JP6541039B2 - Incineration ash processing apparatus and incineration ash processing method - Google Patents

Incineration ash processing apparatus and incineration ash processing method Download PDF

Info

Publication number
JP6541039B2
JP6541039B2 JP2016066151A JP2016066151A JP6541039B2 JP 6541039 B2 JP6541039 B2 JP 6541039B2 JP 2016066151 A JP2016066151 A JP 2016066151A JP 2016066151 A JP2016066151 A JP 2016066151A JP 6541039 B2 JP6541039 B2 JP 6541039B2
Authority
JP
Japan
Prior art keywords
incineration ash
post
combustion
waste
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016066151A
Other languages
Japanese (ja)
Other versions
JP2017176970A (en
Inventor
翔太 川崎
翔太 川崎
平山 敦
敦 平山
山本 浩
浩 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2016066151A priority Critical patent/JP6541039B2/en
Publication of JP2017176970A publication Critical patent/JP2017176970A/en
Application granted granted Critical
Publication of JP6541039B2 publication Critical patent/JP6541039B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、廃棄物焼却炉から排出される焼却灰中の有害物を無害化処理する焼却灰処理装置及び焼却灰処理方法に関する。   The present invention relates to an incineration ash treatment apparatus and an incineration ash treatment method for detoxifying harmful substances in incineration ash discharged from a waste incinerator.

都市ごみや産業廃棄物などの廃棄物を焼却した際に発生する焼却残渣は、その殆どが埋め立て処分されている。しかし、近年、埋め立て処分場の確保が困難になり、埋め立て量を減少させることが要望されている。このため、廃棄物焼却炉から排出される焼却残渣(以下、「焼却灰」という)を資源として有効利用し、埋立て処分量を減少させる試みがなされている。   Most of the incineration residue generated when incinerating wastes such as municipal waste and industrial waste is disposed of in landfills. However, in recent years, it has become difficult to secure a landfill site, and there is a demand for reducing the amount of landfill. For this reason, attempts have been made to effectively use the incineration residue (hereinafter referred to as "incineration ash") discharged from a waste incinerator as a resource to reduce the amount of landfill disposal.

しかし、焼却灰には、有害物質、特に重金属類が含まれている。したがって、焼却灰からの重金属類の溶出量が基準値以上の場合は、そのままでの資源としての利用が困難である。このような状況に対処するためには、上述のような性状の焼却灰を資源として利用可能にするために、焼却灰から重金属類を除去する処理を行うか、または重金属類を安定化させて焼却灰からの溶出量を基準値以下とする難溶性化処理を行わなければならない。なお、焼却灰に含まれている重金属類のうち、特に鉛の含有量が多いので、処理の対象になっている重金属類は主として鉛である。   However, incineration ash contains harmful substances, especially heavy metals. Therefore, when the elution amount of heavy metals from incineration ash is more than a reference value, utilization as a resource as it is is difficult. In order to cope with such a situation, in order to make the incineration ash having the above-mentioned properties available as a resource, the treatment to remove heavy metals from the incineration ash is carried out or the heavy metals are stabilized. It is necessary to carry out a low-solubility treatment that makes the amount of elution from incinerated ash less than the standard value. Among heavy metals contained in incineration ash, the content of lead is particularly high, so the heavy metals to be treated are mainly lead.

焼却灰中の重金属類としての鉛の難溶性化に関しては、次のようなことが知られている。   The following is known about the low solubility of lead as heavy metals in incinerated ash.

焼却灰は塩基性であって溶出液のpH(塩基性)が高い。焼却灰のpHに関しては、焼却灰に含まれる酸化カルシウム(CaO)あるいは水酸化カルシウム(Ca(OH)2)を二酸化炭素と反応させて炭酸カルシウム(CaCO)とせしめることにより、焼却灰のpHを重金属類が難溶性を示す難溶性領域へ変化させることが行われる。焼却灰中の重金属類のうち、特に含有量が多い鉛は両性金属であり、強い塩基性を示す焼却灰に対してpHを低下させる処理を施し、難溶性領域とすることで、鉛の溶出量を減少させることができる。 The incineration ash is basic and the pH (basic) of the eluate is high. Regarding the pH of incineration ash, the pH of incineration ash is obtained by reacting calcium oxide (CaO) or calcium hydroxide (Ca (OH) 2 ) contained in incineration ash with carbon dioxide to convert it to calcium carbonate (CaCO 3 ). It is carried out to change into a poorly soluble region where heavy metals are poorly soluble. Among the heavy metals in the incineration ash, lead, which has a particularly high content, is an amphoteric metal, and the incineration ash exhibiting strong basicity is treated to lower the pH to make it a poorly soluble region, whereby lead is eluted. The amount can be reduced.

このように、焼却灰のpHを低下させ難溶性領域へ変化させることにより、重金属類を難溶化し、焼却灰からの重金属類の溶出を抑制でき、焼却灰を土木資材として利用する際の基準値となる土壌環境基準である重金属類溶出基準を満足させることができる。   Thus, by lowering the pH of the incineration ash and changing it to a poorly soluble region, the heavy metals can be made less soluble, elution of heavy metals from the incineration ash can be suppressed, and the criteria for using incineration ash as civil engineering materials It is possible to satisfy the heavy metal elution standard which is the soil environment standard which becomes the value.

焼却灰の鉛の溶出量に対する基準値としては、資源として有効利用する場合、鉛の溶出量が0.01mg/l以下であることとされている。このため、焼却灰を資源として利用する場合には、焼却灰をこの基準値以下の性状にするための処理をしなければならない。   As a standard value for the elution amount of lead in incinerator ash, it is said that the elution amount of lead is 0.01 mg / l or less when it is used effectively as a resource. For this reason, when incinerated ash is used as a resource, it must be treated to make the incinerated ash be below the standard value.

焼却灰を処理する装置そして方法としては、特許文献1や特許文献2に開示された技術が知られている。   As an apparatus and method of processing incineration ash, the technique disclosed by patent document 1 or patent document 2 is known.

先ず、特許文献1では、焼却炉から排出された焼却灰を、焼却炉とは別途設けられた焼成炉(ロータリキルン)にもち込み、該焼却灰はロータリキルンで概ね800℃以上で焼成され、有害な重金属を揮発除去して焼却灰における重金属濃度を低減させている(特許文献1、段落[0059]〜[0060]参照)。   First, in Patent Document 1, incineration ash discharged from the incinerator is brought into a calcining furnace (rotary kiln) provided separately from the incinerator, and the incineration ash is calcined at approximately 800 ° C. or higher in the rotary kiln. Harmful removal of harmful heavy metals is carried out to reduce heavy metal concentration in incineration ash (see Patent Document 1, paragraphs [0059] to [0060]).

次に、特許文献2にあっても、特許文献1と同様に、焼却炉から排出された焼却灰を、焼却炉とは別途設けられたロータリキルンで処理することとしている。この特許文献2では、鉛成分を含む焼却灰にケイ素含有物質を添加し、ロータリキルンで800℃以上に加熱し、その際にケイ素含有物質を添加した焼却灰中のCaO/SiO質量比と目標とする鉛溶出量とに応じた加熱処理温度と時間で処理することで鉛を安定化処理し、溶出量を低減させることとしている。 Next, even in Patent Document 2, as in Patent Document 1, the incineration ash discharged from the incinerator is treated in a rotary kiln provided separately from the incinerator. In this patent document 2, the silicon-containing substance is added to the incineration ash containing the lead component, and heating is performed to 800 ° C. or more with a rotary kiln, and at that time, the CaO / SiO 2 mass ratio in the incineration ash to which the silicon-containing substance is added By treating with heat treatment temperature and time according to the target lead elution amount, the lead is stabilized and the elution amount is reduced.

特開2005−169378Japanese Patent Application Laid-Open No. 2005-169378 特開2003−159574Patent document 1: JP-A 2003-159574

このような特許文献1そして特許文献2にあっては、焼却炉から排出された焼却灰を、焼却炉と別途設けられたロータリキルンで800℃以上にまで加熱しなくてはならない。したがって、焼却炉とは別途ロータリキルン等の加熱装置が必要となる結果、処理系の設備が大規模そして複雑化するのみならず、設備費、運転費用も嵩む。さらには、ロータリキルン等で焼却灰を加熱するための燃料供給設備が必要となるに加え、燃料費としてのコストが嵩む。   In such Patent Document 1 and Patent Document 2, it is necessary to heat the incineration ash discharged from the incinerator to 800 ° C. or more with a rotary kiln provided separately from the incinerator. Therefore, as a heating device such as a rotary kiln is required separately from the incinerator, not only the equipment of the treatment system becomes large-scale and complicated but also the equipment cost and operation cost increase. Furthermore, in addition to the need for a fuel supply facility for heating incineration ash in a rotary kiln etc., the cost as fuel cost increases.

本発明は、かかる事情に鑑み、焼却炉のみあるいは簡単な付帯設備を設けるだけで、焼却灰を加熱することなく、設備費そして運転費において安価で、焼却灰から鉛等の重金属類の溶出を抑制できて焼却灰の無害化処理の効率の向上を図ることができる焼却灰処理装置及び焼却灰処理方法を提供することを課題とする。   In view of such circumstances, the present invention is inexpensive in equipment cost and operation cost without heating the incineration ash only by providing only the incinerator or simple auxiliary equipment, and elution of heavy metals such as lead from the incineration ash It is an object of the present invention to provide an incineration ash treatment apparatus and an incineration ash treatment method which can be suppressed and the efficiency of detoxification treatment of incineration ash can be improved.

本発明によると、上述の課題は、焼却灰処理装置にあっては次の第一あるいは第二発明、焼却灰処理方法にあっては第三あるいは第四発明によって解決される。   According to the present invention, the above-mentioned problems are solved by the following first or second invention in the incineration ash treatment apparatus and the third or fourth invention in the incineration ash treatment method.

[焼却灰処理装置]
<第一発明>
炉内で廃棄物を乾燥させる乾燥域、乾燥後の廃棄物を燃焼する主燃焼域そして燃え残りを後燃焼する後燃焼域、さらには後燃焼後の焼却灰を排出する灰排出部を有する廃棄物焼却炉で発生する焼却灰の処理装置において、後燃焼域の焼却灰に対して、ケイ砂と融剤を含む反応剤を供給する反応剤供給装置を有していることを特徴とする焼却灰処理装置。
[Incineration ash processing system]
<First invention>
Waste having drying area for drying waste in furnace, main combustion area for burning waste after drying and post-combustion area for post-combustion after burning, and an ash discharge part for discharging incineration ash after post-combustion An incinerator for treating incineration ash generated in a waste incinerator, comprising a reactant supply device for supplying a reaction agent containing silica sand and a flux to the incineration ash in the post-combustion zone Ash processing equipment.

<第二発明>
炉内で廃棄物を乾燥させる乾燥域、乾燥後の廃棄物を燃焼する主燃焼域そして燃え残りを後燃焼する後燃焼域、さらには後燃焼後の焼却灰を排出する灰排出部を有する廃棄物焼却炉で発生する焼却灰の処理装置において、後燃焼域の焼却灰に対して、ケイ砂と融剤を含む反応剤を供給する反応剤供給装置と、灰排出部から排出された焼却灰を所定粒径よりも小粒径の小粒径焼却灰と該所定粒径以上の大粒径の大粒径焼却灰に分級する分級装置と、分級された小粒径焼却灰を反応剤供給装置へ搬送する小粒径焼却灰搬送装置とを有し、上記反応剤供給装置が、反応剤とともに小粒径焼却灰を後燃焼域の焼却灰へ供給することを特徴とする焼却灰処理装置。
<Second invention>
Waste having drying area for drying waste in furnace, main combustion area for burning waste after drying and post-combustion area for post-combustion after burning, and an ash discharge part for discharging incineration ash after post-combustion In the treatment equipment for incineration ash generated in waste incinerators, a reactive agent supply device for supplying a reaction agent containing silica sand and flux to the incineration ash in the post-combustion zone, and the incineration ash discharged from the ash discharge unit A small particle incineration ash having a particle diameter smaller than a predetermined particle diameter and a classification device for classifying the large particle diameter incineration ash having a large particle diameter equal to or larger than the predetermined particle diameter An incineration ash processing apparatus comprising: small particle size incineration ash conveying apparatus for conveying to the apparatus, wherein the reactive agent supply apparatus supplies small particle size incineration ash to the incineration ash in the post-combustion area together with the reactive agent .

第一及び第二発明において、融剤は、酸化ホウ素、酸化マグネシウム、塩化ナトリウム、塩化カリウム、鉄のうち少なくとも1つを含む化合物又はホウ砂とすることができる。   In the first and second inventions, the flux may be a compound containing at least one of boron oxide, magnesium oxide, sodium chloride, potassium chloride, iron or borax.

[焼却灰処理方法]
<第三発明>
炉内で廃棄物を乾燥させる乾燥域、乾燥後の廃棄物を燃焼する主燃焼域そして燃え残りを後燃焼する後燃焼域、さらには後燃焼後の焼却灰を排出する灰排出部を有する廃棄物処理炉で発生する焼却灰の処理方法において、
後燃焼域の焼却灰に対して、ケイ砂と融剤を含む反応剤を供給して、
融剤により焼却灰とケイ砂の各成分の融点を降下させ、焼却灰中の酸化カルシウムに上記ケイ砂を反応させて、ケイ酸化合物を生成して焼却灰の塩基性を低下させ、焼却灰からの鉛の溶出を抑制することを特徴とする焼却灰処理方法。
[Incineration ash treatment method]
<Third invention>
Waste having drying area for drying waste in furnace, main combustion area for burning waste after drying and post-combustion area for post-combustion after burning, and an ash discharge part for discharging incineration ash after post-combustion In the method of treating incineration ash generated in the waste treatment furnace,
Supply the reaction agent containing silica sand and flux to the incineration ash in the post-combustion zone,
The melting point of each component of incineration ash and silica sand is lowered by flux and the silica sand is reacted with calcium oxide in the incineration ash to form a silicic acid compound to reduce the basicity of the incineration ash, and incineration ash A method for treating incineration ash, characterized by suppressing the elution of lead from the soil.

<第四発明>
炉内で廃棄物を乾燥させる乾燥域、乾燥後の廃棄物を燃焼する主燃焼域そして燃え残りを後燃焼する後燃焼域、さらには後燃焼後の焼却灰を排出する灰排出部を有する廃棄物処理炉で発生する焼却灰の処理装置において、
灰排出部から排出された焼却灰を所定粒径よりも小粒径の小粒径焼却灰と該所定粒径以上の大粒径の大粒径焼却灰とに分級し、
分級された小粒径焼却灰を、ケイ砂と融剤とを含む反応剤とともに後燃焼域の焼却灰に供給して、
融剤により焼却灰とケイ砂の各成分の融点を降下させ、焼却灰中の酸化カルシウムに上記ケイ砂を反応させて、ケイ酸化合物を生成して焼却灰の塩基性を低下させ、焼却灰からの鉛の溶出を抑制することを特徴とする焼却灰処理方法。
<Fourth invention>
Waste having drying area for drying waste in furnace, main combustion area for burning waste after drying and post-combustion area for post-combustion after burning, and an ash discharge part for discharging incineration ash after post-combustion Processing equipment for incineration ash generated in waste treatment furnaces,
Classify the incineration ash discharged from the ash discharge part into small particle size incineration ash smaller in particle diameter than a predetermined particle diameter and large particle size incineration ash larger in particle diameter than the predetermined particle diameter,
The classified small particle size incineration ash is supplied to the incineration ash in the post-combustion zone together with the reaction agent containing silica sand and flux agent,
The melting point of each component of incineration ash and silica sand is lowered by flux and the silica sand is reacted with calcium oxide in the incineration ash to form a silicic acid compound to reduce the basicity of the incineration ash, and incineration ash A method for treating incineration ash, characterized by suppressing the elution of lead from the soil.

第三及び第四発明において、融剤は、酸化ホウ素、酸化マグネシウム、塩化ナトリウム、塩化カリウム、鉄のうち少なくとも1つを含む化合物又はホウ砂とすることができる。   In the third and fourth inventions, the flux may be a compound containing at least one of boron oxide, magnesium oxide, sodium chloride, potassium chloride, iron or borax.

かかる構成の第一及び第三発明にあっては、廃棄物焼却炉の後燃焼域へケイ砂および融剤を供給することにより、後燃焼域に存在する焼却灰に含まれる塩基性成分(主として酸化カルシウムCaO)をSi含有の酸化物(CaSiO,CaSiO等のケイ酸化合物)に変化させ、焼却灰の塩基性を低下(pHを低下させることで、焼却灰の鉛溶出を抑制するようになる。その際、融剤は、焼却灰とケイ砂の各成分の融点を降下させ、炉内後燃焼域の雰囲気温度である600〜700℃の温度下で容易に溶融状態として、反応が進行するようにさせる。 In the first and third inventions of such a configuration, the basic components contained in the incineration ash present in the post-combustion zone (mainly by mainly supplying the silica sand and flux to the post-combustion zone of the waste incinerator Calcium oxide (CaO) is converted to Si-containing oxides (silicate compounds such as CaSiO 3 and Ca 2 SiO 4 ) to reduce the basicity of incineration ash (by lowering the pH, thereby suppressing lead elution of incineration ash At that time, the fluxing agent lowers the melting point of each component of incineration ash and silica sand, and is easily melted at a temperature of 600 to 700 ° C., which is the ambient temperature of the post combustion zone in the furnace, Let the reaction proceed.

また、上述の構成の第二及び第四発明にあっては、焼却炉から排出された焼却灰を分級装置で分級し、分級された焼却灰のうち、大粒径焼却灰よりも鉛を多く含む小粒径焼却灰をケイ砂および融剤とともに、上記焼却炉の後燃焼域に供給することにより、焼却灰に含まれる塩基性成分をSi含有の酸化物(CaSiO,CaSiO等のケイ酸化合物)に変化させることで、焼却灰の塩基性を低下させ、焼却灰の鉛溶出を抑制するようになる。 Further, in the second and fourth inventions of the above configuration, the incineration ash discharged from the incinerator is classified by a classification device, and among the classified incineration ash, lead is larger than the large particle size incineration ash. Si-containing oxides (CaSiO 3 , Ca 2 SiO 4, etc.) contained in the incineration ash by supplying the small particle size incineration ash containing the silicon oxide together with the silica sand and flux to the post-combustion zone of the incinerator. Changes the basicity of incineration ash and suppresses lead elution of incineration ash.

本発明は、以上のように、廃棄物焼却炉の後燃焼域に、ケイ砂と融剤を含む反応剤を供給することにより、融剤の作用により焼却灰とケイ砂の各成分の融点を後燃焼域雰囲気温度と同程度にまで降下させることができ、容易に溶融状態とし反応を進行させるので、後燃焼域における焼却灰に含まれる塩基性成分がSi含有の酸化物に変化して、焼却灰の塩基性が低下することで焼却灰の鉛溶出を抑制でき、別途焼却灰処理のための設備は不要となり、設備費、運転費等の軽減を可能とする。   As described above, according to the present invention, by supplying the reaction agent containing silica sand and flux to the post-combustion zone of the waste incinerator, the melting point of each component of incineration ash and silica sand is obtained by the action of flux. The basic component contained in the incineration ash in the post-combustion zone is changed to an oxide containing Si, since the temperature can be lowered to the same level as the temperature of the post-combustion zone atmosphere and the reaction is allowed to proceed easily. By reducing the basicity of the incineration ash, lead elution of the incineration ash can be suppressed, and a separate facility for incineration ash treatment can be dispensed with, making it possible to reduce equipment costs and operating costs.

本発明の一実施形態装置の概要構成図である。FIG. 1 is a schematic block diagram of an apparatus according to an embodiment of the present invention. 本発明の他の一実施形態装置の概要構成図である。It is a schematic block diagram of the other one Embodiment apparatus of this invention.

以下、添付図面にもとづき、本発明の第一及び第二実施形態を説明する。   Hereinafter, the first and second embodiments of the present invention will be described based on the attached drawings.

[第一実施形態]
<廃棄物焼却炉>
図1は、本実施形態に係る焼却灰処理装置の概要構成図である。該焼却灰処理装置は、上記廃棄物を焼却する火格子式の廃棄物焼却炉1(以下、単に「焼却炉1」という)に、ケイ砂と融剤を含む反応剤の供給のための反応剤供給装置10が接続された構成となっている。該焼却炉1には、後続装置(図示せず)として該焼却炉1から排出された排ガスとの熱交換により熱回収を行い蒸気を発生させる熱回収系統としてのボイラと、該ボイラで熱回収された排ガスを除塵して無害化処理を行う排ガス処理系統としてのバグフィルタと、バグフィルタで無害化処理された排ガスを大気中へ放出するための煙突とを備えている。
First Embodiment
<Waste incinerator>
FIG. 1 is a schematic block diagram of the incineration ash treatment apparatus according to the present embodiment. The incineration ash treatment apparatus is a reaction for supplying a reaction agent containing silica sand and a flux to a grate type waste incinerator 1 (hereinafter simply referred to as "incinerator 1") for incineration of the above waste. The agent supply device 10 is connected. In the incinerator 1, heat recovery is performed by heat exchange with the exhaust gas discharged from the incinerator 1 as a subsequent device (not shown), and a boiler as a heat recovery system for generating steam and heat recovery by the boiler A bag filter as an exhaust gas treatment system for removing dust and detoxifying the exhaust gas, and a chimney for releasing the gas detoxified with the bag filter to the atmosphere are provided.

焼却炉1は、例えば産業廃棄物や家庭ごみ等の廃棄物を燃焼するための主燃焼室2と、この主燃焼室2の廃棄物の流れ方向の上流側(図1の左側)の上方に配置され、廃棄物を主燃焼室2内に投入するための廃棄物投入口3と、主燃焼室2の焼却向き廃棄物の流れ方向の下流側(図1の右側)の上方に連設される二次燃焼室4とを備える火格子式の焼却炉である。   The incinerator 1 is disposed above the main combustion chamber 2 for burning waste such as industrial waste and household waste, and the upstream side (left side in FIG. 1) of the flow direction of waste in the main combustion chamber 2. It is disposed and connected to the waste input port 3 for introducing waste into the main combustion chamber 2 and above the downstream side (right side in FIG. 1) of the main combustion chamber 2 for incineration of waste in the flow direction. The grate incinerator is provided with a secondary combustion chamber 4.

主燃焼室2の底部には、廃棄物を移動させながら燃焼させる火格子(ストーカ)5が設けられている。この火格子5は、廃棄物投入口3に近い方から、すなわち、上流側から乾燥域を形成する乾燥火格子5a、主燃焼域を形成する燃焼火格子5b、後燃焼域を形成する後燃焼火格子5cの順に設けられていて、主に乾燥火格子5aと燃焼火格子5bの上に廃棄物層Aが形成されている。   At the bottom of the main combustion chamber 2, a grate (stalker) 5 for burning waste material while moving it is provided. The grate 5 is a drying grate 5a forming a drying area from the side closer to the waste inlet 3, ie, from the upstream side, a combustion grate 5b forming a main combustion area, and a post-combustion area forming a post-combustion area The waste layer A is formed mainly on the dry grate 5 a and the combustion grate 5 b in the order of the grate 5 c.

乾燥火格子5aでは主として廃棄物の乾燥と着火が行われる。燃焼火格子5bでは主として廃棄物の熱分解、部分酸化が行われ、熱分解により発生した可燃性ガスと固形分の燃焼が行われ、可燃性ガスが燃焼する際に火炎を形成する。後燃焼火格子5c上では、燃え残った廃棄物中の固形分の未燃分を完全に燃焼させる。廃棄物中の固形分が燃焼する際には火炎は発生せず熾燃焼する。この結果、後燃焼火格子5cの下流側部分(図1での右半部)上には、完全に燃焼した後の焼却灰Bの層が形成される。該焼却灰Bは灰排出部6から落下排出され、灰ピット7に貯留される。   The drying grate 5a mainly performs drying and ignition of waste. In the combustion grate 5b, mainly thermal decomposition and partial oxidation of wastes are performed, combustion of combustible gas and solid matter generated by thermal decomposition is performed, and a flame is formed when the combustible gas is burned. On the post combustion grate 5c, the unburned portion of the solid content in the unburned waste is completely burned. When the solid content in the waste is burned, no flame is generated and the flame burns. As a result, a layer of incineration ash B after being completely burned is formed on the downstream portion (right half in FIG. 1) of the post combustion grate 5c. The incineration ash B is dropped and discharged from the ash discharging unit 6 and stored in the ash pit 7.

主燃焼室2内の乾燥火格子5a、燃焼火格子5b及び後燃焼火格子5cの下方には、図示されていないが、それぞれの火格子下方に風箱が設けられている。ブロワにより供給される燃焼用空気が燃焼用空気供給管を通って各風箱に供給され、各火格子5a,5b,5cを通って主燃焼室2内に供給される。なお、燃焼用空気は、火格子5a,5b,5c上の廃棄物の乾燥及び燃焼に使われるほか、火格子5a,5b,5cの冷却作用、廃棄物の攪拌作用を有する。   Although not shown, air boxes are provided below the drying grate 5a, the combustion grate 5b and the post combustion grate 5c in the main combustion chamber 2 respectively. The combustion air supplied by the blower is supplied to the respective air boxes through the combustion air supply pipes, and is supplied into the main combustion chamber 2 through the respective grates 5a, 5b, 5c. The combustion air is used for drying and burning the waste on the grate 5a, 5b, 5c, and also has the cooling action of the grate 5a, 5b, 5c and the stirring action of the waste.

主燃焼室2に連設された二次燃焼室4では、主燃焼室2で発生した燃焼ガス中の可燃性ガスの未燃分(未燃ガス)が燃焼(二次燃焼)される。   In the secondary combustion chamber 4 connected to the main combustion chamber 2, the unburned portion (unburned gas) of the combustible gas in the combustion gas generated in the main combustion chamber 2 is burned (secondary combustion).

<反応剤供給装置>
反応剤供給装置10は、主としてケイ砂と融剤とを反応剤として貯留し、ケイ砂と融剤の両者を混合しあるいは別途だが同時に、後燃焼域を形成する後燃焼火格子5c上の焼却灰に供給するように、主燃焼室2の上壁に接続されている。ここで、融剤は、酸化ホウ素、酸化マグネシウム、塩化ナトリウム、塩化カリウム、鉄のうち少なくとも1つを含む化合物又はホウ砂である。かかる反応剤を後燃焼域の焼却灰に供給することにより、融剤が焼却灰とケイ砂の各成分の融点を下げ、後燃焼火格子5c上の600〜700℃の温度雰囲気下で焼却灰とケイ砂の各成分が容易に溶融状態となり、反応が進行しやすくなり、焼却灰中の酸化カルシウム(CaO)からケイ酸カルシウム化合物を生成させる。酸化カルシウムを反応させ低減することにより焼却灰の塩基性(pH)を低下させ、焼却灰中の鉛の溶出を抑制する。
<Reactant supply device>
Reactant supply device 10 mainly stores silica sand and flux as a reactant, mixes both silica sand and flux, or separately but at the same time forms an afterburning zone and burns it on post combustion grate 5c. It is connected to the upper wall of the main combustion chamber 2 to supply ash. Here, the flux is a compound or borax containing at least one of boron oxide, magnesium oxide, sodium chloride, potassium chloride and iron. By supplying such a reactive agent to the incineration ash in the post-combustion zone, the fluxing agent lowers the melting points of the respective components of the incineration ash and silica sand, and the incineration ash in the temperature atmosphere of 600 to 700 ° C. on the post-combustion grate 5c. And the components of the silica sand are easily melted, and the reaction is likely to proceed, and a calcium silicate compound is formed from calcium oxide (CaO) in the incineration ash. The basicity (pH) of incineration ash is lowered by reacting and reducing calcium oxide, and the elution of lead in the incineration ash is suppressed.

このような本実施形態において、反応剤供給装置10から後燃焼域を形成する後燃焼火格子5c上へ反応剤を供給すると、焼却灰中の鉛の溶出が抑制されるが、その挙動は、次のような本発明の原理にもとづく。   In this embodiment, when the reactant is supplied from the reactant supply device 10 onto the post combustion grate 5c forming the post-combustion zone, the elution of lead in the incineration ash is suppressed, but the behavior is as follows: Based on the principle of the present invention as follows.

<本発明の原理>
(A)鉛(Pb)は両性金属であり、焼却灰の塩基性(pH)が高いほど焼却灰から溶出するPb濃度は高くなる。焼却灰の塩基性成分は多くが酸化カルシウムCaOであるため、CaOを不溶性の化合物にすることでその塩基性を低下させ、Pb溶出を抑制できる。
<Principle of the present invention>
(A) Lead (Pb) is an amphoteric metal, and the higher the basicity (pH) of incineration ash, the higher the concentration of Pb eluted from incineration ash. Since many basic components of incineration ash are calcium oxide CaO, by making CaO into an insoluble compound, its basicity can be reduced and Pb elution can be suppressed.

(B)焼却灰中のCaOを不溶性の化合物にするための手法として、焼却灰とケイ砂を混合、加熱することにより、酸化カルシウムとケイ砂を反応させケイ酸カルシウムCaSiOもしくはCaSiOを生成するものが考えられる。ただしこの手法は1000℃以下の低温での反応速度が遅く、数時間程度では反応が十分に進行しない。 (B) As a method for converting CaO in incineration ash into an insoluble compound, calcium oxide CaSiO 3 or Ca 2 SiO 4 is reacted by mixing calcium hydroxide and incineration ash with silica sand and heating. It is conceivable to generate. However, this method has a low reaction rate at low temperatures of 1000 ° C. or less, and the reaction does not proceed sufficiently in several hours.

(C)そこで本発明では、ケイ砂と融剤からなる反応剤を用いることとした。融剤が焼却灰とケイ砂の各成分の融点を下げ、600〜700℃の温度雰囲気下で焼却灰とケイ砂の各成分が容易に溶融状態となり、反応が進行しやすくなる。   (C) Therefore, in the present invention, a reactive agent consisting of silica sand and a flux is used. The fluxing agent lowers the melting point of each component of the incineration ash and the silica sand, and the components of the incineration ash and the silica sand are easily melted in a temperature atmosphere of 600 to 700 ° C., thereby facilitating the reaction.

(D)この反応温度である600〜700℃はストーカ式焼却炉の後燃焼域の温度雰囲気と同程度であるため、焼却炉内を反応場として用いることで、別途加熱反応器を設置する場合に比べて設備コストと燃料コストを削減できるというメリットがある。   (D) Since the reaction temperature of 600 to 700 ° C. is about the same as the temperature atmosphere in the post-combustion zone of the stoker incinerator, the heating reactor is installed separately by using the inside of the incinerator as the reaction site There is an advantage that the cost of equipment and fuel can be reduced compared to

(E)また焼却灰は小粒径分にCaOが多く含まれる。焼却炉から排出された排出焼却灰を所定粒径より大きい大粒径分と所定粒径以下の小粒径分とに分級し、小粒径焼却灰を回収してケイ砂および融剤とともに、焼却炉の後燃焼域の焼却灰に供給することで排出焼却灰中のCaOとケイ砂をさらに反応させることにより、焼却灰の塩基性を低下させ鉛の溶出を抑制させる効果をさらに高めることが好ましい。なお、この方法では反応後のCaOとケイ砂は焼結により粒径が大きくなるため、反応済みの焼却灰粒子が再び小粒径分の焼却灰粒子として回収されることがない。焼却灰粒子に含まれるCaO含有率が粒径1mm以下の小粒径分では多く含まれることから、焼却灰の分級の基準粒径を1mmとすることが好ましい。   (E) Incineration ash contains a large amount of CaO in the small particle size. The discharged incineration ash discharged from the incinerator is classified into a large particle size larger than the predetermined particle size and a small particle size smaller than the predetermined particle size, and the small particle size incinerated ash is recovered to be combined with silica sand and flux By further reacting CaO and silica sand in the discharged incineration ash by supplying the incineration ash in the post-combustion zone of the incinerator, the effect of reducing the basicity of the incineration ash and suppressing the elution of lead is further enhanced preferable. In this method, since CaO and silica sand after reaction increase in particle size due to sintering, the incineration ash particles after reaction are not recovered again as small particle size incineration ash particles. Since the content of CaO contained in the incineration ash particles is large in the small particle size having a particle diameter of 1 mm or less, it is preferable to set the standard particle diameter of classification of incineration ash to 1 mm.

<作動>
次に、本実施形態に係る廃棄物焼却炉の作動を図1に基づいて説明する。
<Actuation>
Next, the operation of the waste incinerator according to the present embodiment will be described based on FIG.

廃棄物は、焼却炉1の廃棄物投入口3から主燃焼室2へ投入された後、乾燥火格子5a、燃焼火格子5bそして後燃焼火格子5c上で下流側へ送られながら、既述した要領で焼却される。廃棄物が燃焼することにより生じた燃焼ガスは、該燃焼ガス中の未燃ガスが二次燃焼室4で二次燃焼された後、排ガスが焼却炉1外へ排出される。焼却炉1からの排ガスは、図示しない後続装置のボイラで熱回収された後、バグフィルタで除塵されて、煙突から大気中に放出される。また、ボイラでの熱回収により発生した蒸気が、蒸気タービンへ送られ発電に利用される。   The waste is introduced into the main combustion chamber 2 from the waste inlet 3 of the incinerator 1, and then sent downstream on the drying grate 5a, the combustion grate 5b and the post combustion grate 5c. It is incinerated in the same way. After the unburned gas in the combustion gas is secondarily burned in the secondary combustion chamber 4, the exhaust gas is discharged out of the incinerator 1 as the combustion gas generated by the burning of the waste. The exhaust gas from the incinerator 1 is recovered by heat in a boiler of a subsequent device (not shown), dust is removed by a bag filter, and released from the chimney into the atmosphere. In addition, steam generated by heat recovery in the boiler is sent to the steam turbine and used for power generation.

このような主燃焼室2における燃焼過程において、反応剤供給装置10からは、ケイ砂と融剤を含む反応剤が後燃焼域の焼却灰へ供給される。後燃焼域を形成する後燃焼火格子5c上の焼却灰は、600〜700℃の雰囲気のもとにあり、上記反応剤がこの雰囲気のもとに焼却灰に供給されると、反応剤中の融剤が焼却灰とケイ砂の各成分の融点を降下させ上記温度雰囲気下で溶融状態として反応が行われる。焼却灰中の酸化カルシウムとケイ砂が反応してケイ酸カルシウム化合物を生成し焼却灰のpHを低下させ塩基性を低下させ焼却灰中の鉛の溶出を抑制させる。   In the combustion process in the main combustion chamber 2 as described above, the reaction agent supply device 10 supplies a reaction agent containing silica sand and a flux to incineration ash in the post-combustion area. The incineration ash on the post combustion grate 5c, which forms the post combustion zone, is under an atmosphere of 600 to 700 ° C., and when the above-mentioned reactant is supplied to the incineration ash under this atmosphere, The fluxing agent lowers the melting point of each component of incineration ash and silica sand, and the reaction is carried out in a molten state under the above temperature atmosphere. The calcium oxide in the incineration ash and silica sand react to form a calcium silicate compound to lower the pH of the incineration ash to lower the basicity and suppress the elution of lead in the incineration ash.

かくして、鉛の溶出抑制処理された焼却灰は灰排出部6から排出され、灰ピット7に貯留された後、埋立処分場へ搬送されて埋立処分されるか、あるいは資源として有効利用される。   Thus, the incinerated ash subjected to the elution suppression processing of lead is discharged from the ash discharging unit 6, stored in the ash pit 7, transported to the landfill site for landfill disposal, or used effectively as a resource.

[第二実施形態]
次に、図2にもとづき第二実施形態について説明する。本実施形態は、廃棄物焼却炉の灰排出部6に分級装置11が接続されている点に特徴があり、廃棄物焼却炉1自体は図1に示された第一実施形態と同じであり、図2では、図1と共通部位には同一符号を付し、その説明は省略する。
Second Embodiment
Next, a second embodiment will be described based on FIG. The present embodiment is characterized in that the classification device 11 is connected to the ash discharge unit 6 of the waste incinerator, and the waste incinerator 1 itself is the same as the first embodiment shown in FIG. In FIG. 2, the same reference numerals as in FIG. 1 denote the same parts as in FIG. 1, and a description thereof will be omitted.

分級装置11は、灰排出部6から焼却灰を受けこれを所定粒径を基準として大粒径焼却灰と小粒径焼却灰とに分級するようになっている。焼却灰は小粒径分にCaOが多く含まれる。焼却炉から排出された排出焼却灰を所定粒径より大きい大粒径分と所定粒径以下の小粒径分とに分級し、小粒径焼却灰を回収してケイ砂および融剤とともに、焼却炉の後燃焼域の焼却灰に供給することで排出焼却灰中のCaOとケイ砂をさらに反応させることにより、焼却灰の塩基性を低下させ鉛の溶出を抑制させる効果をさらに高める。焼却灰粒子に含まれるCaO含有率が粒径1mm以下の小粒径分で高いことから、焼却灰を大粒径焼却灰と小粒径焼却灰とに分級する粒径を1mmとすることが好ましい。   The classification device 11 receives incinerated ash from the ash discharge unit 6 and classifies it into large particle size incineration ash and small particle size incineration ash based on a predetermined particle size. The incineration ash contains a large amount of CaO in the small particle size. The discharged incineration ash discharged from the incinerator is classified into a large particle size larger than the predetermined particle size and a small particle size smaller than the predetermined particle size, and the small particle size incinerated ash is recovered to be combined with silica sand and flux By further reacting CaO and silica sand in the discharged incineration ash by supplying the incineration ash in the post-combustion zone of the incinerator, the basicity of the incineration ash is lowered and the effect of suppressing the elution of lead is further enhanced. Since the content of CaO contained in the incineration ash particles is high at a small particle size having a particle size of 1 mm or less, the particle size of classifying incineration ash into large particle size incineration ash and small particle size incineration ash should be 1 mm. preferable.

本実施形態では、上記分級装置11から、小粒径焼却灰を反応剤供給装置10に搬送するように搬送ライン8が設けられ、大粒径焼却灰を排出する灰ピット7が設けられている。搬送ライン8は搬送コンベア等の搬送装置で構成される。   In the present embodiment, the transportation line 8 is provided to transport small particle size incinerated ash from the classification device 11 to the reactive agent supply device 10, and the ash pit 7 for discharging large particle size incineration ash is provided. . The transfer line 8 is configured by a transfer device such as a transfer conveyor.

上記分級装置11から小粒径焼却灰を受ける反応剤供給装置10は、反応剤としてケイ砂と融剤とを後燃焼域の焼却灰に供給するとともに、上記小粒径焼却灰をも供給するようになっている。   The reaction agent supply device 10 receiving small particle size incineration ash from the classification device 11 supplies silica sand and flux as reaction agents to the incineration ash in the post-combustion zone, and also supplies the small particle size incineration ash. It is supposed to be.

かかる本実施形態によれば、焼却灰のうち、酸化カルシウムを多く含む小粒径焼却灰を分級して取り出し、反応剤とともに後燃焼域へ供給するので、排出焼却灰中のCaOとケイ砂をさらに反応させることにより、焼却灰の塩基性を低下させ鉛の溶出を抑制させる効果をさらに高めることができる。   According to this embodiment, the small particle size incineration ash containing a large amount of calcium oxide is classified and taken out from the incineration ash, and is supplied to the post-combustion zone together with the reaction agent. Furthermore, by making it react, the basicity of incineration ash can be reduced and the effect of suppressing the elution of lead can further be heightened.

火格子式廃棄物焼却炉の後燃焼火格子上の焼却灰にケイ砂と融剤としてのホウ砂を供給し、焼却炉内の後燃焼段の温度雰囲気である600〜700℃の温度雰囲気下で加熱処理した。焼却炉から排出された焼却灰を環境省告示46号土壌の汚染に係る環境基準による試験方法に基づき鉛溶出試験を行ない、溶出液pHおよび溶出鉛濃度を測定した。比較例1として後燃焼段に何も吹き込まない場合、比較例2としてケイ砂のみ供給する場合、および比較例3としてホウ砂のみ供給する場合について同様に加熱処理し鉛溶出試験を行なった。それぞれの結果を表1に示す。   Silica sand and borax as flux are supplied to the incineration ash on the post-combustion grate of the grate type waste incinerator, and the temperature atmosphere of the post-combustion stage in the incinerator is a temperature atmosphere of 600 to 700 ° C. Heat-treated. The leaching test was conducted on the incinerator ash discharged from the incinerator based on the test method according to the environmental standard for pollution on soil of the Ministry of the Environment, and the pH of the eluate and the concentration of the dissolved lead were measured. In the case where nothing is blown into the post-combustion stage as Comparative Example 1, the case where only silica sand is supplied as Comparative Example 2 and the case where only borax is supplied as Comparative Example 3 are similarly heat-treated to conduct a lead dissolution test. The respective results are shown in Table 1.

これに対し、実施例として後燃焼火格子上の焼却灰へケイ砂とホウ砂を供給する場合には、同表に示されるように焼却灰を埋立路盤材等の土木資材として利用することができる鉛の溶出基準である0.01mg/l未満とすることができた。比較例では上記溶出基準を超過した。   On the other hand, when silica sand and borax are supplied to the incineration ash on the post-combustion grate as an example, as shown in the table, the incineration ash may be used as civil engineering material such as landfill roadbed material It was possible to make it less than 0.01 mg / l which is the elution standard of lead. In the comparative example, the above elution standard was exceeded.

Figure 0006541039
Figure 0006541039

第一実施形態そして第二実施形態では、火格子式廃棄物焼却炉を例として説明したが、本発明では、焼却炉の形式に限定はなく、炉内が乾燥域、主燃焼域、後燃焼域に大別形成されていれば、本発明が適用できる。   In the first embodiment and the second embodiment, the grate waste incinerator has been described as an example, but in the present invention, the type of incinerator is not limited, and the inside of the furnace is a drying area, the main combustion area, and the post-combustion area. The present invention can be applied as long as it is roughly divided into areas.

1 廃棄物焼却炉
5a 乾燥火格子(乾燥域)
5b 主燃焼火格子(主燃焼域)
5c 後燃焼火格子(後燃焼域)
6 灰排出部
10 反応剤供給装置
11 分級装置
1 Waste incinerator 5a Drying grate (drying area)
5b Main combustion grate (main combustion area)
5c Post combustion grate (post combustion area)
6 ash discharge unit 10 reactant supply device 11 classification device

Claims (6)

炉内で廃棄物を乾燥させる乾燥域、乾燥後の廃棄物を燃焼する主燃焼域そして燃え残りを後燃焼する後燃焼域、さらには後燃焼後の焼却灰を排出する灰排出部を有する廃棄物焼却炉で発生する焼却灰の処理装置において、
後燃焼域の焼却灰に対して、ケイ砂と融剤を含む反応剤を供給する反応剤供給装置を有していることを特徴とする焼却灰処理装置。
Waste having drying area for drying waste in furnace, main combustion area for burning waste after drying and post-combustion area for post-combustion after burning, and an ash discharge part for discharging incineration ash after post-combustion Processing equipment for incineration ash generated in waste incinerators,
What is claimed is: 1. An incineration ash processing apparatus comprising: a reactive agent supply device for supplying a reactive agent containing silica sand and a flux to incineration ash in a post-combustion zone.
炉内で廃棄物を乾燥させる乾燥域、乾燥後の廃棄物を燃焼する主燃焼域そして燃え残りを後燃焼する後燃焼域、さらには後燃焼後の焼却灰を排出する灰排出部を有する廃棄物焼却炉で発生する焼却灰の処理装置において、
後燃焼域の焼却灰に対して、ケイ砂と融剤を含む反応剤を供給する反応剤供給装置と、
灰排出部から排出された焼却灰を所定粒径よりも小粒径の小粒径焼却灰と該所定粒径以上の大粒径の大粒径焼却灰に分級する分級装置と、
分級された小粒径焼却灰を反応剤供給装置へ搬送する小粒径焼却灰搬送装置とを有し、
上記反応剤供給装置が、反応剤とともに小粒径焼却灰を後燃焼域の焼却灰へ供給することを特徴とする焼却灰処理装置。
Waste having drying area for drying waste in furnace, main combustion area for burning waste after drying and post-combustion area for post-combustion after burning, and an ash discharge part for discharging incineration ash after post-combustion Processing equipment for incineration ash generated in waste incinerators,
A reactive agent supply device for supplying a reactive agent containing silica sand and flux to incineration ash in the post-combustion zone;
A classification device for classifying incineration ash discharged from the ash discharge unit into small particle size incineration ash having a particle diameter smaller than a predetermined particle diameter and large particle size incineration ash having a large particle diameter equal to or larger than the predetermined particle diameter;
And a small particle size incineration ash conveying device for conveying the classified small particle diameter incineration ash to the reactant supply device;
An incineration ash processing apparatus characterized in that the reactant supply device supplies small particle size incineration ash to the incineration ash in the post-combustion zone together with the reactant.
融剤は、酸化ホウ素、酸化マグネシウム、塩化ナトリウム、塩化カリウム、鉄のうち少なくとも1つを含む化合物又はホウ砂であることとする請求項1または請求項2に記載の焼却灰処理装置。   The incineration ash treatment apparatus according to claim 1 or 2, wherein the flux is a compound containing at least one of boron oxide, magnesium oxide, sodium chloride, potassium chloride, iron or borax. 炉内で廃棄物を乾燥させる乾燥域、乾燥後の廃棄物を燃焼する主燃焼域そして燃え残りを後燃焼する後燃焼域、さらには後燃焼後の焼却灰を排出する灰排出部を有する廃棄物処理炉で発生する焼却灰の処理方法において、
後燃焼域の焼却灰に対して、ケイ砂と融剤を含む反応剤を供給して、
融剤により焼却灰とケイ砂の各成分の融点を降下させ、焼却灰中の酸化カルシウムに上記ケイ砂を反応させて、ケイ酸化合物を生成して焼却灰の塩基性を低下させ、焼却灰からの鉛の溶出を抑制することを特徴とする焼却灰処理方法。
Waste having drying area for drying waste in furnace, main combustion area for burning waste after drying and post-combustion area for post-combustion after burning, and an ash discharge part for discharging incineration ash after post-combustion In the method of treating incineration ash generated in the waste treatment furnace,
Supply the reaction agent containing silica sand and flux to the incineration ash in the post-combustion zone,
The melting point of each component of incineration ash and silica sand is lowered by flux and the silica sand is reacted with calcium oxide in the incineration ash to form a silicic acid compound to reduce the basicity of the incineration ash, and incineration ash A method for treating incineration ash, characterized by suppressing the elution of lead from the soil.
炉内で廃棄物を乾燥させる乾燥域、乾燥後の廃棄物を燃焼する主燃焼域そして燃え残りを後燃焼する後燃焼域、さらには後燃焼後の焼却灰を排出する灰排出部を有する廃棄物処理炉で発生する焼却灰の処理装置において、
灰排出部から排出された焼却灰を所定粒径よりも小粒径の小粒径焼却灰と該所定粒径以上の大粒径の大粒径焼却灰とに分級し、
分級された小粒径焼却灰を、ケイ砂と融剤とを含む反応剤とともに後燃焼域の焼却灰に供給して、
融剤により焼却灰とケイ砂の各成分の融点を降下させ、焼却灰中の酸化カルシウムに上記ケイ砂を反応させて、ケイ酸化合物を生成して焼却灰の塩基性を低下させ、焼却灰からの鉛の溶出を抑制することを特徴とする焼却灰処理方法。
Waste having drying area for drying waste in furnace, main combustion area for burning waste after drying and post-combustion area for post-combustion after burning, and an ash discharge part for discharging incineration ash after post-combustion Processing equipment for incineration ash generated in waste treatment furnaces,
Classify the incineration ash discharged from the ash discharge part into small particle size incineration ash smaller in particle diameter than a predetermined particle diameter and large particle size incineration ash larger in particle diameter than the predetermined particle diameter,
The classified small particle size incineration ash is supplied to the incineration ash in the post-combustion zone together with the reaction agent containing silica sand and flux agent,
The melting point of each component of incineration ash and silica sand is lowered by flux and the silica sand is reacted with calcium oxide in the incineration ash to form a silicic acid compound to reduce the basicity of the incineration ash, and incineration ash A method for treating incineration ash, characterized by suppressing the elution of lead from the soil.
融剤は、酸化ホウ素、酸化マグネシウム、塩化ナトリウム、塩化カリウム、鉄のうち少なくとも1つを含む化合物又はホウ砂であることとする請求項4または請求項5に記載の焼却灰処理方法。   The incineration ash treatment method according to claim 4 or 5, wherein the flux is a compound containing at least one of boron oxide, magnesium oxide, sodium chloride, potassium chloride, iron or borax.
JP2016066151A 2016-03-29 2016-03-29 Incineration ash processing apparatus and incineration ash processing method Expired - Fee Related JP6541039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016066151A JP6541039B2 (en) 2016-03-29 2016-03-29 Incineration ash processing apparatus and incineration ash processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016066151A JP6541039B2 (en) 2016-03-29 2016-03-29 Incineration ash processing apparatus and incineration ash processing method

Publications (2)

Publication Number Publication Date
JP2017176970A JP2017176970A (en) 2017-10-05
JP6541039B2 true JP6541039B2 (en) 2019-07-10

Family

ID=60007993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016066151A Expired - Fee Related JP6541039B2 (en) 2016-03-29 2016-03-29 Incineration ash processing apparatus and incineration ash processing method

Country Status (1)

Country Link
JP (1) JP6541039B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128040A (en) * 2018-01-19 2019-08-01 川崎重工業株式会社 Waste incinerator
CN110142278A (en) * 2019-03-28 2019-08-20 光大环保技术装备(常州)有限公司 A kind of method of incineration of refuse flyash plasma melting

Also Published As

Publication number Publication date
JP2017176970A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JPH06241424A (en) Incinerating method of solid waste
JP6824640B2 (en) Waste incineration equipment, waste incineration method, incineration ash treatment equipment and incineration ash treatment method
JP2006266537A (en) Waste treatment facility for treating refuse and sludge together
JP6541039B2 (en) Incineration ash processing apparatus and incineration ash processing method
RU2343353C2 (en) Method of thermal waste-free recycling of public solid waste
JP2007127355A (en) Rubbish incinerating/melting method and device therefor
JP5105993B2 (en) Detoxification treatment apparatus and method for treated ash
JP4350485B2 (en) Method and apparatus for firing and detoxifying multiple / mixed contaminants
JP2007225122A (en) Flying ash detoxifying method and its device
JP2007090261A (en) Method and system for treating exhaust gas in cement manufacturing device
JP2006052931A (en) Waste treatment furnace and waste treatment device for treating garbage and sludge together
JP2008201622A (en) Method and system for fuelization of metal powder
JP5244416B2 (en) Incinerator and roasting equipment
JP2005195228A (en) Waste material melting treatment system
JP2007098343A (en) Exhaust gas treatment method and treating system of cement manufacturing apparatus
JP2006297331A (en) Production method and apparatus of granulation particle
JP5876264B2 (en) Waste treatment equipment
JP7103021B2 (en) Waste incinerator and waste incinerator method
JP2003212618A (en) Method for treating organic contaminated soil
JP2005164059A (en) Waste incinerating treatment method and its plant
JP2018200150A (en) Combustion furnace for organic waste and processing system for organic waste using the combustion furnace
JP2008000655A (en) Method for preventing elution of heavy metals in collected dust ash
JP2004181323A (en) Operation method for ash treatment system and ash treatment system
JP2004138253A (en) Method for blowing inflammable dust into waste melting furnace
JP2009172523A (en) Ash treating method of roasting furnace, and roasting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190530

R150 Certificate of patent or registration of utility model

Ref document number: 6541039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees