JP2004266130A - Wiring board and its producing method, semiconductor device and electronic apparatus - Google Patents

Wiring board and its producing method, semiconductor device and electronic apparatus Download PDF

Info

Publication number
JP2004266130A
JP2004266130A JP2003055641A JP2003055641A JP2004266130A JP 2004266130 A JP2004266130 A JP 2004266130A JP 2003055641 A JP2003055641 A JP 2003055641A JP 2003055641 A JP2003055641 A JP 2003055641A JP 2004266130 A JP2004266130 A JP 2004266130A
Authority
JP
Japan
Prior art keywords
layer
wiring board
wiring
fine particles
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003055641A
Other languages
Japanese (ja)
Other versions
JP3781118B2 (en
Inventor
Tetsuya Otsuki
哲也 大槻
Hirofumi Kurosawa
弘文 黒沢
Hiroshi Miki
浩 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003055641A priority Critical patent/JP3781118B2/en
Priority to CNB2004100082084A priority patent/CN1301048C/en
Priority to US10/792,266 priority patent/US7189598B2/en
Publication of JP2004266130A publication Critical patent/JP2004266130A/en
Application granted granted Critical
Publication of JP3781118B2 publication Critical patent/JP3781118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a highly reliable wiring board simply. <P>SOLUTION: An accept layer 10 is made of a thermosetting resin precursor. A wiring layer 14 is made of dispersion solution containing conductive fine particles. Heat for bonding the conductive fine particles is generated through the curing reaction of the thermosetting resin precursor and fed to the accept layer 10 and the wiring layer 14. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、配線基板及びその製造方法、半導体装置並びに電子機器に関する。
【0002】
【発明の背景】
従来、プリント配線板は、基材に銅箔を貼りエッチングにより配線を形成することで製造されていた。これによれば、プロセスが複雑であり、エッチングのために、高価なマスクが必要であるし、多くの設備が必要であった。そこで、近年、表面処理の施された基材に金属インクを吐出して配線を形成する技術が開発されている。表面処理として、フッ素被膜を基材に形成し(FAS(Fluoric Alkyl Silane)処理)、これを多孔質にすることで金属インクの表面張力をコントロールする場合、配線と基材との密着性を高めることが難しかった。または、表面処理として、ポリビニルアルコールを基材に塗布して膨潤性を有する受理層を形成する方法や、水酸化アルミニウムを基材に塗布して空隙を有する受理層を形成する方法では、受理層は吸水性が高いために水分を含みやすく内層として好ましくない。また、配線と基材との密着性を高めることも難しかった。
【0003】
本発明の目的は、信頼性の高い配線基板を簡単に製造することにある。
【0004】
【課題を解決するための手段】
(1)本発明に係る配線基板の製造方法は、熱硬化性樹脂前駆体により受理層を形成すること、
前記受理層上に、導電性微粒子を含む分散液により、配線層を形成すること、及び、
前記熱硬化性樹脂前駆体を硬化反応させ、前記導電性微粒子を相互に結合させる熱を、前記受理層及び前記配線層に供給すること、
を含む。本発明によれば、導電性微粒子を含む分散液を設けるときに、受理層は未だ硬化反応する前の状態であるから、にじみや溜まり(Bulge)の発生を抑制することができる。また、熱硬化した受理層と、相互に結合した導電性微粒子を含む配線層とは密着性が高い。そのため、信頼性の高い配線基板を簡単に製造することができる。
(2)この配線基板の製造方法において、
前記熱硬化性樹脂前駆体としてポリイミド前駆体を使用し、前記熱によって前記ポリイミド前駆体を重合させてもよい。
(3)この配線基板の製造方法において、
前記導電性微粒子を含む前記分散液を吐出して前記配線層を形成してもよい。(4)この配線基板の製造方法において、
前記受理層を基材上に形成してもよい。
(5)この配線基板の製造方法において、
前記熱硬化性樹脂前駆体を硬化反応させ、前記導電性微粒子を相互に結合させた後に、前記基材を前記受理層から除去することをさらに含んでもよい。
(6)本発明に係る配線基板は、上記方法によって製造されてなる。
(7)本発明に係る半導体装置は、上記配線基板と、
前記配線基板と電気的に接続された半導体チップと、
を有する。
(8)本発明に係る電子機器は、上記半導体装置を有する。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0006】
(第1の実施の形態)
図1(A)〜図3(C)は、本発明の第1の実施の形態に係る配線基板の製造方法を説明する図である。本実施の形態では、図1(A)に示すように、熱硬化性樹脂前駆体(例えば、ポリイミド前駆体やエポキシ樹脂前駆体等の有機材料)によって、受理層10を形成する。熱硬化反応前であるため、熱硬化性樹脂前駆体は、液状又はペースト状であってもよく、受理層10は粘性を持っていてもよい。受理層10を形成する材料は、感光性を有してもよい。受理層10は、熱硬化性樹脂前駆体をスピンコートによって拡げることで形成してもよいし、熱硬化性樹脂前駆体の吐出(例えば、その液滴の吐出)によって形成してもよい。必要に応じて、受理層10の乾燥(例えば、150℃で10分間)を行ってもよい。受理層10は、表面が平坦になるように形成してもよい。受理層10は絶縁性を有し、(第1の)絶縁層ということができる。
【0007】
受理層10は、基材(例えば基板)12上に形成してもよい。基材12は、銅などの金属であってもよいし、ポリイミドやエポキシ等の樹脂であってもよいし、ガラスであってもよい。
【0008】
図1(B)に示すように、受理層10上に配線層(以下、第1の配線層ともいう。)14を形成する。配線層14は、導電性微粒子を含む分散液(例えば、金属インク)によって形成する。導電性微粒子は、金や銀等の酸化しにくく、電気抵抗の低い材料から形成されていてもよい。金の微粒子を含む分散液として、真空冶金株式会社の「パーフェクトゴールド」、銀の微粒子を含む分散液として、同社の「パーフェクトシルバー」を使用してもよい。なお、微粒子とは、特に大きさを限定したものではなく、分散媒とともに吐出できる粒子である。配線層14の形成は、インクジェット法やバブルジェット(登録商標)法などの導電性微粒子を含む分散液の吐出(例えば、その液滴の吐出)によって行ってもよいし、マスク印刷やスクリーン印刷によって行ってもよい。導電性微粒子は、反応を抑制するために、コート材によって被覆されていてもよい。分散媒は、乾燥しにくく再溶解性のあるものであってもよい。導電性微粒子は、分散媒中に均一に分散していてもよい。
【0009】
本実施の形態によれば、導電性微粒子を含む分散液は、熱硬化性樹脂前駆体上に設けられるので、配線層14を形成するときに、にじみや溜まり(Bulge)の発生を抑制することができる。配線層14を乾燥させて、分散媒を揮発させ、導電性微粒子(あるいは導電性微粒子及びコート材)を残してもよい。乾燥は、室温以上100℃以下の温度で行ってもよい。または、受理層10を構成する熱硬化性樹脂前駆体の熱硬化反応が生じない温度(例えば200℃程度)で、配線層14を加熱してもよい。これにより、導電性微粒子を被覆するコート材を分解してもよい。
【0010】
図1(C)に示すように、受理層10及び配線層14に熱を供給する。熱は、受理層10を構成する熱硬化性樹脂前駆体を硬化反応(例えば重合)させる温度(例えば、300〜400℃程度)であってもよい。熱は、配線層14の導電性微粒子を相互に結合(例えば焼結)させる温度(例えば、300〜600℃程度)であってもよい。熱の供給時間は1時間程度であってもよい。こうすることで、熱硬化性樹脂前駆体は、不融不溶の樹脂(熱硬化性樹脂)となる。例えば、ポリイミド前駆体はポリイミドとなり、エポキシ樹脂前駆体はエポキシ樹脂となる。また、導電性微粒子は、導電膜又は導電層となる。熱硬化性樹脂前駆体が硬化し導電性粒子が相互に結合すると、受理層10及び配線層14は密着性が高くなるので、信頼性の高い配線基板が得られる。
【0011】
図1(D)に示すように、配線層14を覆うように、絶縁層(第2の絶縁層ともいう。)20を形成してもよい。絶縁層20の材料及び形成方法は、受理層10の内容が該当してもよい。さらに、絶縁層20は、感光性を有していてもよい。絶縁層20を設ける場合、その前に少なくとも配線層14から分散媒を揮発させておく。本実施の形態では、配線層14の導電性微粒子を相互に結合(例えば焼結)させた後に絶縁層20を形成する。
【0012】
図2(A)に示すように、絶縁層20上にマスク層22を形成してもよい。マスク層22は、絶縁層20に形成するコンタクトホール24に対応するように形成する。例えば、光(例えば紫外線)に感応して硬化する材料で絶縁層20を形成する場合、コンタクトホール24の形成位置にマスク層22を形成する。マスク層22は、樹脂の吐出又は印刷によって形成してもよい。
【0013】
図2(B)に示すように、絶縁層20に光(例えば紫外線)を照射して、絶縁層20のマスク層22から露出した部分を硬化させる。この場合、絶縁層20の硬化は、現像可能な程度に硬化しているが硬化反応(重合又は架橋結合)が完全に終わっていない状態(例えば粘性を有する状態)で止める。そして、現像を行って、図2(C)に示すように、絶縁層20にコンタクトホール24を形成する。
【0014】
続いて、図2(D)に示すように、絶縁層20上に第2の配線層26を形成する。第2の配線層26の材料及び形成方法は、上述した第1の配線層14の内容が該当してもよい。第2の配線層26に対して、絶縁層20は、上述した受理層10と同じ機能を果たすので、絶縁層20を受理層ということもできる。第2の配線層26は、コンタクトホール24を介して、第1の配線層14に接触するように形成する。第2の配線層26を、導電性微粒子を含む分散液で形成する場合、これをコンタクトホール24に吐出してもよい。
【0015】
図3(A)に示すように、熱を供給することによって、絶縁層20を構成する材料を硬化反応させ、第2の配線層26の導電性微粒子を相互に結合させてもよい。絶縁層20及び第2の配線層26は、受理層10及び第1の配線層14について上述した特徴を有し、同じ作用効果を達成してもよい。
【0016】
図3(B)に示すように、第2の配線層26を覆うように第3の絶縁層30を形成してもよい。第3の絶縁層30の材料及び形成方法は、絶縁層20の内容が該当してもよい。また、第3の絶縁層30にコンタクトホール34を形成し、第2の配線層26上にコンタクトポスト36を形成してもよい。
【0017】
図3(C)に示すように、コンタクトポスト36上に端子部38を形成してもよい。端子部38は、コンタクトポスト36の上面よりも大きくなるように形成してもよい。その場合、端子部38の周縁部が第3の絶縁層30上に載っていてもよい。端子部38は、NiやCuなどの無電解めっき等によって形成することができる。
【0018】
さらに、図3(C)に示すように、基材12を受理層10から除去してもよい。例えば、基材12として銅板を使用し、塩化第二鉄などのエッチング液に基材12を浸漬してこれを溶解してもよい。この工程は、熱硬化性樹脂前駆体(受理層10、第2及び第3の絶縁層20,30)を硬化反応させ、導電性微粒子(第1及び第2の配線層14,26)を相互に結合させた後に行う。こうすることで、薄膜積層配線基板が得られる。
【0019】
本実施の形態によれば、熱硬化した受理層10と、相互に結合した導電性微粒子を含む配線層14との密着性が高い。そのため、信頼性の高い配線基板を簡単に製造することができる。
【0020】
(第2の実施の形態)
図4(A)〜図4(C)は、本発明の第2の実施の形態に係る配線基板の製造方法を説明する図である。本実施の形態では、上述した受理層10上に配線層40を形成する。また、上述した基材12を使用してもよい。受理層10及び配線層40の材料及び形成方法は、第1の実施の形態で説明した内容を適用してもよい。配線層40は、コンタクトポスト42を有するように形成する。そして、配線層40を覆うように絶縁層44を形成する。絶縁層44はコンタクトポスト42を覆ってもよい。絶縁層44の材料及び形成方法は、第1の実施の形態で説明した絶縁層20の内容を適用してもよい。本実施の形態でも、受理層10を熱硬化させ、配線層40の導電性微粒子を相互に結合してから絶縁層44を設ける。
【0021】
図4(B)に示すように、絶縁層44から少なくともコンタクトポスト42の上面を露出させる。絶縁層44が薄くなるようにその表面部を除去してもよい。絶縁層44の表面部は溶解させてもよい。
【0022】
図4(C)に示すように、絶縁層44上に第2の配線層46を形成する。第2の配線層46の材料及び形成方法は、第1の実施の形態で説明した第2の配線層26の内容を適用してもよい。第2の配線層46に対して、絶縁層44は、上述した受理層10と同じ機能を果たすので、絶縁層44を受理層ということもできる。第2の配線層26は、コンタクトポスト42上を通るように形成する。その後、第2の配線層46の導電性微粒子を相互に結合させて、積層配線基板を製造することができる。本実施の形態には、第1の実施の形態で説明した内容を適用することができる。本実施の形態でも、第1の実施の形態で説明した作用効果を得ることができる。
【0023】
(第3の実施の形態)
図5(A)〜図5(B)は、本発明の第3の実施の形態に係る配線基板の製造方法を説明する図である。本実施の形態では、第2の実施の形態で説明したように、受理層10上に配線層40を形成し、その上に絶縁層44を形成する。絶縁層44は、コンタクトポスト42を覆うように形成する。その他の詳細は、図4(A)を参照して説明した内容と同じである。
【0024】
図5(A)に示すように、絶縁層44を構成する熱硬化性樹脂前駆体を熱硬化させる前に、その上に第2の配線層50を形成する。第2の配線層50の材料及び形成方法は、第1の実施の形態で説明した第2の配線層26の内容を適用してもよい。第2の配線層50に対して、絶縁層44は、上述した受理層10と同じ機能を果たすので、絶縁層44を受理層ということもできる。この状態で、第2の配線層50とコンタクトポスト42との間にも、絶縁層44の一部が介在している。
【0025】
図5(B)に示すように、絶縁層44を熱硬化させ、第2の配線層50の導電性微粒子を相互に結合させる。このとき、絶縁層44を、熱硬化(重合)によって収縮させて、コンタクトポスト42と第2の配線層50の間から絶縁層44を除去する。そして、コンタクトポスト42と第2の配線層50とを電気的に導通させる。こうして、積層配線基板を製造することができる。本実施の形態には、第1の実施の形態で説明した内容を適用することができる。本実施の形態でも、第1の実施の形態で説明した作用効果を得ることができる。
【0026】
図6には、上述したいずれかの実施の形態で説明した配線基板1000と、これに電気的に接続された半導体チップ1と、を有する半導体装置が示されている。この半導体装置を有する電子機器として、図7にはノート型パーソナルコンピュータ2000が示され、図8には携帯電話3000が示されている。
【0027】
本発明は、上述した実施の形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び結果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
【図面の簡単な説明】
【図1】図1(A)〜図1(D)は、本発明の第1の実施の形態に係る配線基板の製造方法を説明する図である。
【図2】図2(A)〜図2(D)は、本発明の第1の実施の形態に係る配線基板の製造方法を説明する図である。
【図3】図3(A)〜図3(C)は、本発明の第1の実施の形態に係る配線基板の製造方法を説明する図である。
【図4】図4(A)〜図4(C)は、本発明の第2の実施の形態に係る配線基板の製造方法を説明する図である。
【図5】図5(A)〜図5(B)は、本発明の第3の実施の形態に係る配線基板の製造方法を説明する図である。
【図6】図6は、本発明を適用した実施の形態に係る半導体装置を示す図である。
【図7】図7は、本発明を適用した実施の形態に係る半導体装置を有する電子機器を示す図である。
【図8】図8は、本発明を適用した実施の形態に係る半導体装置を有する電子機器を示す図である。
【符号の説明】
1…半導体チップ 10…受理層 12…基材 14…配線層 20…絶縁層22…マスク層 24…コンタクトホール 26…第2の配線層 30…第3の絶縁層 34…コンタクトホール 36…コンタクトポスト 38…端子部 40…配線層 42…コンタクトポスト 44…絶縁層 46…第2の配線層 50…第2の配線層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board and a method for manufacturing the same, a semiconductor device, and an electronic apparatus.
[0002]
BACKGROUND OF THE INVENTION
Conventionally, printed wiring boards have been manufactured by attaching copper foil to a base material and forming wiring by etching. According to this, the process is complicated, an expensive mask is required for etching, and many facilities are required. Therefore, in recent years, a technique has been developed in which a metal ink is discharged onto a surface-treated base material to form a wiring. As a surface treatment, when a fluorine film is formed on a substrate (FAS (Fluoric Alkyl Silane) treatment) and the surface tension of the metal ink is controlled by making it porous, the adhesion between the wiring and the substrate is enhanced. It was difficult. Alternatively, as a surface treatment, a method in which polyvinyl alcohol is applied to a substrate to form a receiving layer having swelling properties, and a method in which aluminum hydroxide is applied to a substrate to form a receiving layer having voids, a receiving layer is used. Has a high water absorbency and thus easily contains water, which is not preferable as an inner layer. Also, it has been difficult to enhance the adhesion between the wiring and the substrate.
[0003]
An object of the present invention is to easily manufacture a highly reliable wiring board.
[0004]
[Means for Solving the Problems]
(1) In the method for manufacturing a wiring board according to the present invention, a receiving layer is formed from a thermosetting resin precursor;
Forming a wiring layer on the receiving layer with a dispersion containing conductive fine particles, and
The curing reaction of the thermosetting resin precursor, heat for bonding the conductive fine particles to each other, supplying to the receiving layer and the wiring layer,
including. According to the present invention, when the dispersion containing the conductive fine particles is provided, the receiving layer is still in a state before the curing reaction, so that the occurrence of bleeding or accumulation (bulge) can be suppressed. In addition, the heat-cured receiving layer and the wiring layer containing conductive fine particles bonded to each other have high adhesion. Therefore, a highly reliable wiring board can be easily manufactured.
(2) In this method of manufacturing a wiring board,
A polyimide precursor may be used as the thermosetting resin precursor, and the polyimide precursor may be polymerized by the heat.
(3) In this method of manufacturing a wiring board,
The wiring layer may be formed by discharging the dispersion containing the conductive fine particles. (4) In this method of manufacturing a wiring board,
The receiving layer may be formed on a substrate.
(5) In this method of manufacturing a wiring board,
The method may further include removing the substrate from the receiving layer after the thermosetting resin precursor undergoes a curing reaction to bond the conductive fine particles to each other.
(6) The wiring board according to the present invention is manufactured by the above method.
(7) The semiconductor device according to the present invention includes:
A semiconductor chip electrically connected to the wiring board,
Having.
(8) An electronic apparatus according to the present invention includes the above semiconductor device.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0006]
(First Embodiment)
FIGS. 1A to 3C are diagrams illustrating a method for manufacturing a wiring board according to the first embodiment of the present invention. In this embodiment, as shown in FIG. 1A, the receiving layer 10 is formed using a thermosetting resin precursor (for example, an organic material such as a polyimide precursor or an epoxy resin precursor). Before the thermosetting reaction, the thermosetting resin precursor may be in a liquid or paste form, and the receiving layer 10 may have viscosity. The material forming the receiving layer 10 may have photosensitivity. The receiving layer 10 may be formed by spreading the thermosetting resin precursor by spin coating, or may be formed by discharging the thermosetting resin precursor (for example, discharging the droplet). If necessary, the receiving layer 10 may be dried (for example, at 150 ° C. for 10 minutes). The receiving layer 10 may be formed so that the surface becomes flat. The receiving layer 10 has an insulating property and can be referred to as a (first) insulating layer.
[0007]
The receiving layer 10 may be formed on a base material (for example, a substrate) 12. The substrate 12 may be a metal such as copper, a resin such as polyimide or epoxy, or a glass.
[0008]
As shown in FIG. 1B, a wiring layer (hereinafter, also referred to as a first wiring layer) 14 is formed on the receiving layer 10. The wiring layer 14 is formed of a dispersion liquid containing conductive fine particles (for example, metal ink). The conductive fine particles may be formed of a material such as gold or silver which is hardly oxidized and has low electric resistance. As a dispersion containing fine gold particles, "Perfect Gold" manufactured by Vacuum Metallurgy Co., Ltd., and as a dispersion containing fine silver particles, "Perfect Silver" manufactured by the company may be used. The fine particles are not particularly limited in size, but are particles that can be discharged together with the dispersion medium. The wiring layer 14 may be formed by discharging a dispersion liquid containing conductive fine particles (for example, discharging the droplets) by an inkjet method or a bubble jet (registered trademark) method, or by mask printing or screen printing. May go. The conductive fine particles may be coated with a coating material to suppress the reaction. The dispersion medium may be one that is difficult to dry and has resolubility. The conductive fine particles may be uniformly dispersed in the dispersion medium.
[0009]
According to the present embodiment, since the dispersion liquid containing the conductive fine particles is provided on the thermosetting resin precursor, it is possible to suppress the occurrence of bleeding and accumulation (bulge) when forming the wiring layer 14. Can be. The wiring layer 14 may be dried to evaporate the dispersion medium and leave the conductive fine particles (or the conductive fine particles and the coating material). Drying may be performed at a temperature of room temperature or higher and 100 ° C. or lower. Alternatively, the wiring layer 14 may be heated at a temperature (for example, about 200 ° C.) at which the thermosetting reaction of the thermosetting resin precursor forming the receiving layer 10 does not occur. Thereby, the coating material covering the conductive fine particles may be decomposed.
[0010]
As shown in FIG. 1C, heat is supplied to the receiving layer 10 and the wiring layer 14. The heat may be a temperature (for example, about 300 to 400 ° C.) at which the thermosetting resin precursor constituting the receiving layer 10 undergoes a curing reaction (for example, polymerization). The heat may be a temperature (for example, about 300 to 600 ° C.) at which the conductive fine particles of the wiring layer 14 are mutually bonded (for example, sintered). The heat supply time may be about one hour. By doing so, the thermosetting resin precursor becomes an infusible and insoluble resin (thermosetting resin). For example, the polyimide precursor becomes a polyimide, and the epoxy resin precursor becomes an epoxy resin. The conductive fine particles become a conductive film or a conductive layer. When the thermosetting resin precursor is cured and the conductive particles are bonded to each other, the adhesion between the receiving layer 10 and the wiring layer 14 is increased, so that a highly reliable wiring substrate can be obtained.
[0011]
As illustrated in FIG. 1D, an insulating layer (also referred to as a second insulating layer) 20 may be formed so as to cover the wiring layer 14. The material and the formation method of the insulating layer 20 may correspond to the contents of the receiving layer 10. Further, the insulating layer 20 may have photosensitivity. Before providing the insulating layer 20, the dispersion medium is volatilized from at least the wiring layer 14 before that. In the present embodiment, the insulating layer 20 is formed after the conductive fine particles of the wiring layer 14 are mutually bonded (for example, sintered).
[0012]
As shown in FIG. 2A, a mask layer 22 may be formed over the insulating layer 20. The mask layer 22 is formed so as to correspond to the contact hole 24 formed in the insulating layer 20. For example, when the insulating layer 20 is formed of a material that cures in response to light (for example, ultraviolet light), the mask layer 22 is formed at the position where the contact hole 24 is formed. The mask layer 22 may be formed by discharging or printing resin.
[0013]
As shown in FIG. 2B, the insulating layer 20 is irradiated with light (for example, ultraviolet light) to cure a portion of the insulating layer 20 exposed from the mask layer 22. In this case, the hardening of the insulating layer 20 is stopped in a state where the hardening reaction (polymerization or cross-linking) is not completely completed (for example, in a viscous state). Then, by performing development, a contact hole 24 is formed in the insulating layer 20 as shown in FIG.
[0014]
Subsequently, as shown in FIG. 2D, a second wiring layer 26 is formed over the insulating layer 20. The material and the forming method of the second wiring layer 26 may correspond to the contents of the first wiring layer 14 described above. Since the insulating layer 20 has the same function as the above-described receiving layer 10 with respect to the second wiring layer 26, the insulating layer 20 can also be referred to as a receiving layer. The second wiring layer 26 is formed so as to be in contact with the first wiring layer 14 via the contact hole 24. When the second wiring layer 26 is formed of a dispersion containing conductive fine particles, this may be discharged into the contact hole 24.
[0015]
As shown in FIG. 3A, heat may be supplied to cause a hardening reaction of the material forming the insulating layer 20 to bond the conductive fine particles of the second wiring layer 26 to each other. The insulating layer 20 and the second wiring layer 26 may have the features described above for the receiving layer 10 and the first wiring layer 14, and may achieve the same effects.
[0016]
As shown in FIG. 3B, a third insulating layer 30 may be formed so as to cover the second wiring layer 26. The material and formation method of the third insulating layer 30 may correspond to the contents of the insulating layer 20. Alternatively, a contact hole 34 may be formed in the third insulating layer 30 and a contact post 36 may be formed on the second wiring layer 26.
[0017]
As shown in FIG. 3C, a terminal portion 38 may be formed on the contact post 36. The terminal portion 38 may be formed so as to be larger than the upper surface of the contact post 36. In that case, the peripheral portion of the terminal portion 38 may be placed on the third insulating layer 30. The terminal portion 38 can be formed by electroless plating of Ni, Cu, or the like.
[0018]
Further, as shown in FIG. 3C, the base material 12 may be removed from the receiving layer 10. For example, a copper plate may be used as the substrate 12, and the substrate 12 may be immersed in an etching solution such as ferric chloride to dissolve the substrate. In this step, the thermosetting resin precursor (the receiving layer 10, the second and third insulating layers 20, 30) undergoes a curing reaction, and the conductive fine particles (the first and second wiring layers 14, 26) are interconnected. This is performed after binding. By doing so, a thin film laminated wiring board is obtained.
[0019]
According to the present embodiment, the adhesion between the heat-cured receiving layer 10 and the wiring layer 14 containing mutually connected conductive fine particles is high. Therefore, a highly reliable wiring board can be easily manufactured.
[0020]
(Second embodiment)
FIGS. 4A to 4C are diagrams illustrating a method for manufacturing a wiring board according to the second embodiment of the present invention. In the present embodiment, the wiring layer 40 is formed on the receiving layer 10 described above. Further, the above-described base material 12 may be used. The contents and the formation method of the receiving layer 10 and the wiring layer 40 may be the same as those described in the first embodiment. The wiring layer 40 is formed to have the contact posts 42. Then, an insulating layer 44 is formed so as to cover the wiring layer 40. The insulating layer 44 may cover the contact posts 42. As the material and the formation method of the insulating layer 44, the contents of the insulating layer 20 described in the first embodiment may be applied. Also in the present embodiment, the insulating layer 44 is provided after the receiving layer 10 is thermally cured and the conductive fine particles of the wiring layer 40 are mutually bonded.
[0021]
As shown in FIG. 4B, at least the upper surface of the contact post 42 is exposed from the insulating layer 44. The surface portion may be removed so that the insulating layer 44 becomes thin. The surface portion of the insulating layer 44 may be dissolved.
[0022]
As shown in FIG. 4C, a second wiring layer 46 is formed over the insulating layer 44. As the material and the forming method of the second wiring layer 46, the contents of the second wiring layer 26 described in the first embodiment may be applied. Since the insulating layer 44 has the same function as the receiving layer 10 described above with respect to the second wiring layer 46, the insulating layer 44 can also be referred to as a receiving layer. The second wiring layer 26 is formed so as to pass over the contact post 42. Thereafter, the conductive fine particles of the second wiring layer 46 are bonded to each other to manufacture a multilayer wiring board. The contents described in the first embodiment can be applied to this embodiment. Also in the present embodiment, the operation and effect described in the first embodiment can be obtained.
[0023]
(Third embodiment)
FIGS. 5A and 5B are diagrams illustrating a method for manufacturing a wiring board according to the third embodiment of the present invention. In the present embodiment, as described in the second embodiment, the wiring layer 40 is formed on the receiving layer 10, and the insulating layer 44 is formed thereon. The insulating layer 44 is formed so as to cover the contact posts 42. The other details are the same as those described with reference to FIG.
[0024]
As shown in FIG. 5A, before the thermosetting resin precursor forming the insulating layer 44 is thermoset, the second wiring layer 50 is formed thereon. As the material and forming method of the second wiring layer 50, the contents of the second wiring layer 26 described in the first embodiment may be applied. Since the insulating layer 44 has the same function as the above-described receiving layer 10 with respect to the second wiring layer 50, the insulating layer 44 can also be referred to as a receiving layer. In this state, a part of the insulating layer 44 is also interposed between the second wiring layer 50 and the contact post 42.
[0025]
As shown in FIG. 5B, the insulating layer 44 is thermally cured, and the conductive fine particles of the second wiring layer 50 are mutually bonded. At this time, the insulating layer 44 is contracted by thermosetting (polymerization), and the insulating layer 44 is removed from between the contact post 42 and the second wiring layer 50. Then, the contact post 42 and the second wiring layer 50 are electrically connected. Thus, a laminated wiring board can be manufactured. The contents described in the first embodiment can be applied to this embodiment. Also in the present embodiment, the operation and effect described in the first embodiment can be obtained.
[0026]
FIG. 6 shows a semiconductor device including the wiring board 1000 described in any of the above-described embodiments and the semiconductor chip 1 electrically connected thereto. As an electronic apparatus having the semiconductor device, a notebook personal computer 2000 is shown in FIG. 7, and a mobile phone 3000 is shown in FIG.
[0027]
The present invention is not limited to the embodiments described above, and various modifications are possible. For example, the invention includes configurations substantially the same as the configurations described in the embodiments (for example, a configuration having the same function, method, and result, or a configuration having the same object and result). Further, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. Further, the invention includes a configuration having the same operation and effect as the configuration described in the embodiment, or a configuration capable of achieving the same object. Further, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
[Brief description of the drawings]
FIGS. 1A to 1D are diagrams illustrating a method for manufacturing a wiring board according to a first embodiment of the present invention.
FIGS. 2A to 2D are diagrams illustrating a method for manufacturing a wiring board according to the first embodiment of the present invention.
FIGS. 3A to 3C are diagrams illustrating a method for manufacturing a wiring board according to the first embodiment of the present invention.
FIGS. 4A to 4C are diagrams illustrating a method for manufacturing a wiring board according to a second embodiment of the present invention.
FIGS. 5A and 5B are diagrams illustrating a method for manufacturing a wiring board according to a third embodiment of the present invention.
FIG. 6 is a diagram showing a semiconductor device according to an embodiment to which the present invention is applied.
FIG. 7 is a diagram illustrating an electronic apparatus including a semiconductor device according to an embodiment to which the present invention is applied;
FIG. 8 is a diagram illustrating an electronic apparatus including a semiconductor device according to an embodiment to which the present invention is applied;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor chip 10 ... Receiving layer 12 ... Base material 14 ... Wiring layer 20 ... Insulating layer 22 ... Mask layer 24 ... Contact hole 26 ... Second wiring layer 30 ... Third insulating layer 34 ... Contact hole 36 ... Contact post 38 terminal part 40 wiring layer 42 contact post 44 insulating layer 46 second wiring layer 50 second wiring layer

Claims (8)

熱硬化性樹脂前駆体により受理層を形成すること、
前記受理層上に、導電性微粒子を含む分散液により、配線層を形成すること、及び、
前記熱硬化性樹脂前駆体を硬化反応させ、前記導電性微粒子を相互に結合させる熱を、前記受理層及び前記配線層に供給すること、
を含む配線基板の製造方法。
Forming a receiving layer with a thermosetting resin precursor,
Forming a wiring layer on the receiving layer with a dispersion containing conductive fine particles, and
The curing reaction of the thermosetting resin precursor, heat for bonding the conductive fine particles to each other, supplying to the receiving layer and the wiring layer,
A method of manufacturing a wiring board including:
請求項1記載の配線基板の製造方法において、
前記熱硬化性樹脂前駆体としてポリイミド前駆体を使用し、前記熱によって前記ポリイミド前駆体を重合させる配線基板の製造方法。
The method for manufacturing a wiring board according to claim 1,
A method for producing a wiring board, wherein a polyimide precursor is used as the thermosetting resin precursor, and the polyimide precursor is polymerized by the heat.
請求項1又は請求項2記載の配線基板の製造方法において、
前記導電性微粒子を含む前記分散液を吐出して前記配線層を形成する配線基板の製造方法。
The method for manufacturing a wiring board according to claim 1 or 2,
A method for manufacturing a wiring board, wherein the wiring layer is formed by discharging the dispersion containing the conductive fine particles.
請求項1から請求項3のいずれかに記載の配線基板の製造方法において、
前記受理層を基材上に形成する配線基板の製造方法。
The method for manufacturing a wiring board according to claim 1, wherein
A method for manufacturing a wiring board, wherein the receiving layer is formed on a substrate.
請求項4記載の配線基板の製造方法において、
前記熱硬化性樹脂前駆体を硬化反応させ、前記導電性微粒子を相互に結合させた後に、前記基材を前記受理層から除去することをさらに含む配線基板の製造方法。
The method for manufacturing a wiring board according to claim 4,
A method for manufacturing a wiring board, further comprising removing the base material from the receiving layer after the thermosetting resin precursor undergoes a curing reaction to bond the conductive fine particles to each other.
請求項1から請求項5のいずれかに記載の方法により製造されてなる配線基板。A wiring board manufactured by the method according to claim 1. 請求項6記載の配線基板と、
前記配線基板と電気的に接続された半導体チップと、
を有する半導体装置。
A wiring board according to claim 6,
A semiconductor chip electrically connected to the wiring board,
A semiconductor device having:
請求項7記載の半導体装置を有する電子機器。An electronic apparatus comprising the semiconductor device according to claim 7.
JP2003055641A 2003-03-03 2003-03-03 Wiring board manufacturing method Expired - Fee Related JP3781118B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003055641A JP3781118B2 (en) 2003-03-03 2003-03-03 Wiring board manufacturing method
CNB2004100082084A CN1301048C (en) 2003-03-03 2004-03-01 Method for producing distributing base board
US10/792,266 US7189598B2 (en) 2003-03-03 2004-03-02 Wiring board, method of manufacturing the same, semiconductor device, and electronic instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055641A JP3781118B2 (en) 2003-03-03 2003-03-03 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2004266130A true JP2004266130A (en) 2004-09-24
JP3781118B2 JP3781118B2 (en) 2006-05-31

Family

ID=33119596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055641A Expired - Fee Related JP3781118B2 (en) 2003-03-03 2003-03-03 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP3781118B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043879A (en) * 2003-07-08 2005-02-17 Fuji Xerox Co Ltd Method for manufacturing polyimide resin layer, endless polyimide resin belt, photoreceptor and electrophotographic apparatus using the same
JP2006228879A (en) * 2005-02-16 2006-08-31 Asahi Kasei Corp Method for manufacturing circuit board
JP2006228878A (en) * 2005-02-16 2006-08-31 Asahi Kasei Corp Method for manufacturing laminate
JP2006305914A (en) * 2005-04-28 2006-11-09 Asahi Kasei Corp Method for producing laminated substrate
JP2007223224A (en) * 2006-02-24 2007-09-06 Asahi Kasei Corp Laminate and its manufacturing method
JP2009528677A (en) * 2006-02-27 2009-08-06 エドワーズ ライフサイエンシーズ コーポレイション Method and apparatus using flex circuit technology for electrode fabrication
JP5137575B2 (en) * 2005-08-19 2013-02-06 旭化成イーマテリアルズ株式会社 Laminated body and method for producing the same
US9315839B2 (en) 2001-12-27 2016-04-19 Kaneka Corporation Processes for producing coenzyme Q10

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229653A (en) * 2002-02-04 2003-08-15 Toppan Printing Co Ltd Conductive laminate and its producing method
JP2003253455A (en) * 2002-02-28 2003-09-10 Nippon Zeon Co Ltd Partial plating method and resin member
JP2003264361A (en) * 2002-03-08 2003-09-19 Murata Mfg Co Ltd Circuit board manufacturing method
JP2004006578A (en) * 2002-04-15 2004-01-08 Seiko Epson Corp Conductive film pattern, and method of forming the same, wiring board, electronic device, electronic apparatus, and contactless card medium
JP2004153200A (en) * 2002-11-01 2004-05-27 Toppan Printing Co Ltd Printed wiring board and manufacturing method thereof
JP2004266131A (en) * 2003-03-03 2004-09-24 Seiko Epson Corp Laminated wiring board, its manufacturing method, semiconductor device, and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229653A (en) * 2002-02-04 2003-08-15 Toppan Printing Co Ltd Conductive laminate and its producing method
JP2003253455A (en) * 2002-02-28 2003-09-10 Nippon Zeon Co Ltd Partial plating method and resin member
JP2003264361A (en) * 2002-03-08 2003-09-19 Murata Mfg Co Ltd Circuit board manufacturing method
JP2004006578A (en) * 2002-04-15 2004-01-08 Seiko Epson Corp Conductive film pattern, and method of forming the same, wiring board, electronic device, electronic apparatus, and contactless card medium
JP2004153200A (en) * 2002-11-01 2004-05-27 Toppan Printing Co Ltd Printed wiring board and manufacturing method thereof
JP2004266131A (en) * 2003-03-03 2004-09-24 Seiko Epson Corp Laminated wiring board, its manufacturing method, semiconductor device, and electronic equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9926580B2 (en) 2001-12-27 2018-03-27 Kaneka Corporation Process for producing coenzyme Q10
US9315839B2 (en) 2001-12-27 2016-04-19 Kaneka Corporation Processes for producing coenzyme Q10
JP4608972B2 (en) * 2003-07-08 2011-01-12 富士ゼロックス株式会社 Manufacturing method of polyimide resin layer, polyimide resin endless belt, photoreceptor, and electrophotographic apparatus using the same.
JP2005043879A (en) * 2003-07-08 2005-02-17 Fuji Xerox Co Ltd Method for manufacturing polyimide resin layer, endless polyimide resin belt, photoreceptor and electrophotographic apparatus using the same
JP2006228879A (en) * 2005-02-16 2006-08-31 Asahi Kasei Corp Method for manufacturing circuit board
JP2006228878A (en) * 2005-02-16 2006-08-31 Asahi Kasei Corp Method for manufacturing laminate
JP4606192B2 (en) * 2005-02-16 2011-01-05 旭化成イーマテリアルズ株式会社 Circuit board manufacturing method
JP4606191B2 (en) * 2005-02-16 2011-01-05 旭化成イーマテリアルズ株式会社 Manufacturing method of laminate
JP2006305914A (en) * 2005-04-28 2006-11-09 Asahi Kasei Corp Method for producing laminated substrate
JP5137575B2 (en) * 2005-08-19 2013-02-06 旭化成イーマテリアルズ株式会社 Laminated body and method for producing the same
JP4628971B2 (en) * 2006-02-24 2011-02-09 旭化成イーマテリアルズ株式会社 Laminated body and method for producing the same
JP2007223224A (en) * 2006-02-24 2007-09-06 Asahi Kasei Corp Laminate and its manufacturing method
JP2009528677A (en) * 2006-02-27 2009-08-06 エドワーズ ライフサイエンシーズ コーポレイション Method and apparatus using flex circuit technology for electrode fabrication

Also Published As

Publication number Publication date
JP3781118B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP4555323B2 (en) Multilayer printed circuit board manufacturing method, multilayer printed circuit board, and vacuum printing apparatus
KR100811034B1 (en) Method for manufacturing printed circuit board having embedded electronic components
TWI248329B (en) Methods for performing substrate imprinting using thermoset resin varnishes and products formed therefrom
JP2011249792A (en) Embedded printed circuit board and method of manufacturing the same
JP2012060096A (en) Embedded ball grid array substrate and its manufacturing method
JP3781118B2 (en) Wiring board manufacturing method
JP2008300819A (en) Printed circuit board and method for manufacturing the same
JP2004152934A (en) Circuit board and its manufacturing method
JP2004253432A (en) Method of manufacturing printed wiring board
JP2009272608A (en) Printed circuit board and method of manufacturing same
JP2010056179A (en) Conductor forming sheet, and method of manufacturing wiring board using conductor forming sheet
US7189598B2 (en) Wiring board, method of manufacturing the same, semiconductor device, and electronic instrument
JP3900281B2 (en) LAMINATED WIRING BOARD, MANUFACTURING METHOD THEREOF, SEMICONDUCTOR DEVICE, AND ELECTRONIC DEVICE
JP3741216B2 (en) Wiring board manufacturing method
KR20120120789A (en) Method for manufacturing printed circuit board
US20070094870A1 (en) Wiring board, method of manufacturing the same, semiconductor device, and electronic instrument
JP2004266131A (en) Laminated wiring board, its manufacturing method, semiconductor device, and electronic equipment
JP2004103739A (en) Multilayer wiring board, material therefor, and method for manufacturing the same
KR100714773B1 (en) Solder resist forming method of pcb
JP2006114577A (en) Circuit board and manufacturing method thereof
JP2004063628A (en) Conductive pattern formation method, conductive pattern formation substrate, electro-optical device, and electronic apparatus
JP2004134467A (en) Multilayered wiring board, material for it, and method of manufacturing it
US11075130B2 (en) Package substrate having polymer-derived ceramic core
JP2005159255A (en) Circuit board and manufacturing method thereof
JP3414229B2 (en) Manufacturing method of printed wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees