JP2004263247A - Steel for cold-formed spring - Google Patents

Steel for cold-formed spring Download PDF

Info

Publication number
JP2004263247A
JP2004263247A JP2003054696A JP2003054696A JP2004263247A JP 2004263247 A JP2004263247 A JP 2004263247A JP 2003054696 A JP2003054696 A JP 2003054696A JP 2003054696 A JP2003054696 A JP 2003054696A JP 2004263247 A JP2004263247 A JP 2004263247A
Authority
JP
Japan
Prior art keywords
mass
less
steel
content
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003054696A
Other languages
Japanese (ja)
Other versions
JP4044460B2 (en
Inventor
Kazuyoshi Kimura
和良 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003054696A priority Critical patent/JP4044460B2/en
Publication of JP2004263247A publication Critical patent/JP2004263247A/en
Application granted granted Critical
Publication of JP4044460B2 publication Critical patent/JP4044460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for a cold-formed spring in which high strength and toughness and the characteristic of corrosion-resistant fatigue strength are satisfied, and cold formability and quench crack resistance are enhanced. <P>SOLUTION: The steel for the cold-formed spring consists mainly of Fe, and contains, by mass, ≥ 0.36% and ≤ 0.46% C, ≥ 1.8% and ≤ 2.6% Si, ≥ 0.2% and ≤ 1.2% Mn, ≤ 0.015% P, ≤ 0.01% S, ≥ 0.1% and ≤ 0.5% Cu, ≥ 0.1% and ≤ 1.5% Ni, ≥ 0.05% and ≤ 1% Cr, and ≥ 0.002% and ≤ 0.012% N. In the steel for the cold-formed spring, WC + WMn + WCr is ≥ 1.2% and ≤ 2%, WSi/3 + WCr/2 + WMn is ≥ 1.4% and ≤ 2.1%, and WCu + WNi is ≥ 0.4%, where WC is C content, WMn is Mn content, WCr is Cr content, WSi is Si content, WNi is Ni content. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、冷間成形法によってコイルばねに成形するのに適したばね用鋼に関する。
【0002】
【従来の技術】
【特許文献1】
特許第3064672号公報
【0003】
近年、地球温暖化の観点から二酸化炭素ガスの排出量削減が強く求められている。そのため、自動車等の車両には、燃費向上に繋がる車体の軽量化が重要となっており、懸架用コイルばねにおいても一層の軽量化が図られている。コイルばねの軽量化を達成するためには、使用するばね素線の直径を細くするか、あるいは使用するばね素線の長さを短くする必要がある。所要のばね特性を維持しつつコイルばねの軽量化を達成するには、引張強度で1900MPa以上(ロックウェル硬さHRCでは52以上に相当)の高い材料強度が求められている。
【0004】
ところで、懸架用コイルばねの製造方法には、大別して熱間成形法と冷間成形法の二種類がある。前者は、鋼線を熱間加工によってコイル形状に成形した後、焼入れ焼戻しを行って所要のばね強度に調整するため、成形が比較的容易である。一方、後者は、あらかじめ所要のばね強度に調整された鋼線を用い、冷間加工によってコイル形状に成形するため、ばねの製造における設備面・工程面での簡素化効果が高く経済的な方法である。
【0005】
【発明が解決しようとする課題】
冷間加工性ばね用鋼には、焼入れ焼戻し後において上記のような高強度が求められると同時に、冷間加工に耐え得る強靭性も必要とされる。そのような鋼材を得るためには、高強度の観点からすればC含有量を高めることが考えられるが、その場合は強靭性の付与が困難となるため、逆にC含有量を低減させることにより靭性を確保しつつ、強度不足を補うための合金元素を添加させることになる。また、強靭化対策としてV、Nb、Ti、Al等の合金元素を添加し、微細炭窒化物による結晶粒微細化効果を利用することも有効である。しかし、合金元素を多量に添加させると熱間圧延後の強度(硬さ)が過度なものとなり、その後の引抜きや伸線加工、コイリング等の冷間加工の際に割れやカッピー状の断線が発生したり、または焼入れの際に割れが生じてしまうといった問題があった。そのため、熱間圧延後に焼鈍等の軟化処理を行い、加工性を改善したりする方法も取られるが、この場合は製造コストが増大するといった問題が生じてしまう。
【0006】
さらに、上記のような鋼材は、V系炭化物が鋼材表面で局部電極となり腐食ピットを発生させるため、腐食疲労強度に劣るものとなってしまうという問題もあった。
【0007】
したがって、本発明の課題は、高強度及び強靭性、耐腐食疲労強度特性を満足させ、且つ、冷間加工性及び耐焼割れ性を改善させた、冷間成形ばね用鋼を提供することにある。
【0008】
【課題を解決するための手段及び作用・発明の効果】
上記課題を解決するため、本発明の冷間成形ばね用鋼では、
主成分としてのFeと、
0.36質量%以上0.46質量%以下のCと、
1.8質量%以上2.6質量%以下のSiと、
0.2質量%以上1.2質量%以下のMnと、
0.015質量%以下のPと、
0.01質量%以下のSと、
0.1質量%以上0.5質量%以下のCuと、
0.1質量%以上1.5質量%以下のNiと、
0.05質量%以上1質量%以下のCrと、
0.002質量%以上0.012質量%以下のNと、
を含有し、且つ、Cの含有量をWC、Mnの含有量をWMn、Crの含有量をWCr、Siの含有量をWSi、Niの含有量をWNiとしたとき、
WC+WMn+WCrが1.2質量%以上2質量%以下、
及びWSi/3+WCr/2+WMnが1.4質量%以上2.1質量%以下、
及びWCu+WNiが0.4質量%以上であることを特徴とする。
なお、本明細書にて「主成分」(「主体に」等も同様)とは、着目している材料あるいは組織において、最も質量含有率の高い成分(相も概念として含む)を意味する。
【0009】
上記本発明の冷間成形ばね用鋼は、鋼材の化学組成分を特定することによって、高強度及び強靭性、耐腐食疲労強度特性を満足させ、且つ、冷間加工性及び耐焼割れ性を具備するとともに、特に懸架用コイルばねを製造するに適した冷間成形用ばね鋼を得ることに成功したものである。
【0010】
以下、本発明における各数値範囲の限定理由を説明する。
本発明の冷間成形ばね用鋼の組成限定理由は以下の通りである。
Fe(鉄):主成分
Feは、鋼を構成するのに必須の成分であるため、本発明の冷間成形ばね用鋼の主成分として含有させる。
【0011】
C(炭素):0.36質量%以上0.46質量%以下
Cは、焼入れ焼戻し後の鋼の強度を高めるために必須の元素である。所望のばね強度を得るには0.36質量%以上の含有が必要であるが、過度に含有させると、焼入れ焼戻し後の靭性が低下し疲労強度及び腐食疲労強度を劣化させるばかりでなく、圧延後の硬さが硬くなり過ぎ冷間加工性を低下させてしまうので、上限を0.46質量%とする。
【0012】
Si(ケイ素):1.8質量%以上2.6質量%以下
Siは、固溶強化元素として鋼の強度及び耐へたり性を向上させるのに有効な元素である。この効果を得るには1.8質量%以上の含有が必要であるが、過度に含有させると靭性が低下し疲労特性を劣化させるばかりでなく、製造工程中の高温加熱時に鋼表面に脱炭を生じ、加工性をも悪化させてしまうので、上限を2.6質量%とする。
【0013】
Mn(マンガン):0.2質量%以上1.2質量%以下
Mnは、鋼溶製時の脱酸材として有効であると共に、焼入れ性の向上に寄与する元素である。また、Sによる害を無害化する効果も有する。これらの効果を得るには0.2質量%以上の含有が必要であるが、過度に含有させると焼入れ時に粒界酸化を助長し脆化を招くだけでなく、圧延後の線材の硬さを過度に高め冷間加工性をも劣化させてしまうので、上限を1.2質量%とする。
【0014】
P(リン):0.015質量%以下
Pは、オーステナイト化加熱時にオーステナイト粒界に偏析して、結晶粒界を脆弱化させてしまうので、低減することが望ましい元素である。経済性を考慮して含有量の上限を0.015質量%以下とする。
【0015】
S(硫黄):0.01質量%以下
Sは、Pと同様にオーステナイト粒界を脆化させ、またMnSを形成してばねの疲労強度の劣化を招いてしまうので、低減することが望ましい元素である。経済性を考慮して含有量の上限を0.01質量%以下とする。
【0016】
Cu(銅):0.1質量%以上0.5質量%以下
Cuは、鋼の耐腐食性を高めるのに有効な元素で、腐食疲労強度を向上させる効果がある。また、フェライト脱炭の防止にも有効である。これらの効果を得るためには0.1質量%以上の含有が必要であるが、過度に含有させると熱間加工性が損なわれてしまうので、上限を0.5質量%とする。
【0017】
Ni(ニッケル):0.1質量%以上1.5質量%以下
Niは、鋼の耐腐食性を高めるのに有効な元素で、腐食疲労強度を向上させる効果がある。また、フェライト脱炭の防止に有効である。これらの効果を得るためには0.1質量%以上の含有が必要であるが、過度に含有させると鋼のコストが増加してしまうので、上限を1.5質量%とする。
【0018】
Cr(クロム):0.05質量%以上1質量%以下
Crは、焼入れ性の向上に寄与する元素である。この効果を得るためには0.05質量%以上の含有が必要であるが、過度に含有させるとMnと同様に圧延後の線材の硬さを過度に高め、冷間加工性を劣化させてしまうので、上限を1質量%とする。
【0019】
N(窒素):0.002質量%以上0.012質量%以下
Nは、鋼中で結晶粒微細化に寄与する炭窒化物及び窒化物を形成する効果がある。この効果を得るためには0.002質量%以上の含有が必要であるが、過剰に含有させると、粗大なNb炭窒化物が生成して粒界ピン止め効果が得られず、またTiN系の介在物を生成し鋼の疲労強度を低下させるため、その上限を0.012質量%とする。
【0020】
さらに、Cの含有量をWC、Mnの含有量をWMn、Crの含有量をWCr、Siの含有量をWSi、Niの含有量をWNiとしたとき、本発明の冷間成形ばね用鋼は次の要件を満たす。
【0021】
WC+WMn+WCr:1.2質量%以上2質量%以下
本発明者等が鋭意研究を重ねた結果、焼入れ硬化した状態で鋼が引張強度1900MPa以上(ロックウェル硬さHRCでは52以上に相当)の高強度を確保するためには、C、Mn、Crのそれぞれの含有率が上記の本発明の特定する範囲にあるほか、さらにWC+WMn+WCrが1.2質量%以上必要であることが判った。しかし、その値が過度に大きくなると、圧延材の伸線加工時にカッピー状割れあるいは破断が生じてしまうため、上限を2質量%とする。
【0022】
WSi/3+WCr/2+WMn:1.4質量%以上2.1質量%以下
また、焼入れ硬化した状態で鋼が引張強度1900MPa以上(ロックウェル硬さHRCでは52以上に相当)の高強度を確保するためには、Si、Cr、Mnのそれぞれの含有率が上記の本発明の特定する範囲にあるほか、さらにWSi/3+WCr/2+WMnが1.4質量%以上必要であることが判った。しかし、その値が過度に大きくなると鋼の焼入れ性が過剰となり、鋼の焼入れ時に焼割れを生じてしまうことがあるため、上限を2.1質量%とする。
【0023】
WCu+WNi:0.4質量%以上
また、上記鋼が引張強度1900MPa以上(ロックウェル硬さHRCでは52以上に相当)の高強度を有しつつ、優れた腐食疲労強度を確保するためには、Cu、Niのそれぞれの含有率が上記の本発明の特定する範囲にあるほか、さらにWCu+WNiが0.4質量%以上必要であることが判った。
【0024】
また、本発明の冷間成形ばね用鋼では、上記組成に加え、
0.05質量%以上0.3質量%以下のV;
0.02質量%以上0.05質量%以下のNb;
0.02質量%以上0.07質量%以下のTi;
0.005質量%以上0.04質量%以下のAl;
0.0005質量%以上0.003質量%以下のB;
のうちいずれか1種以上を含有し、且つ、
Cの含有量をWC、Mnの含有量をWMn、Crの含有量をWCr、Siの含有量をWSi、Niの含有量をWNi、Bの含有量をWBとしたとき、
WC+WMn+WCrが1.2質量%以上2質量%以下、
及びWSi/3+WCr/2+WMn+353WBが1.4質量%以上2.1質量%以下、
及びWCu+WNiが0.4質量%以上、
とすることができる。
【0025】
以下、各数値の限定範囲を説明する。なお、上述した限定範囲と同一であるものは省略する。
【0026】
V(バナジウム):0.05質量%以上0.3質量%以下
Vは、鋼中で炭化物、炭窒化物を形成してオーステナイト結晶粒を微細化させたり、また析出硬化に寄与してばねの耐へたり性を向上させる効果がある。これらの効果を得るためには0.05質量%以上の含有が必要である。Vの炭化物は鋼表面で局部電極となり腐食ピットを形成して亀裂破壊の起点となってしまうので、上限を0.3質量%とする。また、上限を超えて含有させると巨大な一次炭化物が晶出し、冷間加工性が劣化してしまう。
【0027】
Nb(ニオブ):0.02質量%以上0.05質量%以下
Nbは、Vと同様に鋼中で炭化物、炭窒化物を形成してオーステナイト結晶粒を微細化させる効果がある。この効果を得るためには0.02質量%以上の含有が必要である。しかし、過剰に含有してもその効果は飽和し、むしろ鋼の熱間加工性及び冷間加工性を低下させるので、上限を0.050%とする。
【0028】
Ti(チタン):0.02質量%以上0.07質量%以下
Tiは、Nb、Vと同様に鋼中で炭化物、炭窒化物を形成してオーステナイト結晶粒を微細化させる効果がある。この効果を得るためには0.02質量%以上の含有が必要であるが、過度に含有させると、鋼の焼入れ加熱時に未溶解化合物として残留し、そのサイズが比較的大きいため、破壊の起点となって疲労強度の低下をもたらすので、上限を0.07質量%とする。
【0029】
Al(アルミニウム):0.005質量%以上0.04質量%以下
Alは、鋼中で窒化物を形成してオーステナイト結晶粒の微細化に寄与するが、酸化物形成傾向の強い元素なので多量に含有すると鋼中の酸化物系介在物量を増し、鋼の清浄度を損なう。それゆえ、Al含有率の上限を0.040%とする。また、鋼中のO(酸素)含有率は20ppm以下とすることが好ましい。
【0030】
B(ホウ素):0.0005質量%以上0.003質量%以下
Bは、鋼の結晶粒界に優先的に偏析し、P、Sの結晶粒界偏析を防止して靭性を向上させる効果がある。また、線材の冷間加工性を向上させるためにSi、Mn、Crなどの焼入れ性に寄与する合金元素を低減すると、素材の焼入れ性が不足し、不完全焼入れ組織を生じてしまうが、Bはこのような焼入れ性低下を補う効果もある。これらの効果を得るためには0.0005質量%以上の含有が必要であるが、過剰に含有させるとB窒化物を形成して、鋼の靭性を損ない、また鋼の疲労特性も悪化させるので、上限を0.0030質量%とする。
【0031】
WSi/3+WCr/2+WMn+353WB:1.4質量%以上2.1質量%以下本発明者等が鋭意研究を重ねた結果、焼入れ硬化した状態で鋼が引張強度1900MPa以上(ロックウェル硬さHRCでは52以上に相当)の高強度を確保するためには、Si、Cr、Mn、Bのそれぞれの含有率が上記の本発明の特定する範囲にあるほか、さらにWSi/3+WCr/2+WMn+353WBが1.4質量%以上必要であることが判った。しかし、その値が過度に大きくなると鋼の焼入れ性が過剰となり、鋼の焼入れ時に焼割れを生じてしまうことがあるため、上限を2.1質量%とする。なお、Bが含有されていない場合は、上記のWSi/3+WCr/2+WMnが1.4質量%以上2.1質量%以下とされた範囲と同義になる。
【0032】
また、本発明の冷間成形ばね用鋼では、上記組成に加え、0.05質量%以上0.5質量%以下のMoを含有することができる。
Moは、焼入れ性の向上に寄与する効果がある。また、耐食性を高め、腐食疲労強度を向上させる効果もある。これらの効果を得るためには0.05質量%以上の含有が必要であるが、過度に含有させると圧延後の線材にベーナイトが生成し、冷間加工性の劣化を招いてしまうので、上限を0.5質量%とする。
【0033】
【実施例】
以下、本発明の実施例について詳細に説明する。
表1及び2に示す化学組成を有する鋼を溶製して得た鋼塊を分塊圧延し、さらに線材圧延によってφ13mmの圧延線材とした。線材圧延は鋼片を1100℃に加熱し圧延終了温度869℃として行った。圧延終了後は空冷とした。なお、表中の各々の組成において、本発明で規定する組成範囲を逸脱しているものには、下限を下回る場合は下向矢印(↓)、上限を上回る場合は上向矢印(↑)を付している。
【0034】
また、WC+WMn+WCrの値、及びWSi/3+WCr/2+WMn+353WBの値、及びWCu+WNiの値は、表3及び4に示している。なお、表中にはWC+WMn+WCrを「C+Mn+Cr」と、WSi/3+WCr/2+WMn+353WBを「Si/3+Cr/2+Mn+353*B」と、WCu+WNiを「Cu+Ni」と表している。
【0035】
【表1】

Figure 2004263247
【0036】
【表2】
Figure 2004263247
【0037】
前記圧延線材の切断面について硬さを測定した。ロックウェルCスケール硬さを30点測定し、平均硬さに6倍の標準偏差σ(バラツキ)を加えたものを「圧延後硬さ」として表3及び4に示す。該圧延後硬さはHRC34を上限とする。また、前記圧延線材にボンダ皮膜処理を施し、冷間でφ12mmまで伸線加工し、伸線材を得た。該伸線加工の際における、破断発生の有無を「伸線時破断の有無」として表3及び4に示す。
【0038】
前記伸線材を周波数30kHz、電流300Aの条件で高周波コイル中に通線させた後、直ちに水冷により焼入れを行い、焼入れ材を得た。該焼入れ材にについて割れの発生の有無を調べ、その結果を「焼割れ」として表3及び4に示す。
また、前記焼入れ材の断面芯部硬さを測定した。ロックウェルCスケール硬さを20点測定し、その平均値を「焼入れ後硬さ」として、所望の硬さ(HRC52)を満たしているかを評価した。その結果を表3及び4に示す。
【0039】
前記焼入れ材を焼戻して、硬さHRC52の焼戻し材を得た。該焼戻し材から採取した試験片に対して、塩水噴霧試験機を用いて、▲1▼35℃で5%NaCl水溶液を2h噴霧し、▲2▼相対湿度70%で60℃の環境において4h乾燥させ、▲3▼相対湿度95%で35℃の環境において2h保持するサイクル▲1▼〜▲3▼を9回繰り返した後、応力振幅を700MPaとして両振りねじり疲労試験を行った。破断繰返し数を測定し、破断までの繰返し回数で腐食疲労特性を評価した。「腐食疲労強度」として表3及び4に示す。なお、破断繰返し数が100000回に達するか否かを良否の判断基準とした。
【0040】
また、前記疲労試験後の腐食部の断面から、腐食ピットの深さを計40点計測し、ピット深さの最大値(最大ピット深さ)を測定した。最大ピット深さが100μm以上か否かを良否の判断基準とした。最大ピット深さの測定結果を「腐食ピット深さ」として表3及び4に示す。また、腐食ピット深さと、前記破断繰返し数との関係を図1に示す。
【0041】
次に、表1及び2に示す化学組成を有する鋼を溶製して得た鋼塊を分塊圧延し、線材圧延によってφ16mmの圧延線材を得た。線材圧延は鋼片を1100℃に加熱し圧延終了温度869℃として行った。そして圧延終了後、空冷し、更に焼入れ焼戻し処理を施して硬さHRC52の焼戻し材を得た。その後、該焼戻し材から、JIS3号2mmUノッチ試験片を作製し、シャルピー衝撃試験を実施した。そして、得られた値から、所望の靭性(シャルピー衝撃値で40J/cm以上)を満たしているかを評価した。その結果を「シャルピー衝撃試験」として、表3及び4に示す。シャルピー衝撃値が40J/cmを下回ると、腐食疲労強度が急激に劣化するため、40J/cm以上か否かを良否の判断基準とする。
【0042】
【表3】
Figure 2004263247
【0043】
【表4】
Figure 2004263247
【0044】
以下、表3及び4、並びに図1に示した評価結果について説明する。
本発明が特定する組成範囲を充足する本発明24〜33は、いずれの試験においても、良好な特性を示し、本発明とする腐食疲労強度に優れた高強度ばね鋼であることがわかった。
【0045】
本発明が特定する範囲よりもWC+WMn+WCr値が低い比較例1及び2は(比較例1はC含有量、また比較例2はCr含有量及びWSi/3+WCr/2+WMn+353WB値についても不足)、焼入れ後の硬さがHRC52を下回っており、強度及び焼入れ性が不足したものであった。
【0046】
本発明が特定する範囲よりもWSi/3+WCr/2+WMn+353WB値が不足している比較例3〜5は(比較例3はSi含有量、比較例4はMn含有量についても不足)、比較例1及び2の場合と同様に、焼入れ後の硬さがHRC52を下回っており、強度及び焼入れ性が不足したものであった。
【0047】
本発明が特定する範囲よりもWSi/3+WCr/2+WMn+353WB値が過剰な比較例6〜9は(比較例6はSi含有量、比較例7はMn含有量、比較例Cr含有量、比較例9はB含有量についても過剰)、焼入れ時に焼割れが生じた。
【0048】
本発明が特定する範囲よりもP含有量が過剰な比較例10、12、14、またS含有量が過剰な比較例11、13は、シャルピー衝撃試験値が40J/cmを下回っており、靭性が不足したものであった。また、これらは腐食疲労強度も不足しており、中でも比較例10、11、13では腐食ピット深さが100μmを超えていた。
【0049】
比較例16〜23に関しては(比較例16はC、比較例17はSi、比較例18はCr、比較例19はV、比較例20はBの含有量が過剰なものであり、また比較例21はCu、比較例22はNiの含有量が不足しており、さらに比較例23はWCu+WNiが不足している)、いずれも腐食疲労強度が不足しており、また腐食ピット深さも100μmを超えたものであった。
【0050】
以上、本発明24〜33によって示すごとく、本発明が特定する化学組成を有する鋼は、圧延材の伸線加工性に優れ、焼入れにおいても割れを生じることがなく、製造性に優れている。また、焼入れ材の強度もHRC52以上、すなわち引張強度1900MPa以上の高強度を保持しつつ、靭性及び腐食疲労強度に優れる等、ばね鋼として所用の諸特性も有する。
【図面の簡単な説明】
【図1】腐食ピット深さと、破断繰返し回数との関係を表す図[0001]
[Technical field to which the invention belongs]
The present invention relates to a spring steel suitable for forming into a coil spring by a cold forming method.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent No. 3064672
In recent years, reduction of carbon dioxide gas emissions has been strongly demanded from the viewpoint of global warming. For this reason, for vehicles such as automobiles, it is important to reduce the weight of the vehicle body, which leads to improved fuel efficiency, and the coil springs for suspension are further reduced in weight. In order to reduce the weight of the coil spring, it is necessary to reduce the diameter of the spring wire to be used or to shorten the length of the spring wire to be used. In order to reduce the weight of the coil spring while maintaining the required spring characteristics, a high material strength of 1900 MPa or higher (corresponding to 52 or more in Rockwell hardness HRC) is required.
[0004]
By the way, the manufacturing method of the coil spring for suspension is roughly classified into two types, a hot forming method and a cold forming method. The former is relatively easy to form because the steel wire is formed into a coil shape by hot working and then subjected to quenching and tempering to adjust to the required spring strength. On the other hand, the latter uses a steel wire that has been adjusted to the required spring strength in advance and is formed into a coil shape by cold working. It is.
[0005]
[Problems to be solved by the invention]
Cold workable spring steel is required to have such high strength after quenching and tempering, and at the same time, toughness that can withstand cold working. In order to obtain such a steel material, it is conceivable to increase the C content from the viewpoint of high strength, but in that case, it becomes difficult to impart toughness, so conversely, the C content should be reduced. Therefore, an alloying element is added to make up for the lack of strength while securing toughness. It is also effective to add alloying elements such as V, Nb, Ti, Al, etc. as a countermeasure against toughening and utilize the effect of refining crystal grains by fine carbonitride. However, if a large amount of alloying element is added, the strength (hardness) after hot rolling becomes excessive, and cracks and cappy breaks occur during cold processing such as drawing, wire drawing, and coiling. There is a problem that it occurs or cracks occur during quenching. For this reason, a method of improving the workability by performing a softening process such as annealing after hot rolling can be taken, but in this case, there arises a problem that the manufacturing cost increases.
[0006]
Furthermore, the steel materials as described above also have a problem that the corrosion fatigue strength is inferior because the V-based carbide becomes a local electrode on the steel material surface and generates corrosion pits.
[0007]
Accordingly, an object of the present invention is to provide a steel for cold-formed springs that satisfies high strength, toughness and corrosion fatigue strength characteristics, and has improved cold workability and fire cracking resistance. .
[0008]
[Means for solving the problems and functions / effects of the invention]
In order to solve the above problems, in the steel for cold forming spring of the present invention,
Fe as a main component;
0.36 mass% or more and 0.46 mass% or less of C,
1.8% by mass or more and 2.6% by mass or less of Si;
0.2% by mass or more and 1.2% by mass or less of Mn,
0.015 mass% or less P,
0.01 mass% or less S,
0.1 mass% or more and 0.5 mass% or less of Cu,
0.1 mass% or more and 1.5 mass% or less of Ni;
0.05 mass% or more and 1 mass% or less of Cr,
0.002% by mass or more and 0.012% by mass or less N;
And the content of C is WC, the content of Mn is WMn, the content of Cr is WCr, the content of Si is WSi, and the content of Ni is WNi,
WC + WMn + WCr is 1.2 mass% or more and 2 mass% or less,
And WSi / 3 + WCr / 2 + WMn is not less than 1.4% by mass and not more than 2.1% by mass,
And WCu + WNi is 0.4 mass% or more.
In this specification, “main component” (same as “mainly” and the like) means a component (including phase as a concept) having the highest mass content in the material or structure of interest.
[0009]
The cold formed spring steel of the present invention satisfies the high strength and toughness and corrosion fatigue strength characteristics by specifying the chemical composition of the steel material, and has cold workability and fire cracking resistance. In addition, the present inventors have succeeded in obtaining a cold forming spring steel particularly suitable for manufacturing a suspension coil spring.
[0010]
Hereinafter, the reasons for limiting each numerical range in the present invention will be described.
The reasons for limiting the composition of the steel for cold forming springs of the present invention are as follows.
Fe (iron): The main component Fe is an essential component for constituting the steel, and is thus contained as the main component of the steel for cold forming spring of the present invention.
[0011]
C (carbon): 0.36 mass% or more and 0.46 mass% or less C is an essential element for increasing the strength of the steel after quenching and tempering. In order to obtain a desired spring strength, the content of 0.36% by mass or more is necessary. However, if excessively contained, not only the toughness after quenching and tempering is lowered, but the fatigue strength and corrosion fatigue strength are deteriorated. Since the later hardness becomes too hard and cold workability is lowered, the upper limit is made 0.46% by mass.
[0012]
Si (silicon): 1.8% by mass or more and 2.6% by mass or less Si is an element effective as a solid solution strengthening element for improving the strength and sag resistance of steel. In order to obtain this effect, it is necessary to contain 1.8% by mass or more. However, if it is excessively contained, not only the toughness is lowered and the fatigue characteristics are deteriorated, but also the steel surface is decarburized during high-temperature heating during the production process. And the workability is also deteriorated, so the upper limit is made 2.6 mass%.
[0013]
Mn (manganese): 0.2% by mass or more and 1.2% by mass or less Mn is an element that is effective as a deoxidizer during steel melting and contributes to improvement of hardenability. It also has the effect of detoxifying the harm caused by S. In order to obtain these effects, a content of 0.2% by mass or more is necessary. However, if excessively contained, not only promotes grain boundary oxidation during quenching and causes embrittlement, but also increases the hardness of the wire after rolling. The upper limit is set to 1.2% by mass because excessively high cold workability is deteriorated.
[0014]
P (phosphorus): 0.015 mass% or less P is an element that is desirably reduced because it segregates at the austenite grain boundaries and weakens the grain boundaries during austenitizing heating. In consideration of economy, the upper limit of the content is set to 0.015% by mass or less.
[0015]
S (sulfur): 0.01% by mass or less S is an element that is desirable to be reduced because it causes embrittlement of austenite grain boundaries as well as P, and also causes formation of MnS, resulting in deterioration of the fatigue strength of the spring. It is. In consideration of economy, the upper limit of the content is set to 0.01% by mass or less.
[0016]
Cu (copper): 0.1 mass% or more and 0.5 mass% or less Cu is an element effective for enhancing the corrosion resistance of steel, and has an effect of improving the corrosion fatigue strength. It is also effective in preventing ferrite decarburization. In order to obtain these effects, it is necessary to contain 0.1% by mass or more. However, if excessively contained, hot workability is impaired, so the upper limit is made 0.5% by mass.
[0017]
Ni (nickel): 0.1% by mass or more and 1.5% by mass or less Ni is an element effective for enhancing the corrosion resistance of steel, and has an effect of improving corrosion fatigue strength. It is also effective in preventing ferrite decarburization. In order to obtain these effects, the content of 0.1% by mass or more is necessary. However, if excessively contained, the cost of steel increases, so the upper limit is made 1.5% by mass.
[0018]
Cr (chromium): 0.05 mass% or more and 1 mass% or less Cr is an element contributing to improvement of hardenability. In order to obtain this effect, it is necessary to contain 0.05% by mass or more. However, if excessively contained, the hardness of the wire rod after rolling is excessively increased in the same manner as Mn, and the cold workability is deteriorated. Therefore, the upper limit is 1% by mass.
[0019]
N (nitrogen): 0.002 mass% or more and 0.012 mass% or less N has an effect of forming carbonitrides and nitrides that contribute to grain refinement in steel. In order to obtain this effect, it is necessary to contain 0.002% by mass or more. However, if it is excessively contained, coarse Nb carbonitrides are generated and the grain boundary pinning effect cannot be obtained. In order to reduce the fatigue strength of the steel, the upper limit is made 0.012% by mass.
[0020]
Furthermore, when the C content is WC, the Mn content is WMn, the Cr content is WCr, the Si content is WSi, and the Ni content is WNi, the cold formed spring steel of the present invention is Meet the following requirements:
[0021]
WC + WMn + WCr: 1.2% by mass or more and 2% by mass or less As a result of extensive research by the present inventors, the steel has a high strength with a tensile strength of 1900 MPa or more (corresponding to Rockwell hardness HRC of 52 or more) after being hardened. In order to ensure the above, it has been found that the respective contents of C, Mn, and Cr are in the range specified by the present invention, and that WC + WMn + WCr is required to be 1.2% by mass or more. However, if the value becomes excessively large, a cappy crack or breakage occurs during the drawing of the rolled material, so the upper limit is made 2% by mass.
[0022]
WSi / 3 + WCr / 2 + WMn: 1.4% by mass or more and 2.1% by mass or less In order to ensure a high strength of steel having a tensile strength of 1900 MPa or more (corresponding to 52 or more in Rockwell hardness HRC) in the quench hardening state. In addition to the above, the respective contents of Si, Cr, and Mn are in the range specified by the present invention, and it is also found that WSi / 3 + WCr / 2 + WMn is required to be 1.4 mass% or more. However, if the value becomes excessively large, the hardenability of the steel becomes excessive and may cause quenching cracks during the quenching of the steel, so the upper limit is made 2.1 mass%.
[0023]
WCu + WNi: 0.4% by mass or more In order to ensure excellent corrosion fatigue strength while the steel has a high strength of tensile strength of 1900 MPa or more (equivalent to 52 or more in Rockwell hardness HRC), Cu In addition to the content of Ni and Ni being within the range specified by the present invention, it was found that WCu + WNi should be 0.4 mass% or more.
[0024]
Further, in the cold forming spring steel of the present invention, in addition to the above composition,
0.05 mass% or more and 0.3 mass% or less V;
0.02 mass% or more and 0.05 mass% or less of Nb;
0.02 mass% or more and 0.07 mass% or less of Ti;
0.005 mass% or more and 0.04 mass% or less of Al;
0.0005 mass% or more and 0.003 mass% or less of B;
One or more of these, and
When the content of C is WC, the content of Mn is WMn, the content of Cr is WCr, the content of Si is WSi, the content of Ni is WNi, and the content of B is WB,
WC + WMn + WCr is 1.2 mass% or more and 2 mass% or less,
And WSi / 3 + WCr / 2 + WMn + 353WB is 1.4 mass% or more and 2.1 mass% or less,
And WCu + WNi is 0.4 mass% or more,
It can be.
[0025]
Hereinafter, the limited range of each numerical value will be described. In addition, the thing same as the limited range mentioned above is abbreviate | omitted.
[0026]
V (Vanadium): 0.05% by mass or more and 0.3% by mass or less V forms carbides and carbonitrides in the steel to refine the austenite crystal grains, and contributes to precipitation hardening in the spring. It has the effect of improving sag resistance. In order to acquire these effects, 0.05 mass% or more needs to be contained. Since the carbide of V becomes a local electrode on the steel surface and forms corrosion pits and becomes a starting point of crack fracture, the upper limit is made 0.3 mass%. Moreover, when it contains exceeding an upper limit, a huge primary carbide will crystallize and cold workability will deteriorate.
[0027]
Nb (niobium): 0.02% by mass or more and 0.05% by mass or less Nb, like V, has the effect of forming carbides and carbonitrides in steel to refine the austenite crystal grains. In order to acquire this effect, 0.02 mass% or more needs to be contained. However, even if contained excessively, the effect is saturated, and rather the hot workability and cold workability of the steel are lowered, so the upper limit is made 0.050%.
[0028]
Ti (titanium): 0.02% by mass or more and 0.07% by mass or less Ti, like Nb and V, has the effect of forming carbides and carbonitrides in the steel to refine the austenite crystal grains. In order to obtain this effect, the content of 0.02% by mass or more is necessary. However, if excessively contained, it remains as an undissolved compound during quenching and heating of steel, and its size is relatively large. Thus, the fatigue strength is lowered, so the upper limit is made 0.07% by mass.
[0029]
Al (aluminum): 0.005% by mass or more and 0.04% by mass or less Al forms nitrides in steel and contributes to the refinement of austenite crystal grains. If contained, the amount of oxide inclusions in the steel is increased and the cleanliness of the steel is impaired. Therefore, the upper limit of the Al content is set to 0.040%. The O (oxygen) content in the steel is preferably 20 ppm or less.
[0030]
B (boron): 0.0005 mass% or more and 0.003 mass% or less B is preferentially segregated at the grain boundaries of steel, and has the effect of preventing the segregation of P and S grain boundaries and improving toughness. is there. Moreover, if alloy elements that contribute to the hardenability such as Si, Mn, Cr, etc. are reduced in order to improve the cold workability of the wire, the hardenability of the material is insufficient and an incompletely hardened structure is produced. Has the effect of compensating for such a decrease in hardenability. In order to obtain these effects, the content of 0.0005% by mass or more is necessary. However, if excessively contained, B nitride is formed, and the toughness of the steel is impaired, and the fatigue characteristics of the steel are also deteriorated. The upper limit is 0.0030% by mass.
[0031]
WSi / 3 + WCr / 2 + WMn + 353WB: 1.4% by mass or more and 2.1% by mass or less As a result of the inventors' extensive research, the steel has a tensile strength of 1900 MPa or more in the quenched and hardened state (52 or more for Rockwell hardness HRC). In order to ensure high strength, the content of each of Si, Cr, Mn, and B is in the range specified by the present invention, and WSi / 3 + WCr / 2 + WMn + 353WB is 1.4% by mass. It turns out that the above is necessary. However, if the value becomes excessively large, the hardenability of the steel becomes excessive and may cause quenching cracks during the quenching of the steel, so the upper limit is made 2.1 mass%. In addition, when B is not contained, it becomes synonymous with the range in which said WSi / 3 + WCr / 2 + WMn was 1.4 mass% or more and 2.1 mass% or less.
[0032]
Moreover, in the steel for cold forming springs of the present invention, in addition to the above composition, 0.05 mass% or more and 0.5 mass% or less of Mo can be contained.
Mo has an effect which contributes to the improvement of hardenability. It also has the effect of enhancing corrosion resistance and improving corrosion fatigue strength. In order to obtain these effects, it is necessary to contain 0.05% by mass or more. However, if excessively contained, bainite is generated in the wire after rolling, resulting in deterioration of cold workability. Is 0.5 mass%.
[0033]
【Example】
Examples of the present invention will be described in detail below.
A steel ingot obtained by melting steel having the chemical composition shown in Tables 1 and 2 was subjected to split rolling, and further rolled into a rolled wire with a diameter of 13 mm by wire rolling. Wire rod rolling was performed by heating the steel slab to 1100 ° C. to a rolling end temperature of 869 ° C. After rolling, air cooling was performed. In addition, in each composition in the table, those that deviate from the composition range defined in the present invention are indicated by a downward arrow (↓) when the lower limit is exceeded, and an upward arrow (↑) when the upper limit is exceeded. It is attached.
[0034]
Tables 3 and 4 show the values of WC + WMn + WCr, WSi / 3 + WCr / 2 + WMn + 353WB, and WCu + WNi. In the table, WC + WMn + WCr is represented as “C + Mn + Cr”, WSi / 3 + WCr / 2 + WMn + 353WB is represented as “Si / 3 + Cr / 2 + Mn + 353 * B”, and WCu + WNi is represented as “Cu + Ni”.
[0035]
[Table 1]
Figure 2004263247
[0036]
[Table 2]
Figure 2004263247
[0037]
The hardness of the cut surface of the rolled wire was measured. Tables 3 and 4 show the values obtained by measuring 30 Rockwell C scale hardnesses and adding 6 times standard deviation σ (variation) to the average hardness as “hardness after rolling”. The upper limit of the hardness after rolling is HRC34. Further, the rolled wire rod was subjected to a bonder coating treatment, and was cold drawn to φ12 mm to obtain a wire drawing rod. Tables 3 and 4 show the presence or absence of occurrence of breakage during the wire drawing process as “presence or absence of breakage during wire drawing”.
[0038]
The drawn wire was passed through the high frequency coil under the conditions of a frequency of 30 kHz and a current of 300 A, and then immediately quenched by water cooling to obtain a quenched material. The hardened material was examined for the presence or absence of cracks, and the results are shown in Tables 3 and 4 as “quenched cracks”.
Moreover, the cross-sectional core part hardness of the said hardening material was measured. The Rockwell C scale hardness was measured at 20 points, and the average value was determined as “hardness after quenching” to evaluate whether the desired hardness (HRC 52) was satisfied. The results are shown in Tables 3 and 4.
[0039]
The quenched material was tempered to obtain a tempered material having a hardness of HRC52. Using a salt spray tester, the test piece collected from the tempered material is sprayed with (1) 35% of 5% NaCl aqueous solution for 2 hours, and (2) dried for 4 hours in an environment of 70% relative humidity and 60 ° C. (3) After repeating the cycles (1) to (3) for 2 hours in an environment of 95% relative humidity and 35 ° C. for 9 hours, a double torsional fatigue test was performed at a stress amplitude of 700 MPa. The number of repetitions of fracture was measured, and the corrosion fatigue characteristics were evaluated by the number of repetitions until the fracture. The “corrosion fatigue strength” is shown in Tables 3 and 4. Note that whether or not the number of repetitions of breakage reached 100,000 was used as a criterion for acceptability.
[0040]
Further, from the cross section of the corroded portion after the fatigue test, the depth of the corrosion pits was measured at a total of 40 points, and the maximum value of the pit depth (maximum pit depth) was measured. Whether or not the maximum pit depth is 100 μm or more was used as a criterion for quality. The measurement results of the maximum pit depth are shown in Tables 3 and 4 as “corrosion pit depth”. FIG. 1 shows the relationship between the corrosion pit depth and the number of repetitions of fracture.
[0041]
Next, the steel ingot obtained by melting the steel having the chemical composition shown in Tables 1 and 2 was subjected to split rolling, and a rolled wire rod having a diameter of 16 mm was obtained by wire rod rolling. Wire rod rolling was performed by heating the steel slab to 1100 ° C. to a rolling end temperature of 869 ° C. Then, after the rolling was completed, the product was air-cooled and further subjected to quenching and tempering treatment to obtain a tempered material having a hardness of HRC52. Thereafter, a JIS No. 2 mm U notch test piece was produced from the tempered material, and a Charpy impact test was performed. Then, it was evaluated from the obtained value whether the desired toughness (Charpy impact value of 40 J / cm 2 or more) was satisfied. The results are shown in Tables 3 and 4 as “Charpy impact test”. When the Charpy impact value falls below 40 J / cm 2, since the corrosion fatigue strength deteriorates rapidly, the criterion of acceptability whether 40 J / cm 2 or more.
[0042]
[Table 3]
Figure 2004263247
[0043]
[Table 4]
Figure 2004263247
[0044]
Hereinafter, the evaluation results shown in Tables 3 and 4 and FIG. 1 will be described.
It turned out that this invention 24-33 which satisfy | fills the composition range which this invention specifies is a high strength spring steel which showed the favorable characteristic in all the tests, and was excellent in the corrosion fatigue strength made into this invention.
[0045]
Comparative Examples 1 and 2 having a WC + WMn + WCr value lower than the range specified by the present invention (Comparative Example 1 has C content, and Comparative Example 2 has insufficient Cr content and WSi / 3 + WCr / 2 + WMn + 353WB value). The hardness was lower than HRC52, and the strength and hardenability were insufficient.
[0046]
Comparative Examples 3 to 5 in which the WSi / 3 + WCr / 2 + WMn + 353WB value is insufficient from the range specified by the present invention (Comparative Example 3 is Si content, Comparative Example 4 is also insufficient for Mn content), Comparative Example 1 and As in the case of 2, the hardness after quenching was lower than HRC52, and the strength and hardenability were insufficient.
[0047]
Comparative Examples 6 to 9 in which the WSi / 3 + WCr / 2 + WMn + 353WB value is excessive from the range specified by the present invention are (Comparative Example 6 is Si content, Comparative Example 7 is Mn content, Comparative Example Cr content, Comparative Example 9 is B content was also excessive), and cracking occurred during quenching.
[0048]
Comparative Examples 10, 12, and 14 in which the P content is excessive from the range specified by the present invention, and Comparative Examples 11 and 13 in which the S content is excessive have Charpy impact test values lower than 40 J / cm 2 , The toughness was insufficient. Moreover, these also have insufficient corrosion fatigue strength, and in Comparative Examples 10, 11, and 13, the depth of the corrosion pit exceeded 100 μm.
[0049]
Regarding Comparative Examples 16 to 23 (Comparative Example 16 is C, Comparative Example 17 is Si, Comparative Example 18 is Cr, Comparative Example 19 is V, and Comparative Example 20 is excessive in B content. No. 21 is Cu, Comparative Example 22 is insufficient in Ni content, and Comparative Example 23 is insufficient in WCu + WNi), both of which are insufficient in corrosion fatigue strength, and the depth of the corrosion pit exceeds 100 μm. It was.
[0050]
As described above, the steel having the chemical composition specified by the present invention, as shown by the present invention 24-33, is excellent in the wire drawing workability of the rolled material, and is excellent in manufacturability without being cracked even during quenching. Further, the strength of the hardened material also has various characteristics as a spring steel, such as excellent toughness and corrosion fatigue strength, while maintaining a high strength of HRC 52 or higher, that is, a tensile strength of 1900 MPa or higher.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between corrosion pit depth and the number of repeated fractures.

Claims (3)

主成分としてのFeと、
0.36質量%以上0.46質量%以下のCと、
1.8質量%以上2.6質量%以下のSiと、
0.2質量%以上1.2質量%以下のMnと、
0.015質量%以下のPと、
0.01質量%以下のSと、
0.1質量%以上0.5質量%以下のCuと、
0.1質量%以上1.5質量%以下のNiと、
0.05質量%以上1質量%以下のCrと、
0.002質量%以上0.012質量%以下のNと、
を含有し、且つ、Cの含有量をWC、Mnの含有量をWMn、Crの含有量をWCr、Siの含有量をWSi、Niの含有量をWNiとしたとき、
WC+WMn+WCrが1.2質量%以上2質量%以下、
及びWSi/3+WCr/2+WMnが1.4質量%以上2.1質量%以下、
及びWCu+WNiが0.4質量%以上、
であることを特徴とする冷間成形ばね用鋼。
Fe as a main component;
0.36 mass% or more and 0.46 mass% or less of C,
1.8% by mass or more and 2.6% by mass or less of Si;
0.2% by mass or more and 1.2% by mass or less of Mn,
0.015 mass% or less P,
0.01 mass% or less S,
0.1 mass% or more and 0.5 mass% or less of Cu,
0.1 mass% or more and 1.5 mass% or less of Ni;
0.05 mass% or more and 1 mass% or less of Cr,
0.002% by mass or more and 0.012% by mass or less N;
And the content of C is WC, the content of Mn is WMn, the content of Cr is WCr, the content of Si is WSi, and the content of Ni is WNi,
WC + WMn + WCr is 1.2 mass% or more and 2 mass% or less,
And WSi / 3 + WCr / 2 + WMn is not less than 1.4% by mass and not more than 2.1% by mass,
And WCu + WNi is 0.4 mass% or more,
A steel for cold-formed springs.
主成分としてのFeと、
0.36質量%以上0.46質量%以下のCと、
1.8質量%以上2.6質量%以下のSiと、
0.2質量%以上1.2質量%以下のMnと、
0.015質量%以下のPと、
0.01質量%以下のSと、
0.1質量%以上0.5質量%以下のCuと、
0.1質量%以上1.5質量%以下のNiと、
0.05質量%以上1質量%以下のCrと、
0.002質量%以上0.012質量%以下のNと、
を含有し、且つ、
0.05質量%以上0.3質量%以下のV;
0.02質量%以上0.05質量%以下のNb;
0.02質量%以上0.07質量%以下のTi;
0.005質量%以上0.04質量%以下のAl;
0.0005質量%以上0.003質量%以下のB;
のうちいずれか1種以上を含有し、且つ、
Cの含有量をWC、Mnの含有量をWMn、Crの含有量をWCr、Siの含有量をWSi、Niの含有量をWNi、Bの含有量をWBとしたとき、
WC+WMn+WCrが1.2質量%以上2質量%以下、
及びWSi/3+WCr/2+WMn+353WBが1.4質量%以上2.1質量%以下、
及びWCu+WNiが0.4質量%以上、
であることを特徴とする冷間成形ばね用鋼。
Fe as a main component;
0.36 mass% or more and 0.46 mass% or less of C,
1.8% by mass or more and 2.6% by mass or less of Si;
0.2% by mass or more and 1.2% by mass or less of Mn,
0.015 mass% or less P,
0.01 mass% or less S,
0.1 mass% or more and 0.5 mass% or less of Cu,
0.1 mass% or more and 1.5 mass% or less of Ni;
0.05 mass% or more and 1 mass% or less of Cr,
0.002% by mass or more and 0.012% by mass or less N;
And containing
0.05 mass% or more and 0.3 mass% or less V;
0.02 mass% or more and 0.05 mass% or less of Nb;
0.02 mass% or more and 0.07 mass% or less of Ti;
0.005 mass% or more and 0.04 mass% or less of Al;
0.0005 mass% or more and 0.003 mass% or less of B;
One or more of these, and
When the content of C is WC, the content of Mn is WMn, the content of Cr is WCr, the content of Si is WSi, the content of Ni is WNi, and the content of B is WB,
WC + WMn + WCr is 1.2 mass% or more and 2 mass% or less,
And WSi / 3 + WCr / 2 + WMn + 353WB is 1.4 mass% or more and 2.1 mass% or less,
And WCu + WNi is 0.4 mass% or more,
A steel for cold-formed springs.
0.05質量%以上0.5質量%以下のMoを含有することを特徴とする請求項1または2に記載の冷間成形ばね用鋼。The steel for cold forming springs according to claim 1 or 2, characterized by containing 0.05 mass% or more and 0.5 mass% or less of Mo.
JP2003054696A 2003-02-28 2003-02-28 Cold forming spring steel Expired - Lifetime JP4044460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003054696A JP4044460B2 (en) 2003-02-28 2003-02-28 Cold forming spring steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054696A JP4044460B2 (en) 2003-02-28 2003-02-28 Cold forming spring steel

Publications (2)

Publication Number Publication Date
JP2004263247A true JP2004263247A (en) 2004-09-24
JP4044460B2 JP4044460B2 (en) 2008-02-06

Family

ID=33118956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054696A Expired - Lifetime JP4044460B2 (en) 2003-02-28 2003-02-28 Cold forming spring steel

Country Status (1)

Country Link
JP (1) JP4044460B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1698712A1 (en) * 2005-03-03 2006-09-06 Kabushiki Kaisha Kobe Seiko Sho Steels for high-strength springs excellent in cold workability and quality stability
EP1961832A1 (en) * 2007-02-07 2008-08-27 Benteler Stahl/Rohr Gmbh Use of a steel alloy as a substance for producing dynamically loaded tube components and tube component
WO2011078165A1 (en) * 2009-12-22 2011-06-30 株式会社神戸製鋼所 High-strength spring steel
EP2617855A3 (en) * 2012-01-19 2013-09-11 Gesenkschmiede Schneider GmbH Low alloyed steel and components produced therefrom
WO2017021565A1 (en) * 2015-08-05 2017-02-09 Gerdau Investigacion Y Desarrollo Europa, S.A. High-strength low-alloy steel with high resistance to high-temperature oxidation
CN109735771A (en) * 2019-03-19 2019-05-10 马鞍山钢铁股份有限公司 A kind of high-strength spring steel and its production method with excellent fatigue behaviour and corrosion resisting property
JP7434748B2 (en) 2019-08-08 2024-02-21 大同特殊鋼株式会社 spring steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1698712A1 (en) * 2005-03-03 2006-09-06 Kabushiki Kaisha Kobe Seiko Sho Steels for high-strength springs excellent in cold workability and quality stability
US7618498B2 (en) 2005-03-03 2009-11-17 (Kobe Steel, Ltd.) Steels for high-strength springs excellent in cold workability and quality stability
EP1961832A1 (en) * 2007-02-07 2008-08-27 Benteler Stahl/Rohr Gmbh Use of a steel alloy as a substance for producing dynamically loaded tube components and tube component
WO2011078165A1 (en) * 2009-12-22 2011-06-30 株式会社神戸製鋼所 High-strength spring steel
EP2518175A4 (en) * 2009-12-22 2015-12-02 Kobe Steel Ltd High-strength spring steel
EP2617855A3 (en) * 2012-01-19 2013-09-11 Gesenkschmiede Schneider GmbH Low alloyed steel and components produced therefrom
US10041157B2 (en) 2012-01-19 2018-08-07 Gesenkschmiede Schneider Gmbh Low-alloyed steel and components made thereof
WO2017021565A1 (en) * 2015-08-05 2017-02-09 Gerdau Investigacion Y Desarrollo Europa, S.A. High-strength low-alloy steel with high resistance to high-temperature oxidation
CN109735771A (en) * 2019-03-19 2019-05-10 马鞍山钢铁股份有限公司 A kind of high-strength spring steel and its production method with excellent fatigue behaviour and corrosion resisting property
JP7434748B2 (en) 2019-08-08 2024-02-21 大同特殊鋼株式会社 spring steel

Also Published As

Publication number Publication date
JP4044460B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
US8382918B2 (en) Steel wire material for spring and its producing method
EP2058414B1 (en) High-strength spring steel wire, high-strength springs and processes for production of both
KR101768785B1 (en) High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
JP6027302B2 (en) High strength tempered spring steel
KR101333307B1 (en) Electric resistance welded steel pipe having excellent workability and excellent post-quenching fatigue properties
JP2004011009A (en) Electric resistance welded steel tube for hollow stabilizer
KR20140033235A (en) Spring steel and spring
KR20140129262A (en) Steel wire rod with excellent shavability for high-strength spring, and high-strength spring
JP2004027334A (en) Steel for induction tempering and method of producing the same
KR102165228B1 (en) Case hardening steel, method of producing case hardening steel, and method of producing gear part
JP4044460B2 (en) Cold forming spring steel
JP3876384B2 (en) High strength connecting rod and manufacturing method thereof
JP5146063B2 (en) High strength steel with excellent internal fatigue damage resistance and method for producing the same
JP3896902B2 (en) High-strength spring steel with excellent corrosion fatigue strength
JP3918587B2 (en) Spring steel for cold forming
JP4396561B2 (en) Induction hardening steel
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP5598038B2 (en) Hot forged non-heat treated steel parts and non-heat treated steel for hot forging used therefor
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP5141313B2 (en) Steel material with excellent black skin peripheral turning and torsional strength
JP2008266782A (en) Steel for spring excellent in hydrogen embrittlement resistance and corrosion fatigue strength and high strength spring part using the same
JP4175276B2 (en) Induction hardening steel and crankshaft using the same
JP3533034B2 (en) Cold forging-induction hardening steel
JPH11270531A (en) High strength bolt having good delayed fracture characteristic and manufacture thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4044460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term