JP2004263969A - Pyrolytic gasification melting system - Google Patents

Pyrolytic gasification melting system Download PDF

Info

Publication number
JP2004263969A
JP2004263969A JP2003056118A JP2003056118A JP2004263969A JP 2004263969 A JP2004263969 A JP 2004263969A JP 2003056118 A JP2003056118 A JP 2003056118A JP 2003056118 A JP2003056118 A JP 2003056118A JP 2004263969 A JP2004263969 A JP 2004263969A
Authority
JP
Japan
Prior art keywords
pyrolysis
melting
furnace
gasification
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003056118A
Other languages
Japanese (ja)
Other versions
JP4105963B2 (en
Inventor
Takahiro Marumoto
隆弘 丸本
Noriyuki Oyatsu
紀之 大谷津
Tetsuya Iwase
徹哉 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003056118A priority Critical patent/JP4105963B2/en
Publication of JP2004263969A publication Critical patent/JP2004263969A/en
Application granted granted Critical
Publication of JP4105963B2 publication Critical patent/JP4105963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pyrolytic gasification melting system for minimizing the quantity of auxiliary fuel to be used and eliminating melting damage of a refractory material in a gasification furnace, a melting furnace and a pyrolytic gas passage for connecting the both furnaces and passage block-up of the pyrolytic gas passage. <P>SOLUTION: This pyrolytic gasification melting system pyrolyzes general garbage and industrial waste by a pyrolytic gasification furnace 3, and burns pyrolyric gas and char generated by the pyrolytic gasification furnace 3 by the melting furnace 6, and melts ash in the char by providing a high temperature field. An auxiliary fuel supply system is arranged for supplying the auxiliary fuel (f and g) to the pyrolytic gas passage 5 for flowing the pyrolytic gas and the char by connecting the pyrolytic gasification furnace 3 and the melting furnace 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一般ごみや産業廃棄物などを熱分解ガス化炉で熱分解し、そのガス化炉で生成した熱分解ガス及びチャーを溶融炉で燃焼し、高温場を得てチャー中の灰を溶融する熱分解ガス化溶融システムに関する。
【0002】
【従来の技術】
一般ごみや産業廃棄物などを処理する従来の熱分解ガス化溶融システムを図4とともに説明する。同図において1は供給ホッパ、2は給じん装置、3は流動床式ガス化炉、4は散気管、5は熱分解ガス流路、6は溶融炉、7は2次燃焼室、8は廃熱ボイラ、9は減温装置、10は集塵装置、11は煙突、aは流動化空気、bは燃焼用空気、cはスラグ、dは飛灰、eは補助燃料である。
【0003】
燃料であるごみや廃棄物を流動床式ガス化炉3へ供給し、空気不足の状態で熱分解ガス化させ、生成した熱分解ガス及び未燃カーボンと灰を主成分とするチャーを溶融炉6で燃焼させることで、高温場を得てチャー中の灰を溶融スラグ化するものである。この過程でごみや廃棄物は減容化され、ダイオキシン類は高温場で完全に分解されて無害化される。
【0004】
熱分解ガス化溶融システムでは、ごみの処理量が少ない場合やごみの燃焼カロリーが低い場合には、溶融炉6に補助燃料eと燃焼用空気bを供給して溶融炉6内を灰の溶融温度以上に維持する必要がある。大抵の場合、燃料費の安い灯油や重油などの液体燃料が用いられるが、溶融炉6からの放熱損失を低減するために溶融炉6の容積を小さくしていた。
【0005】
そのため液体燃料の蒸発および燃焼完了に必要な時間が十分にとれず、溶融炉6の出口部や後段の機器である2次燃料室7で後燃えする場合がある。従って投入した燃料eが溶融炉6内で効率良く燃焼できず、入熱の全てが熱に変換されないため溶融炉6へ過剰の燃料eを投入することになり、燃料費が高くなるという問題がある。
【0006】
さらに補助燃料eは一般ごみや産業廃棄物を熱分解して得られる熱分解ガスよりも数倍高いカロリーを有するため、溶融炉6内で火炎を形成すると局部的に温度が高い領域ができ、溶融炉6の耐火材が溶損するという問題がある。
【0007】
これらの問題は、下記特許文献1に開示されているように、ガス化炉側に補助燃料を供給することで解決される。しかし、ガス化炉内には局部的に酸素濃度の高い領域が存在するため、前述のようにガス化炉側へ補助燃料を供給した場合、酸素濃度の高い領域に供給された補助燃料が燃焼し、局所的に温度が高い領域が形成される。これにより、耐熱温度が溶融炉よりも低い耐火材を施工しているガス化炉では耐火材の溶損度合いが大きい。
【0008】
ガス化炉内で局部的に酸素濃度の高い領域とは、例えば給じん系統や砂循環系統からの洩れ込み空気が流入する領域や、2次空気を供給する形式の炉における2次空気が供給された領域を指す。
【0009】
また補助燃料eの投入場所によっては、流路の狭いガス化路出口部に高温領域が形成され、当該部位へ溶融した灰が付着して固化しクリンカを形成するから、流路を閉塞するなどの弊害を生じるので、ガス化炉への補助燃料の供給に対しては格段の配慮が必要である。
【0010】
【特許文献1】
特開平9−236220号公報
【0011】
【発明が解決しようとする課題】
前述のように溶融炉に補助燃料を供給する場合には、効率的な温度上昇が図れず、補助燃料量の増加による燃料費のアップ、局部的な高温領域形成による耐火材の溶損の問題がある。一方、ガス化炉に補助燃料を供給する場合にも、局部的な高温領域形成による耐火材の溶損の問題がある。
【0012】
本発明の目的は、このような従来技術の欠点を解消し、ガス化炉、溶融炉および両者を結ぶ熱分解ガス流路における耐火材の溶損、熱分解ガス流路における流路の閉塞が解消でき、しかも補助燃料の使用量を最小限に抑えて、補助燃料費の低減が図れる熱分解ガス化溶融システムを提供することにある。
【0013】
【課題を解決するための手段】
前記目的を達成するために、本発明の第1の手段は、一般ごみや産業廃棄物等を熱分解ガス化炉で熱分解し、その熱分解ガス化炉で生成した熱分解ガス及びチャーを溶融炉で燃焼し、高温場を得てチャー中の灰を溶融する熱分解ガス化溶融システムにおいて、前記熱分解ガス化炉と溶融炉を接続して前記熱分解ガス及びチャーが流通する熱分解ガス流路に補助燃料を供給する補助燃料供給系統を設けたことを特徴とするものである。
【0014】
本発明の第2の手段は、前記熱分解ガス化溶融システムにおいて、前記熱分解ガス化炉の上部または出口部付近の低酸素濃度領域に補助燃料を供給する補助燃料供給系統を設けたことを特徴とするものである。
【0015】
本発明の第3の手段は、前記第1の手段または第2の手段において、前記補助燃料が灯油や重油などの液体燃料またはプロパンガスや天然ガスなどの気体燃料であることを特徴とするものである。
【0016】
本発明の第4の手段は、前記第3の手段において、前記熱分解ガス流路あるいは前記熱分解ガス化炉の上部または出口部付近を流通する熱分解ガスが灰の軟化温度を超える場合は液体燃料を供給し、前記熱分解ガスが灰の軟化温度以下の場合は気体燃料を供給することを特徴とするものである。
【0017】
本発明の第4の手段は、前記第3の手段または第4の手段において、前記液体燃料を微粒子化した状態で前記熱分解ガス流路あるいは前記熱分解ガス化炉の上部または出口部付近に供給することを特徴とするものである。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。まず本発明を一般ごみ処理用の熱分解ガス化溶融システムに適用した第1の実施形態を図1と共に説明する。
【0019】
同図において1は供給ホッパ、2は給じん装置、3は流動床式ガス化炉、4は散気管、5は熱分解ガス流路、6は溶融炉、7は2次燃焼室、8は廃熱ボイラ、9は減温装置、10は集塵装置、11は煙突、12は温度測定装置、13は制御装置、aは流動化空気、bは燃焼用空気、cはスラグ、dは飛灰、fは液体燃料、gは気体燃料である。
【0020】
本システムは、流動床式ガス化炉3と旋回式溶融炉6を組み合わせたもので、溶融炉6の後段には排ガスの完全燃焼のため2次燃焼室7を設けている。さらに排ガスからの熱回収を目的とした廃熱ボイラ8、ダイオキシン類の再合成を抑制するための排ガス温度減温装置9、ダストの捕集装置である集塵装置10を備えている。
【0021】
ごみは給じん装置2により流動床式ガス化炉3へ供給され、ガス化炉3の底部に設置されている散気管4から供給される流動化空気aにより砂などの流動媒体とともに流動化する。この過程でごみは部分燃焼し、熱分解され熱分解ガス及び未燃カーボンと灰を主成分とするチャーを生成する。生成した熱分解ガス及びチャーは旋回式溶融炉6へ送られ、別途供給される燃焼用空気bと反応し燃焼する。溶融炉6内は灰の溶融温度以上に保たれており、チャー中の灰は溶融しスラグとなって回収される。
【0022】
本システムでは、低カロリーのごみを処理する際に溶融炉6の温度が灰の溶融温度を下回るため、ガス化炉3と溶融炉6を接続している熱分解ガス流路5に補助燃料を供給している。補助燃料として、液体燃料fである灯油あるいは重油と、気体燃料gであるプロパンガスあるいは天然ガスを別々の系統から供給される。
【0023】
熱分解ガス流路5を流れる熱分解ガスの温度は熱電対からなる温度測定装置12で計測され、計測信号が制御装置13に入力される。そして温度測定装置12で計測された熱分解ガスの温度が灰の軟化温度を超える場合は液体燃料f(灯油)を供給し、熱分解ガスの温度が灰の軟化温度以下の場合は気体燃料g(プロパンガス)を供給する。本システムでは、ごみ中の灰の軟化温度が約1000℃であったため、1000℃を境界として液体燃料f(灯油)と気体燃料g(プロパンガス)の供給制御を行なった。
【0024】
前述のようにごみはガス化炉3へ供給され、流動層内で水分が蒸発し、流動層表面および空塔部において熱分解され、ガスとチャーが生成する。ガス化炉3へ供給される空気は流動化空気aのみであるが、ガスの炉外への漏洩を防止するため炉内は負圧に保たれているから、給じん系統や流動媒体である砂循環系統などから大気がガス化炉3内へ洩れ込む。このためガス化炉3には局所的に酸素濃度の高い領域が形成され、熱分解ガスと酸素が反応することで高温領域を形成する。熱分解ガスよりもカロリーの高い液体燃料f(灯油)や気体燃料g(プロパンガス)をガス化炉3に投入すると、酸素と反応して温度がさらに上昇するため、ガス化炉3の耐火材が溶損する。
【0025】
この点本実施形態では、熱分解反応が完結して酸素濃度かほぼ零あるいは極めて低い酸素濃度となる、ガス化炉3と溶融炉6を接続する熱分解ガス流路5に補助燃料である液体燃料f(灯油)や気体燃料g(プロパンガス)を供給するため、ガス化炉3内に局部的な高温領域を形成することがなく、耐火材の溶損が回避できる。
【0026】
さらに熱分解ガス流路5においては、熱分解ガスの温度が低いとタールが生成し、逆に温度が高過ぎて灰の軟化温度以上になると灰が付着することで、流路が閉塞するという問題がある。流動床ガス化炉3では、層の流動化及びごみの熱分解を安定して行なうために、層の温度を600℃程度に制御している。層温度の制御は流動化空気aの流量や温度を調整することで行なうが、洩れ込み空気量は一定値で制御不可能なため、層温度が変化すれば、それに応じて熱分解ガス流路5における熱分解ガスの温度も変化する。
【0027】
ごみ供給量やごみ質が変動した場合に流動化空気量を増加させると、層温度が一時的に高くなり、それに応じて熱分解ガスの温度が上昇し、灰の軟化温度以上になる場合がある。
【0028】
このため本発明では、熱分解ガス流路における熱分解ガス温度に応じて気体燃料と液体燃料を使い分けることで温度コントロールが可能となり、熱分解ガス流路の閉塞を回避できる。すなわち、熱分解ガス温度が灰の軟化温度よりも低い場合には気体燃料を供給し、逆に熱分解ガス温度が灰の軟化温度よりも高い場合には液体燃料を供給する。これは、液体燃料を供給すると蒸発時に熱を吸収するので、熱分解ガスの温度を低減できるためである。本実施形態では、熱分解ガス流路の熱分解ガス温度が1000℃を超える場合には液体燃料である灯油を、それ以下の温度では気体燃料であるプロパンを供給する。そのため熱分解ガス流路が閉塞することなく長期間連続運転が可能であった。
【0029】
なお、熱分解ガス流路の長さが十分確保できない場合には、液体燃料を短時間で蒸発させる必要があるため、微粒子化装置を用いて粒子径を約100μm以下にして供給した方がよい。
【0030】
また、溶融炉へ燃焼空気を供給するラインに補助燃料を投入してみたが、空気温度が低いから液体燃料が蒸発せずに溶融炉に流入し、溶融炉出口部の温度が高くなった。従って、溶融炉へ流入する燃焼用空気供給ライン等の比較的温度が低い系統への燃料供給は好ましくない。また、気体燃料を燃焼用空気供給ラインへ供給した場合には、条件によって燃焼状態となり空気供給ラインの温度が異常に上昇したため、気体燃料の供給も好ましくない。
【0031】
本実施形態においては、いずれの補助燃料を用いても溶融炉への全入熱量を一定に維持できるため、溶融炉の温度を常に灰の溶融温度に保て、安定して溶融が可能である。なお、溶融炉の形式は旋回式に限定されない。なお、補助燃料として固体燃料である石炭等を投入した場合、石炭等の固体燃料はごみのチャーよりも固定炭素分が多いから、燃焼に必要な時間を要し、溶融炉の効果的な温度上昇はできなかった。
【0032】
本発明の第2実施形態を図2とともに説明する。本実施形態は、ガス化炉3の上部あるいは出口部付近に酸素濃度計14を配置し、酸素濃度が約2%以下の低酸素濃度であることを確認して、その低酸素濃度領域へ補助燃料を供給するものである。補助燃料供給量に対してガス化炉3上部あるいは出口部付近の酸素量が過小なため、若干発熱するが温度上昇はほとんどなく、従って耐火材の溶損は見られなかった。
【0033】
本発明の第3実施形態を図3とともに説明する。本実施形態は回転キルン式のガス化炉15と旋回式の溶融炉6を組み合わせた熱分解ガス化溶融炉に適用したものである。この実施形態の場合も同様に、ガス化炉15と溶融炉6を接続する熱分解ガス流路5に補助燃料である液体燃料fまたは気体燃料gを供給し、安定した運用が可能である。
【0034】
【発明の効果】
本発明は前述のような構成になっており、プラントの安定運用が可能になるとともに、ガス化炉、溶融炉及び両者を接続する熱分解ガス流路の耐火材の溶損が回避できる。また、熱分解ガス流路の閉塞が回避でき、補助燃料使用量を最小限に抑えられ、補助燃料費の低減が図れるなどの特長を有している。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る熱分解ガス化溶融システムの概略構成図である。
【図2】本発明の第2実施形態に係る熱分解ガス化溶融システムの概略構成図である。
【図3】本発明の第3実施形態に係る熱分解ガス化溶融システムの概略構成図である。
【図4】従来の熱分解ガス化溶融システムの概略構成図である。
【符号の説明】
1:供給ホッパ、2:給じん装置、3:流動床式ガス化炉、4:散気管、5:熱分解ガス流路、6:溶融炉、7:2次燃焼室、8:廃熱ボイラ、9:減温装置、10:集塵装置、11:煙突、12:温度測定装置、13:制御装置、14:酸素濃度計、15:回転キルン式ガス化炉、a:流動化空気、b:燃焼用空気、c:スラグ、d:飛灰、f:液体燃料、g:気体燃料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention pyrolyzes general refuse and industrial waste in a pyrolysis gasifier, burns the pyrolysis gas and char generated in the gasifier in a melting furnace, obtains a high temperature field, and obtains ash in the char. The present invention relates to a pyrolysis gasification and melting system for melting gas.
[0002]
[Prior art]
A conventional pyrolysis gasification and melting system for treating general waste and industrial waste will be described with reference to FIG. In the figure, 1 is a feed hopper, 2 is a dust feeder, 3 is a fluidized bed gasifier, 4 is a diffuser pipe, 5 is a pyrolysis gas flow path, 6 is a melting furnace, 7 is a secondary combustion chamber, and 8 is A waste heat boiler, 9 is a temperature reducing device, 10 is a dust collector, 11 is a chimney, a is fluidized air, b is combustion air, c is slag, d is fly ash, and e is auxiliary fuel.
[0003]
The refuse and waste as fuel are supplied to the fluidized-bed gasifier 3 and pyrolyzed and gasified in a state of insufficient air, and the generated pyrolysis gas and char mainly composed of unburned carbon and ash are melted in the melting furnace. By burning in step 6, a high temperature field is obtained to convert the ash in the char into molten slag. In this process, garbage and waste are reduced in volume, and dioxins are completely decomposed and detoxified at high temperatures.
[0004]
In the pyrolysis gasification and melting system, when the amount of waste is small or when the calories burned are low, the auxiliary fuel e and the combustion air b are supplied to the melting furnace 6 to melt the ash in the melting furnace 6. It must be kept above the temperature. In most cases, liquid fuel such as kerosene or heavy oil, which has a low fuel cost, is used. However, the volume of the melting furnace 6 is reduced to reduce the heat radiation loss from the melting furnace 6.
[0005]
Therefore, the time required for evaporating the liquid fuel and completing the combustion may not be sufficient, and the fuel may be post-burned at the outlet of the melting furnace 6 or at the secondary fuel chamber 7 which is a downstream device. Therefore, the injected fuel e cannot be efficiently burned in the melting furnace 6, and not all of the heat input is converted into heat, so that an excessive amount of the fuel e is injected into the melting furnace 6, resulting in a high fuel cost. is there.
[0006]
Further, since the auxiliary fuel e has a calorie several times higher than the pyrolysis gas obtained by pyrolyzing general waste and industrial waste, when a flame is formed in the melting furnace 6, a region where the temperature is locally high is formed, There is a problem that the refractory material of the melting furnace 6 is melted and damaged.
[0007]
These problems are solved by supplying an auxiliary fuel to the gasification furnace side as disclosed in Patent Document 1 below. However, since a region having a high oxygen concentration exists locally in the gasifier, when the auxiliary fuel is supplied to the gasifier as described above, the auxiliary fuel supplied to the region having a high oxygen concentration burns. As a result, a locally high temperature region is formed. Thus, the gasification furnace in which a refractory material having a heat-resistant temperature lower than that of the melting furnace has a high degree of erosion of the refractory material.
[0008]
The region where the oxygen concentration is locally high in the gasification furnace is, for example, a region into which leaked air from a dust supply system or a sand circulation system flows, or a region where secondary air is supplied in a furnace of a type that supplies secondary air. Pointed out area.
[0009]
In addition, depending on the location of the auxiliary fuel e, a high-temperature region is formed at the gasification passage outlet portion where the flow passage is narrow, and the molten ash adheres to the portion and solidifies to form a clinker. Therefore, special consideration must be given to the supply of auxiliary fuel to the gasification furnace.
[0010]
[Patent Document 1]
JP-A-9-236220
[Problems to be solved by the invention]
As described above, when the auxiliary fuel is supplied to the melting furnace, the temperature cannot be increased efficiently, the fuel cost increases due to an increase in the amount of auxiliary fuel, and the problem of erosion of the refractory material due to the local formation of a high-temperature region. There is. On the other hand, also in the case of supplying the auxiliary fuel to the gasifier, there is a problem that the refractory material is melted due to the local formation of a high-temperature region.
[0012]
An object of the present invention is to solve such disadvantages of the prior art, and to solve the problem of erosion of refractory material in a gasification furnace, a melting furnace and a pyrolysis gas flow path connecting the two, and obstruction of the flow path in the pyrolysis gas flow path. An object of the present invention is to provide a pyrolysis gasification / melting system that can solve the problem and reduce the amount of auxiliary fuel by minimizing the amount of auxiliary fuel used.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a first means of the present invention is to thermally decompose general waste, industrial waste, and the like in a pyrolysis gasifier, and to decompose the pyrolysis gas and char generated in the pyrolysis gasifier. In a pyrolysis gasification and melting system that burns in a melting furnace to obtain a high temperature field and melts the ash in the char, pyrolysis in which the pyrolysis gas and the char flow by connecting the pyrolysis gasification furnace and the melting furnace An auxiliary fuel supply system for supplying auxiliary fuel to the gas flow path is provided.
[0014]
According to a second aspect of the present invention, in the pyrolysis gasification and melting system, an auxiliary fuel supply system that supplies auxiliary fuel to a low oxygen concentration region near an upper portion or an outlet of the pyrolysis gasification furnace is provided. It is a feature.
[0015]
According to a third aspect of the present invention, in the first or second aspect, the auxiliary fuel is a liquid fuel such as kerosene or heavy oil or a gaseous fuel such as propane gas or natural gas. It is.
[0016]
According to a fourth aspect of the present invention, in the third aspect, when the pyrolysis gas flowing in the pyrolysis gas channel or near the upper portion or the outlet of the pyrolysis gasification furnace exceeds the softening temperature of ash, Liquid fuel is supplied, and when the pyrolysis gas is at or below the softening temperature of ash, gaseous fuel is supplied.
[0017]
The fourth means of the present invention is the method according to the third means or the fourth means, wherein the liquid fuel is finely divided into fine particles of the pyrolysis gas flow path or an upper portion of the pyrolysis gasification furnace or in the vicinity of an outlet portion. It is characterized by supplying.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a first embodiment in which the present invention is applied to a pyrolysis gasification and melting system for general waste disposal will be described with reference to FIG.
[0019]
In the figure, 1 is a feed hopper, 2 is a dust feeder, 3 is a fluidized bed gasifier, 4 is a diffuser pipe, 5 is a pyrolysis gas flow path, 6 is a melting furnace, 7 is a secondary combustion chamber, and 8 is Waste heat boiler, 9 is a temperature reducing device, 10 is a dust collector, 11 is a chimney, 12 is a temperature measuring device, 13 is a control device, a is fluidized air, b is combustion air, c is slag, and d is flying. Ash, f is liquid fuel, g is gaseous fuel.
[0020]
The present system is a combination of a fluidized-bed gasification furnace 3 and a whirl-type melting furnace 6, and a secondary combustion chamber 7 is provided downstream of the melting furnace 6 for complete combustion of exhaust gas. The apparatus further includes a waste heat boiler 8 for recovering heat from exhaust gas, an exhaust gas temperature reducing device 9 for suppressing resynthesis of dioxins, and a dust collecting device 10 as a dust collecting device.
[0021]
The refuse is supplied to the fluidized bed gasifier 3 by the dust supply device 2 and fluidized together with a fluid medium such as sand by the fluidizing air a supplied from the diffuser 4 installed at the bottom of the gasifier 3. . During this process, the refuse is partially burned and pyrolyzed to generate pyrolysis gas and char mainly composed of unburned carbon and ash. The generated pyrolysis gas and char are sent to the swirling melting furnace 6, where they react with the separately supplied combustion air b and burn. The inside of the melting furnace 6 is maintained at a temperature higher than the melting temperature of the ash, and the ash in the char is melted and collected as slag.
[0022]
In this system, when the low-calorie refuse is treated, the temperature of the melting furnace 6 is lower than the melting temperature of the ash, so the auxiliary fuel is supplied to the pyrolysis gas flow path 5 connecting the gasification furnace 3 and the melting furnace 6. Supplying. As auxiliary fuels, kerosene or heavy oil as the liquid fuel f and propane gas or natural gas as the gaseous fuel g are supplied from different systems.
[0023]
The temperature of the pyrolysis gas flowing through the pyrolysis gas channel 5 is measured by a temperature measuring device 12 including a thermocouple, and a measurement signal is input to the control device 13. When the temperature of the pyrolysis gas measured by the temperature measuring device 12 exceeds the softening temperature of the ash, the liquid fuel f (kerosene) is supplied. When the temperature of the pyrolysis gas is equal to or lower than the softening temperature of the ash, the gas fuel g (Propane gas). In this system, since the softening temperature of the ash in the garbage was about 1000 ° C., the supply control of the liquid fuel f (kerosene) and the gaseous fuel g (propane gas) was performed at a boundary of 1000 ° C.
[0024]
As described above, the refuse is supplied to the gasification furnace 3, where water is evaporated in the fluidized bed, and is thermally decomposed on the surface of the fluidized bed and the empty tower to generate gas and char. The air supplied to the gasification furnace 3 is only the fluidized air a, but since the inside of the furnace is kept at a negative pressure in order to prevent the gas from leaking out of the furnace, it is a dust supply system and a fluid medium. The air leaks into the gasification furnace 3 from a sand circulation system or the like. For this reason, a region having a high oxygen concentration is locally formed in the gasification furnace 3, and the pyrolysis gas and oxygen react to form a high-temperature region. When a liquid fuel f (kerosene) or a gaseous fuel g (propane gas) having a higher calorie than the pyrolysis gas is introduced into the gasifier 3, the temperature increases further by reacting with oxygen. Is eroded.
[0025]
In this respect, in this embodiment, the liquid as auxiliary fuel is supplied to the pyrolysis gas flow path 5 connecting the gasification furnace 3 and the melting furnace 6 where the pyrolysis reaction is completed and the oxygen concentration becomes almost zero or extremely low. Since the fuel f (kerosene) and the gaseous fuel g (propane gas) are supplied, a local high-temperature region is not formed in the gasification furnace 3, and melting of the refractory material can be avoided.
[0026]
Further, in the pyrolysis gas flow path 5, tar is generated when the temperature of the pyrolysis gas is low, and conversely, when the temperature is too high and becomes equal to or higher than the softening temperature of the ash, the ash adheres and the flow path is closed. There's a problem. In the fluidized-bed gasification furnace 3, the temperature of the bed is controlled to about 600 ° C. in order to stably fluidize the bed and thermally decompose the refuse. The bed temperature is controlled by adjusting the flow rate and temperature of the fluidized air a. However, since the amount of leaked air cannot be controlled at a constant value, if the bed temperature changes, the pyrolysis gas flow path will be adjusted accordingly. The temperature of the pyrolysis gas at 5 also changes.
[0027]
If the amount of fluidized air is increased when the amount of waste supplied or the quality of waste is changed, the bed temperature will temporarily increase, and the temperature of the pyrolysis gas will increase accordingly, and may exceed the softening temperature of ash. is there.
[0028]
For this reason, in the present invention, temperature control becomes possible by selectively using gaseous fuel and liquid fuel according to the temperature of the pyrolysis gas in the pyrolysis gas channel, and the blockage of the pyrolysis gas channel can be avoided. That is, when the pyrolysis gas temperature is lower than the ash softening temperature, gaseous fuel is supplied, and when the pyrolysis gas temperature is higher than the ash softening temperature, liquid fuel is supplied. This is because, when the liquid fuel is supplied, heat is absorbed at the time of evaporation, so that the temperature of the pyrolysis gas can be reduced. In this embodiment, kerosene which is a liquid fuel is supplied when the temperature of the pyrolysis gas in the pyrolysis gas flow path exceeds 1000 ° C., and propane which is a gaseous fuel is supplied at a temperature lower than 1000 ° C. Therefore, continuous operation was possible for a long period without blocking the pyrolysis gas flow path.
[0029]
If the length of the pyrolysis gas channel cannot be sufficiently secured, it is necessary to evaporate the liquid fuel in a short period of time. Therefore, it is better to supply the liquid fuel with a particle diameter of about 100 μm or less using a micronization device. .
[0030]
In addition, an auxiliary fuel was injected into a line for supplying combustion air to the melting furnace. However, since the air temperature was low, the liquid fuel flowed into the melting furnace without evaporating, and the temperature of the melting furnace outlet became high. Therefore, it is not preferable to supply fuel to a system having a relatively low temperature, such as a combustion air supply line flowing into the melting furnace. Further, when the gaseous fuel is supplied to the combustion air supply line, the gaseous fuel is brought into a combustion state depending on the condition, and the temperature of the air supply line abnormally rises.
[0031]
In the present embodiment, the total heat input to the melting furnace can be maintained constant even when any auxiliary fuel is used, so that the temperature of the melting furnace can always be kept at the melting temperature of ash, and stable melting can be performed. . The type of the melting furnace is not limited to the revolving type. In addition, when solid fuel such as coal is injected as auxiliary fuel, solid fuel such as coal has more fixed carbon content than char of garbage. I couldn't climb.
[0032]
A second embodiment of the present invention will be described with reference to FIG. In the present embodiment, an oxygen concentration meter 14 is arranged at the upper part of the gasification furnace 3 or near the outlet, and confirms that the oxygen concentration is low, ie, about 2% or less, and assists the low oxygen concentration region. It supplies fuel. Since the amount of oxygen in the upper part of the gasification furnace 3 or in the vicinity of the outlet was smaller than the supply amount of the auxiliary fuel, heat was generated slightly, but there was almost no increase in the temperature, and therefore no melting damage of the refractory material was observed.
[0033]
A third embodiment of the present invention will be described with reference to FIG. This embodiment is applied to a pyrolysis gasification / melting furnace in which a rotary kiln type gasification furnace 15 and a swirling type melting furnace 6 are combined. Similarly, in the case of this embodiment, the liquid fuel f or the gaseous fuel g, which is an auxiliary fuel, is supplied to the pyrolysis gas flow path 5 connecting the gasification furnace 15 and the melting furnace 6, thereby enabling stable operation.
[0034]
【The invention's effect】
The present invention has the above-described configuration, and enables stable operation of the plant, and can avoid erosion of the refractory material in the gasification furnace, the melting furnace, and the pyrolysis gas flow path connecting the two. In addition, it has features that the blockage of the pyrolysis gas channel can be avoided, the amount of auxiliary fuel used can be minimized, and the cost of auxiliary fuel can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a pyrolysis gasification and melting system according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a pyrolysis gasification and melting system according to a second embodiment of the present invention.
FIG. 3 is a schematic configuration diagram of a pyrolysis gasification and melting system according to a third embodiment of the present invention.
FIG. 4 is a schematic configuration diagram of a conventional pyrolysis gasification and melting system.
[Explanation of symbols]
1: feed hopper, 2: dust supply device, 3: fluidized bed gasifier, 4: diffuser pipe, 5: pyrolysis gas flow path, 6: melting furnace, 7: secondary combustion chamber, 8: waste heat boiler , 9: temperature reducing device, 10: dust collecting device, 11: chimney, 12: temperature measuring device, 13: control device, 14: oxygen concentration meter, 15: rotary kiln type gasification furnace, a: fluidized air, b : Combustion air, c: slag, d: fly ash, f: liquid fuel, g: gaseous fuel

Claims (5)

一般ごみや産業廃棄物等を熱分解ガス化炉で熱分解し、その熱分解ガス化炉で生成した熱分解ガス及びチャーを溶融炉で燃焼し、高温場を得てチャー中の灰を溶融する熱分解ガス化溶融システムにおいて、
前記熱分解ガス化炉と溶融炉を接続して前記熱分解ガス及びチャーが流通する熱分解ガス流路に補助燃料を供給する補助燃料供給系統を設けたことを特徴とする熱分解ガス化溶融システム。
Pyrolysis of general garbage and industrial waste in a pyrolysis gasifier, pyrolysis gas and char generated in the pyrolysis gasifier are burned in a melting furnace, and a high temperature field is obtained to melt the ash in the char. Thermal decomposition gasification and melting system
A pyrolysis gasification / melting furnace connected to the pyrolysis gasification furnace and a melting furnace and an auxiliary fuel supply system for supplying an auxiliary fuel to a pyrolysis gas flow path through which the pyrolysis gas and the char flow. system.
一般ごみや産業廃棄物等を熱分解ガス化炉で熱分解し、その熱分解ガス化炉で生成した熱分解ガス及びチャーを溶融炉で燃焼し、高温場を得てチャー中の灰を溶融する熱分解ガス化溶融システムにおいて、
前記熱分解ガス化炉の上部または出口部付近の低酸素濃度領域に補助燃料を供給する補助燃料供給系統を設けたことを特徴とする熱分解ガス化溶融システム。
Pyrolysis of general garbage and industrial waste in a pyrolysis gasifier, pyrolysis gas and char generated in the pyrolysis gasifier are burned in a melting furnace, and a high temperature field is obtained to melt the ash in the char. Thermal decomposition gasification and melting system
A pyrolysis gasification and melting system, wherein an auxiliary fuel supply system for supplying auxiliary fuel to a low oxygen concentration region near an upper portion or an outlet of the pyrolysis gasification furnace is provided.
請求項1または請求項2記載の熱分解ガス化溶融システムにおいて、前記補助燃料が液体燃料または気体燃料であることを特徴とする熱分解ガス化溶融システム。3. The pyrolysis gasification and melting system according to claim 1, wherein the auxiliary fuel is a liquid fuel or a gaseous fuel. 請求項3記載の熱分解ガス化溶融システムにおいて、前記熱分解ガス流路あるいは前記熱分解ガス化炉の上部または出口部付近を流通する熱分解ガスが灰の軟化温度を超える場合は液体燃料を供給し、前記熱分解ガスが灰の軟化温度以下の場合は気体燃料を供給することを特徴とする熱分解ガス化溶融システム。The pyrolysis gasification and melting system according to claim 3, wherein the pyrolysis gas flowing through the pyrolysis gas channel or the upper portion or the vicinity of the outlet of the pyrolysis gasification furnace exceeds the softening temperature of ash. And supplying a gaseous fuel when the pyrolysis gas is at or below the softening temperature of ash. 請求項3または請求項4記載の熱分解ガス化溶融システムにおいて、前記液体燃料を微粒子化した状態で前記熱分解ガス流路あるいは前記熱分解ガス化炉の上部または出口部付近に供給することを特徴とする熱分解ガス化溶融システム。5. The pyrolysis gasification and melting system according to claim 3, wherein the liquid fuel is supplied to the pyrolysis gas flow path or the upper portion of the pyrolysis gasification furnace or in the vicinity of an outlet portion in a state of being atomized. Characterized pyrolysis gasification melting system.
JP2003056118A 2003-03-03 2003-03-03 Pyrolysis gasification melting system Expired - Fee Related JP4105963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003056118A JP4105963B2 (en) 2003-03-03 2003-03-03 Pyrolysis gasification melting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003056118A JP4105963B2 (en) 2003-03-03 2003-03-03 Pyrolysis gasification melting system

Publications (2)

Publication Number Publication Date
JP2004263969A true JP2004263969A (en) 2004-09-24
JP4105963B2 JP4105963B2 (en) 2008-06-25

Family

ID=33119934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003056118A Expired - Fee Related JP4105963B2 (en) 2003-03-03 2003-03-03 Pyrolysis gasification melting system

Country Status (1)

Country Link
JP (1) JP4105963B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128006A (en) * 2004-10-29 2006-05-18 Central Res Inst Of Electric Power Ind High temperature type fuel cell power generation system by carbonizing and gasifying biomass
JP2010236733A (en) * 2009-03-31 2010-10-21 Hitachi Zosen Corp Gasification melting method and gasification melting facility for waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128006A (en) * 2004-10-29 2006-05-18 Central Res Inst Of Electric Power Ind High temperature type fuel cell power generation system by carbonizing and gasifying biomass
JP2010236733A (en) * 2009-03-31 2010-10-21 Hitachi Zosen Corp Gasification melting method and gasification melting facility for waste

Also Published As

Publication number Publication date
JP4105963B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
EP1347236A1 (en) Waste-gasified fusion furnace and method of operating the fusion furnace
JP2007271203A (en) Fluidized bed gasification furnace and its fluidized bed monitoring/controlling method
JP4126316B2 (en) Operation control method of gasification and melting system and system
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP5154094B2 (en) Combustion control method for gasification melting system and system
KR20030092086A (en) Slagging combustion furnace
JP2008224141A (en) Waste incinerating device and method
JP2007255844A (en) Fusing equipment and fusing method of gasification fusing system
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP2004263969A (en) Pyrolytic gasification melting system
JP4243764B2 (en) Pyrolysis gasification melting system and its heating method
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2005201621A (en) Refuse gasifying and melting method and apparatus
JP4285760B2 (en) Operation control method of gasification and melting system and system
JPH08121728A (en) Combustion method of gas produced from wastes melting furnace and secondary combustion furnace for wastes melting furnace
JP3902123B2 (en) Melting furnace temperature compensation apparatus and melting furnace temperature compensation method for gasification melting apparatus
JP2000140796A (en) Method and device for pyrolytic melting of waste
JP3461457B2 (en) Waste treatment equipment
JP6331149B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2004271039A (en) Thermal decomposition gasifying melting system
JP2006023024A (en) Heating method and heating device of organic compound
JP2004316956A (en) Fluidized bed type gasification melting furnace device
JPH0979532A (en) Melting furnace
JP2002018324A (en) Dc cyclone separator provided with temperature control mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees