JP3876384B2 - High strength connecting rod and manufacturing method thereof - Google Patents

High strength connecting rod and manufacturing method thereof Download PDF

Info

Publication number
JP3876384B2
JP3876384B2 JP2003082505A JP2003082505A JP3876384B2 JP 3876384 B2 JP3876384 B2 JP 3876384B2 JP 2003082505 A JP2003082505 A JP 2003082505A JP 2003082505 A JP2003082505 A JP 2003082505A JP 3876384 B2 JP3876384 B2 JP 3876384B2
Authority
JP
Japan
Prior art keywords
connecting rod
less
strength
cross
connecting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003082505A
Other languages
Japanese (ja)
Other versions
JP2004286196A (en
Inventor
隼平 小川
智則 宮澤
義夫 岡田
淳 池内
雅史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003082505A priority Critical patent/JP3876384B2/en
Priority to EP04002247.7A priority patent/EP1450056B1/en
Priority to US10/771,522 priority patent/US7500417B2/en
Priority to CNB2004100054794A priority patent/CN100422576C/en
Publication of JP2004286196A publication Critical patent/JP2004286196A/en
Application granted granted Critical
Publication of JP3876384B2 publication Critical patent/JP3876384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レシプロエンジンにおいて、ピストンの往復運動をクランクシャフトに伝達して回転運動に変換するコンロッド(連結棒)に係わり、特に疲労強度に優れた高強度コンロッドと、このような高強度コンロッドの製造方法に関するものである。
【0002】
【従来の技術】
従来、上記したような高強度コンロッドの製造方法としては、加工部材を硬度H300以下に形成した後、当該加工部材の機械加工を施さない部分に焼入れを施して、その硬度がH300を越えるようにすることによって、機械加工を容易にする一方、機械加工を施さない部分の疲労耐久性を確保することが知られており、実施例においては、焼入れ手段として高周波を用いることが開示されている(特許文献1参照)。
【0003】
【特許文献1】
特開昭59−89720号公報
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の高強度コンロッドにあっては、狭い焼入れ範囲や焼き境部の引張残留応力の影響によって、焼入れ部または焼き境から疲労破壊してしまい、必ずしもコンロッドの疲労強度を十分に向上させることができないという問題点があり、このような問題点を解消して、疲労強度をさらに向上させることがコンロッドにおける従来の課題となっていた。
【0005】
この発明は、従来のコンロッドにおける上記課題に着目してなされたものであって、軽量化が達成でき、しかも疲労強度の向上が可能な高強度コンロッドと、このような高強度コンロッドの製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明の高強度コンロッドは、本体である連接部と、この連接部の一端側に位置する大端部と、連接部の他端側に位置する小端部と、これら大端部及び小端部と連接部の間につなぎ部をそれぞれ有し、つなぎ部の断面積が連接部に向かって連続的に減少すると共に、連接部に最小断面積部位を持つコンロッドであって、質量比で0.73%以下のCを含有すると共に、連接部及びつなぎ部における断面が次の関係式(1)
S/D≧1/{(1−β)Ms/100+β} ・・・(1)
(式中のSは連接部及びつなぎ部の任意の部位における断面積、Dは連接部の最小断面積部位における断面積、βは(非焼入れ組織の疲労強度)/(焼戻しマルテンサイト組織の疲労強度)、Msは当該部位における焼戻しマルテンサイト組織の面積率)を満たす焼戻しマルテンサイト組織及び/又はフェライト−パーライト組織からなり、少なくとも連接部の最小断面積部位における断面全体が焼戻しマルテンサイト組織であると共に、連接部又はつなぎ部にフェライト−パーライト組織のみからなる断面を有している構成としたことを特徴としている。
【0007】
また、本発明の高強度コンロッドの製造方法においては、素材鋼を上記のようなコンロッド形状に成形したのち、誘導電流を用いて焼入れし、200〜650℃の温度で焼戻しを施すようになすことを特徴としている。
【0008】
【発明の実施の形態】
以下、本発明の高強度コンロッドと、その製造方法について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示すものとする。
【0009】
本発明の高強度コンロッドは、上記したような連接部、大端部、小端部及びつなぎ部を備えた形状をなし、最小断面積部位を連接部に有するコンロッドであって、質量比で0.73%以下のCを含有し、連接部及びつなぎ部における各断面が上記関係式(1)を満たす焼戻しマルテンサイト組織若しくはフェライト−パーライト組織、又はこれらの混在組織からなり、少なくとも連接部の最小断面積部位の全断面が焼戻しマルテンサイト組織であると共に、連接部又はつなぎ部に焼戻しマルテンサイト組織のない、フェライト−パーライト組織のみからなる断面が存在するようにしたものであって、これによって、完全焼入れ部及び焼き境における残留応力が軽減され、コンロッドの疲労強度が向上し、部品の軽量化がなされることになる。
【0010】
なお、本発明において、疲労強度とは疲労限度を意味する。また、つなぎ部及び連接部に存在する疲労強度変化部位においては、疲労強度が連続的に変化し、極端な落ち込みがないことが望ましい。
【0011】
本発明の高強度コンロッドの化学成分、言い換えると素材鋼の成分としては、上記したようにC含有量が0.73%以下(0を含まず)の鋼を用いることができるが、0.20〜0.43%のC、0.05〜2.0%のSi、0.30〜1.40%のMn、0.07%未満(0を含まず)のS、2.5%以下(0を含まず)のCr、0.05%以下(0を含まず)のAl、0.005〜0.03%のNを含有し、さらに0.03〜0.5%のV、0.005〜0.5%のNb若しくは0.005〜0.5%のTi、又はこれらの任意の組合わせによる元素を含有し、残部がFe及び不純物から成る合金鋼を用いることがさらに望ましく、これによって非焼入れ部の疲労強度が向上することになる。
【0012】
また、0.20〜0.43%のC、0.05〜2.0%のSi、0.30〜1.40%のMn、0.07〜0.15%のS、2.5%以下(0を含まず)のCr、0.05%以下(0を含まず)のAl、0.005〜0.03%のNを含有し、さらに0.03〜0.5%のV、0.005〜0.5%のNb若しくは0.005〜0.5%のTi、又はこれらの任意の組合わせによる元素を含有し、残部がFe及び不純物から成る合金鋼を用いることもでき、このような合金鋼、すなわちP含有量の高い合金鋼を用いることによって、同様に非焼入れ部の疲労強度が向上すると共に、加工による切欠きを起点とする破断による大端部の分離(いわゆる、かち割り)に際して、破面に塑性変形を実質的に生じさせることなく好適に破断が進行するようになり、破面を合わせたときに高い密着性が得られることから、機械的な切断に較べて低コストでコンロッドが生産されるようになる。
【0013】
さらに、2.0%以下のNi、1.0%以下のMo若しくは0.0010〜0.0030%のB、又はこれらの任意の組み合わせによる元素を添加することができ、これによって焼入れ性が向上する。
また、0.2%以下のS、0.3%以下のPb、0.1%以下のCa若しくは0.3%以下のBi、又はこれらの任意の組み合わせによる元素を添加することができ、これによって素材の被削性が向上し、機械加工が容易なものとなる。
【0014】
本発明の上記高強度コンロッドを製造するに際しては、それぞれの素材鋼を上記のようなコンロッド形状に成形し、誘導電流を用いて焼入れしたのち、200〜650℃の温度で焼戻しを施すようになすことができ、焼戻し温度については、350〜550℃の温度範囲とすることがさらに望ましく、疲労強度がさらに向上することになる。
【0015】
なお、誘導電流による焼入れに際しては、5〜200kHz、さらに好ましくは7〜50kHzの周波数の電流を用いることが望ましい。すなわち、表面硬化を目的とした通常の高周波焼入れにおいては200kHz程度の高周波で行うのに対して、本発明においては、上記のような比較的低周波側の、言わば中周波電流を適用することによって、連接部の内部まで硬化させることが望ましく、これによってコンロッドが受けるピストンからの燃焼圧力により強力に抗することができる。また、誘導電流による焼戻しに際しても、基本的に上記同様の範囲の周波数を用いることができ、コンロッド全体を均一に焼戻すことができる。
【0016】
また、本発明の製造方法においては、例えば電気炉中で焼戻し処理を行うことができるが、焼戻し処理においても焼入れと同様に誘導電流によって加熱することもでき、これによって処理時間が短縮されることになる。
【0017】
次に、本発明の高強度コンロッドにおける鋼成分の限定理由について簡単に説明する。
【0018】
C:0.73%以下
炭素は、鋼の強度(硬さ)を確保するのに必要な元素であって、0.73%を限度に添加するが、少ないと非焼入れ部の疲労強度及び焼入れ性が不足し、多過ぎると被削性が劣化する傾向があるので、0.20〜0.43%の範囲とすることが望ましい。
【0019】
Si:0.05〜2.0%
珪素は、疲労強度の向上に有効な元素であるが、0.05%未満ではこのような効果が十分に得られず、2.0%を超えて添加した場合には、被削性を悪化させる傾向があるので、0.05〜2.0%の範囲内で添加することが好ましい。
【0020】
Mn:0.30〜1.40%
マンガンは、製鋼時に脱酸剤として添加され、焼入れ性を向上し、Siと同様に疲労強度の向上に有効な元素であるが、0.30%未満ではこのような効果が顕著ではなく、1.40%を超えると、同様に被削性を悪化させる傾向があることから、0.30〜1.40%の範囲内とすることが好ましい。
【0021】
P:0.07%未満、又は0.07〜0.15%
りんは、通常は不純物とされる元素であるが、鋼中に少量存在することによって疲労強度を向上させる働きを示す。また、比較的多量に存在することによって熱間加工性を劣化させる反面、コンロッド大端部のかち割り破断時の塑性変形を減少させ、分離を容易なものとする働きを有する。
したがって、熱間加工性を損なうことなく疲労強度を向上させようとする場合には、0.07%未満の含有量となるようにすることが望ましく、大端部の破断分離を容易に行うためには、0.07〜0.15%の範囲で添加することが望ましい。なお、りん含有量が0.15%を超えると、熱間加工性が悪化するばかりでなく、焼き割れの原因となることがある。
【0022】
Cr:2.5%以下
クロムは、焼入れ性を高め、疲労強度を向上させるのに有効な元素であるが、多いと焼入れ安定性と共に、加工性が劣化する傾向があることから、2.5%を限度に添加することが望ましい。
【0023】
Al:0.05%以下
アルミニウムは、製鋼時に脱酸剤として添加される元素であって、焼入れ時の割れ(焼き割れ)を抑える働きを示すが、多量に添加すると、非金属介在物が増加して靭性を悪化させる傾向があるので、0.05%を上限として添加することが望ましい。
【0024】
N:0.005〜0.03%
窒素は、AlNを生成してオーステナイト結晶粒を微細化し、疲労強度を向上させる働きを有する元素であるが、多量に添加すると加工性が劣化する傾向が認められるので、0.005〜0.03%の範囲とすることが望ましい。
【0025】
V:0.03〜0.5%
Nb:0.005〜0.5%
Ti:0.005〜0.5%
これら元素は、疲労強度を向上させるために、単独又は2種以上を任意に組合わせて添加するが、Vについては0.3%、Nb及びTiについては0.005%に満たない場合には疲労強度向上効果が得難く、それぞれ0.5%を超えて添加した場合には被削性が劣化する傾向があるので、それぞれ上記の範囲とすることが望ましい。
【0026】
Ni:2.0%以下
Mo:1.0%以下
B:0.0010〜0.0030%
これらは、いずれも焼入れ性改善効果を有する元素であって、単独又は2種以上を任意に組合わせて添加することによって焼入れ性及び疲労強度が向上するが、B単独では、0.0010%以上添加しないと顕著な効果が得られない。一方、Ni及びMoの添加量がそれぞれ2.0%及び1.0%を超えると、加工性が劣化する傾向がある。また、B添加量が0.0030%を超えた場合には、熱間鍛造時に粒界酸化が生じて、同様に加工性が劣化する傾向となる。
【0027】
S:0.2%以下
Pb:0.3%以下
Ca:0.1%以下
Bi:0.3%以下
これら元素は、いずれも被削性改善効果を有し、単独又は2種以上を任意に組合わせて添加することによって、素材の被削性が向上して機械加工が容易なものとなる。一方、S含有量が0.2%を超えると疲労強度が低下し、Pb及びBi含有量がそれぞれ0.3%を超えると加工性が悪化し、Ca含有量が0.1%を超えると靭性が劣化する傾向が認められることから、それぞれ上記の範囲とすることが望ましい。
【0028】
なお、上記において上限値のみを示した成分については、それぞれの効果を期待して、積極的に添加するものであるからして、いずれも「0%」の場合を含まないものとする。
【0029】
【実施例】
以下、本発明を実施例に基づいて具体的に説明する。
【0030】
(参考例)
表1に示す4種の鋼のうち、鋼種A及びDを使用し、図1に示すように、小端部A、連接部B、大端部C、つなぎ部D及びEを備えた同一のコンロッド形状にそれぞれ熱間鍛造したのち、図2に示すように、連接部Bの周囲に配置したコイルに30kHzの高周波電流を通じて、誘導電流により920℃に加熱し、それぞれ10秒間保持したのち、水中に焼き入れた。
なお、表1に示した4鋼種については、いずれもSを添加することによって被削性を向上させたものである。また、表中に示す焼入れ性とは、JIS G 0561に規定される「鋼の焼入性試験方法」(ジョミニー式一端焼入方法)によるものであって、JHRC45の測定値について、鋼種Aを1とした場合の相対値で示してある。
【0031】
【表1】

Figure 0003876384
【0032】
次いで、電気炉を用いて、460℃×30分の焼戻し処理を施したのち、スチールショットを用いてアークハイト0.2mmA、カバレッジ300%のショットピーニングを施した。
そして、連接部Bの最小断面積部位P及びこの最小断面積部位Pの1.5倍の断面積を有する部位QをP部よりも大端部C寄りの位置に求め、これら両部位、P部及びQ部における組織を観察すると共に、コンロッドの全ての部位がそのP部、Q部と同一組織、硬さとなるように作製した複数本のコンロッドを用いて、小端部A及び大端部Cをチャックした状態で引張圧縮疲労試験を実施し、疲労強度(疲労限界)を測定し、P部及びQ部における疲労強度との関係を調査した。この結果を表2に示す。
【0033】
なお、表2において、両コンロッドNo.1及び2の疲労強度(疲労限界)については、No.1のコンロッドの値を「1」とする相対値で示した。また、部分的な疲労強度、すなわちP部及びQ部における疲労強度評価については、コンロッド全体をP部及びQ部と同じ組織及び硬さにしたものを用いて同様の引張圧縮疲労試験を行った場合の値を用いた。そして、これらP部及びQ部の疲労強度については、P部における値を「1」とする相対値でそれぞれ示した。
【0034】
【表2】
Figure 0003876384
【0035】
この結果、Q部位における断面積と疲労強度の積が最小断面部位Pにおける断面積と疲労強度の積よりも大きいNo.1のコンロッドの疲労強度が、Q部位における断面積と疲労強度の積が最小断面部位Pにおける断面積と疲労強度の積よりも小さいNo.2のコンロッドに比べて高くなっていることが確認された。
【0036】
(実施例1)
表1に示す4種の鋼のうち、鋼種Aを使用し、図1に示すように、小端部A、連接部B、大端部C、つなぎ部D及びEを備えた同様のコンロッド形状に熱間鍛造したのち、図2に示すように、連接部Bの周囲に配置したコイルに30kHzの高周波電流を通じて、誘導電流により920℃に加熱し、それぞれ所定時間保持したのち、水中に焼き入れた。このとき、通電時間を変えることによって加熱保持時間を調整した。
【0037】
次いで、電気炉を用いて、460℃×30分の焼戻し処理を同様に施したのち、同様のショットピーニング処理を施した。
そして、連接部Bにおける最小断面積部位Pの断面積Dを測定すると共に、連接部B及びつなぎ部D,Eにおいて、焼戻しマルテンサイトが0%(すなわち、フェライト−パーライト組織のみ)となる最小断面積Sを求めた。
【0038】
次に、同一条件で作製した複数本のコンロッドを用いて、引張圧縮疲労試験を実施し、疲労強度(疲労限界)を求めた。
また、焼入れ部の疲労強度Fq及び非焼入れ部の疲労強度Fnを求め、β値(=Fn/Fq)を算出すると共に、焼戻しマルテンサイトが0%となる最小断面積部分(断面積S)における1/{(1−β)Ms/100+β}の値として、1/βを算出した(Ms=0)。この結果を表3及び図3に示す。
【0039】
なお、表3において、焼入れ部の疲労強度としては、連接部Bに全断面が焼戻しマルテンサイト組織となっている部分があって、当該焼戻しマルテンサイト部分で疲労破断したものの疲労強度値を、非焼入れ部の疲労強度としては、焼入れを施さないコンロッドの疲労強度値をそれぞれ採用した。また、これら疲労強度の各数値は、非焼入れ部の値を「1」とする相対値で示すと共に、焼戻しマルテンサイトが0%となる最小断面積Sについては、連接部Bの最小断面積Dを「1」とする相対値で示してある。
【0040】
【表3】
Figure 0003876384
【0041】
その結果、S/Dが1/{(1−β)Ms/100+β}の値である1.59以上となること、すなわち(1)式を満足することによって、疲労強度が低い焼き境部の断面積が十分に広いものとなり、当該焼き境部からの疲労破壊が防止されることから、コンロッドの疲労強度が大幅に向上していることが確認された。
【0042】
(実施例2)
表1に示す鋼種A、B及びCを使用し、上記参考例及び実施例1の場合と同様のコンロッドを熱間鍛造したのち、同様に、連接部Bの周囲に配置したコイルに30kHzの高周波電流を通じて、誘導電流により920℃に加熱し、99秒間保持したのち、水中に焼き入れた。そして、電気炉及び誘導電流を用いて、種々の条件のもとに焼戻し処理を施したのち、同様のショットピーニング処理を行って、実施例1と同様の試験を実施した。この結果を表4及び図4に示す。なお、誘導電流を用いた焼戻し処理には、焼入れ処理と同様に30kHzの高周波電流を用いた。
また、表4においても、疲労強度の数値を非焼入れ部の値を「1」とする相対値で示すと共に、焼戻しマルテンサイトが0%となる最小断面積Sを連接部Bの最小断面積Dを「1」とする相対値で示した。
【0043】
【表4】
Figure 0003876384
【0044】
その結果、焼戻し温度を室温から上げていくと、200〜460℃までの範囲では、焼入れ後の内部歪の消失等により、コンロッドの疲労強度が上昇していることが判明し、さらに焼戻し温度を上げていくと疲労強度は低下し始め、A1変態点(約726℃)を超えると組織がオーステナイト化してしまうために、焼入れ・焼戻し組織(焼戻しマルテンサイト)が得られず、疲労強度が大幅に低下することが確認された。
【0045】
すなわち、図4からも明らかなように、高いコンロッドの疲労強度を得るための焼戻し温度は200〜650℃の範囲となり、コンロッドの疲労強度向上効果を求めるには350〜550℃の温度範囲での焼戻しが好ましい。
【0046】
また、誘導電流を用いて均一な温度に焼戻しを行ったコンロッドについても、電気炉を用いた場合と同等の疲労強度を確保することができ、誘導電流による焼戻しにより短時間での処理が可能であることが確認された。
【0047】
さらに、りん(P)を多量に添加してかち割り破断による分離を容易にした合金鋼(表1に示すB鋼)、及びほう素(B)を添加して焼入れ性を向上させた合金鋼(表1に示すC鋼)を用いた場合にも同等の疲労強度が得られことが判明した。
【0048】
なお、上記実施例結果は一例にすぎなく、材質や加熱設備により最適な焼入れ条件等が変化することがあり得る。
すなわち、焼入れ深さが必要な場合には、焼入れ時の周波数を低く設定し、表面のオーバーヒートを防ぐようにすることが必要となる。また、焼入れ性の低い鋼を用いる場合には、焼入れ時の冷却速度を速めることが必要となる。
【0049】
【発明の効果】
以上説明してきたように、本発明の高強度コンロッドは、上記構成、特に連接部と大小端部、及びこれらの間につなぎ部を備え、連接部に最小断面積部位を有するコンロッドであって、0.73%以下のCを含有し、連接部及びつなぎ部の各断面が上記関係式(1)を満たす焼戻しマルテンサイト組織若しくはフェライト−パーライト組織、又はこれらの混在組織からなり、少なくとも最小断面積部位が焼戻しマルテンサイト組織であると共に、連接部又はつなぎ部にフェライト−パーライト組織のみからなる断面を備えている構成としたものであるから、完全焼入れ部及び焼き境における残留応力を軽減することができ、軽量化と共に疲労強度の向上を達成することができるというきわめて優れた効果がもたらされる。
また、本発明の製造方法においては、上記高強度コンロッドを製造するに際して、誘導電流を用いて焼入れした後、望ましくは誘導電流を用いて、200〜650℃、より望ましくは350〜550℃の温度範囲で焼戻し処理を施すようにしており、上記構成のコンロッドを容易に得ることができる。
【図面の簡単な説明】
【図1】本発明の高強度コンロッドの形状を示す概略図である。
【図2】上記高強度コンロッドの製造方法における焼入れ要領を示す概略図である。
【図3】コンロッドの疲労強度とS/Dの関係を示すグラフである。
【図4】コンロッドの疲労強度と焼戻し温度の関係を示すグラフである。
【符号の説明】
A 小端部
B 連接部
C 大端部
D,E つなぎ部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a connecting rod that connects a reciprocating motion of a piston to a crankshaft and converts it into a rotational motion in a reciprocating engine. In particular, the present invention relates to a high-strength connecting rod excellent in fatigue strength, It relates to a manufacturing method.
[0002]
[Prior art]
Conventionally, as a manufacturing method of a high-strength connecting rod as described above, after forming a processed member to a hardness of H B 300 or less, a portion of the processed member that is not machined is quenched, and the hardness is H B 300. It is known to ensure the fatigue endurance of the part that is not machined while making the machining easy by making it exceed the above, and in the examples, it is disclosed to use high frequency as a quenching means (See Patent Document 1).
[0003]
[Patent Document 1]
JP 59-89720 A
[Problems to be solved by the invention]
However, in such a conventional high-strength connecting rod, the fatigue strength of the connecting rod does not necessarily increase due to fatigue failure from the quenched portion or the boundary due to the influence of the narrow quenching range or the tensile residual stress in the boundary. There is a problem that it cannot be improved, and it has been a conventional problem in connecting rods to solve such a problem and further improve the fatigue strength.
[0005]
The present invention has been made paying attention to the above-mentioned problems in conventional connecting rods, and can provide a high-strength connecting rod capable of achieving weight reduction and improving fatigue strength, and a method for manufacturing such a high-strength connecting rod. It is intended to provide.
[0006]
[Means for Solving the Problems]
The high-strength connecting rod of the present invention includes a connecting part as a main body, a large end part located on one end side of the connecting part, a small end part located on the other end side of the connecting part, and the large end part and the small end part. A connecting rod having a connecting portion between the connecting portion and the connecting portion, the connecting portion having a cross-sectional area continuously decreasing toward the connecting portion, and having a minimum cross-sectional area at the connecting portion, and having a mass ratio of 0 .73% or less of C, and the cross-section at the connecting part and the connecting part has the following relational expression (1)
S / D ≧ 1 / {(1-β) Ms / 100 + β} (1)
(In the formula, S is a cross-sectional area at an arbitrary part of the joint part and the joint part, D is a cross-sectional area at a minimum cross-sectional area part of the joint part, β is (fatigue strength of the non-hardened structure) / (fatigue of the tempered martensite structure) Strength), Ms is composed of a tempered martensite structure and / or a ferrite-pearlite structure satisfying the area ratio of the tempered martensite structure in the part), and at least the entire cross section in the minimum cross-sectional area part of the connecting portion is a tempered martensite structure. In addition, the connecting portion or the connecting portion is characterized by having a cross section composed only of a ferrite-pearlite structure.
[0007]
Moreover, in the manufacturing method of the high-strength connecting rod of this invention, after shape | molding raw material steel into the above connecting rod shape, it hardens using an induced current and it is made to temper at the temperature of 200-650 degreeC. It is characterized by.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the high-strength connecting rod of the present invention and the manufacturing method thereof will be described in detail. In the present specification, “%” indicates a mass percentage unless otherwise specified.
[0009]
The high-strength connecting rod of the present invention is a connecting rod having a shape including the connecting portion, the large end portion, the small end portion and the connecting portion as described above, and having a minimum cross-sectional area portion in the connecting portion, and having a mass ratio of 0. 0.7% or less of C, and each cross-section at the connecting portion and the connecting portion is composed of a tempered martensite structure or a ferrite-pearlite structure satisfying the above relational expression (1), or a mixed structure thereof, and at least the minimum of the connecting portion The entire cross section of the cross-sectional area portion is a tempered martensite structure, and there is no tempered martensite structure in the connecting part or the connecting part, and there is a cross section consisting only of a ferrite-pearlite structure. Residual stress in the completely quenched portion and the fired boundary is reduced, the fatigue strength of the connecting rod is improved, and the weight of the component is reduced.
[0010]
In the present invention, fatigue strength means a fatigue limit. In addition, it is desirable that the fatigue strength continuously changes at the fatigue strength changing portion existing in the joint portion and the connecting portion, and there is no extreme drop.
[0011]
As described above, steel having a C content of 0.73% or less (not including 0) can be used as the chemical component of the high-strength connecting rod of the present invention, in other words, the component of the material steel. -0.43% C, 0.05-2.0% Si, 0.30-1.40% Mn, less than 0.07% (not including 0) S, 2.5% or less ( 0 not including Cr, 0.05% or less (not including 0) Al, 0.005 to 0.03% N, 0.03 to 0.5% V, and 0.0. It is further desirable to use an alloy steel containing elements from 005 to 0.5% Nb or 0.005 to 0.5% Ti, or any combination thereof, the balance being Fe and impurities. As a result, the fatigue strength of the non-quenched portion is improved.
[0012]
Also, 0.20 to 0.43% C, 0.05 to 2.0% Si, 0.30 to 1.40% Mn, 0.07 to 0.15% S, 2.5% Cr (not including 0) or less, 0.05% or less (not including 0) Al, 0.005 to 0.03% N, and 0.03 to 0.5% V, An alloy steel containing 0.005 to 0.5% Nb or 0.005 to 0.5% Ti, or any combination of these elements, the balance being Fe and impurities, can also be used. By using such an alloy steel, that is, an alloy steel having a high P content, the fatigue strength of the non-quenched portion is similarly improved, and separation of the large end portion by breakage starting from a notch by processing (so-called, In the case of splitting), the fracture proceeds suitably without substantially causing plastic deformation on the fracture surface. Uninari, since the high adhesion is obtained when the combined fracture, so the connecting rod is produced at a lower cost compared to mechanical cutting.
[0013]
Furthermore, elements of 2.0% or less Ni, 1.0% or less Mo or 0.0010 to 0.0030% B, or any combination thereof can be added, thereby improving hardenability. To do.
Moreover, 0.2% or less of S, 0.3% or less of Pb, 0.1% or less of Ca or 0.3% or less of Bi, or any combination of these elements can be added. This improves the machinability of the material and facilitates machining.
[0014]
When manufacturing the high-strength connecting rod of the present invention, each material steel is formed into the connecting rod shape as described above, quenched by induction current, and then tempered at a temperature of 200 to 650 ° C. The tempering temperature is more preferably in the temperature range of 350 to 550 ° C., and the fatigue strength is further improved.
[0015]
In the quenching with the induced current, it is desirable to use a current having a frequency of 5 to 200 kHz, more preferably 7 to 50 kHz. That is, in the normal induction hardening for the purpose of surface hardening, it is performed at a high frequency of about 200 kHz, whereas in the present invention, by applying the medium frequency current on the relatively low frequency side as described above. It is desirable to cure to the inside of the connecting portion, and this can strongly resist the combustion pressure from the piston received by the connecting rod. Also, when tempering with an induced current, basically the same frequency range as described above can be used, and the entire connecting rod can be tempered uniformly.
[0016]
Further, in the production method of the present invention, for example, tempering can be performed in an electric furnace, but also in tempering, heating can be performed by induced current in the same manner as quenching, thereby shortening the processing time. become.
[0017]
Next, the reason for limiting the steel components in the high-strength connecting rod of the present invention will be briefly described.
[0018]
C: 0.73% or less Carbon is an element necessary for ensuring the strength (hardness) of steel, and is added up to 0.73%, but if it is less, the fatigue strength and quenching of the non-quenched part However, if the amount is too large, the machinability tends to deteriorate. Therefore, it is desirable that the content be in the range of 0.20 to 0.43%.
[0019]
Si: 0.05-2.0%
Silicon is an element effective for improving fatigue strength, but if it is less than 0.05%, such an effect cannot be sufficiently obtained, and if added over 2.0%, the machinability deteriorates. Therefore, it is preferable to add in the range of 0.05 to 2.0%.
[0020]
Mn: 0.30 to 1.40%
Manganese is added as a deoxidizer during steelmaking to improve hardenability and is an element effective for improving fatigue strength like Si. However, if it is less than 0.30%, such an effect is not significant. If it exceeds .40%, the machinability tends to be deteriorated in the same manner, so it is preferable to be within the range of 0.30 to 1.40%.
[0021]
P: Less than 0.07%, or 0.07 to 0.15%
Phosphorus is an element that is normally regarded as an impurity, but exhibits a function of improving fatigue strength when present in a small amount in steel. Further, the presence of a relatively large amount deteriorates the hot workability, but on the other hand, it has a function of reducing the plastic deformation at the time of splitting the large end of the connecting rod and facilitating separation.
Therefore, in order to improve the fatigue strength without impairing the hot workability, it is desirable to make the content less than 0.07%, in order to easily break and break the large end. Is preferably added in the range of 0.07 to 0.15%. When the phosphorus content exceeds 0.15%, not only the hot workability is deteriorated, but also a cause of burning cracks may be caused.
[0022]
Cr: 2.5% or less Chromium is an element effective for enhancing the hardenability and improving the fatigue strength. However, if the amount is too large, the workability tends to deteriorate with the quenching stability. It is desirable to add up to%.
[0023]
Al: 0.05% or less Aluminum is an element that is added as a deoxidizer during steelmaking, and works to suppress cracking (quenching) during quenching, but when added in a large amount, nonmetallic inclusions increase. Therefore, it is desirable to add 0.05% as an upper limit.
[0024]
N: 0.005 to 0.03%
Nitrogen is an element that has the function of generating AlN to refine austenite crystal grains and improving fatigue strength. However, when added in a large amount, nitrogen tends to deteriorate in workability, so 0.005 to 0.03. % Range is desirable.
[0025]
V: 0.03-0.5%
Nb: 0.005 to 0.5%
Ti: 0.005 to 0.5%
In order to improve fatigue strength, these elements are added alone or in combination of two or more, but when V is 0.3%, Nb and Ti are less than 0.005% It is difficult to obtain the effect of improving fatigue strength, and if added over 0.5%, the machinability tends to deteriorate.
[0026]
Ni: 2.0% or less Mo: 1.0% or less B: 0.0010 to 0.0030%
These are all elements having an effect of improving hardenability, and the hardenability and fatigue strength are improved by adding a single or two or more in any combination, but with B alone, 0.0010% or more If it is not added, a remarkable effect cannot be obtained. On the other hand, if the addition amounts of Ni and Mo exceed 2.0% and 1.0%, respectively, the workability tends to deteriorate. On the other hand, when the amount of addition of B exceeds 0.0030%, grain boundary oxidation occurs during hot forging, and the workability tends to deteriorate similarly.
[0027]
S: 0.2% or less Pb: 0.3% or less Ca: 0.1% or less Bi: 0.3% or less Any of these elements has an effect of improving machinability, either alone or in combination of two or more. By adding in combination, the machinability of the material is improved and machining becomes easy. On the other hand, if the S content exceeds 0.2%, the fatigue strength decreases, and if the Pb and Bi contents exceed 0.3%, the workability deteriorates and the Ca content exceeds 0.1%. Since the tendency to deteriorate toughness is recognized, it is desirable that the above ranges are satisfied.
[0028]
In addition, about the component which showed only the upper limit in the above, since each effect is anticipated and added positively, all shall not include the case of "0%".
[0029]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
[0030]
(Reference example)
Among the four types of steel shown in Table 1, steel types A and D were used, and as shown in FIG. 1, the same provided with a small end portion A, a connecting portion B, a large end portion C, and connecting portions D and E. After hot forging each into a connecting rod shape, as shown in FIG. 2, the coil placed around the connection part B is heated to 920 ° C. by induction current through a high-frequency current of 30 kHz and held for 10 seconds. Tempered.
In addition, about 4 steel types shown in Table 1, all have improved machinability by adding S. In addition, the hardenability shown in the table is based on the “steel hardenability test method” (Jominy one-side quenching method) defined in JIS G 0561, and the steel grade A is determined for the measured value of JHRC45. The relative value in the case of 1 is shown.
[0031]
[Table 1]
Figure 0003876384
[0032]
Next, after performing a tempering treatment at 460 ° C. for 30 minutes using an electric furnace, a shot peening with an arc height of 0.2 mmA and a coverage of 300% was performed using a steel shot.
Then, a minimum cross-sectional area part P of the connecting part B and a part Q having a cross-sectional area 1.5 times the minimum cross-sectional area part P are obtained at a position closer to the large end C than the P part. Using a plurality of connecting rods prepared so that all parts of the connecting rod have the same structure and hardness as the P and Q parts, the small end part A and the large end part are observed. A tensile compression fatigue test was conducted with C chucked, the fatigue strength (fatigue limit) was measured, and the relationship between the fatigue strength in the P part and the Q part was investigated. The results are shown in Table 2.
[0033]
In Table 2, both connecting rod Nos. Regarding the fatigue strength (fatigue limit) of Nos. 1 and 2, no. The value of the connecting rod of 1 is shown as a relative value with “1”. Moreover, about the fatigue strength evaluation in partial fatigue strength, ie, P part and Q part, the same tension compression fatigue test was done using what made the whole connecting rod the same structure and hardness as P part and Q part. Case values were used. And about the fatigue strength of these P part and Q part, it showed with the relative value which makes the value in P part "1", respectively.
[0034]
[Table 2]
Figure 0003876384
[0035]
As a result, the product of the cross-sectional area and the fatigue strength at the Q portion is larger than the product of the cross-sectional area and the fatigue strength at the minimum cross-sectional portion P. No. 1 has a fatigue strength of No. 1 in which the product of the cross-sectional area at the Q portion and the fatigue strength is smaller than the product of the cross-sectional area at the minimum cross-sectional portion P and the fatigue strength. It was confirmed that it was higher than 2 connecting rods.
[0036]
Example 1
Among the four types of steel shown in Table 1, steel type A is used, and as shown in FIG. 1, the same connecting rod shape having a small end A, a connecting part B, a large end C, a connecting part D and E is provided. After hot forging, as shown in FIG. 2, the coil placed around the connection part B is heated to 920 ° C. by induction current through a high-frequency current of 30 kHz, kept for a predetermined time, and then quenched in water. It was. At this time, the heating and holding time was adjusted by changing the energization time.
[0037]
Next, using an electric furnace, a tempering process at 460 ° C. for 30 minutes was similarly performed, and then a similar shot peening process was performed.
And while measuring the cross-sectional area D of the minimum cross-sectional-area part P in the connection part B, in the connection part B and the connection parts D and E, the minimum break | disconnection which a tempered martensite becomes 0% (namely, only a ferrite pearlite structure | tissue). to determine the area S 0.
[0038]
Next, using a plurality of connecting rods produced under the same conditions, a tensile compression fatigue test was performed to determine fatigue strength (fatigue limit).
Further, the fatigue strength Fq of the quenched portion and the fatigue strength Fn of the non-quenched portion are obtained, and the β value (= Fn / Fq) is calculated, and the minimum cross-sectional area portion where the tempered martensite becomes 0% (cross-sectional area S 0 ) 1 / β was calculated as the value of 1 / {(1-β) Ms / 100 + β} at (Ms = 0). The results are shown in Table 3 and FIG.
[0039]
In Table 3, as the fatigue strength of the quenched portion, there is a portion where the entire section has a tempered martensite structure in the connection portion B, and the fatigue strength value of the fatigue fractured portion at the tempered martensite portion is expressed as As the fatigue strength of the quenched portion, the fatigue strength value of the connecting rod not subjected to quenching was adopted. Each value of these fatigue strengths is indicated by a relative value where the value of the non-quenched portion is “1”, and the minimum cross-sectional area S 0 at which the tempered martensite becomes 0% is the minimum cross-sectional area of the connecting portion B. The relative value with D being “1” is shown.
[0040]
[Table 3]
Figure 0003876384
[0041]
As a result, when S 0 / D becomes 1.59 or more which is the value of 1 / {(1-β) Ms / 100 + β}, that is, by satisfying the expression (1), the boundary portion having low fatigue strength. It was confirmed that the fatigue strength of the connecting rod was greatly improved because the cross-sectional area of the steel rod was sufficiently wide and fatigue fracture from the fired zone was prevented.
[0042]
(Example 2)
Using steel types A, B, and C shown in Table 1 and hot forging the same connecting rods as in the above Reference Example and Example 1, similarly, a high frequency of 30 kHz was applied to the coil disposed around the connecting portion B. It was heated to 920 ° C. by induced current through an electric current, held for 99 seconds, and then quenched in water. And after performing the tempering process under various conditions using an electric furnace and an induction current, the same shot peening process was performed and the test similar to Example 1 was implemented. The results are shown in Table 4 and FIG. In the tempering process using the induced current, a high frequency current of 30 kHz was used as in the quenching process.
Also in Table 4, the fatigue strength value is shown as a relative value where the value of the non-quenched portion is “1”, and the minimum cross-sectional area S 0 at which the tempered martensite becomes 0% is the minimum cross-sectional area of the connecting portion B. The relative value with D being “1” is shown.
[0043]
[Table 4]
Figure 0003876384
[0044]
As a result, when the tempering temperature was raised from room temperature, it was found that the fatigue strength of the connecting rod was increased due to the disappearance of internal strain after quenching in the range of 200 to 460 ° C., and the tempering temperature was further increased. The fatigue strength begins to decrease as the temperature rises, and when the temperature exceeds the A1 transformation point (about 726 ° C.), the structure becomes austenitic, so that a quenched / tempered structure (tempered martensite) cannot be obtained and the fatigue strength is greatly increased. It was confirmed that it decreased.
[0045]
That is, as is apparent from FIG. 4, the tempering temperature for obtaining high fatigue strength of the connecting rod is in the range of 200 to 650 ° C., and in order to obtain the effect of improving the fatigue strength of the connecting rod in the temperature range of 350 to 550 ° C. Tempering is preferred.
[0046]
In addition, connecting rods that have been tempered to a uniform temperature using an induced current can ensure the same fatigue strength as when using an electric furnace, and can be processed in a short time by tempering with an induced current. It was confirmed that there was.
[0047]
Further, an alloy steel (B steel shown in Table 1) in which a large amount of phosphorus (P) is added to facilitate separation by splitting fracture, and an alloy steel in which hardenability is improved by adding boron (B) It was found that the equivalent fatigue strength was also obtained when (C steel shown in Table 1) was used.
[0048]
In addition, the said Example result is only an example and optimal quenching conditions etc. may change with a material and heating equipment.
That is, when the quenching depth is required, it is necessary to set the quenching frequency low to prevent surface overheating. Moreover, when using steel with low hardenability, it is necessary to increase the cooling rate at the time of quenching.
[0049]
【The invention's effect】
As described above, the high-strength connecting rod of the present invention is a connecting rod having the above-described configuration, particularly a connecting portion and a large and small end portion, and a connecting portion between them, and having a minimum cross-sectional area portion in the connecting portion, It contains 0.73% or less of C, and each cross-section of the connecting portion and the connecting portion is composed of a tempered martensite structure, a ferrite-pearlite structure, or a mixed structure thereof satisfying the above relational expression (1), and at least the minimum cross-sectional area. Since the part is a tempered martensite structure and the connecting part or the connecting part has a cross section consisting only of a ferrite-pearlite structure, the residual stress in the completely quenched part and the quenching environment can be reduced. It is possible to achieve an excellent effect that the fatigue strength can be improved together with the weight reduction.
In the production method of the present invention, when the high-strength connecting rod is produced, after quenching using an induced current, the temperature is preferably 200 to 650 ° C., more preferably 350 to 550 ° C. using the induced current. Tempering treatment is performed in the range, and the connecting rod having the above-described configuration can be easily obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the shape of a high-strength connecting rod of the present invention.
FIG. 2 is a schematic view showing a hardening procedure in the manufacturing method of the high-strength connecting rod.
FIG. 3 is a graph showing the relationship between fatigue strength and S / D of a connecting rod.
FIG. 4 is a graph showing the relationship between the fatigue strength of a connecting rod and the tempering temperature.
[Explanation of symbols]
A Small end B Joint C Large end D, E Joint

Claims (9)

質量比で0.73%以下のCを含有し、かつコンロッド本体をなす連接部と、該連接部の一端側に位置する大端部と、該連接部の他端側に位置する小端部と、上記大端部及び小端部と連接部の間につなぎ部を有し、当該つなぎ部の断面積が連接部に向かって連続的に減少すると共に、連接部に最小断面積部位を持つコンロッドであって、上記連接部及びつなぎ部における断面が次の関係式
S/D≧1/{(1−β)Ms/100+β} ・・・ (1)
(式中のSは連接部及びつなぎ部の任意の部位における断面積、Dは連接部の最小断面積部位における断面積、βは(非焼入れ組織の疲労強度)/(焼戻しマルテンサイト組織の疲労強度)、Msは当該部位における焼戻しマルテンサイト組織の面積率)を満たす焼戻しマルテンサイト組織及び/又はフェライト−パーライト組織からなり、少なくとも連接部の最小断面積部位における断面全体が焼戻しマルテンサイト組織であると共に、連接部又はつなぎ部にフェライト−パーライト組織のみからなる断面を有していることを特徴とする高強度コンロッド。
A connecting portion containing 0.73% or less of C by mass and forming a connecting rod body, a large end portion located on one end side of the connecting portion, and a small end portion located on the other end side of the connecting portion And a connecting portion between the large end portion and the small end portion and the connecting portion, and the cross-sectional area of the connecting portion continuously decreases toward the connecting portion, and the connecting portion has a minimum cross-sectional area portion. It is a connecting rod, and the cross-section at the connecting part and the connecting part has the following relational expression S / D ≧ 1 / {(1-β) Ms / 100 + β} (1)
(In the formula, S is a cross-sectional area at an arbitrary part of the joint part and the joint part, D is a cross-sectional area at a minimum cross-sectional area part of the joint part, β is (fatigue strength of the non-hardened structure) / (fatigue of the tempered martensite structure) Strength), Ms is composed of a tempered martensite structure and / or a ferrite-pearlite structure satisfying the area ratio of the tempered martensite structure in the part), and at least the entire cross section in the minimum cross-sectional area part of the connecting portion is a tempered martensite structure. In addition, a high-strength connecting rod characterized by having a cross-section consisting only of a ferrite-pearlite structure at a connecting portion or a connecting portion.
質量比で、C:0.20〜0.43%、Si:0.05〜2.0%、Mn:0.30〜1.40%、P:0.07%未満、Cr:2.5%以下、Al:0.05%以下、N:0.005〜0.03%を含有すると共に、V:0.03〜0.5%、Nb:0.005〜0.5%、及びTi:0.005〜0.5%から成る群から選ばれた少なくとも1種の元素を含有し、残部がFe及び不純物から成ることを特徴とする請求項1に記載の高強度コンロッド。  By mass ratio, C: 0.20 to 0.43%, Si: 0.05 to 2.0%, Mn: 0.30 to 1.40%, P: less than 0.07%, Cr: 2.5 %: Al: 0.05% or less, N: 0.005-0.03%, V: 0.03-0.5%, Nb: 0.005-0.5%, and Ti 2. The high-strength connecting rod according to claim 1, comprising at least one element selected from the group consisting of 0.005 to 0.5%, and the balance consisting of Fe and impurities. 質量比で、C:0.20〜0.43%、Si:0.05〜2.0%、Mn:0.30〜1.40%、P:0.07〜0.15%、Cr:2.5%以下、Al:0.05%以下、N:0.005〜0.03%を含有すると共に、V:0.03〜0.5%、Nb:0.005〜0.5%、及びTi:0.005〜0.5%から成る群から選ばれた少なくとも1種の元素を含有し、残部がFe及び不純物から成ることを特徴とする請求項1に記載の高強度コンロッド。  By mass ratio, C: 0.20 to 0.43%, Si: 0.05 to 2.0%, Mn: 0.30 to 1.40%, P: 0.07 to 0.15%, Cr: 2.5% or less, Al: 0.05% or less, N: 0.005-0.03%, V: 0.03-0.5%, Nb: 0.005-0.5% The high-strength connecting rod according to claim 1, comprising at least one element selected from the group consisting of Ti and 0.005 to 0.5%, with the balance being Fe and impurities. 質量比で、Ni:2.0%以下、Mo:1.0%以下、及びB:0.0010〜0.0030%から成る群から選ばれた少なくとも1種の元素をさらに含有することを特徴とする請求項2又は3に記載の高強度コンロッド。  It further contains at least one element selected from the group consisting of Ni: 2.0% or less, Mo: 1.0% or less, and B: 0.0010 to 0.0030% by mass ratio. The high-strength connecting rod according to claim 2 or 3. 質量比で、S:0.2%以下、Pb:0.3%以下、Ca:0.1%以下、及びBi:0.3%以下から成る群から選ばれた少なくとも1種の元素をさらに含有することを特徴とする請求項2〜4のいずれか1つの項に記載の高強度コンロッド。  And at least one element selected from the group consisting of S: 0.2% or less, Pb: 0.3% or less, Ca: 0.1% or less, and Bi: 0.3% or less in terms of mass ratio It contains, The high intensity | strength connecting rod as described in any one of Claims 2-4 characterized by the above-mentioned. ショットピーニングが施してあることを特徴とする請求項1〜5のいずれか1つの項に記載の高強度コンロッド。  The high-strength connecting rod according to any one of claims 1 to 5, wherein shot peening is applied. 請求項1〜6のいずれか1つの項に記載の高強度コンロッドを製造するに際して、素材鋼を上記コンロッド形状に成形し、誘導電流を用いて焼入れしたのち、200〜650℃の温度で焼戻しを施すことを特徴とする高強度コンロッドの製造方法。  When manufacturing the high-strength connecting rod according to any one of claims 1 to 6, after forming the material steel into the connecting rod shape and quenching using induced current, tempering is performed at a temperature of 200 to 650 ° C. The manufacturing method of the high intensity | strength connecting rod characterized by performing. 350〜550℃の温度で焼戻しを施すことを特徴とする請求項7に記載の高強度コンロッドの製造方法。  Tempering is performed at the temperature of 350-550 degreeC, The manufacturing method of the high intensity | strength connecting rod of Claim 7 characterized by the above-mentioned. 誘導電流を用いて焼戻しを施すことを特徴とする請求項7又は8に記載の高強度コンロッドの製造方法。  The method for producing a high-strength connecting rod according to claim 7 or 8, wherein tempering is performed using an induced current.
JP2003082505A 2003-02-19 2003-03-25 High strength connecting rod and manufacturing method thereof Expired - Fee Related JP3876384B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003082505A JP3876384B2 (en) 2003-03-25 2003-03-25 High strength connecting rod and manufacturing method thereof
EP04002247.7A EP1450056B1 (en) 2003-02-19 2004-02-02 High-strength connecting rod and method of producing same
US10/771,522 US7500417B2 (en) 2003-02-19 2004-02-05 High-strength connecting rod and method of producing same
CNB2004100054794A CN100422576C (en) 2003-02-19 2004-02-19 High-strength connecting rod and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082505A JP3876384B2 (en) 2003-03-25 2003-03-25 High strength connecting rod and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004286196A JP2004286196A (en) 2004-10-14
JP3876384B2 true JP3876384B2 (en) 2007-01-31

Family

ID=33295783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082505A Expired - Fee Related JP3876384B2 (en) 2003-02-19 2003-03-25 High strength connecting rod and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3876384B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162060A (en) * 2005-12-13 2007-06-28 Toyota Motor Corp Method for hardening hot-forged steel component
JP4811010B2 (en) * 2005-12-13 2011-11-09 日産自動車株式会社 Connecting rod manufacturing method and manufacturing apparatus
JP2007197770A (en) * 2006-01-26 2007-08-09 Toyota Motor Corp Method for manufacturing steel parts and connecting rod
JP4624456B2 (en) * 2008-09-26 2011-02-02 トヨタ自動車株式会社 Steel tie rod end and manufacturing method thereof
JP5421029B2 (en) * 2009-08-27 2014-02-19 株式会社神戸製鋼所 Method for manufacturing fracture split connecting rod
JP6209155B2 (en) * 2014-11-10 2017-10-04 株式会社神戸製鋼所 Method for manufacturing fracture split connecting rod
JP6466152B2 (en) * 2014-11-26 2019-02-06 高周波熱錬株式会社 Heat treatment method for boron-containing steel
JP2016180165A (en) * 2015-03-25 2016-10-13 株式会社神戸製鋼所 Molding component for fracture separation type connecting rod and fracture separation type connecting rod, and manufacturing method therefor
JP2017101272A (en) * 2015-11-30 2017-06-08 株式会社神戸製鋼所 Manufacturing method of fracture split type connecting rod
WO2019203343A1 (en) * 2018-04-20 2019-10-24 日本製鉄株式会社 Steel, mechanical component, and connecting rod
CN115125447B (en) * 2022-06-29 2023-08-15 马鞍山钢铁股份有限公司 Non-quenched and tempered steel for Nb-V composite reinforced high-carbon expansion connecting rod, expansion connecting rod produced by non-quenched and tempered steel, and forging and cooling control process

Also Published As

Publication number Publication date
JP2004286196A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US20040149359A1 (en) Method of fabricating a steel forging, and a forging obtained thereby
JP5693126B2 (en) Coil spring and manufacturing method thereof
JP3876384B2 (en) High strength connecting rod and manufacturing method thereof
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP4771745B2 (en) Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
KR20110098002A (en) Electric resistance welded steel pipe having excellent workability and excellent post-quenching fatigue properties
JPH10195589A (en) Induction hardened steel material with high torsional fatigue strength
JP4272284B2 (en) ERW welded steel pipe for hollow stabilizers with excellent fatigue durability
JPH11236644A (en) Steel for induction hardening excellent in high strength characteristic and low heat treating strain characteristic and its production
JP4403624B2 (en) Non-tempered steel for nitrocarburizing, non-tempered tempered crankshaft and manufacturing method thereof
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP5941439B2 (en) Coil spring and manufacturing method thereof
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
WO2007043316A1 (en) Steel material and process for producing the same
JP4252351B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring
JP4801485B2 (en) Cold forged parts, manufacturing method for obtaining the same, and steel materials
JP4044460B2 (en) Cold forming spring steel
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JP3304550B2 (en) Manufacturing method of induction hardened parts with notches
JP4640101B2 (en) Hot forged parts
JP4175276B2 (en) Induction hardening steel and crankshaft using the same
JP5734050B2 (en) Medium carbon steel with excellent rolling fatigue properties and induction hardenability
JP3872364B2 (en) Manufacturing method of oil tempered wire for cold forming coil spring
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
JPH10310823A (en) Manufacture of shaft-shaped parts for machine structural use, excellent in fatigue characteristic

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees