JP2004316956A - Fluidized bed type gasification melting furnace device - Google Patents

Fluidized bed type gasification melting furnace device Download PDF

Info

Publication number
JP2004316956A
JP2004316956A JP2003107837A JP2003107837A JP2004316956A JP 2004316956 A JP2004316956 A JP 2004316956A JP 2003107837 A JP2003107837 A JP 2003107837A JP 2003107837 A JP2003107837 A JP 2003107837A JP 2004316956 A JP2004316956 A JP 2004316956A
Authority
JP
Japan
Prior art keywords
fluidized bed
melting furnace
gasification
temperature
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107837A
Other languages
Japanese (ja)
Inventor
Tetsuya Iwase
徹哉 岩瀬
Hiroshi Yoshizaki
弘師 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003107837A priority Critical patent/JP2004316956A/en
Publication of JP2004316956A publication Critical patent/JP2004316956A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasification melting furnace device for individually optimally holding the temperature of a gasification furnace and a melting furnace to a change in garbage quality. <P>SOLUTION: This fluidized bed type gasification melting furnace device has a fluidized bed type gasification furnace 5 for pyrolyzing and gasifying garbage, and the melting furnace 13 for burning combustible gas and combustible particulates generated by pyrolysis of the garbage at the high temperature; and variably adjusts the supply ratio of auxiliary fuel quantity and auxiliary air quantity by supplying auxiliary fuel 9 and auxiliary air 11 to the gasification furnace 5. An auxiliary fuel input port for supplying the auxiliary fuel to the gasification furnace is arranged in a space part of a fluidized bed upper part or a fluidized bed; and supplies the auxiliary air supplied to the gasification furnace in the fluidized bed by adding to fluidizing air to the space part or a diffuser pipe of the fluidized bed upper part. An auxiliary fuel flow rate to the gasification furnace is adjusted on the basis of the melting furnace temperature by detecting the temperature 14 of the melting furnace. The auxiliary air quantity is adjusted on the basis of the fluidized bed temperature by detecting the fluidized bed temperature 8 of the gasification furnace. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、流動床式廃棄物ガス化溶融燃焼設備に係り、ごみ質が変動してもガス化炉と溶融炉の温度を一定範囲に保持するのに好適なガス化溶融炉装置に関する。
【0002】
【従来の技術】
一般的な従来技術として、流動床式ガス化溶融炉は、ガス化炉で家庭ごみ等の廃棄物を熱分解することで不燃成分、有価金属と可燃ガス、チャー成分とを分離生成し、可燃ガス、チャーのみを旋回溶融炉で高温燃焼する。これによって、高温燃焼でダイオキシン発生を抑え、燃焼灰は溶融スラグで減容化できる環境対応型の焼却方式となっている。
【0003】
ここで、ごみを熱分解するためガス化炉は、空気比1.0以下の低空気比雰囲気として流動床温度を500〜700℃で運転する。また、溶融炉においては空気比1.0近傍の条件で焼却灰の融点以上(一般に1300℃以上)の高温燃焼を行う。安定したガス化溶融運転を行なうためには、ガス化炉と溶融炉の温度と空気比の管理が重要となる。
【0004】
一方で、供給するごみの水分量や発熱量といったごみ質はごみの種類や季節により大きく異なるため、例えばごみの処理量が一定でもごみ中の水分の増加や発熱量の低下といったごみ質の低下により、ガス化炉、溶融炉の温度が低下してしまうという事象が生じる。
【0005】
従来技術のごみ焼却炉においても、ごみ質が低下すると燃焼部位である流動床温度が低下する事象が生じる。この場合、安定した燃焼を継続するために、ごみ質の低下分に見合う発熱量を発生させ得る量の補助燃料を焼却炉へ供給して燃焼させることにより燃焼温度を維持する手法が一般的に行われている。この手法は、ごみ焼却炉への供給空気量が供給ごみの理論空気量に対して1.5〜1.8程度に十分高く設定されているので、ごみ焼却炉に供給した補助燃料がごみ焼却炉内で燃焼し、ごみ焼却炉の温度を昇温する作用乃至機能を果たすものである。
【0006】
そこで、ガス化溶融炉においては、上述した従来技術のごみ焼却炉の手法をそのまま流用して、ガス化炉に補助燃料を供給することによって高温燃焼部の溶融炉温度を調整することが提案されている(例えば、特許文献1を参照)。
【0007】
【特許文献1】
特開平9−236220号公報
【0008】
【発明が解決しようとする課題】
上述した従来技術のごみ焼却炉又はガス化溶融炉においても、いづれも補助燃料で燃焼部の温度の調整を行うことが特徴であるが、前記特許文献1におけるガス化溶融炉では、燃焼部分である溶融炉のガス流れ上流部にガス化炉が存在するため、従来技術のごみ焼却炉と同様に補助燃料だけの一つの操作手段で、二つの炉(ガス化炉と溶融炉)の温度を個別に調整することは制御的に困難である。
【0009】
さらに、ガス化溶融炉において、各種の試験研究と解析評価から補助燃料の供給量を調整するだけでは、ガス化炉と溶融炉の温度を最適に維持することが困難であることが実験炉での試験データの解明結果から判明した。例えば、ごみ質が低下して水分が増えたり発熱量が減少した場合は、ガス化炉とガス化炉の下流側にある溶融炉の温度は共に低下傾向となる。この状態で溶融炉の温度を維持するのに必要な発熱量に見合うだけの補助燃料量をガス化炉に供給すると、低空気比であるため補助燃料の顕熱分と気化熱分(補助燃料が液体の場合)の熱量をガス化炉の熱量から消費するので、ガス化炉の温度は更に低下傾向となる。ガス化炉の温度低下により熱分解ガスの生成が抑制されて、溶融炉の温度は補助燃料を供給したにも拘わらず改善されないか、却って低下傾向となる場合もある。
【0010】
本発明の目的は、ごみ質の変化に対してガス化炉と溶融炉の温度を同時に最適に保持できるガス化溶融炉装置を提供することにある。
【0011】
【課題を解決するための手段】
前記課題を解決するために、本発明は主として次のような構成を採用する。
ごみを熱分解ガス化する流動床式ガス化炉と、ごみの熱分解で生成する可燃性ガスと可燃微粒子とを高温で燃焼する溶融炉と、を備えた流動床式ガス化溶融炉装置において、
前記ガス化炉に補助燃料と補助空気を供給する構成とする。
【0012】
また、前記流動床式ガス化溶融炉装置において、前記ガス化炉に供給する補助燃料投入口を流動床上部の空間部分又は流動床内に設け、前記ガス化炉に供給する補助空気を流動床上部の空間部分又は散気管への流動化空気に加算して流動床内に供給する構成とする。
【0013】
また、前記流動床式ガス化溶融炉装置において、前記溶融炉の温度を検出し、前記検出した温度に基づいて補助燃料流量を調整し、
前記ガス化炉の流動床温度を検出し、前記検出した流動床温度に基づいて補助空気量を調整する構成とする。
【0014】
また、前記流動床式ガス化溶融炉装置において、前記溶融炉の温度を検出し、前記検出した温度に基づいて補助燃料流量を調整し、
前記ガス化炉の補助燃料流量を検出し、前記検出した補助燃料流量に基づいて前記補助空気量を調整する構成とする。
【0015】
このような構成を採用することにより、ごみ質の変動に対して補助燃料と補助空気を組み合わせてガス化炉に供給することによって、ガス化炉と溶融炉の両方の温度を同時に最適に制御できる。
【0016】
【発明の実施の形態】
本発明の実施形態に係る流動床式ガス化溶融炉装置について、図1を参照しながら以下説明する。図1は本発明の実施形態に係る流動床式ガス化溶融炉装置の全体構成を示す図である。
【0017】
ここで、1はごみ受入装置、2はごみ受入ホッパ、3はごみ供給機、4は回転バルブ、5はガス化炉、6は流動床、7は流動空気散気管、8はガス化炉温度計、9は補助燃料供給ノズル、10は補助燃料流量調節弁、11は補助空気流量調節ダンパ、12は熱分解ガス流れ、13は旋回溶融炉、14は溶融炉温度計、15は溶融スラグ、16はスラグ排出口、17はスラグ流下流れ、18は溶融炉出口燃焼ガス、19は二次燃焼炉、20は廃熱回収ボイラ、をそれぞれ表す。
【0018】
まず、流動床式ガス化溶融炉装置の基本的な構成並びに機能について説明すると、図1において、焼却対象となる廃棄物は、ごみ受入装置1からごみ受入ホッパ2を介してごみ供給機3で送られ、回転バルブ4を経由してガス化炉5に供給される。供給されたごみは、ガス化炉5の下部の流動床6において、流動床ガス化反応により熱分解ガスを発生する。ガス化は供給ごみ量に対して空気比0.3〜0.6程度を流動化燃焼空気として、流動空気散気管7から流動床6へ供給され、流動床温度を500〜700℃に維持することにより行なわれる。
【0019】
ガス化炉5で発生した熱分解ガスは、ガス化炉頂部の煙道を通って旋回溶融炉13に導入される。熱分解ガスは溶融炉で空気比1.0前後で灰の融点以上の高温で旋回燃焼を行う。旋回部での遠心力により溶融スラグは旋回溶融炉13の傾斜下部壁からスラグ流となって流れ、溶融炉出口に設けたスラグ排出口16から重力で下方に流れ落ちる。流下したスラグ17はここでは図示しない水砕槽で急冷することで水砕スラグとなる。
【0020】
旋回溶融炉13でスラグと分離した燃焼ガス18は、二次燃焼炉19で完全燃焼した後、廃熱回収ボイラ20を通過した後に、ここでは図示しない排ガス処理装置を経て有害ガス成分と煤塵を除去した後に、煙突から大気に排出される。
【0021】
ここで、本発明の実施形態の概要を説明すると、本実施形態に係る流動床式廃棄物ガス化溶融炉においては、ごみ質の変動や幅広い廃棄物種類の違いに対しても流動床ガス化で安定して熱分解ガスを発生するには、ガス化炉温度を常に一定範囲の温度に維持する必要がある。更に、ガス化炉で発生した熱分解ガスを旋回溶融炉で溶融燃焼するためには、旋回溶融炉の燃焼温度を常に一定範囲の温度に維持する必要がある。
【0022】
本実施形態においては、溶融炉の温度に基づいてガス化炉に補助燃料を供給すると同時に補助空気を供給することで、ごみ質やごみ種類の変動に際しても、ガス化炉における熱分解ガスと可燃微粒子の生成量を確保し、さらに下流側の旋回溶融炉での溶融炉温度を所定の温度に維持できるようにしたものである。この場合、図1に示すように補助空気量は、ガス温度計8での測定結果に基づいて制御することもできる。
【0023】
そこで、本実施形態に係るガス化炉5には、補助燃料の供給ノズル9が設置されている。図1において、補助燃料供給ノズル9は流動床6内と流動床6外の空間部の2箇所に設けているが、何れか一方でも構わない。補助空気は図1においては流動床内の補助燃料供給ノズル9ならびに流動化空気散気管7に接続しているが、何れか一方であっても構わない。また、補助空気ノズル9’単独でガス化炉内の流動床外に供給することも可能である。
【0024】
また、図示するように、溶融炉温度計14の出力で補助燃料流量調節弁10の開度を制御するとともに、ガス火炉温度計8の出力で補助空気流量調節ダンパ11の開度を制御している。そして、補助燃料流量調節弁10は、燃焼部位である旋回溶融炉13の温度計14の計測値が一定範囲を外れて低下すると、温度を回復するように補助燃料を供給するか、または開度を増して供給する。補助燃料の投入度合いにより流動床温度8が変化するので(補助燃料を供給増加すると顕熱分と気化熱分の消費により温度は低下傾向となる)、流動床温度が所定の温度範囲を下回る場合は、補助空気流量調節ダンパ11を開して、ガス化炉5の燃焼発熱反応を増加して温度を上昇させるように制御する。
【0025】
敷衍して説明すると、本実施形態の構成においては、ガス化炉と溶融炉の各々の温度を同時に調整する手段として、ガス化炉に補助燃料と補助空気を供給することで、ガス化炉と溶融炉の2つの制御対象に対して、補助燃料と補助空気という2つの操作手段を制御して各炉の温度を適宜に制御することができる。具体的には、溶融炉温度計14で溶融炉の温度を検知し、これの基づいて補助燃料量を調整し、補助燃料の供給で流動床温度が変化して、この流動床温度変化をガス化炉温度計8で検知して補助空気量を調整していて、この一連の制御系統でガス化炉と溶融炉の各々の温度を個別に調整しているのである。
【0026】
そして、ガス化炉の熱分解反応は通常0.3から0.6の低空気比条件下のため、ガス化炉温度上昇に寄与する発熱反応は、ガス化炉に供給される空気律速の環境であることが実験で確かめられた。そのため、空気量一定で補助燃料を供給しても補助燃料は燃焼せず、補助燃料の顕熱と気化熱(燃料が液体の場合)分をガス化炉入熱で補う分のガス化炉温度が低下することになる。ガス化炉温度が低下した状態では、下流側の溶融炉での燃焼に必要な可燃分、すなわち熱分解ガス及び可燃微粒子量が不足し、溶融炉温度は上昇せず、スラグ化率の低下等の課題が発生する。
【0027】
したがって、ごみ質低下によるガス化炉温度低下に対しては補助燃料と同時にガス化炉温度上昇に必要な燃焼量に相当する燃焼空気を補助空気としてガス化炉に供給することが有効となる。
【0028】
一方で、ガス化炉に供給された補助燃料は、ガス化炉での燃焼消費分を除いては可燃ガスとしてガス化炉を出た後に溶融炉に供給されるので、溶融炉で燃焼して溶融炉の温度上昇に寄与することになる。
【0029】
このように、ガス化炉に供給する補助燃料の入熱分を補助空気の供給量でガス化炉と溶融炉に配分調節することが可能となる。これにより、ごみ質の変動に対してガス化炉と溶融炉の温度を最適に調整することができる。
【0030】
次に、本発明の他の実施形態に係る流動床式ガス化溶融炉装置とその制御方法について、図2を参照しながら以下説明する。図2に示す符号の構成要素は図1の同符号の構成要素と同一である。
【0031】
図2において、ガス化炉5への補助燃料の供給量が既知であれば、補助燃料供給によるガス化炉での温度低下は、計算から及び/又は試験データから予測することが可能となる。したがって、補助燃料の供給に対してガス化炉温度低下を補うだけの空気量も予め算出することができる。これにより、補助燃料の供給量の増減に応じた補助空気量を同時に調整することで、ガス化炉温度の変化に応じて予め補助空気量を調整することによって、先行的に制御することができる。
【0032】
図2では、溶融炉温度計14の出力によって補助燃料流量調節弁10の開度を制御し(温度計14の温度が低ければ補助燃料を増やすように制御する)、制御された補助燃料の流量を補助燃料流量計8で計測してこの計測値によって補助空気流量調節ダンパ11の開度を制御している。即ち、補助空気流量調整ダンパ11の開度は補助燃料の流量計8の測定値の関数として設定され、補助燃料量の一定比率で供給するものである。図2に示す第2の実施形態においても図1に示す実施形態と同等の効果を得ることができる。
【0033】
【発明の効果】
以上のように、本発明によれば、ごみ質の変動に対して補助燃料と補助空気を組み合わせてガス化炉に供給することによって、ガス化炉と溶融炉の両方の温度を同時に最適に制御できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る流動床式ガス化溶融炉装置の全体構成を示す図である。
【図2】本発明の他の実施形態に係る流動床式ガス化溶融炉装置の全体構成を示す図である。
【符号の説明】
1 ごみ受入装置
2 ごみ受入ホッパ
3 ごみ供給機
4 回転バルブ
5 ガス化炉
6 流動床
7 流動空気散気管
8 ガス化炉温度計
9,9’ 補助燃料供給ノズル
10 補助燃料流量調節弁
11 補助空気流量調節ダンパ
12 熱分解ガス流れ
13 旋回溶融炉
14 溶融炉温度計
15 溶融スラグ
16 スラグ排出口
17 スラグ流下流れ
18 溶融炉出口燃焼ガス
19 二次燃焼炉
20 廃熱回収ボイラ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluidized-bed waste gasification / melting / combustion facility, and more particularly to a gasification / melting furnace apparatus suitable for maintaining the temperatures of a gasification furnace and a melting furnace within a certain range even if the quality of waste fluctuates.
[0002]
[Prior art]
As a general prior art, a fluidized bed gasification and melting furnace separates and generates non-combustible components, valuable metals from combustible gas, and char components by pyrolyzing waste such as household waste in the gasifier, resulting in combustible combustion. Only gas and char are burned at high temperature in a rotary melting furnace. As a result, the generation of dioxin is suppressed by high-temperature combustion, and the combustion ash is an environmentally friendly incineration system that can reduce the volume of molten slag.
[0003]
Here, in order to thermally decompose the refuse, the gasification furnace is operated at a fluidized bed temperature of 500 to 700 ° C. as a low air ratio atmosphere having an air ratio of 1.0 or less. In the melting furnace, high-temperature combustion at a temperature higher than the melting point of the incinerated ash (generally, 1300 ° C. or higher) is performed under an air ratio of about 1.0. In order to perform a stable gasification and melting operation, it is important to control the temperature and the air ratio of the gasification furnace and the melting furnace.
[0004]
On the other hand, the quality of waste, such as the amount of moisture and calorific value of the waste, varies greatly depending on the type and season of the waste. As a result, an event occurs in which the temperatures of the gasification furnace and the melting furnace decrease.
[0005]
Even in the waste incinerator of the related art, when the waste quality is reduced, an event occurs in which the temperature of the fluidized bed, which is the combustion site, decreases. In this case, in order to maintain stable combustion, a method of maintaining a combustion temperature by supplying an auxiliary fuel in an amount capable of generating a heat value corresponding to a decrease in waste quality to an incinerator and burning the fuel is generally used. Is being done. In this method, the amount of air supplied to the refuse incinerator is set sufficiently high to about 1.5 to 1.8 with respect to the theoretical air amount of the refuse, so that the auxiliary fuel supplied to the refuse incinerator is incinerated. It burns in the furnace and performs the function or function of raising the temperature of the refuse incinerator.
[0006]
Therefore, in the gasification and melting furnace, it has been proposed to adjust the melting furnace temperature of the high-temperature combustion section by supplying the auxiliary fuel to the gasification furnace by diverting the above-mentioned conventional waste incineration method as it is. (For example, see Patent Document 1).
[0007]
[Patent Document 1]
JP-A-9-236220
[Problems to be solved by the invention]
In the above-mentioned conventional incinerator or gasification and melting furnace, the feature is that the temperature of the combustion section is adjusted with an auxiliary fuel in any case. Since a gasifier exists upstream of the gas flow of a certain melting furnace, the temperature of the two furnaces (gasification furnace and melting furnace) can be controlled by a single operating means using only auxiliary fuel, similar to the waste incinerator of the prior art. It is difficult to control individually.
[0009]
Furthermore, in the gasification and melting furnaces, it is difficult to maintain the optimum temperatures of the gasification and melting furnaces only by adjusting the supply amount of the auxiliary fuel based on various test research and analysis and evaluation. It was found from the result of elucidation of the test data. For example, when the waste quality is reduced and the water content is increased or the calorific value is reduced, the temperatures of the gasifier and the melting furnace downstream of the gasifier both tend to decrease. In this state, if the amount of auxiliary fuel corresponding to the amount of heat required to maintain the temperature of the melting furnace is supplied to the gasifier, the sensible heat of the auxiliary fuel and the heat of vaporization (auxiliary fuel Is consumed from the heat of the gasifier, the temperature of the gasifier tends to further decrease. Due to the decrease in the temperature of the gasification furnace, the generation of pyrolysis gas is suppressed, and the temperature of the melting furnace may not be improved despite the supply of the auxiliary fuel, or may tend to decrease.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to provide a gasification and melting furnace apparatus capable of simultaneously and optimally maintaining the temperatures of a gasification furnace and a melting furnace with respect to a change in waste.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention mainly employs the following configuration.
In a fluidized bed gasification and melting furnace device comprising: a fluidized bed gasifier for pyrolyzing and gasifying refuse; and a melting furnace for burning flammable gas and flammable particles generated by pyrolysis of refuse at a high temperature. ,
An auxiliary fuel and auxiliary air are supplied to the gasification furnace.
[0012]
In the fluidized-bed gasification and melting furnace apparatus, an auxiliary fuel inlet for supplying the gasification furnace is provided in a space above the fluidized bed or in the fluidized bed, and auxiliary air supplied to the gasification furnace is supplied on the fluidized bed. The fluidized air to be supplied to the fluidized bed is added to the fluidized air to the space portion of the section or the air diffuser.
[0013]
Further, in the fluidized bed gasification and melting furnace device, the temperature of the melting furnace is detected, and the auxiliary fuel flow rate is adjusted based on the detected temperature.
The fluidized bed temperature of the gasification furnace is detected, and the auxiliary air amount is adjusted based on the detected fluidized bed temperature.
[0014]
Further, in the fluidized bed gasification and melting furnace device, the temperature of the melting furnace is detected, and the auxiliary fuel flow rate is adjusted based on the detected temperature.
The auxiliary fuel flow rate of the gasification furnace is detected, and the auxiliary air amount is adjusted based on the detected auxiliary fuel flow rate.
[0015]
By adopting such a configuration, it is possible to optimally control both the temperature of the gasification furnace and the temperature of the melting furnace simultaneously by supplying the auxiliary fuel and the auxiliary air to the gasifier in combination with the fluctuation of the waste quality. .
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
A fluidized bed gasification and melting furnace apparatus according to an embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a diagram showing an overall configuration of a fluidized bed gasification and melting furnace apparatus according to an embodiment of the present invention.
[0017]
Here, 1 is a refuse receiving device, 2 is a refuse receiving hopper, 3 is a refuse feeder, 4 is a rotary valve, 5 is a gasifier, 6 is a fluidized bed, 7 is a fluidized air diffuser, and 8 is a gasifier temperature. 9 is an auxiliary fuel supply nozzle, 10 is an auxiliary fuel flow control valve, 11 is an auxiliary air flow control damper, 12 is a pyrolysis gas flow, 13 is a swirling melting furnace, 14 is a melting furnace thermometer, 15 is a melting slag, Reference numeral 16 denotes a slag discharge port, 17 denotes a slag downflow, 18 denotes a combustion furnace outlet combustion gas, 19 denotes a secondary combustion furnace, and 20 denotes a waste heat recovery boiler.
[0018]
First, the basic configuration and function of the fluidized-bed gasification and melting furnace device will be described. In FIG. 1, waste to be incinerated is transferred from the waste receiving device 1 to the waste feeder 3 via the waste receiving hopper 2. It is sent to the gasification furnace 5 via the rotary valve 4. The supplied refuse generates a pyrolysis gas by a fluidized bed gasification reaction in a fluidized bed 6 at a lower portion of the gasification furnace 5. In the gasification, the air ratio of about 0.3 to 0.6 is supplied to the fluidized bed 6 from the fluidized air diffuser 7 as fluidized combustion air with respect to the supplied waste, and the fluidized bed temperature is maintained at 500 to 700 ° C. It is done by doing.
[0019]
The pyrolysis gas generated in the gasification furnace 5 is introduced into the swirling melting furnace 13 through a flue at the top of the gasification furnace. The pyrolysis gas performs swirling combustion in a melting furnace at an air ratio of about 1.0 and a high temperature equal to or higher than the melting point of ash. Due to the centrifugal force at the swirling part, the molten slag flows as a slag flow from the inclined lower wall of the swirling melting furnace 13 and flows downward by gravity from a slag discharge port 16 provided at the melting furnace outlet. The slag 17 that has flowed down is quenched into a granulated slag by being rapidly cooled in a granulation tank (not shown).
[0020]
After the combustion gas 18 separated from the slag in the swirling melting furnace 13 is completely burned in the secondary combustion furnace 19 and passes through the waste heat recovery boiler 20, the harmful gas component and the dust are passed through an exhaust gas treatment device not shown here. After removal, they are released to the atmosphere from the chimney.
[0021]
Here, the outline of the embodiment of the present invention will be described. In the fluidized bed waste gasification / melting furnace according to the present embodiment, fluidized bed gasification can be performed even with respect to fluctuations in waste quality and a wide variety of waste types. In order to stably generate the pyrolysis gas, it is necessary to always maintain the gasifier temperature within a certain range. Further, in order to melt and burn the pyrolysis gas generated in the gasification furnace in the swirling melting furnace, it is necessary to always maintain the combustion temperature of the swirling melting furnace within a certain range.
[0022]
In this embodiment, the auxiliary fuel is supplied to the gasifier at the same time as the auxiliary air is supplied to the gasifier based on the temperature of the melting furnace. The amount of generated fine particles is secured, and the melting furnace temperature in the swirling melting furnace on the downstream side can be maintained at a predetermined temperature. In this case, as shown in FIG. 1, the amount of auxiliary air can be controlled based on the measurement result of the gas thermometer 8.
[0023]
Therefore, the gasification furnace 5 according to the present embodiment is provided with a supply nozzle 9 for the auxiliary fuel. In FIG. 1, the auxiliary fuel supply nozzle 9 is provided at two places in the fluidized bed 6 and a space outside the fluidized bed 6, but either one may be used. In FIG. 1, the auxiliary air is connected to the auxiliary fuel supply nozzle 9 and the fluidized air diffuser 7 in the fluidized bed, but may be any one of them. It is also possible to supply the auxiliary air nozzle 9 'alone to the outside of the fluidized bed in the gasification furnace.
[0024]
As shown in the drawing, the opening of the auxiliary fuel flow control valve 10 is controlled by the output of the melting furnace thermometer 14, and the opening of the auxiliary air flow control damper 11 is controlled by the output of the gas furnace thermometer 8. I have. When the measured value of the thermometer 14 of the swirling melting furnace 13 which is the combustion part falls out of a certain range, the auxiliary fuel flow control valve 10 supplies the auxiliary fuel so as to recover the temperature, or opens the opening degree. Supply more. When the fluidized bed temperature 8 falls below a predetermined temperature range because the fluidized bed temperature 8 changes depending on the degree of auxiliary fuel addition (the temperature of the fluidized bed tends to decrease due to the consumption of sensible heat and vaporization heat when the supplementary fuel is supplied more). Is controlled to open the auxiliary air flow control damper 11 to increase the combustion exothermic reaction of the gasification furnace 5 to increase the temperature.
[0025]
To explain in greater detail, in the configuration of the present embodiment, as a means for simultaneously adjusting the temperatures of the gasification furnace and the melting furnace, the gasification furnace and the auxiliary air are supplied to the gasification furnace. For the two control objects of the melting furnace, two operating means of auxiliary fuel and auxiliary air can be controlled to appropriately control the temperature of each furnace. Specifically, the temperature of the melting furnace is detected by the melting furnace thermometer 14, the amount of the auxiliary fuel is adjusted based on the detected temperature, and the fluidized bed temperature changes with the supply of the auxiliary fuel. The amount of auxiliary air is detected by the gasification furnace thermometer 8, and the temperature of each of the gasification furnace and the melting furnace is individually adjusted by this series of control systems.
[0026]
Since the pyrolysis reaction of the gasifier usually has a low air ratio of 0.3 to 0.6, the exothermic reaction contributing to the rise in the temperature of the gasifier is controlled by the air-limited environment supplied to the gasifier. Was confirmed by experiments. Therefore, even if the auxiliary fuel is supplied at a constant air volume, the auxiliary fuel does not burn, and the gasification furnace temperature is sufficient to supplement the sensible heat of the auxiliary fuel and the heat of vaporization (when the fuel is liquid) with the heat input to the gasification furnace. Will decrease. In the state where the temperature of the gasification furnace is lowered, the combustible components necessary for combustion in the downstream melting furnace, that is, the amounts of pyrolysis gas and combustible fine particles are insufficient, the melting furnace temperature does not rise, and the slag conversion rate decreases. Issues arise.
[0027]
Therefore, it is effective to supply auxiliary gas with combustion air corresponding to the amount of combustion required for increasing the gasification furnace temperature as auxiliary air to the gasification furnace with respect to the gasification furnace temperature decrease due to the decrease in waste quality.
[0028]
On the other hand, the auxiliary fuel supplied to the gasification furnace is supplied to the melting furnace after leaving the gasification furnace as combustible gas, except for the amount of combustion consumed in the gasification furnace, so it is burned in the melting furnace. This will contribute to a rise in the temperature of the melting furnace.
[0029]
Thus, it becomes possible to distribute and adjust the heat input of the auxiliary fuel supplied to the gasification furnace to the gasification furnace and the melting furnace by the supply amount of the auxiliary air. Thereby, the temperature of the gasification furnace and the temperature of the melting furnace can be optimally adjusted with respect to the fluctuation of the waste quality.
[0030]
Next, a fluidized bed gasification and melting furnace apparatus and a control method thereof according to another embodiment of the present invention will be described below with reference to FIG. The components of the reference numerals shown in FIG. 2 are the same as those of FIG.
[0031]
In FIG. 2, if the supply amount of the auxiliary fuel to the gasifier 5 is known, the temperature decrease in the gasifier due to the auxiliary fuel supply can be predicted from the calculation and / or the test data. Therefore, the amount of air sufficient to compensate for the decrease in the gasifier temperature with respect to the supply of the auxiliary fuel can also be calculated in advance. Thus, by simultaneously adjusting the auxiliary air amount according to the increase and decrease of the supply amount of the auxiliary fuel, the auxiliary air amount can be controlled in advance by previously adjusting the auxiliary air amount according to the change in the gasification furnace temperature. .
[0032]
In FIG. 2, the opening of the auxiliary fuel flow control valve 10 is controlled by the output of the melting furnace thermometer 14 (control is performed so as to increase the auxiliary fuel when the temperature of the thermometer 14 is low), and the flow rate of the controlled auxiliary fuel is controlled. Is measured by the auxiliary fuel flow meter 8, and the opening of the auxiliary air flow rate adjusting damper 11 is controlled based on the measured value. That is, the opening degree of the auxiliary air flow adjustment damper 11 is set as a function of the measured value of the auxiliary fuel flow meter 8, and is supplied at a fixed ratio of the auxiliary fuel amount. In the second embodiment shown in FIG. 2, the same effect as in the embodiment shown in FIG. 1 can be obtained.
[0033]
【The invention's effect】
As described above, according to the present invention, the temperature of both the gasification furnace and the melting furnace is simultaneously optimally controlled by supplying the auxiliary fuel and the auxiliary air to the gasification furnace in combination with the fluctuation of the waste quality. it can.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a fluidized bed gasification / melting furnace apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing an overall configuration of a fluidized bed gasification and melting furnace apparatus according to another embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 refuse receiving device 2 refuse receiving hopper 3 refuse feeder 4 rotary valve 5 gasifier 6 fluidized bed 7 flowing air diffuser tube 8 gasifier thermometer 9, 9 'auxiliary fuel supply nozzle 10 auxiliary fuel flow control valve 11 auxiliary air Flow control damper 12 Pyrolysis gas flow 13 Rotating melting furnace 14 Melting furnace thermometer 15 Molten slag 16 Slag outlet 17 Slag downflow 18 Melting furnace outlet combustion gas 19 Secondary combustion furnace 20 Waste heat recovery boiler

Claims (6)

ごみを熱分解ガス化する流動床式ガス化炉と、ごみの熱分解で生成する可燃性ガスと可燃粒子とを高温で燃焼する溶融炉と、を備えた流動床式ガス化溶融炉装置において、
前記ガス化炉に補助燃料と補助空気を供給する
ことを特徴とする流動床式ガス化溶融炉装置。
In a fluidized bed gasification and melting furnace apparatus comprising: a fluidized bed gasifier for pyrolyzing and gasifying refuse; and a melting furnace for burning flammable gas and combustible particles generated by pyrolysis of refuse at a high temperature. ,
A fluidized bed gasification / melting furnace apparatus, wherein auxiliary gas and auxiliary air are supplied to the gasification furnace.
請求項1において、
前記ガス化炉に供給する補助燃料投入口と補助空気口を流動床上部の空間部分に設けることを特徴とする流動床式ガス化溶融炉装置。
In claim 1,
A fluidized bed gasification / melting furnace apparatus, wherein an auxiliary fuel inlet and an auxiliary air port to be supplied to the gasification furnace are provided in a space above a fluidized bed.
請求項1において、
前記ガス化炉に供給する補助燃料投入口を流動床内に設け、前記補助空気は散気管への流動化空気に加算して流動床内に供給することを特徴とする流動床式ガス化溶融炉装置。
In claim 1,
A fluidized bed gasification / melting, wherein an auxiliary fuel inlet for supplying to the gasifier is provided in a fluidized bed, and the auxiliary air is added to fluidized air to a diffuser pipe and supplied into the fluidized bed. Furnace equipment.
請求項1において、
前記ガス化炉に供給する補助燃料投入口を流動床上部の空間部分に設け、前記補助空気は散気管への流動化空気に加算して流動床内に供給する流動床式ガス化溶融炉装置。
In claim 1,
A fluidized bed gasification / melting furnace apparatus in which an auxiliary fuel inlet for supplying to the gasification furnace is provided in a space above a fluidized bed, and the auxiliary air is added to fluidized air to a diffuser pipe and supplied to the fluidized bed. .
請求項1、2、3又は4において、
前記溶融炉の温度を検出し、前記検出した温度に基づいて補助燃料流量を調整し、
前記ガス化炉の流動床温度を検出し、前記検出した流動床温度に基づいて補助空気量を調整することを特徴とする流動床式ガス化溶融炉装置。
In claim 1, 2, 3, or 4,
Detecting the temperature of the melting furnace, adjusting the auxiliary fuel flow rate based on the detected temperature,
A fluidized bed gasification and melting furnace apparatus, wherein a fluidized bed temperature of the gasification furnace is detected, and an auxiliary air amount is adjusted based on the detected fluidized bed temperature.
請求項1、2、3又は4において、
前記溶融炉の温度を検出し、前記検出した温度に基づいて補助燃料流量を調整し、
前記ガス化炉の前記補助燃料流量を検出し、前記検出した補助燃料流量に基づいて前記補助空気量を調整することを特徴とする流動床式ガス化溶融炉装置。
In claim 1, 2, 3, or 4,
Detecting the temperature of the melting furnace, adjusting the auxiliary fuel flow rate based on the detected temperature,
A fluidized-bed gasification and melting furnace apparatus, wherein the auxiliary fuel flow rate of the gasification furnace is detected, and the auxiliary air amount is adjusted based on the detected auxiliary fuel flow rate.
JP2003107837A 2003-04-11 2003-04-11 Fluidized bed type gasification melting furnace device Pending JP2004316956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107837A JP2004316956A (en) 2003-04-11 2003-04-11 Fluidized bed type gasification melting furnace device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107837A JP2004316956A (en) 2003-04-11 2003-04-11 Fluidized bed type gasification melting furnace device

Publications (1)

Publication Number Publication Date
JP2004316956A true JP2004316956A (en) 2004-11-11

Family

ID=33469560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107837A Pending JP2004316956A (en) 2003-04-11 2003-04-11 Fluidized bed type gasification melting furnace device

Country Status (1)

Country Link
JP (1) JP2004316956A (en)

Similar Documents

Publication Publication Date Title
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
JP4295291B2 (en) Fluidized bed gasifier and its fluidized bed monitoring and control method
JP4126316B2 (en) Operation control method of gasification and melting system and system
RU2013150513A (en) METHOD AND DEVICE FOR PROCESSING BOTTOM ASH AND FLYING ASH OF THE BURNING UNIT
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP5154094B2 (en) Combustion control method for gasification melting system and system
KR20030092086A (en) Slagging combustion furnace
JP2008150463A (en) Two-stage entrained bed gasification oven and method for controlling operation of the same
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP4243764B2 (en) Pyrolysis gasification melting system and its heating method
JP4918834B2 (en) Waste melting furnace and waste melting furnace operating method
JP2005201621A (en) Refuse gasifying and melting method and apparatus
JP2004316956A (en) Fluidized bed type gasification melting furnace device
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP5162285B2 (en) Gasification melting method and gasification melting apparatus
JP2004347274A (en) Waste treatment device
JP4105963B2 (en) Pyrolysis gasification melting system
JP2004271039A (en) Thermal decomposition gasifying melting system
JP2002130626A (en) Apparatus and method for combustion of waste
JP2004116815A (en) Waste disposal system
JP3750379B2 (en) Waste gasification and melting treatment system
JP2005134034A (en) Fluidized bed type gasification melting furnace
JP4233212B2 (en) High-temperature swirl combustion method and waste treatment apparatus
JP2005201620A (en) Refuse gasifying and melting method and apparatus
JP2004125203A (en) Ash melter and operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Effective date: 20071016

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080226

Free format text: JAPANESE INTERMEDIATE CODE: A02