an adjusted Si / Al ratio as the raw material ash for the quality reaction, the target material aluminosilicate hydrate is efficiently produced, and the quality of the modified substance 9 is further improved. Because it does.

また、pHの調整は、Si/Alの反応を促して鉱物化の促進・高効率化を図るためであり、焼却灰7と水分との反応により発生した水素12は、水素分離装置3により水素タンク4内へ回収されたあと、燃焼電池等の水素燃焼負荷13へ供給される。   The pH adjustment is to promote the Si / Al reaction to promote mineralization and increase the efficiency. Hydrogen 12 generated by the reaction between the incinerated ash 7 and moisture is converted into hydrogen by the hydrogen separator 3. After being collected into the tank 4, it is supplied to a hydrogen combustion load 13 such as a combustion battery.

図1を参照して、燃焼ストーカ17、後燃焼ストーカ18上で燃焼をされた焼却残渣は燃焼灰選別装置5を経て焼却灰改質装置2へ送られ、ここで廃熱ボイラ26から水分蒸気が供給されることにより、焼却灰中に前記アルミノケイ酸カルシウム水和物(エピドート)が形成される。   Referring to FIG. 1, the incineration residue combusted on the combustion stoker 17 and the post-combustion stoker 18 is sent to the incineration ash reformer 2 through the combustion ash sorting device 5, where moisture steam is emitted from the waste heat boiler 26. Is supplied to form the calcium aluminosilicate hydrate (epidote) in the incinerated ash.

また、焼却灰改質装置2へは、排ガス供給ライン28を通して排ガス浄化装置27出口から分岐したCO2濃度が約5〜15%の排ガスGoが供給されており、当該排ガスGo内に含有されるCO2 と水分とが前記形成されたアルミノケイ酸カルシウム水和物(エピドート)と反応することにより、これが塩酸に対して難溶性のアルミノケイ酸水和物(カオリナイト)に変換される。 The incineration ash reformer 2 is supplied with an exhaust gas Go having a CO 2 concentration of about 5 to 15% branched from the outlet of the exhaust gas purification device 27 through the exhaust gas supply line 28 and is contained in the exhaust gas Go. When CO 2 and moisture react with the formed calcium aluminosilicate hydrate (epidote), this is converted into an aluminosilicate hydrate (kaolinite) that is hardly soluble in hydrochloric acid.

その結果、焼却灰改質装置2から排出されて来る改質灰9は、前記アルミノケイ酸水和物の濃度の極めて高い改質灰となり、アルミノケイ酸水和物内へとじ込められた鉛は、1規定濃度の塩酸溶液でも外部へ抽出されなくなる。   As a result, the modified ash 9 discharged from the incineration ash reformer 2 becomes a modified ash having a very high concentration of aluminosilicate hydrate, and the lead trapped in the aluminosilicate hydrate is: Even a 1N hydrochloric acid solution cannot be extracted to the outside.

尚、前記焼却灰改質装置2内の灰の温度は50℃〜600℃位とするのが最適であり、そのためには、廃熱ボイラ26からの100℃以上の発生蒸気とするのが望ましいが、別途に形成した温度約50℃以上の加熱水を供給するようにしてもよい。   Note that the temperature of the ash in the incineration ash reformer 2 is optimally about 50 ° C. to 600 ° C. For that purpose, it is desirable to use steam generated at 100 ° C. or more from the waste heat boiler 26. However, you may make it supply the heating water of about 50 degreeC or more formed separately.

また、前記排ガスGoとしては、排ガス浄化装置27の出口側の150〜200℃程度の排ガスGoが供給されている。そして、後燃焼ストーカ18から排出されてくる灰の温度が400〜700℃の高温であること等により、前記排ガスGoを再加熱しなくても、焼却灰は水和反応等に必要な高温度(約50℃〜600℃)下に十分保持されることになり、熱経済性の点からも極めて有利である。   Further, as the exhaust gas Go, exhaust gas Go of about 150 to 200 ° C. on the outlet side of the exhaust gas purification device 27 is supplied. And since the temperature of the ash discharged | emitted from the post-combustion stoker 18 is a high temperature of 400-700 degreeC, even if it does not reheat the said waste gas Go, incineration ash is high temperature required for a hydration reaction etc. (About 50 ° C. to 600 ° C.), which is sufficiently advantageous from the viewpoint of thermal economy.

尚、焼却灰7の焼却灰改質装置2内での0.1〜10時間に設定されるのが、30分〜60分程度の滞留時間とするのが望ましい。
また、反応温度の上昇を図るために、廃熱ボイラ26の出口側に高温集じん器(図示省略)を設け、当該高温集じん器の出口側から高温排ガス(約300℃〜400℃)を焼却灰改質装置2へ供給する構成としてもよい。
更に、必要とする水蒸気Sや排ガスGoの供給量は、バルブ24a、ダンパ28bの開度や送風機28aの送風量等を調整することにより、所定量に制御される。
The residence time of about 30 to 60 minutes is preferably set to 0.1 to 10 hours in the incineration ash reformer 2 of the incineration ash 7.
In order to increase the reaction temperature, a high-temperature dust collector (not shown) is provided on the outlet side of the waste heat boiler 26, and high-temperature exhaust gas (about 300 ° C. to 400 ° C.) is discharged from the outlet side of the high-temperature dust collector. It is good also as a structure supplied to the incineration ash reformer 2. FIG.
Further, the required supply amount of the water vapor S or the exhaust gas Go is controlled to a predetermined amount by adjusting the opening degree of the valve 24a and the damper 28b, the blower amount of the blower 28a, and the like.

一方、焼却灰改質装置2内で焼却灰7と供給された水蒸気Sとが反応することにより、前述の通り水素が発生する。この発生した水素は、供給された排ガスGoと共に焼却灰改質装置2内から水素分離装置3へ引き抜かれ、水素として回収される。   On the other hand, when the incineration ash 7 and the supplied steam S react in the incineration ash reformer 2, hydrogen is generated as described above. The generated hydrogen is extracted from the incineration ash reformer 2 to the hydrogen separator 3 together with the supplied exhaust gas Go, and recovered as hydrogen.

試験の結果によれば、50℃以上の温度下で、焼却灰7にアルミノケイ酸カルシウム水和物やアルミノケイ酸水和物等の生成に必要且つ十分な量の水分とCO2 とを加えて少なくとも30分以上反応させることにより、改質灰9の1規定濃度の塩酸に対する鉛溶出量が0.001mg/L未満となり、改質前の焼却灰の鉛溶出量17mg/Lに比較して、鉛溶出量が大幅に低減することが実証されている。 According to the results of the test, at least at a temperature of 50 ° C. or higher, at least a sufficient amount of water and CO 2 necessary to produce calcium aluminosilicate hydrate, aluminosilicate hydrate, etc. is added to the incinerated ash 7. By reacting for 30 minutes or longer, the lead elution amount of the modified ash 9 with respect to 1N hydrochloric acid is less than 0.001 mg / L, which is higher than the lead elution amount of the incinerated ash before reforming of 17 mg / L. It has been demonstrated that the amount of elution is greatly reduced.

尚、土壌汚染対策法施行規則に定める基準においては、1規定濃度の塩酸による鉛抽出量が150mg/kg以下と規定されており、本願発明の焼却灰改質装置を備えたごみ焼却炉においては、焼却灰7を、その鉛抽出量が上記土壌環境基準値を十分に下回る値となる安定化した焼却灰に改質できることが確認された。   In addition, in the standard stipulated in the Ordinance for Enforcement of the Soil Contamination Countermeasures Law, the amount of lead extracted with hydrochloric acid with a specified concentration is stipulated to be 150 mg / kg or less. It was confirmed that the incineration ash 7 can be reformed to a stabilized incineration ash whose lead extraction amount is sufficiently lower than the soil environment standard value.

本発明は、都市ごみ焼却灰や焼却飛灰等を安全で且つ安定した土木・建築用資材として再利用すると共に、改質工程において発生する水素を回収、利用する場合に広く利用されるものであり、特に都市ごみ等産業廃棄物の処理産業において主に利用されるものである。   The present invention is widely used when municipal waste incineration ash, incineration fly ash, etc. are reused as safe and stable materials for civil engineering and construction, and hydrogen generated in the reforming process is recovered and used. In particular, it is mainly used in the industrial waste processing industry such as municipal waste.

本発明の第1実施形態に係る焼却灰改質装置を備えたごみ焼却炉の断面概要図である。It is a section outline figure of a garbage incinerator provided with an incineration ash reformer concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る焼却灰改質装置を備えた断面概要図である。It is a cross-sectional schematic diagram provided with the incineration ash reforming apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態の説明図である。It is explanatory drawing of 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1は1次空気、A2は2次空気、Gは燃焼排ガス、Wはごみ、Sは水分蒸気、Goは排ガス、GHは発生ガス、G1は燃焼ガス、Dは1次燃焼室と2次燃焼室との中間部分、1はごみ焼却炉、2は焼却灰改質装置、3は水素分離装置、4は水素タンク、5は焼却灰選別装置、6は酸素分離装置、7は焼却灰、8はCO2含有ガス、9は改質物質(改質灰)、10は鉄片等、11はN2又はCO2、12は水素、13は水素負荷、14はごみ投入ホッパ、15はごみ供給装置、16は乾燥ストーカ、17は燃焼ストーカ、18は後燃焼ストーカ、19は炉本体、20は1次燃焼室、21は2次燃焼室、22は灰出口、24は水分供給ライン、24aはバルブ、25aは1次空気供給ライン、25bは2次空気供給ライン、26は廃熱ボイラ、27は排ガス浄化装置、28は排ガス供給ライン、28aは排ガス送風機、28bはダンパ、29は誘引通風機、30は煙突、31は燃焼ガス吸引口、32は送風機、33は燃焼ガス供給ライン、33aはダンパ、34は排出ガス搬送ライン、35は灰質調整装置、36はけい素化合物、37はアルミ化合物、38は調質焼却灰、39はアルカリ剤。 A 1 is primary air, A 2 is secondary air, G is combustion exhaust gas, W is garbage, S is moisture vapor, Go is exhaust gas, GH is generated gas, G 1 is combustion gas, D is primary combustion chamber Middle part of the secondary combustion chamber, 1 is a waste incinerator, 2 is an incineration ash reformer, 3 is a hydrogen separator, 4 is a hydrogen tank, 5 is an incinerator ash separator, 6 is an oxygen separator, and 7 is incinerated Ash, 8 is a CO 2 containing gas, 9 is a reforming substance (reformed ash), 10 is a piece of iron, 11 is N 2 or CO 2 , 12 is hydrogen, 13 is a hydrogen load, 14 is a waste charging hopper, 15 is Waste supply device, 16 is a dry stoker, 17 is a combustion stoker, 18 is a post combustion stoker, 19 is a furnace body, 20 is a primary combustion chamber, 21 is a secondary combustion chamber, 22 is an ash outlet, 24 is a moisture supply line, 24a is a valve, 25a is a primary air supply line, 25b is a secondary air supply line, 26 is a waste heat boiler, 27 Is an exhaust gas purification device, 28 is an exhaust gas supply line, 28a is an exhaust gas blower, 28b is a damper, 29 is an induction fan, 30 is a chimney, 31 is a combustion gas suction port, 32 is a blower, 33 is a combustion gas supply line, and 33a is Damper, 34 is an exhaust gas conveying line, 35 is an ash adjusting device, 36 is a silicon compound, 37 is an aluminum compound, 38 is a tempered incineration ash, and 39 is an alkaline agent.

Claims (11)

廃熱ボイラと排ガス浄化装置とを備えたごみ焼却炉と、当該ごみ焼却炉からの焼却灰と水分と二酸化炭素とを受け入れすると共に、これ等を一定時間加熱状態下で撹拌混合する焼却灰改質装置と、焼却灰改質装置の内部で発生したガスから水素を分離する水素分離装置とから成り、焼却灰を酸に難溶な物質に改質することにより、焼却灰内の鉛等重金属類の外部への溶出を抑制する構成としたことを特徴とする焼却灰改質装置を備えたごみ焼却炉。   A waste incinerator equipped with a waste heat boiler and an exhaust gas purification device, and an incineration ash reformer that receives incineration ash, moisture and carbon dioxide from the waste incinerator and stirs and mixes them under heating for a certain period of time. Heavy metal such as lead in the incineration ash by reforming the incineration ash into a substance that is hardly soluble in acid, by separating the hydrogen from the gas generated inside the incineration ash reformer A waste incinerator equipped with an incineration ash reformer characterized in that it is configured to suppress the elution of limes to the outside. 水分を廃熱ボイラから水蒸気として供給するようにした請求項1に記載の焼却灰改質装置を備えたごみ焼却炉。   A refuse incinerator comprising the incineration ash reformer according to claim 1, wherein moisture is supplied as steam from a waste heat boiler. 二酸化炭素源として燃焼排ガスを利用し、その燃焼排ガスを排ガス浄化装置の出口側から引き抜くようにした請求項1に記載の焼却灰改質装置を備えたごみ焼却炉。   A refuse incinerator comprising the incineration ash reformer according to claim 1, wherein combustion exhaust gas is used as a carbon dioxide source, and the combustion exhaust gas is extracted from the outlet side of the exhaust gas purification device. ごみ焼却炉をストーカ式ごみ焼却炉とした請求項1に記載の焼却灰改質装置を備えたごみ焼却炉。   A waste incinerator comprising the incineration ash reformer according to claim 1, wherein the waste incinerator is a stoker-type waste incinerator. 燃焼排ガスを酸素分離装置により高酸素濃度ガスと高CO2濃度ガスとに分離し、分離した高CO2濃度ガスを焼却灰改質装置へ供給するようにした請求項1に記載の焼却灰改質装置を備えたごみ焼却炉。 The incineration ash reformer according to claim 1, wherein the combustion exhaust gas is separated into a high oxygen concentration gas and a high CO 2 concentration gas by an oxygen separation device, and the separated high CO 2 concentration gas is supplied to the incineration ash reformer. Waste incinerator equipped with quality equipment. ごみ焼却灰を焼却灰選別装置により選別し、鉄片及び大型固形物を除いたごみ焼却灰を焼却灰改質装置へ供給するようにした請求項1に記載の焼却灰改質装置を備えたごみ焼却炉。   2. The garbage provided with the incineration ash reformer according to claim 1, wherein the incineration ash is sorted by an incineration ash sorting device, and the incineration ash from which iron pieces and large solids are removed is supplied to the incineration ash reforming device. Incinerator. 焼却灰と水分蒸気と燃焼排ガスの混合物を50℃〜600℃の温度下に一定時間保持するようにした請求項1に記載の焼却灰改質装置を備えたごみ焼却炉。   A refuse incinerator equipped with an incineration ash reformer according to claim 1, wherein a mixture of incineration ash, moisture vapor and combustion exhaust gas is maintained at a temperature of 50 ° C to 600 ° C for a predetermined time. 焼却灰と水分蒸気と燃焼排ガスの混合物を50℃〜600℃の温度下に30分〜10時間保持するようにした請求項1に記載の焼却灰改質装置を備えたごみ焼却炉。   A refuse incinerator equipped with an incineration ash reformer according to claim 1, wherein a mixture of incineration ash, moisture vapor and combustion exhaust gas is maintained at a temperature of 50C to 600C for 30 minutes to 10 hours. 焼却灰にけい素とアルミニウムの何れか一方又は両方を加え、けい素とアルミニウムの含有比を所定値に調整した焼却灰を焼却灰改質装置へ供給するようにした請求項1に記載の焼却灰改質装置を備えたごみ焼却炉。   The incineration according to claim 1, wherein either one or both of silicon and aluminum is added to the incinerated ash, and the incinerated ash whose content ratio of silicon and aluminum is adjusted to a predetermined value is supplied to the incinerated ash reformer. A waste incinerator equipped with an ash reformer. 排ガスを酸素分離装置で分離することにより生じた高酸素濃度ガスをごみ焼却炉の二次燃焼空気内へ供給するようにした請求項5に記載の焼却灰改質装置を備えたごみ焼却炉。   6. A refuse incinerator comprising the incineration ash reformer according to claim 5, wherein a high oxygen concentration gas generated by separating the exhaust gas with an oxygen separator is supplied into the secondary combustion air of the refuse incinerator. 焼却灰改質装置へ酸性薬剤或いはアルカリ性薬剤を供給し、改質処理をする焼却灰のPHを調整するようにした請求項9に記載の焼却灰改質装置を備えたごみ焼却炉。   A refuse incinerator equipped with an incineration ash reformer according to claim 9, wherein an acidic or alkaline agent is supplied to the incineration ash reformer to adjust the pH of the incineration ash to be reformed.
JP2005107232A 2005-04-04 2005-04-04 Garbage incinerator with incineration ash reformer Expired - Fee Related JP4649256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107232A JP4649256B2 (en) 2005-04-04 2005-04-04 Garbage incinerator with incineration ash reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107232A JP4649256B2 (en) 2005-04-04 2005-04-04 Garbage incinerator with incineration ash reformer

Publications (2)

Publication Number Publication Date
JP2006281150A true JP2006281150A (en) 2006-10-19
JP4649256B2 JP4649256B2 (en) 2011-03-09

Family

ID=37403603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107232A Expired - Fee Related JP4649256B2 (en) 2005-04-04 2005-04-04 Garbage incinerator with incineration ash reformer

Country Status (1)

Country Link
JP (1) JP4649256B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133290A1 (en) * 2012-03-05 2013-09-12 Jfeエンジニアリング株式会社 Grate-type waste incinerator and method for incinerating waste
JP2014114990A (en) * 2012-12-07 2014-06-26 Jfe Engineering Corp Waste incinerator and waste incineration method
JP2018047395A (en) * 2016-09-20 2018-03-29 日立造船株式会社 Exhaust gas treatment apparatus, garbage incineration facility, and exhaust gas treatment method
JP2018047396A (en) * 2016-09-20 2018-03-29 日立造船株式会社 Exhaust gas treatment apparatus, garbage incineration facility, and exhaust gas treatment method
JP2019202903A (en) * 2018-05-22 2019-11-28 Jfeエンジニアリング株式会社 Hydrogen production method and hydrogen production apparatus
WO2021193571A1 (en) * 2020-03-27 2021-09-30 株式会社フジタ Treatment method for incinerator fly ash

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160214B (en) * 2012-03-05 2016-10-26 杰富意工程株式会社 Grate-type incinerator and castoff burning method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265188A (en) * 1991-02-21 1992-09-21 Ebara Corp Treatment of incineration ash
JPH06226238A (en) * 1993-02-05 1994-08-16 Minoru Sawachi Treatment of fly ash
JPH11114534A (en) * 1997-10-17 1999-04-27 Nippon Soda Co Ltd Treatment of special fly ash
JP2001220132A (en) * 2000-02-04 2001-08-14 Akio Henmi Method of producing zeolite using substance containing silicic acid and aluminum as raw material
JP2001252644A (en) * 2000-03-10 2001-09-18 Kogi Corp Method for decomposing dioxins
JP2002224642A (en) * 2001-02-02 2002-08-13 Kurita Water Ind Ltd Method for treating alkaline fly ash containing heavy metal
JP2002273374A (en) * 2001-03-16 2002-09-24 Kurita Water Ind Ltd Method and device for treating alkaline fly ash
JP2002301447A (en) * 2001-04-09 2002-10-15 Masataka Hanashima Method for use of incineration ash
JP2003211137A (en) * 2002-01-18 2003-07-29 Jfe Engineering Kk Method for producing molded product using incineration ash as raw material
JP2003340397A (en) * 2002-05-28 2003-12-02 Jfe Engineering Kk Detoxifying treatment method for waste incineration ash and waste incineration equipment
JP2004074100A (en) * 2002-08-22 2004-03-11 Kobe Steel Ltd Method of treating incineration ash

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265188A (en) * 1991-02-21 1992-09-21 Ebara Corp Treatment of incineration ash
JPH06226238A (en) * 1993-02-05 1994-08-16 Minoru Sawachi Treatment of fly ash
JPH11114534A (en) * 1997-10-17 1999-04-27 Nippon Soda Co Ltd Treatment of special fly ash
JP2001220132A (en) * 2000-02-04 2001-08-14 Akio Henmi Method of producing zeolite using substance containing silicic acid and aluminum as raw material
JP2001252644A (en) * 2000-03-10 2001-09-18 Kogi Corp Method for decomposing dioxins
JP2002224642A (en) * 2001-02-02 2002-08-13 Kurita Water Ind Ltd Method for treating alkaline fly ash containing heavy metal
JP2002273374A (en) * 2001-03-16 2002-09-24 Kurita Water Ind Ltd Method and device for treating alkaline fly ash
JP2002301447A (en) * 2001-04-09 2002-10-15 Masataka Hanashima Method for use of incineration ash
JP2003211137A (en) * 2002-01-18 2003-07-29 Jfe Engineering Kk Method for producing molded product using incineration ash as raw material
JP2003340397A (en) * 2002-05-28 2003-12-02 Jfe Engineering Kk Detoxifying treatment method for waste incineration ash and waste incineration equipment
JP2004074100A (en) * 2002-08-22 2004-03-11 Kobe Steel Ltd Method of treating incineration ash

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133290A1 (en) * 2012-03-05 2013-09-12 Jfeエンジニアリング株式会社 Grate-type waste incinerator and method for incinerating waste
JP2014114990A (en) * 2012-12-07 2014-06-26 Jfe Engineering Corp Waste incinerator and waste incineration method
JP2018047395A (en) * 2016-09-20 2018-03-29 日立造船株式会社 Exhaust gas treatment apparatus, garbage incineration facility, and exhaust gas treatment method
JP2018047396A (en) * 2016-09-20 2018-03-29 日立造船株式会社 Exhaust gas treatment apparatus, garbage incineration facility, and exhaust gas treatment method
JP2019202903A (en) * 2018-05-22 2019-11-28 Jfeエンジニアリング株式会社 Hydrogen production method and hydrogen production apparatus
JP7056372B2 (en) 2018-05-22 2022-04-19 Jfeエンジニアリング株式会社 Hydrogen production method and hydrogen production equipment
WO2021193571A1 (en) * 2020-03-27 2021-09-30 株式会社フジタ Treatment method for incinerator fly ash
JP7457793B2 (en) 2020-03-27 2024-03-28 株式会社フジタ How to dispose of incinerated fly ash

Also Published As

Publication number Publication date
JP4649256B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4674098B2 (en) Incineration ash reforming method and incineration ash reforming stoker waste incinerator using the same
JP4649256B2 (en) Garbage incinerator with incineration ash reformer
CA2474568C (en) Use of high carbon coal ash
AU728391B2 (en) Environmentally stable products derived from the remediation of contaminated sediments and soils
IE74218B1 (en) Method for the incineration of wastes
JP3349705B2 (en) Conversion method for paper mill sludge
KR100348974B1 (en) Cement manufacturing apparatus
CN113915619A (en) Waste fan blade treatment device for rotary kiln and plasma melting furnace
JP2023181518A (en) Cement manufacturing method
JP2006225200A (en) Method for producing anhydrous gypsum and production facilities of anhydrous gypsum
RU2249766C2 (en) Method of incineration of solid household and other organic wastes and a device for its realization
JP2003039038A (en) Method for treating waste
US7265254B2 (en) Waste processing method, waste processing system, integrated waste processing method, and integrated waste processing system
JP6541039B2 (en) Incineration ash processing apparatus and incineration ash processing method
JP2002348153A (en) Manufacturing method of high purity cement from incinerator ash
JP4619193B2 (en) A method for measuring the hydrogen generation capacity of incineration ash and the like, and an operation control method for the incineration ash reformer by measuring the hydrogen generation capacity.
JP4419846B2 (en) Gypsum recycling system
JP4358144B2 (en) Waste treatment apparatus and waste treatment method
JP2001342045A (en) Method of manufacturing cement clinker
JP2008000655A (en) Method for preventing elution of heavy metals in collected dust ash
JP2004269304A (en) Red mud treatment method and cement clinker production method
JP2005233537A (en) Paper sludge treatment method
JP2003212618A (en) Method for treating organic contaminated soil
JP2023003430A (en) Method and device for modifying ash
JP2006347781A (en) Method for suppressing generation of organic chlorine compound and method for manufacturing cement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees