JP3741216B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP3741216B2
JP3741216B2 JP2003055643A JP2003055643A JP3741216B2 JP 3741216 B2 JP3741216 B2 JP 3741216B2 JP 2003055643 A JP2003055643 A JP 2003055643A JP 2003055643 A JP2003055643 A JP 2003055643A JP 3741216 B2 JP3741216 B2 JP 3741216B2
Authority
JP
Japan
Prior art keywords
layer
wiring
wiring board
fine particles
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003055643A
Other languages
Japanese (ja)
Other versions
JP2004266132A (en
Inventor
哲也 大槻
弘文 黒沢
浩 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003055643A priority Critical patent/JP3741216B2/en
Priority to CNB2004100082099A priority patent/CN100438724C/en
Priority to US10/791,651 priority patent/US20040237296A1/en
Publication of JP2004266132A publication Critical patent/JP2004266132A/en
Application granted granted Critical
Publication of JP3741216B2 publication Critical patent/JP3741216B2/en
Priority to US11/639,845 priority patent/US20070094870A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、配線基板及びその製造方法、半導体装置並びに電子機器に関する。
【0002】
【発明の背景】
従来、プリント配線板は、基材に銅箔を貼りエッチングにより配線を形成することで製造されていた。これによれば、プロセスが複雑であり、エッチングのために、高価なマスクが必要であるし、多くの設備が必要であった。そこで、近年、表面処理の施された基材に金属インクを吐出して配線を形成する技術が開発されている。表面処理として、フッ素被膜を基材に形成し(FAS(Fluoric Alkyl Silane)処理)、これを多孔質にすることで金属インクの表面張力をコントロールする場合、配線と基材との密着性を高めることが難しかった。または、表面処理として、ポリビニルアルコールを基材に塗布して膨潤性を有する受理層を形成する方法や、水酸化アルミニウムを基材に塗布して空隙を有する受理層を形成する方法では、受理層は吸水性が高いために水分を含みやすく内層として好ましくない。また、配線と基材との密着性を高めることも難しかった。
【0003】
本発明の目的は、信頼性の高い配線基板を簡単に製造することにある。
【0004】
【課題を解決するための手段】
(1)本発明に係る配線基板の製造方法は、熱可塑性樹脂によって形成された受理層を熱によって軟化させること、
熱によって軟化した状態の前記受理層上に、導電性微粒子を含む溶剤により、配線層を形成すること、及び、
前記配線層を加熱して前記導電性微粒子を相互に結合させること、
を含む。本発明によれば、導電性微粒子を含む溶剤を設けるときに、受理層は軟化した状態であるから、にじみや溜まり(Bulge)の発生を抑制することができる。また、固化した受理層と、相互に結合した導電性微粒子を含む配線層とは密着性が高い。そのため、信頼性の高い配線基板を簡単に製造することができる。
(2)この配線基板の製造方法において、
前記導電性微粒子を含む前記溶剤を吐出して前記配線層を形成してもよい。
(3)この配線基板の製造方法において、
前記受理層を基材上に形成してもよい。
(4)この配線基板の製造方法において、
前記導電性微粒子を相互に結合させた後に、前記基材を前記受理層から除去することをさらに含んでもよい。
(5)本発明に係る配線基板は、上記方法によって製造されてなる。
(6)本発明に係る半導体装置は、上記配線基板と、
前記配線基板と電気的に接続された半導体チップと、
を有する。
(7)本発明に係る電子機器は、上記半導体装置を有する。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0006】
(第1の実施の形態)
図1(A)〜図3(B)は、本発明の第1の実施の形態に係る配線基板の製造方法を説明する図である。本実施の形態では、図1(A)に示すように、熱可塑性樹脂(例えば、ポリアミドや熱可塑性ポリイミド等の有機材料)によって形成された受理層10を使用する。受理層10は、基材(例えば基板)12上に形成してもよい。基材12は、銅などの金属であってもよいし、熱硬化性の樹脂(例えば、ポリイミドやエポキシ樹脂等)であってもよいし、ガラスであってもよい。受理層10は、表面が平坦になるように形成してもよい。受理層10は絶縁性を有し、(第1の)絶縁層ということができる。
【0007】
図1(B)に示すように、受理層10を熱によって軟化させる。この状態で、受理層10は、粘性を持っていてもよい。軟化した状態の受理層10上に配線層(以下、第1の配線層ともいう。)14を形成する。配線層14は、導電性微粒子を含む溶剤(例えば、金属インク)によって形成する。導電性微粒子は、金や銀等の酸化しにくく、電気抵抗の低い材料から形成されていてもよい。金の微粒子を含む溶剤として、真空冶金株式会社の「パーフェクトゴールド」、銀の微粒子を含む溶剤として、同社の「パーフェクトシルバー」を使用してもよい。なお、微粒子とは、特に大きさを限定したものではなく、溶剤とともに吐出できる粒子である。配線層14の形成は、インクジェット法やバブルジェット(登録商標)法などの導電性微粒子を含む溶剤の吐出(例えば、その液滴の吐出)によって行ってもよいし、マスク印刷やスクリーン印刷によって行ってもよい。導電性微粒子は、反応を抑制するために、コート材によって被覆されていてもよい。溶剤は、乾燥しにくく再溶解性のあるものであってもよい。導電性微粒子は、溶剤中に均一に分散していてもよい。
【0008】
本実施の形態によれば、導電性微粒子を含む溶剤は、軟化した状態の熱可塑性樹脂上に設けられるので、配線層14を形成するときに、にじみや溜まり(Bulge)の発生を抑制することができる。配線層14を乾燥させて、溶剤を揮発させ、導電性微粒子(あるいは導電性微粒子及びコート材)を残してもよい。乾燥は、室温以上100℃以下の温度で行ってもよい。または、配線層14を加熱して、導電性微粒子を被覆するコート材を分解してもよい。
【0009】
図1(C)に示すように、配線層14に熱を供給する。熱は、配線層14の導電性微粒子を相互に結合(例えば焼結)させる温度(例えば、300〜600℃程度)であってもよい。熱の供給時間は1時間程度であってもよい。こうすることで、導電性微粒子は、導電膜又は導電層となる。また、熱可塑性樹脂は、さらに軟化してもよい。
【0010】
図1(D)に示すように、受理層10は、冷却されて固化する。なお、積極的に受理層10を冷却しなくても、常温(あるいは室温)にて受理層10の温度を下げてもよい。受理層10を構成する熱可塑性樹脂が固化し導電性粒子が相互に結合すると、受理層10及び配線層14は密着性が高くなるので、信頼性の高い配線基板が得られる。
【0011】
図2(A)に示すように、配線層14を覆うように、受理層10上に絶縁層(第2の絶縁層ともいう。)20を形成してもよい。絶縁層20の材料は、受理層10の内容が該当してもよい。絶縁層20を設ける場合、その前に少なくとも配線層14から溶剤を揮発させておく。本実施の形態では、配線層14の導電性微粒子を相互に結合(例えば焼結)させた後に絶縁層20を形成する。絶縁層20を熱可塑性樹脂で形成する場合、これを熱によって軟化させる。このとき、受理層10を熱によって軟化させてもよい。また、絶縁層20には、コンタクトホール24を形成する。
【0012】
図2(B)に示すように、絶縁層20上に第2の配線層26を形成する。第2の配線層26の材料及び形成方法は、上述した第1の配線層14の内容が該当してもよい。第2の配線層26に対して、絶縁層20は、上述した受理層10と同じ機能を果たすので、絶縁層20を受理層ということもできる。第2の配線層26は、コンタクトホール24を介して、第1の配線層14に接触するように形成する。第2の配線層26を、導電性微粒子を含む溶剤で形成する場合、これをコンタクトホール24に吐出してもよい。
【0013】
図2(C)に示すように、熱を供給することによって、第2の配線層26の導電性微粒子を相互に結合させてもよい。絶縁層20及び第2の配線層26は、受理層10及び第1の配線層14について上述した特徴を有し、同じ作用効果を達成してもよい。
【0014】
図3(A)に示すように、第2の配線層26を覆うように、絶縁層(第2の絶縁層)20上に第3の絶縁層30を形成してもよい。第3の絶縁層30の材料は、絶縁層20の内容が該当してもよい。第3の絶縁層30にはコンタクトホール34を形成してもよい。また、コンタクトホール34を介して第2の配線層26上にコンタクトポスト36を形成してもよい。
【0015】
図3(B)に示すように、コンタクトポスト36上に端子部38を形成してもよい。端子部38は、コンタクトポスト36の上面よりも大きくなるように形成してもよい。その場合、端子部38の周縁部が第3の絶縁層30上に載っていてもよい。端子部38は、NiやCuなどの無電解めっき等によって形成することができる。
【0016】
さらに、基材12を受理層10から除去してもよい。例えば、基材12として銅板を使用し、塩化第二鉄などのエッチング液に基材12を浸漬してこれを溶解してもよい。この工程は、導電性微粒子(第1及び第2の配線層14,26)を相互に結合させた後に行う。こうすることで、薄膜積層配線基板が得られる。
【0017】
本実施の形態によれば、固化した受理層10と、相互に結合した導電性微粒子を含む配線層14との密着性が高い。そのため、信頼性の高い配線基板を簡単に製造することができる。
【0018】
(第2の実施の形態)
図4(A)〜図4(D)は、本発明の第2の実施の形態に係る配線基板の製造方法を説明する図である。図4(A)に示すように、本実施の形態では、上述した受理層10上に配線層40を形成する。また、上述した基材12を使用してもよい。配線層40は、コンタクトポスト42を有するように形成する。受理層10及び配線層40の材料及び形成方法は、第1の実施の形態で説明した内容を適用してもよい。すなわち、軟化した状態の受理層10上に配線層40を形成し、配線層40を加熱して導電性微粒子を相互に結合させる。
【0019】
図4(B)に示すように、配線層40を覆うように、受理層10上に絶縁層44を形成する。絶縁層44はコンタクトポスト42を覆ってもよい。絶縁層44の材料及び形成方法は、第1の実施の形態で説明した絶縁層20の内容を適用してもよい。なお、配線層40の導電性微粒子を相互に結合してから絶縁層44を設けてもよい。そして、絶縁層44の、コンタクトポスト42上の部分を除去する。この除去工程は、絶縁層44を構成する熱可塑性樹脂が軟化した状態のまま行ってもよいし、熱可塑性樹脂が固化した後に行ってもよい。また、この除去工程は、絶縁層44の表面部の溶解によって行ってもよい。こうして、図4(C)に示すように、コンタクトポスト42の上面を露出させる。
【0020】
図4(D)に示すように、絶縁層44上に第2の配線層46を形成する。第2の配線層46の材料及び形成方法は、第1の実施の形態で説明した第2の配線層26の内容を適用してもよい。第2の配線層46に対して、絶縁層44は、上述した受理層10と同じ機能を果たすので、絶縁層44を受理層ということもできる。第2の配線層26は、コンタクトポスト42上を通るように形成する。その後、第2の配線層46の導電性微粒子を相互に結合させて、積層配線基板を製造することができる。本実施の形態には、第1の実施の形態で説明した内容を適用することができる。本実施の形態でも、第1の実施の形態で説明した作用効果を得ることができる。
【0021】
(第3の実施の形態)
図5(A)〜図5(C)は、本発明の第3の実施の形態に係る配線基板の製造方法を説明する図である。本実施の形態では、第2の実施の形態で説明したように、受理層10上に配線層40を形成し、その上に絶縁層44を形成する。絶縁層44は、コンタクトポスト42を覆うように形成する。その他の詳細は、図4(A)及び図4(B)を参照して説明した内容と同じである。
【0022】
図5(A)に示すように、絶縁層44を構成する熱可塑性樹脂が軟化した状態で、その上に第2の配線層50を形成する。第2の配線層50の材料及び形成方法は、第1の実施の形態で説明した第2の配線層26の内容を適用してもよい。第2の配線層50に対して、絶縁層44は、上述した受理層10と同じ機能を果たすので、絶縁層44を受理層ということもできる。この状態で、第2の配線層50とコンタクトポスト42との間にも、絶縁層44の一部が介在している。
【0023】
図5(B)に示すように、熱によって第2の配線層50の導電性微粒子を相互に結合させる。このときの熱によって、絶縁層44を軟化(さらに軟化)させてもよい。導電性微粒子が相互に結合して導電膜又は導電層が形成された後に、第2の配線層50及び配線層40に対して、両者を挟み込む方向に加圧力を加えてもよい。
【0024】
こうして、図5(C)に示すように、コンタクトポスト42と第2の配線層50とを電気的に導通させる。こうして、積層配線基板を製造することができる。本実施の形態には、第1の実施の形態で説明した内容を適用することができる。本実施の形態でも、第1の実施の形態で説明した作用効果を得ることができる。
【0025】
図6には、上述したいずれかの実施の形態で説明した配線基板1000と、これに電気的に接続された半導体チップ1と、を有する半導体装置が示されている。この半導体装置を有する電子機器として、図7にはノート型パーソナルコンピュータ2000が示され、図8には携帯電話3000が示されている。
【0026】
本発明は、上述した実施の形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び結果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
【図面の簡単な説明】
【図1】 図1(A)〜図1(D)は、本発明の第1の実施の形態に係る配線基板の製造方法を説明する図である。
【図2】 図2(A)〜図2(C)は、本発明の第1の実施の形態に係る配線基板の製造方法を説明する図である。
【図3】 図3(A)〜図3(B)は、本発明の第1の実施の形態に係る配線基板の製造方法を説明する図である。
【図4】 図4(A)〜図4(D)は、本発明の第2の実施の形態に係る配線基板の製造方法を説明する図である。
【図5】 図5(A)〜図5(C)は、本発明の第3の実施の形態に係る配線基板の製造方法を説明する図である。
【図6】 図6は、本発明を適用した実施の形態に係る半導体装置を示す図である。
【図7】 図7は、本発明を適用した実施の形態に係る半導体装置を有する電子機器を示す図である。
【図8】 図8は、本発明を適用した実施の形態に係る半導体装置を有する電子機器を示す図である。
【符号の説明】
1…半導体チップ 10…受理層 12…基材 14…配線層 20…絶縁層22…マスク層 24…コンタクトホール 26…第2の配線層 30…第3の絶縁層 34…コンタクトホール 36…コンタクトポスト 38…端子部 40…配線層 42…コンタクトポスト 44…絶縁層 46…第2の配線層 50…第2の配線層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board, a manufacturing method thereof, a semiconductor device, and an electronic apparatus.
[0002]
BACKGROUND OF THE INVENTION
Conventionally, printed wiring boards have been manufactured by attaching a copper foil to a base material and forming a wiring by etching. According to this, the process is complicated, an expensive mask is required for etching, and a lot of equipment is required. Therefore, in recent years, a technique for forming a wiring by discharging metal ink onto a surface-treated substrate has been developed. As a surface treatment, a fluorine coating is formed on the substrate (FAS (Fluoric Alkyl Silane) treatment), and when this is made porous, the surface tension of the metal ink is controlled, thereby improving the adhesion between the wiring and the substrate. It was difficult. Alternatively, as a surface treatment, a method for forming a receiving layer having a swelling property by applying polyvinyl alcohol to a base material, or a method for forming a receiving layer having voids by applying aluminum hydroxide to a base material, Is not preferable as an inner layer because of its high water absorption. It was also difficult to improve the adhesion between the wiring and the substrate.
[0003]
An object of the present invention is to easily manufacture a highly reliable wiring board.
[0004]
[Means for Solving the Problems]
(1) A method for manufacturing a wiring board according to the present invention comprises softening a receiving layer formed of a thermoplastic resin by heat,
Forming a wiring layer with a solvent containing conductive fine particles on the receiving layer softened by heat; and
Heating the wiring layer to bond the conductive fine particles to each other;
including. According to the present invention, when the solvent containing the conductive fine particles is provided, since the receiving layer is in a softened state, the occurrence of bleeding and bulge can be suppressed. The solidified receiving layer and the wiring layer containing conductive fine particles bonded to each other have high adhesion. Therefore, a highly reliable wiring board can be easily manufactured.
(2) In this method of manufacturing a wiring board,
The wiring layer may be formed by discharging the solvent containing the conductive fine particles.
(3) In this method of manufacturing a wiring board,
The receiving layer may be formed on the substrate.
(4) In this method of manufacturing a wiring board,
The method may further include removing the base material from the receiving layer after the conductive fine particles are bonded to each other.
(5) The wiring board according to the present invention is manufactured by the above method.
(6) A semiconductor device according to the present invention includes the above wiring board;
A semiconductor chip electrically connected to the wiring board;
Have
(7) An electronic apparatus according to the present invention includes the semiconductor device.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0006]
(First embodiment)
FIG. 1A to FIG. 3B are diagrams for explaining a method of manufacturing a wiring board according to the first embodiment of the present invention. In the present embodiment, as shown in FIG. 1A, a receiving layer 10 formed of a thermoplastic resin (for example, an organic material such as polyamide or thermoplastic polyimide) is used. The receiving layer 10 may be formed on a base material (for example, a substrate) 12. The substrate 12 may be a metal such as copper, a thermosetting resin (for example, polyimide or epoxy resin), or glass. The receiving layer 10 may be formed so that the surface becomes flat. The receiving layer 10 has insulating properties and can be referred to as a (first) insulating layer.
[0007]
As shown in FIG. 1B, the receiving layer 10 is softened by heat. In this state, the receiving layer 10 may have viscosity. A wiring layer (hereinafter also referred to as a first wiring layer) 14 is formed on the receiving layer 10 in the softened state. The wiring layer 14 is formed by a solvent (for example, metal ink) containing conductive fine particles. The conductive fine particles may be formed of a material that is difficult to oxidize, such as gold or silver, and has low electric resistance. “Perfect Gold” manufactured by Vacuum Metallurgical Co., Ltd. may be used as a solvent containing fine gold particles, and “Perfect Silver” may be used as a solvent containing fine silver particles. The fine particles are not particularly limited in size, and are particles that can be discharged together with a solvent. The formation of the wiring layer 14 may be performed by discharging a solvent containing conductive fine particles (for example, discharging its droplets) such as an inkjet method or a bubble jet (registered trademark) method, or by mask printing or screen printing. May be. The conductive fine particles may be coated with a coating material in order to suppress the reaction. The solvent may be difficult to dry and re-dissolvable. The conductive fine particles may be uniformly dispersed in the solvent.
[0008]
According to the present embodiment, the solvent containing the conductive fine particles is provided on the softened thermoplastic resin, and therefore, when the wiring layer 14 is formed, the occurrence of bleeding and accumulation (Bulge) is suppressed. Can do. The wiring layer 14 may be dried to volatilize the solvent, leaving conductive fine particles (or conductive fine particles and a coating material). Drying may be performed at a temperature of room temperature to 100 ° C. Alternatively, the wiring layer 14 may be heated to decompose the coating material covering the conductive fine particles.
[0009]
As shown in FIG. 1C, heat is supplied to the wiring layer 14. The heat may be a temperature (for example, about 300 to 600 ° C.) at which the conductive fine particles of the wiring layer 14 are bonded (for example, sintered) to each other. The heat supply time may be about 1 hour. By doing so, the conductive fine particles become a conductive film or a conductive layer. Further, the thermoplastic resin may be further softened.
[0010]
As shown in FIG. 1D, the receiving layer 10 is cooled and solidified. Note that the temperature of the receiving layer 10 may be lowered at normal temperature (or room temperature) without actively cooling the receiving layer 10. When the thermoplastic resin constituting the receiving layer 10 is solidified and the conductive particles are bonded to each other, the receiving layer 10 and the wiring layer 14 have high adhesion, so that a highly reliable wiring board can be obtained.
[0011]
As illustrated in FIG. 2A, an insulating layer (also referred to as a second insulating layer) 20 may be formed over the receiving layer 10 so as to cover the wiring layer 14. The material of the receiving layer 10 may correspond to the material of the insulating layer 20. Before the insulating layer 20 is provided, the solvent is volatilized at least from the wiring layer 14. In the present embodiment, the insulating layer 20 is formed after the conductive fine particles of the wiring layer 14 are bonded (for example, sintered) to each other. When the insulating layer 20 is formed of a thermoplastic resin, it is softened by heat. At this time, the receiving layer 10 may be softened by heat. A contact hole 24 is formed in the insulating layer 20.
[0012]
As shown in FIG. 2B, a second wiring layer 26 is formed over the insulating layer 20. The material of the second wiring layer 26 and the formation method thereof may correspond to the contents of the first wiring layer 14 described above. Since the insulating layer 20 performs the same function as the receiving layer 10 described above with respect to the second wiring layer 26, the insulating layer 20 can also be referred to as a receiving layer. The second wiring layer 26 is formed so as to be in contact with the first wiring layer 14 through the contact hole 24. When the second wiring layer 26 is formed of a solvent containing conductive fine particles, it may be discharged into the contact hole 24.
[0013]
As shown in FIG. 2C, the conductive fine particles of the second wiring layer 26 may be coupled to each other by supplying heat. The insulating layer 20 and the second wiring layer 26 have the characteristics described above with respect to the receiving layer 10 and the first wiring layer 14, and may achieve the same effect.
[0014]
As shown in FIG. 3A, a third insulating layer 30 may be formed on the insulating layer (second insulating layer) 20 so as to cover the second wiring layer 26. The material of the third insulating layer 30 may correspond to the content of the insulating layer 20. A contact hole 34 may be formed in the third insulating layer 30. Further, a contact post 36 may be formed on the second wiring layer 26 via the contact hole 34.
[0015]
As shown in FIG. 3B, a terminal portion 38 may be formed on the contact post 36. The terminal portion 38 may be formed to be larger than the upper surface of the contact post 36. In that case, the peripheral edge portion of the terminal portion 38 may be placed on the third insulating layer 30. The terminal portion 38 can be formed by electroless plating such as Ni or Cu.
[0016]
Further, the substrate 12 may be removed from the receiving layer 10. For example, a copper plate may be used as the base material 12, and the base material 12 may be immersed in an etching solution such as ferric chloride to dissolve it. This step is performed after the conductive fine particles (first and second wiring layers 14 and 26) are bonded to each other. By doing so, a thin film laminated wiring board is obtained.
[0017]
According to the present embodiment, the adhesion between the solidified receiving layer 10 and the wiring layer 14 containing conductive fine particles bonded to each other is high. Therefore, a highly reliable wiring board can be easily manufactured.
[0018]
(Second Embodiment)
4A to 4D are views for explaining a method of manufacturing a wiring board according to the second embodiment of the present invention. As shown in FIG. 4A, in the present embodiment, the wiring layer 40 is formed on the receiving layer 10 described above. Moreover, you may use the base material 12 mentioned above. The wiring layer 40 is formed so as to have a contact post 42. The materials described in the first embodiment may be applied to the materials and forming methods of the receiving layer 10 and the wiring layer 40. That is, the wiring layer 40 is formed on the receiving layer 10 in a softened state, and the wiring layer 40 is heated to bond the conductive fine particles to each other.
[0019]
As shown in FIG. 4B, an insulating layer 44 is formed on the receiving layer 10 so as to cover the wiring layer 40. The insulating layer 44 may cover the contact post 42. As the material and the formation method of the insulating layer 44, the contents of the insulating layer 20 described in the first embodiment may be applied. The insulating layer 44 may be provided after the conductive fine particles of the wiring layer 40 are bonded to each other. Then, the portion of the insulating layer 44 on the contact post 42 is removed. This removal step may be performed while the thermoplastic resin constituting the insulating layer 44 is softened, or may be performed after the thermoplastic resin is solidified. Further, this removing step may be performed by dissolving the surface portion of the insulating layer 44. In this way, the upper surface of the contact post 42 is exposed as shown in FIG.
[0020]
As shown in FIG. 4D, a second wiring layer 46 is formed over the insulating layer 44. The material of the second wiring layer 46 and the formation method thereof may apply the contents of the second wiring layer 26 described in the first embodiment. Since the insulating layer 44 performs the same function as the receiving layer 10 described above with respect to the second wiring layer 46, the insulating layer 44 can also be referred to as a receiving layer. The second wiring layer 26 is formed so as to pass over the contact post 42. Thereafter, the conductive fine particles of the second wiring layer 46 can be bonded to each other to manufacture a laminated wiring board. The contents described in the first embodiment can be applied to this embodiment. Also in this embodiment, it is possible to obtain the effects described in the first embodiment.
[0021]
(Third embodiment)
FIG. 5A to FIG. 5C are views for explaining a method of manufacturing a wiring board according to the third embodiment of the present invention. In the present embodiment, as described in the second embodiment, the wiring layer 40 is formed on the receiving layer 10 and the insulating layer 44 is formed thereon. The insulating layer 44 is formed so as to cover the contact post 42. The other details are the same as those described with reference to FIGS. 4 (A) and 4 (B).
[0022]
As shown in FIG. 5A, the second wiring layer 50 is formed on the thermoplastic resin constituting the insulating layer 44 in a softened state. The material of the second wiring layer 50 and the formation method thereof may apply the contents of the second wiring layer 26 described in the first embodiment. Since the insulating layer 44 performs the same function as the receiving layer 10 described above with respect to the second wiring layer 50, the insulating layer 44 can also be referred to as a receiving layer. In this state, a part of the insulating layer 44 is also interposed between the second wiring layer 50 and the contact post 42.
[0023]
As shown in FIG. 5B, the conductive fine particles of the second wiring layer 50 are bonded to each other by heat. The insulating layer 44 may be softened (further softened) by the heat at this time. After the conductive fine particles are bonded to each other to form a conductive film or a conductive layer, pressure may be applied to the second wiring layer 50 and the wiring layer 40 in a direction in which both are sandwiched.
[0024]
In this way, as shown in FIG. 5C, the contact post 42 and the second wiring layer 50 are electrically connected. In this way, a laminated wiring board can be manufactured. The contents described in the first embodiment can be applied to this embodiment. Also in this embodiment, it is possible to obtain the effects described in the first embodiment.
[0025]
FIG. 6 shows a semiconductor device having the wiring board 1000 described in any of the above-described embodiments and the semiconductor chip 1 electrically connected thereto. As an electronic apparatus having this semiconductor device, a notebook personal computer 2000 is shown in FIG. 7, and a mobile phone 3000 is shown in FIG.
[0026]
The present invention is not limited to the above-described embodiments, and various modifications can be made. For example, the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same purposes and results). In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
[Brief description of the drawings]
FIG. 1A to FIG. 1D are diagrams for explaining a method for manufacturing a wiring board according to a first embodiment of the present invention.
FIGS. 2A to 2C are views for explaining a method of manufacturing a wiring board according to the first embodiment of the present invention.
FIGS. 3A to 3B are views for explaining a method of manufacturing a wiring board according to the first embodiment of the present invention.
4 (A) to 4 (D) are views for explaining a method of manufacturing a wiring board according to a second embodiment of the present invention.
FIGS. 5A to 5C are views for explaining a method of manufacturing a wiring board according to a third embodiment of the present invention.
FIG. 6 is a diagram illustrating a semiconductor device according to an embodiment to which the present invention is applied.
FIG. 7 is a diagram illustrating an electronic apparatus including the semiconductor device according to the embodiment to which the invention is applied.
FIG. 8 is a diagram showing an electronic apparatus having a semiconductor device according to an embodiment to which the invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor chip 10 ... Receiving layer 12 ... Base material 14 ... Wiring layer 20 ... Insulating layer 22 ... Mask layer 24 ... Contact hole 26 ... 2nd wiring layer 30 ... 3rd insulating layer 34 ... Contact hole 36 ... Contact post 38 ... Terminal part 40 ... Wiring layer 42 ... Contact post 44 ... Insulating layer 46 ... Second wiring layer 50 ... Second wiring layer

Claims (4)

熱可塑性樹脂によって形成された受理層を熱によって軟化させること、
熱によって軟化した状態の前記受理層上に、導電性微粒子を含む溶剤により、配線層を形成すること、及び、
前記配線層を加熱して前記導電性微粒子を相互に結合させること、
を含む配線基板の製造方法。
Softening the receiving layer formed of thermoplastic resin by heat,
Forming a wiring layer with a solvent containing conductive fine particles on the receiving layer softened by heat; and
Heating the wiring layer to bond the conductive fine particles to each other;
A method of manufacturing a wiring board including:
請求項1記載の配線基板の製造方法において、
前記導電性微粒子を含む前記溶剤を吐出して前記配線層を形成する配線基板の製造方法。
In the manufacturing method of the wiring board of Claim 1,
A method of manufacturing a wiring board, wherein the wiring layer is formed by discharging the solvent containing the conductive fine particles.
請求項1又は請求項2記載の配線基板の製造方法において、
前記受理層を基材上に形成する配線基板の製造方法。
In the manufacturing method of the wiring board of Claim 1 or Claim 2,
A method for manufacturing a wiring board, wherein the receiving layer is formed on a substrate.
請求項1から請求項3のいずれかに記載の配線基板の製造方法において、
前記導電性微粒子を相互に結合させた後に、前記基材を前記受理層から除去することをさらに含む配線基板の製造方法。
In the manufacturing method of the wiring board in any one of Claims 1-3,
A method for manufacturing a wiring board, further comprising removing the base material from the receiving layer after the conductive fine particles are bonded to each other.
JP2003055643A 2003-03-03 2003-03-03 Wiring board manufacturing method Expired - Fee Related JP3741216B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003055643A JP3741216B2 (en) 2003-03-03 2003-03-03 Wiring board manufacturing method
CNB2004100082099A CN100438724C (en) 2003-03-03 2004-03-01 Method for producing wiring base plate
US10/791,651 US20040237296A1 (en) 2003-03-03 2004-03-02 Wiring board, method of manufacturing the same, semiconductor device, and electronic instrument
US11/639,845 US20070094870A1 (en) 2003-03-03 2006-12-15 Wiring board, method of manufacturing the same, semiconductor device, and electronic instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055643A JP3741216B2 (en) 2003-03-03 2003-03-03 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2004266132A JP2004266132A (en) 2004-09-24
JP3741216B2 true JP3741216B2 (en) 2006-02-01

Family

ID=33119598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055643A Expired - Fee Related JP3741216B2 (en) 2003-03-03 2003-03-03 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP3741216B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716717B2 (en) * 2004-11-26 2011-07-06 旭化成イーマテリアルズ株式会社 Circuit board manufacturing method
KR100735411B1 (en) 2005-12-07 2007-07-04 삼성전기주식회사 Method For Forming Printed Wiring Board and Printed Wiring Board Thus Obtained
JP5248412B2 (en) * 2008-06-06 2013-07-31 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
FR3033977B1 (en) * 2015-03-20 2018-08-17 Thales METHOD FOR MANUFACTURING A PRINTED CIRCUIT AND CORRESPONDING PRINTED CIRCUITS

Also Published As

Publication number Publication date
JP2004266132A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP3051700B2 (en) Method of manufacturing multilayer wiring board with built-in element
US8236690B2 (en) Method for fabricating semiconductor package substrate having different thicknesses between wire bonding pad and ball pad
JP2013115345A (en) Component built-in substrate, manufacturing method of the same, and component built-in substrate packaging body
JP4801189B2 (en) Printed circuit board and manufacturing method thereof
JP3900281B2 (en) LAMINATED WIRING BOARD, MANUFACTURING METHOD THEREOF, SEMICONDUCTOR DEVICE, AND ELECTRONIC DEVICE
JP3781118B2 (en) Wiring board manufacturing method
JP4386161B2 (en) Conductive film pattern and method for forming the same, wiring board, and electronic device
JP3741216B2 (en) Wiring board manufacturing method
JP2009272608A (en) Printed circuit board and method of manufacturing same
US7189598B2 (en) Wiring board, method of manufacturing the same, semiconductor device, and electronic instrument
US20070094870A1 (en) Wiring board, method of manufacturing the same, semiconductor device, and electronic instrument
JP3918803B2 (en) Semiconductor device substrate and manufacturing method thereof
JP2005045191A (en) Manufacturing method for wiring circuit board and for multi-layer wiring board
KR20120120789A (en) Method for manufacturing printed circuit board
JP2004266131A (en) Laminated wiring board, its manufacturing method, semiconductor device, and electronic equipment
JP2616572B2 (en) Method for manufacturing multilayer printed wiring board
CN111343802B (en) Circuit board and manufacturing method thereof
JP4344966B2 (en) Wiring board and manufacturing method thereof
JP3818124B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP2002368414A (en) Method and apparatus for manufacturing highly conductive wiring board, and wiring board
JP2005340437A (en) Manufacturing method of multilayer wiring substrate, electronic device and electronic apparatus
JP2002299826A (en) Multilayered printed wiring board, semiconductor device, and their manufacturing methods
JP2006114577A (en) Circuit board and manufacturing method thereof
JP2004063628A (en) Conductive pattern formation method, conductive pattern formation substrate, electro-optical device, and electronic apparatus
JP4579360B2 (en) Wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees