WO2007043316A1 - Steel material and process for producing the same - Google Patents

Steel material and process for producing the same Download PDF

Info

Publication number
WO2007043316A1
WO2007043316A1 PCT/JP2006/318885 JP2006318885W WO2007043316A1 WO 2007043316 A1 WO2007043316 A1 WO 2007043316A1 JP 2006318885 W JP2006318885 W JP 2006318885W WO 2007043316 A1 WO2007043316 A1 WO 2007043316A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
drive shaft
hardness
steel
ratio
Prior art date
Application number
PCT/JP2006/318885
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimi Usui
Yutaka Sato
Masahiko Igarashi
Wataru Yanagita
Hideo Watanabe
Satoru Nakamyo
Original Assignee
Honda Motor Co., Ltd.
Sanyo Special Steel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd., Sanyo Special Steel Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to US12/083,353 priority Critical patent/US20090110589A1/en
Publication of WO2007043316A1 publication Critical patent/WO2007043316A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Definitions

  • the present invention relates to a steel material and a method for manufacturing the steel material, and more particularly to a steel material suitable as a material for a drive shaft and a method for manufacturing the steel material.
  • a drive shaft that constitutes a traveling engine of an automobile is generally manufactured from a steel material.
  • This type of steel material is required to be relatively easy to cut.
  • it is necessary that the shear stress to break when applying the torsional torque to ensure the durability of the drive shaft is high, in other words, the torsional strength is high.
  • JIS-S40C equivalent material is selected as the steel material to obtain such a drive shaft.
  • Patent Document 1 discloses that a drive shaft is composed of a steel material in which the composition ratio, surface hardness, martensite ratio, and hardening depth ratio of constituent elements satisfy predetermined values. Has been proposed.
  • Patent Document 2 discloses a steel for induction hardening in which the structure area ratio of ferrite with respect to contained C and the crystal grain size of ferrite are not more than a predetermined value. According to Patent Document 2,
  • the induction hardening steel is said to be suitable as a drive shaft material.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-36937
  • Patent Document 2 JP 2002-69566 A Disclosure of the invention
  • a general object of the present invention is to provide a steel material having excellent characteristics even when a small-sized member is formed.
  • a main object of the present invention is to provide a method for producing a steel material for producing the steel material.
  • a steel material having a hardened layer ratio tZr of 0.4 or more is provided, where the effective hardened depth t is the distance of surface force to reach the part showing 392 in Vickers hardness and the radius is r.
  • N in this steel material is preferably 0.01% by mass or less.
  • BN and TiN are difficult to generate. Therefore, it is possible to avoid that the hardness proceeds excessively and the workability and machinability are deteriorated while quenching proceeds without being hindered.
  • this steel material has high torsional strength, it can be suitably used as a material for a long shaft member, for example, a drive shaft.
  • FIG. 1 is an overall schematic side view along the longitudinal direction of a drive shaft that also has steel force according to the present embodiment.
  • FIG. 2 is a graph showing the relationship between the surface force distance and the hardness of the drive shaft of FIG.
  • FIG. 3 is a chart showing the components and composition ratios of each steel material.
  • FIG. 4 is a chart showing various characteristics of the steel material shown in FIG.
  • FIG. 5 is a graph showing the relationship between the hardened layer ratio rZt and the shear stress in the steel materials according to each example.
  • FIG. 1 is an overall schematic side view of the drive shaft 10 along the longitudinal direction.
  • the drive shaft 10 is a long solid body, and the diameter of the measurement site indicated by reference numeral 12 in FIG. 1 is 28 mm.
  • the steel material that is the material of the drive shaft 10 is C, in addition to iron and inevitable impurities.
  • C ensures the strength and hardness of the drive shaft 10 after quenching and tempering.
  • the composition ratio is set to 0.47-0.52% (numbers are% by mass, the same shall apply hereinafter). If it is less than 0.4%, it will be difficult to ensure hardness. On the other hand, if it exceeds 0.52%, the hardness will increase excessively, making it difficult to carry out plastic deformation or cutting, and will also show brittle fracture, resulting in a decrease in strength. In particular, the deformability in cold working is reduced.
  • Si is an element useful for deoxidation of the drive shaft 10 and is contained in the drive shaft 10 at a ratio of 0.03 to 0.15%. Less than 03%, the deoxidation effect is poor. On the other hand, if it exceeds 0.15%, the hardness will increase excessively, making it difficult to perform plastic deformation or cutting. In particular, the deformability in cold working is reduced.
  • Mn improves the induction hardenability of the drive shaft 10. That is, due to the presence of Mn, when induction hardening is performed on the drive shaft 10, the hardness is significantly increased as compared with that before the quenching.
  • the composition ratio of Mn to ensure this effect is set to 0.6 to 0.7%. If it exceeds 0.7%, the hardness will increase excessively, making it difficult to perform plastic deformation or cutting. In particular, the deformability in cold working is reduced.
  • S is a component that forms MnS together with Mn in the structure of the drive shaft 10, thereby improving the machinability of the drive shaft 10.
  • the composition ratio of S is set to 0.005 to 0.03%. If it is less than 0.005%, it is difficult to improve machinability, and if it exceeds 0.03%, the deformability particularly during cold working is reduced.
  • Ti plays a role in capturing free N in the drive shaft 10. When free N is trapped in this way, the effect of adding B described later becomes more remarkable.
  • the composition ratio of Ti is set to 0.025 to 0.04%. If it is less than 0.25%, the effect of capturing free N is poor. On the other hand, if it exceeds 0.04%, Ti will be present excessively, so that machinability and deformability during cold heating are reduced.
  • Cr is a component that improves the hardenability of the drive shaft 10. In other words, the presence of Cr significantly increases the hardness of the drive shaft 10 after quenching.
  • the composition ratio of Cr is set to 0.05-5.3%. If it is less than 0.05%, it is difficult to obtain this effect. On the other hand, if it exceeds 0.3%, Cr concentrates in the cementite. It prevents carbon from dissolving in the steel material when it is put.
  • Mo is an element useful for improving the grain boundary strength of the drive shaft 10 after quenching, and particularly for improving the torsional strength.
  • the Mo composition ratio is set to 0.04-0.09%. If it is less than 0.04%, it is difficult to improve the grain boundary strength. On the other hand, if it exceeds 0.09%, the hardness will increase excessively, making it difficult to perform plastic deformation or cutting. In particular, the deformability during cold working is reduced.
  • B is a component that improves the grain boundary strength.
  • the hardenability of the drive shaft 10 is improved. This effect is reduced when N is present in excess. This is because BN is generated from B and surplus N. Therefore, as described above, this effect is ensured by capturing N with a predetermined amount of Ti.
  • composition ratio of B is set to 0.0005 to 0.004% (5 to 40 ppm). If it is less than 5 ppm, the effect of improving the grain boundary strength is poor. If it exceeds 40 ppm, the hardenability will be reduced.
  • A1 like Si, is a component that contributes to deoxidation.
  • the composition ratio of A1 is less than 0.02%, the deoxidation effect is poor.
  • oxide impurities such as Al 2 O increase.
  • the upper limit of A1 is set to 0.04%.
  • the composition ratio of N existing in the drive shaft 10 is set to 0.01% or less.
  • the occupied area ratio of the ferrite existing in the structure is 30% or more. In other words, if the total field of view is 100%, ferrite occupies 30% or more. Due to the presence of ferrite in this proportion, the drive shaft 10 after quenching exhibits excellent toughness.
  • the hardness of the surface of the drive shaft 10 is B scale Rockwell hardness (H).
  • the drive shaft 10 is manufactured, for example, by subjecting a cylindrical workpiece made of a steel material having the above-mentioned component 'composition ratio to a turning process or a rolling process.
  • the drive shaft 10 is quenched and tempered.
  • an induction hardening method in which heating is performed with a high frequency is employed as the quenching. That is, first, the surface of the drive shaft 10 is rapidly heated by the high-frequency induction current, and then the cooling liquid is jetted onto the surface to perform rapid cooling.
  • the quenching conditions may be, for example, a heating time of 1 to 5 seconds when the frequency and output of the induced current are approximately 1 to 40 kHz and 50 to about LOOkW.
  • the drive shaft 10 is tempered in a temperature range of about 150 ° C to 200 ° C. As a result, residual stress is removed from the drive shaft 10 and the drive shaft 10 is prevented from undergoing secular change or cracking.
  • the picker hardness (H) of the surface of the drive shaft 10 subjected to the quenching and tempering treatment as described above is 640 to 730. High hardness steels generally have higher strength.
  • the toughness may not be sufficient.
  • the hardness decreases in the radial direction, that is, from the surface to the inside, as shown in FIG.
  • the hardness of the drive shaft 10 is measured from the surface side in this way, and the distance (depth) to the part indicated by 392 in H is calculated.
  • Effective hardened layer depth t For example, since the diameter of the measurement site 12 is 28 mm as described above, 14 mm on the horizontal axis of the graph in FIG. 2 represents the center in the radial direction at the measurement site 12.
  • the cured layer ratio tZr which is the ratio of the effective cured layer depth t to the radius r, is 0.4 or more. If it is less than 0.4, the thickness of the effective hardened layer is not sufficient, so that the torsional strength of the drive shaft 10 is reduced.
  • a drive shaft 10 having excellent strength and toughness is obtained.
  • the drive shaft 10 is exemplified as the steel material.
  • the final product is not limited to this. Even if it is a counter member to be used.
  • a drive shaft 10 having the shape shown in Fig. 1 is produced from the cylindrical workpiece, and the drive shaft 10 is subjected to induction hardening and tempering treatment under various conditions to obtain an effective hardened layer depth t.
  • the hardened layer ratio tZr was varied. Thereafter, a static torsion test was performed on each drive shaft 10.
  • the relationship between the hardened layer ratio tZr and the shear stress in the steel materials according to the respective examples is shown as a graph in FIG. Higher shear stress means higher static torsional strength.
  • the broken line in FIG. 5 represents the relationship between the hardened layer ratio and the shear stress in the S40C equivalent material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

A steel material of 85 to 95 HRB exhibiting a ratio of area occupied by ferrite of 30% or higher, which steel material comprises given amounts of C, Si, Mn, S, Ti, Cr, Al and B and the balance of iron and unavoidable impurities, is subjected to induction hardening. After the hardening, the surface of the steel material exhibits an HV value of 640 to 730. When t refers to the effective hardening depth, namely, the distance from the surface to a region exhibiting an HV value of 392 and r refers to the radius of the steel material, the hardened layer ratio, t/r, is 0.4 or higher.

Description

明 細 書  Specification
鋼材及びその製造方法  Steel material and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、鋼材及びその製造方法に関し、一層詳細には、例えば、ドライブシャフ トの素材として好適な鋼材及びその製造方法に関する。  [0001] The present invention relates to a steel material and a method for manufacturing the steel material, and more particularly to a steel material suitable as a material for a drive shaft and a method for manufacturing the steel material.
背景技術  Background art
[0002] 自動車の走行機関を構成するドライブシャフトは、鋼材から作製されるのが一般的 である。この種の鋼材には、切削加工等を施すことが比較的容易であることが要求さ れる。その一方で、ドライブシャフトとしての耐久性を確保するべぐ捩りトルクを付カロ した際に破断に至るせん断応力が高いこと、換言すれば、捩り強度が大きいことが必 要である。このようなドライブシャフトを得るベぐ鋼材として、例えば、 JIS— S40C相 当材が選定される。  [0002] A drive shaft that constitutes a traveling engine of an automobile is generally manufactured from a steel material. This type of steel material is required to be relatively easy to cut. On the other hand, it is necessary that the shear stress to break when applying the torsional torque to ensure the durability of the drive shaft is high, in other words, the torsional strength is high. For example, JIS-S40C equivalent material is selected as the steel material to obtain such a drive shaft.
[0003] ところで、近年における環境保護への関心の高まりに伴い、 COや NOx等の排ガ  [0003] By the way, with the recent growing interest in environmental protection, emissions of CO, NOx, etc.
2  2
ス量を低減するべぐ自動車の燃費を向上させることが種々検討されている。この観 点力ら、自動車の構成部材の寸法を小さくすることによって軽量ィ匕を図ることが試み られている。  Various investigations have been made to improve the fuel efficiency of a vehicle that reduces the amount of fuel. Attempts have been made to reduce weight by reducing the dimensions of the components of automobiles.
[0004] 同一鋼材力 小寸法のドライブシャフトを作製すると、通常、強度等が低下してしま う。このため、小寸法のドライブシャフトを作製した場合であっても、十分な強度等を 確保可能な鋼材が希求されて 、る。  [0004] Same steel strength When manufacturing a small-sized drive shaft, the strength and the like usually decrease. Therefore, there is a demand for a steel material that can ensure sufficient strength even when a small-sized drive shaft is manufactured.
[0005] この希求に応えるベぐ例えば、特許文献 1には、構成元素の組成比、表面硬度、 マルテンサイト率、硬化深さ比が所定の数値を満足する鋼材でドライブシャフトを構 成することが提案されて 、る。 [0005] In response to this need, for example, Patent Document 1 discloses that a drive shaft is composed of a steel material in which the composition ratio, surface hardness, martensite ratio, and hardening depth ratio of constituent elements satisfy predetermined values. Has been proposed.
[0006] また、特許文献 2には、含有 Cに対するフェライトの組織面積率、フェライトの結晶粒 径が所定値以下である高周波焼入れ用鋼が開示されている。該特許文献 2によれば[0006] Further, Patent Document 2 discloses a steel for induction hardening in which the structure area ratio of ferrite with respect to contained C and the crystal grain size of ferrite are not more than a predetermined value. According to Patent Document 2,
、この高周波焼入れ用鋼は、ドライブシャフトの素材として好適である、とされている。 The induction hardening steel is said to be suitable as a drive shaft material.
[0007] 特許文献 1 :特開平 10— 36937号公報 [0007] Patent Document 1: Japanese Patent Laid-Open No. 10-36937
特許文献 2 :特開 2002— 69566号公報 発明の開示 Patent Document 2: JP 2002-69566 A Disclosure of the invention
[0008] 本発明の一般的な目的は、小寸法の部材を構成した場合でも該部材が優れた諸 特性を示す鋼材を提供することにある。  [0008] A general object of the present invention is to provide a steel material having excellent characteristics even when a small-sized member is formed.
[0009] 本発明の主たる目的は、該鋼材を製造するための鋼材の製造方法を提供すること にある。 [0009] A main object of the present invention is to provide a method for producing a steel material for producing the steel material.
[0010] 本発明の一実施形態によれば、質量0 /0で、 C:0.47〜0. 52%、 Si:0.03〜0. 1 5%、 Mn:0. 6〜0. 7%、 S:0.005〜0.03%、 Ti:0.025〜0.04%、 Cr:0.05 〜0. 3%、 Mo:0.04〜0.09%、 A1:0.02〜0.04%、 B:0.0005〜0.004%を 含有し、残部が鉄及び不可避的不純物であり、 According to one embodiment of the [0010] present invention, the mass 0/0, C:. 0.47~0 52%, Si:. 0.03~0 1 5%, Mn:.. 0 6~0 7%, S : 0.005 to 0.03%, Ti: 0.025 to 0.04%, Cr: 0.05 to 0.3%, Mo: 0.04 to 0.09%, A1: 0.02 to 0.04%, B: 0.0005 to 0.004%, the balance being iron and Inevitable impurities,
表面のビッカース硬度が 640〜730であり、  Surface Vickers hardness is 640-730,
ビッカース硬度で 392を示す部位に至るまでの表面力もの距離を有効硬化深さ t、 半径を rとするとき、硬化層比率 tZrが 0.4以上である鋼材が提供される。  A steel material having a hardened layer ratio tZr of 0.4 or more is provided, where the effective hardened depth t is the distance of surface force to reach the part showing 392 in Vickers hardness and the radius is r.
[0011] 硬度及び硬化層比率をこのように設定することにより、硬度及び強度が確保される[0011] By setting the hardness and the hardened layer ratio in this way, the hardness and the strength are ensured.
。硬度が大きい物質は、概ね強度も大きくなるからである。また、硬度が過度に大きく ないので靱性も確保され、脆性破壊を起こし難くなる。 . This is because a substance having a high hardness generally has a high strength. Also, since the hardness is not excessively large, toughness is ensured and brittle fracture is less likely to occur.
[0012] し力も、上記した成分 '組成比とすることにより、切削性に優れた鋼材とすることもで きる。 [0012] By making the above-mentioned component composition ratio as described above, a steel material having excellent machinability can be obtained.
[0013] この鋼材における Nは、質量%で 0.01%以下であることが好ましい。この場合、 B Nや TiNが生成し難い。従って、焼入れが阻害されることなく進行する一方、硬度が 過度に上昇して加工性や切削性が低下することを回避することができる。  [0013] N in this steel material is preferably 0.01% by mass or less. In this case, BN and TiN are difficult to generate. Therefore, it is possible to avoid that the hardness proceeds excessively and the workability and machinability are deteriorated while quenching proceeds without being hindered.
[0014] また、本発明の別の一実施形態によれば、表面のビッカース硬度が 640〜730、表 面力 ビッカース硬度で 392を示す部位に至るまでの距離を有効硬化深さ t、半径を rとするとき、 tZrが 0.4以上である鋼材の製造方法であって、  [0014] According to another embodiment of the present invention, the distance from the surface Vickers hardness of 640 to 730 and the surface force Vickers hardness of 392 to the effective hardening depth t and the radius where rZ is a method of manufacturing a steel material with tZr of 0.4 or more,
質量0 /0で、 C:0.47〜0. 52%, Si:0.03〜0. 15%, Mn:0.6〜0. 7%、 S:0. 005〜0.03%、Ti:0.025〜0.04%、Cr:0.05〜0. 3%、A1:0.02〜0.04% 、 B:0.0005-0.004%を含有し、残部が鉄及び不可避的不純物であり、フェライト の占有面積率が 30%以上、 Bスケールのロックウェル硬度が 85〜95である原材料 鋼に対し、高周波焼入れを施す鋼材の製造方法が提供される。 [0015] すなわち、上記した成分'組成比の原材料鋼に対して高周波焼入れを施すことによ り、硬度及び強度に優れ、且つ切削性が良好な鋼材を得ることができる。 Mass 0/0, C:. 0.47~0 52%, Si:. 0.03~0 15%, Mn:. 0.6~0 7%, S:. 0 005~0.03%, Ti: 0.025~0.04%, Cr : 0.05 to 0.3%, A1: 0.02 to 0.04%, B: 0.0005-0.004%, the balance is iron and unavoidable impurities, the ferrite occupied area ratio is 30% or more, B scale Rockwell Provided is a method for producing a steel material having a hardness of 85 to 95 and subjecting the steel material to induction hardening. That is, by subjecting the raw material steel having the above-mentioned component 'composition ratio to induction hardening, a steel material having excellent hardness and strength and good machinability can be obtained.
[0016] このような特性を示す鋼材を使用することにより、小寸法であっても強度に優れる部 材を作製することが可能となる。し力も、この鋼材は、切削性が良好であり、且つ組成 変形能にも富むため、加工を施すことが極めて容易である。また、靱性に優れるので[0016] By using a steel material exhibiting such characteristics, it is possible to produce a member having excellent strength even with a small size. However, this steel material is very easy to process because it has good machinability and high compositional deformability. Also, because it has excellent toughness
、加工中に割れが生じ難い。 Cracks are less likely to occur during processing.
[0017] さらに、この鋼材は捩り強度が高いので、長尺な軸部材、例えば、ドライブシャフトの 素材として好適に採用することができる。 Furthermore, since this steel material has high torsional strength, it can be suitably used as a material for a long shaft member, for example, a drive shaft.
[0018] 以上のように、成分、組成比、硬度、硬化層比率を設定して鋼材を構成するように することで、強度、特に捩り強度に優れ、且つ切削性も良好な鋼材が得られる。 図面の簡単な説明 [0018] As described above, by configuring the steel material by setting the components, composition ratio, hardness, and hardened layer ratio, a steel material having excellent strength, particularly torsional strength, and good machinability can be obtained. . Brief Description of Drawings
[0019] [図 1]図 1は、本実施の形態に係る鋼材力もなるドライブシャフトの長手方向に沿う全 体概略側面図である。  FIG. 1 is an overall schematic side view along the longitudinal direction of a drive shaft that also has steel force according to the present embodiment.
[図 2]図 2は、図 1のドライブシャフトにおける表面力 の距離と硬度との関係を示すグ ラフである。  [FIG. 2] FIG. 2 is a graph showing the relationship between the surface force distance and the hardness of the drive shaft of FIG.
[図 3]図 3は、各鋼材の成分及び組成比を示す図表である。  FIG. 3 is a chart showing the components and composition ratios of each steel material.
[図 4]図 4は、図 3に示す鋼材の諸特性を示す図表である。  FIG. 4 is a chart showing various characteristics of the steel material shown in FIG.
[図 5]図 5は、各実施例に係る鋼材における硬化層比率 rZtと、せん断応力との関係 を示すグラフである。  FIG. 5 is a graph showing the relationship between the hardened layer ratio rZt and the shear stress in the steel materials according to each example.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明に係る鋼材及びその製造方法につき好適な実施の形態を挙げ、添 付の図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the steel material and the manufacturing method thereof according to the present invention will be described in detail with reference to the accompanying drawings.
[0021] 図 1は、ドライブシャフト 10の長手方向に沿う全体概略側面図である。このドライブ シャフト 10は、長尺な中実体であり、図 1中に参照符号 12が付された測定部位の直 径は、 28mmである。 FIG. 1 is an overall schematic side view of the drive shaft 10 along the longitudinal direction. The drive shaft 10 is a long solid body, and the diameter of the measurement site indicated by reference numeral 12 in FIG. 1 is 28 mm.
[0022] ここで、ドライブシャフト 10の材質である鋼材は、鉄及び不可避的不純物の他、 C、 Here, the steel material that is the material of the drive shaft 10 is C, in addition to iron and inevitable impurities.
Siゝ Mn、 S、 Ti、 Crゝ Mo、 Al、 Bを含有する。 Contains Si ゝ Mn, S, Ti, Cr ゝ Mo, Al, B.
[0023] Cは、焼入れ'焼戻し処理を施した後のドライブシャフト 10の強度や硬度等を確保 するための成分であり、その組成比は 0. 47-0. 52% (数字は質量%、以下同じ) に設定される。 0. 47%未満であると、硬度を確保することが困難となる。また、 0. 52 %よりも多いと、硬度が過度に上昇するので塑性変形加工や切削加工等を施すこと が容易でなくなるとともに、脆性破壊を示すようになるので強度が低下する。特に、冷 間加工における変形能が低減する。 [0023] C ensures the strength and hardness of the drive shaft 10 after quenching and tempering. The composition ratio is set to 0.47-0.52% (numbers are% by mass, the same shall apply hereinafter). If it is less than 0.4%, it will be difficult to ensure hardness. On the other hand, if it exceeds 0.52%, the hardness will increase excessively, making it difficult to carry out plastic deformation or cutting, and will also show brittle fracture, resulting in a decrease in strength. In particular, the deformability in cold working is reduced.
[0024] Siは、ドライブシャフト 10の脱酸に有用な元素であり、該ドライブシャフト 10に 0. 03 〜0. 15%の割合で含まれる。 0. 03%未満では脱酸効果に乏しい。一方、 0. 15% を超えると、硬度が過度に上昇するので塑性変形加工や切削加工等を施すことが容 易でなくなる。特に、冷間加工における変形能が低減する。  Si is an element useful for deoxidation of the drive shaft 10 and is contained in the drive shaft 10 at a ratio of 0.03 to 0.15%. Less than 03%, the deoxidation effect is poor. On the other hand, if it exceeds 0.15%, the hardness will increase excessively, making it difficult to perform plastic deformation or cutting. In particular, the deformability in cold working is reduced.
[0025] Mnは、ドライブシャフト 10の高周波焼入れ性を向上させる。すなわち、 Mnが存在 することにより、ドライブシャフト 10に対して高周波焼入れを行った場合、焼入れ前に 比して硬度が顕著に上昇する。この効果を確実に得るベぐ Mnの組成比は、 0. 6〜 0. 7%に設定される。 0. 7%を超えると、硬度が過度に上昇するので塑性変形加工 や切削加工等を施すことが容易でなくなる。特に、冷間加工における変形能が低減 する。  [0025] Mn improves the induction hardenability of the drive shaft 10. That is, due to the presence of Mn, when induction hardening is performed on the drive shaft 10, the hardness is significantly increased as compared with that before the quenching. The composition ratio of Mn to ensure this effect is set to 0.6 to 0.7%. If it exceeds 0.7%, the hardness will increase excessively, making it difficult to perform plastic deformation or cutting. In particular, the deformability in cold working is reduced.
[0026] Sは、 Mnとともにドライブシャフト 10の組織中で MnSを形成し、これにより該ドライ ブシャフト 10の切削性を向上させる成分である。 Sの組成比は、 0. 005〜0. 03%に 設定される。 0. 005%未満では切削性を向上させることが困難であり、 0. 03%を超 えると、特に冷間加工時の変形能が低減する。  [0026] S is a component that forms MnS together with Mn in the structure of the drive shaft 10, thereby improving the machinability of the drive shaft 10. The composition ratio of S is set to 0.005 to 0.03%. If it is less than 0.005%, it is difficult to improve machinability, and if it exceeds 0.03%, the deformability particularly during cold working is reduced.
[0027] Tiは、ドライブシャフト 10中の遊離 Nを捕捉する役割を果たす。このように遊離 Nが 捕捉された場合、後述する Bの添加効果が一層顕著となる。なお、 Tiの組成比は、 0 . 025〜0. 04%に設定される。 0. 025%未満では、遊離 Nを捕捉する効果に乏し い。一方、 0. 04%を超えると、 Tiが過剰に存在するようになるので、切削性、冷間加 ェ時の変形能が低減する。  [0027] Ti plays a role in capturing free N in the drive shaft 10. When free N is trapped in this way, the effect of adding B described later becomes more remarkable. The composition ratio of Ti is set to 0.025 to 0.04%. If it is less than 0.25%, the effect of capturing free N is poor. On the other hand, if it exceeds 0.04%, Ti will be present excessively, so that machinability and deformability during cold heating are reduced.
[0028] Crは、ドライブシャフト 10の焼入れ性を向上させる成分である。換言すれば、 Crが 存在することにより、焼入れを行った後のドライブシャフト 10の硬度が顕著に上昇す る。 Crの組成比は、 0. 05-0. 3%に設定される。 0. 05%未満では、この効果を得 ることが困難となる。一方、 0. 3%を超えると、 Crがセメンタイト中に濃縮するので、焼 入れ時に炭素が鋼材に固溶することを妨げるようになる。 [0028] Cr is a component that improves the hardenability of the drive shaft 10. In other words, the presence of Cr significantly increases the hardness of the drive shaft 10 after quenching. The composition ratio of Cr is set to 0.05-5.3%. If it is less than 0.05%, it is difficult to obtain this effect. On the other hand, if it exceeds 0.3%, Cr concentrates in the cementite. It prevents carbon from dissolving in the steel material when it is put.
[0029] Moは、ドライブシャフト 10の焼入れ後の粒界強度を向上させ、特に捩り強度を向 上させるのに有用な元素である。 Moの組成比は、 0. 04-0. 09%に設定される。 0 . 04%未満では、粒界強度を向上させることが困難である。また、 0. 09%を超えると 、硬度が過度に上昇するので塑性変形加工や切削加工等を施すことが容易でなくな る。特に、冷間加工時の変形能が低減する。  [0029] Mo is an element useful for improving the grain boundary strength of the drive shaft 10 after quenching, and particularly for improving the torsional strength. The Mo composition ratio is set to 0.04-0.09%. If it is less than 0.04%, it is difficult to improve the grain boundary strength. On the other hand, if it exceeds 0.09%, the hardness will increase excessively, making it difficult to perform plastic deformation or cutting. In particular, the deformability during cold working is reduced.
[0030] Bは、粒界強度を向上させる成分である。また、ドライブシャフト 10の焼入れ性も向 上する。この効果は、 Nが過剰量存在する場合には低減する。 Bと余剰の Nとで BN が生成するからである。従って、上記したように、所定量の Tiで Nを捕捉することによ り、この効果を確保する。  [0030] B is a component that improves the grain boundary strength. In addition, the hardenability of the drive shaft 10 is improved. This effect is reduced when N is present in excess. This is because BN is generated from B and surplus N. Therefore, as described above, this effect is ensured by capturing N with a predetermined amount of Ti.
[0031] Bの組成比は、 0. 0005〜0. 004% (5〜40ppm)に設定される。 5ppm未満であ ると、粒界強度を向上させる効果に乏しい。また、 40ppmを超えると、焼入れ性を低 下させる。  [0031] The composition ratio of B is set to 0.0005 to 0.004% (5 to 40 ppm). If it is less than 5 ppm, the effect of improving the grain boundary strength is poor. If it exceeds 40 ppm, the hardenability will be reduced.
[0032] A1は、 Siと同様に脱酸に寄与する成分である。 A1の組成比が 0. 02%未満では、 脱酸効果が乏しい。また、 A1が過剰に存在すると、 Al O等の酸化物系不純物が増  [0032] A1, like Si, is a component that contributes to deoxidation. When the composition ratio of A1 is less than 0.02%, the deoxidation effect is poor. In addition, if A1 is present excessively, oxide impurities such as Al 2 O increase.
2 3  twenty three
加し、その結果、疲労特性、塑性変形加工時の変形能が低下する。このため、 A1の 上限は、 0. 04%に設定される。  In addition, as a result, fatigue characteristics and deformability at the time of plastic deformation are reduced. For this reason, the upper limit of A1 is set to 0.04%.
[0033] ここで、遊離 Nがドライブシャフト 10中に過剰に存在すると、上記したように Bと結合 して BNが生成し、その結果、焼入れ性等が低下する。また、 Tiと結合して TiNが生 成した場合、硬度が過度に上昇して加工を施すことが困難となるとともに、靱性が低 下する。このような事態を回避するべぐ本実施の形態においては、ドライブシャフト 1 0中に存在する Nの組成比が 0. 01%以下に設定される。  [0033] Here, if free N is excessively present in the drive shaft 10, it binds to B to form BN as described above, and as a result, hardenability and the like deteriorate. In addition, when TiN is formed by combining with Ti, the hardness increases excessively, making it difficult to process and lowering the toughness. In the present embodiment to avoid such a situation, the composition ratio of N existing in the drive shaft 10 is set to 0.01% or less.
[0034] また、ドライブシャフト 10の組織を観察した場合、該組織中に存在するフェライトの 占有面積率は、 30%以上である。すなわち、全視野の面積を 100%とした場合、フエ ライトは 30%以上を占める。フェライトがこのような割合で存在することにより、焼入れ 後のドライブシャフト 10が優れた靱性を示す。  [0034] When the structure of the drive shaft 10 is observed, the occupied area ratio of the ferrite existing in the structure is 30% or more. In other words, if the total field of view is 100%, ferrite occupies 30% or more. Due to the presence of ferrite in this proportion, the drive shaft 10 after quenching exhibits excellent toughness.
[0035] さらに、ドライブシャフト 10の表面の硬度は、 Bスケールのロックウェル硬度(H )で  [0035] Furthermore, the hardness of the surface of the drive shaft 10 is B scale Rockwell hardness (H).
RB  RB
表すとき、 85〜95である。表面の硬度をこの範囲に設定することにより、焼入れ'焼 戻し処理後のドライブシャフト 10の強度が確保される。 When expressed, it is 85-95. By setting the surface hardness within this range, quenching and quenching The strength of the drive shaft 10 after the returning process is ensured.
[0036] このドライブシャフト 10は、例えば、上記の成分'組成比の鋼材からなる円柱体形状 ワークに対し、旋削加工や転造加工等が施されることによって作製される。  [0036] The drive shaft 10 is manufactured, for example, by subjecting a cylindrical workpiece made of a steel material having the above-mentioned component 'composition ratio to a turning process or a rolling process.
[0037] 次に、このドライブシャフト 10に対し、焼入れ'焼戻し処理が施される。  Next, the drive shaft 10 is quenched and tempered.
[0038] 本実施の形態において、焼入れとしては、高周波によって加熱が行われる高周波 焼入れ法が採用される。すなわち、先ず、ドライブシャフト 10の表面が高周波誘導電 流によって急激に加熱され、その後、該表面に対して冷却液が噴射されることによつ て急冷が行われる。なお、焼入れ条件は、例えば、誘導電流の周波数及び出力を概 ね l〜40kHz、 50〜: LOOkW程度とした場合、加熱時間を 1〜5秒とすればよい。  [0038] In the present embodiment, an induction hardening method in which heating is performed with a high frequency is employed as the quenching. That is, first, the surface of the drive shaft 10 is rapidly heated by the high-frequency induction current, and then the cooling liquid is jetted onto the surface to perform rapid cooling. The quenching conditions may be, for example, a heating time of 1 to 5 seconds when the frequency and output of the induced current are approximately 1 to 40 kHz and 50 to about LOOkW.
[0039] 次に、 150°C〜200°C程度の温度範囲で、ドライブシャフト 10に対して焼戻し処理 を行う。これにより、ドライブシャフト 10から残留応力が除去されるとともに、該ドライブ シャフト 10に経年変化が生じたり割れが発生したりすることが抑制されるようになる。  [0039] Next, the drive shaft 10 is tempered in a temperature range of about 150 ° C to 200 ° C. As a result, residual stress is removed from the drive shaft 10 and the drive shaft 10 is prevented from undergoing secular change or cracking.
[0040] 以上のようにして焼入れ ·焼戻し処理が施されたドライブシャフト 10の表面のピツカ ース硬度 (H )は、 640〜730である。硬度が高い鋼材は概して強度も高ぐまた、こ  [0040] The picker hardness (H) of the surface of the drive shaft 10 subjected to the quenching and tempering treatment as described above is 640 to 730. High hardness steels generally have higher strength.
V  V
の程度の硬度であれば、靱性が不十分となることもな 、。  If the hardness is of this level, the toughness may not be sufficient.
[0041] また、該ドライブシャフト 10では、半径方向、すなわち、表面から内部になるに従つ て、図 2に示すように、硬度が低下する。本実施の形態においては、このようにドライ ブシャフト 10の硬度を表面側から測定し、 Hで 392を示す部位までの距離 (深さ)を  [0041] Further, in the drive shaft 10, the hardness decreases in the radial direction, that is, from the surface to the inside, as shown in FIG. In the present embodiment, the hardness of the drive shaft 10 is measured from the surface side in this way, and the distance (depth) to the part indicated by 392 in H is calculated.
V  V
有効硬化層深さ tとする。なお、例えば、上記したように測定部位 12の直径は 28mm であるから、図 2のグラフの横軸における 14mmは、測定部位 12における半径方向 の中心を表す。  Effective hardened layer depth t. For example, since the diameter of the measurement site 12 is 28 mm as described above, 14 mm on the horizontal axis of the graph in FIG. 2 represents the center in the radial direction at the measurement site 12.
[0042] ドライブシャフト 10の半径を rとするとき、有効硬化層深さ tと半径 rの比である硬化層 比率 tZrは、 0. 4以上である。 0. 4未満の場合、有効硬化層の厚みが十分ではなく 、このため、ドライブシャフト 10の捩り強度が小さくなる。  [0042] When the radius of the drive shaft 10 is r, the cured layer ratio tZr, which is the ratio of the effective cured layer depth t to the radius r, is 0.4 or more. If it is less than 0.4, the thickness of the effective hardened layer is not sufficient, so that the torsional strength of the drive shaft 10 is reduced.
[0043] すなわち、表面の Hを 640〜730、硬化層比率 tZrを 0. 4以上とすることにより、  [0043] That is, by setting the surface H to 640 to 730 and the cured layer ratio tZr to 0.4 or more,
V  V
強度及び靱性に優れるドライブシャフト 10が得られる。  A drive shaft 10 having excellent strength and toughness is obtained.
[0044] なお、上記した実施の形態では、鋼材としてドライブシャフト 10を例示して説明した[0044] In the above-described embodiment, the drive shaft 10 is exemplified as the steel material.
1S 最終製品は特にこれに限定されず、その他のもの、例えば、等速ジョイントを構成 するァウタ部材であってもよ 、。 1S The final product is not limited to this. Even if it is a counter member to be used.
実施例 1  Example 1
[0045] 真空溶解炉を使用して、図 3に示す成分'組成比の鋼材のインゴットを作製した。次 に、このインゴットを 950°Cに加熱し、熱間鍛造力卩ェを行って直径 27mmの円柱体形 状ワークを作製した。なお、鍛造終了時の温度が Ac3点〜 880°Cの間となるようにし た。  [0045] Using a vacuum melting furnace, an ingot of a steel material having a composition ratio shown in Fig. 3 was prepared. Next, this ingot was heated to 950 ° C and subjected to hot forging force to produce a cylindrical workpiece having a diameter of 27 mm. The temperature at the end of forging was set to be between Ac3 point and 880 ° C.
[0046] そして、円柱体形状ワークに対して光学顕微鏡による観察を行 、、フェライトの占有 面積率を求めた。その一方で、表面からの深さ 7〜8mm付近の H [0046] Then, the cylindrical workpiece was observed with an optical microscope, and the occupied area ratio of ferrite was obtained. On the other hand, H at a depth of 7-8mm from the surface
Bを測定した。  B was measured.
[0047] この円柱体形状ワークから、直径 14mm X長さ 21mmの小円柱体形状ワークを切 り出した。その後、この小円柱体形状ワークに対して冷間加工温度域で据え込み成 形を行い、割れが発生するまでの据え込み率を求めた。  [0047] From this cylindrical workpiece, a small cylindrical workpiece having a diameter of 14 mm and a length of 21 mm was cut out. Thereafter, upsetting was performed on this small cylindrical workpiece in the cold working temperature range, and the upsetting rate until cracking occurred was obtained.
[0048] また、前記円柱体形状ワークに対し、 ST20E (住友電工社製の切削工具の商品名 )を使用して、切削速度 150mZ分、切込量 0. 5mm、送り速度 0. 2mmZrevの条 件下で切削試験を行 、、 12分後の ST20Eの摩耗量を測定した。  [0048] Further, for the cylindrical workpiece, using ST20E (trade name of a cutting tool manufactured by Sumitomo Electric), a cutting speed of 150mZ, a cutting depth of 0.5mm, and a feed speed of 0.2mmZrev. A cutting test was conducted under the conditions, and the wear amount of ST20E after 12 minutes was measured.
[0049] さらに、前記円柱体形状ワークから図 1に示す形状のドライブシャフト 10を作製し、 このドライブシャフト 10に対して様々な条件下で高周波焼入れ ·焼戻し処理を施し、 有効硬化層深さ t及び硬化層比率 tZrを種々変化させた。その後、各ドライブシャフ ト 10に対して静捩り試験を実施した。  [0049] Further, a drive shaft 10 having the shape shown in Fig. 1 is produced from the cylindrical workpiece, and the drive shaft 10 is subjected to induction hardening and tempering treatment under various conditions to obtain an effective hardened layer depth t. The hardened layer ratio tZr was varied. Thereafter, a static torsion test was performed on each drive shaft 10.
[0050] 比較のため、図 3に示す組成 ·成分比の鋼材についても同様の実験を行った。  [0050] For comparison, the same experiment was performed on the steel material having the composition / component ratio shown in FIG.
[0051] 以上の結果を図 4に併せて示す。この図 4から、成分、組成比、フェライトの占有面 積率、硬度が設定された鋼材を使用することにより、変形能に優れ、切削性が良好で あり、し力も、高い捩り強度を示すようになることが分力る。  [0051] The above results are also shown in FIG. From this Fig. 4, it can be seen that by using a steel material with a specified composition, composition ratio, ferrite occupation area ratio, and hardness, it has excellent deformability, good machinability, and high torsional strength. It becomes a part to become.
[0052] ここで、各実施例に係る鋼材における硬化層比率 tZrと、せん断応力との関係をグ ラフにして図 5に示す。せん断応力が大きいほど、静捩り強度が大きいことを意味す る。なお、図 5中の破線は、 S40C相当材における硬化層比率とせん断応力との関係 を表わす。  Here, the relationship between the hardened layer ratio tZr and the shear stress in the steel materials according to the respective examples is shown as a graph in FIG. Higher shear stress means higher static torsional strength. The broken line in FIG. 5 represents the relationship between the hardened layer ratio and the shear stress in the S40C equivalent material.
[0053] 図 5から、各実施例に係る鋼材が、 S40C相当材に比して静捩り強度が大きいこと が明らかである。  [0053] From FIG. 5, it is clear that the steel materials according to each Example have a higher static torsional strength than S40C equivalent materials.

Claims

請求の範囲 The scope of the claims
[1] 質量0 /0で、 C:0.47〜0. 52%, Si:0.03〜0. 15%, Mn:0.6〜0. 7%, S:0. [1] in a weight 0/0, C:. 0.47~0 52%, Si:. 0.03~0 15%, Mn:. 0.6~0 7%, S: 0.
005〜0.03%、Ti:0.025〜0.04%、 Cr:0.05〜0. 3%、 Mo:0.04〜0.09% 、 A1:0.02〜0.04%、 B:0.0005〜0.004%を含有し、残部力鉄及び不可避的 不純物であり、  Contains 005 to 0.03%, Ti: 0.025 to 0.04%, Cr: 0.05 to 0.3%, Mo: 0.04 to 0.09%, A1: 0.02 to 0.04%, B: 0.0005 to 0.004%, balance iron and inevitable Impurities,
表面のビッカース硬度が 640〜730であり、  Surface Vickers hardness is 640-730,
ビッカース硬度で 392を示す部位に至るまでの表面力もの距離を有効硬化深さ t、 半径を rとするとき、硬化層比率 tZrが 0.4以上であることを特徴とする鋼材。  A steel material characterized in that the hardened layer ratio tZr is 0.4 or more, where the effective hardened depth t is the distance of the surface force to reach the part showing 392 in Vickers hardness and the radius is r.
[2] 請求項 1記載の鋼材において、 Nが質量%で 0.01%以下であることを特徴とする 鋼材。 [2] The steel material according to claim 1, wherein N is 0.01% or less by mass%.
[3] 請求項 1記載の鋼材において、当該鋼材がドライブシャフト(10)であることを特徴と する鋼材。  [3] The steel material according to claim 1, wherein the steel material is a drive shaft (10).
[4] 表面のビッカース硬度が 640〜730、表面からビッカース硬度で 392を示す部位に 至るまでの距離を有効硬化深さ t、半径 とするとき、 tZrが 0.4以上である鋼材の 製造方法であって、  [4] This is a method of manufacturing a steel material in which tZr is 0.4 or more when the effective hardening depth t and radius are the distance from the surface to the part showing 392 in the Vickers hardness of 640 to 730 and the surface to Vickers hardness 392. And
質量0 /0で、 C:0.47〜0. 52%, Si:0.03〜0. 15%, Mn:0.6〜0. 7%、 S:0. 005〜0.03%、Ti:0.025〜0.04%、 Cr:0.05〜0. 3%、 Mo:0.04〜0.09% 、 A1:0.02〜0.04%、 B:0.0005〜0.004%を含有し、残部力鉄及び不可避的 不純物であり、フェライトの占有面積率が 30%以上、 Bスケールのロックウェル硬度が 85〜95である原材料鋼に対し、高周波焼入れを施すことを特徴とする鋼材の製造 方法。 Mass 0/0, C:. 0.47~0 52%, Si:. 0.03~0 15%, Mn:. 0.6~0 7%, S:. 0 005~0.03%, Ti: 0.025~0.04%, Cr : 0.05 to 0.3%, Mo: 0.04 to 0.09%, A1: 0.02 to 0.04%, B: 0.0005 to 0.004%, balance iron and inevitable impurities, 30% ferrite occupation area ratio As mentioned above, the manufacturing method of the steel materials characterized by performing induction hardening with respect to the raw material steel whose Rockwell hardness of B scale is 85-95.
[5] 請求項 4記載の製造方法にぉ 、て、前記原材料鋼をドライブシャフト(10)に成形し て前記高周波焼入れを施すことを特徴とする鋼材の製造方法。  [5] The method for manufacturing a steel material according to claim 4, wherein the raw material steel is formed into a drive shaft (10) and subjected to induction hardening.
PCT/JP2006/318885 2005-10-11 2006-09-22 Steel material and process for producing the same WO2007043316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/083,353 US20090110589A1 (en) 2005-10-11 2006-10-11 Steel Material and Process for Producing the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-296844 2005-10-11
JP2005296844A JP2007107029A (en) 2005-10-11 2005-10-11 Steel material and its production method

Publications (1)

Publication Number Publication Date
WO2007043316A1 true WO2007043316A1 (en) 2007-04-19

Family

ID=37942567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318885 WO2007043316A1 (en) 2005-10-11 2006-09-22 Steel material and process for producing the same

Country Status (4)

Country Link
US (1) US20090110589A1 (en)
JP (1) JP2007107029A (en)
CN (1) CN101283111A (en)
WO (1) WO2007043316A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414479A (en) * 2009-04-23 2012-04-11 Ntn株式会社 Shaft part with rolling groove

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065815A (en) 2008-09-12 2010-03-25 Ntn Corp Power transmission shaft
JP5657316B2 (en) * 2010-09-22 2015-01-21 Ntn株式会社 Automobile parts, manufacturing method and manufacturing apparatus thereof
JP5619668B2 (en) * 2011-04-18 2014-11-05 本田技研工業株式会社 Cold stamping steel and steel belt element using the same
CN108149129A (en) * 2016-12-05 2018-06-12 宜兴市零零七机械科技有限公司 A kind of improved machining center material of transmission shaft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124190A (en) * 2002-10-03 2004-04-22 Jfe Steel Kk Induction-tempered steel having excellent twisting property
JP2005048211A (en) * 2003-07-30 2005-02-24 Jfe Steel Kk Method for producing steel excellent in fatigue characteristic
JP2005194614A (en) * 2003-01-17 2005-07-21 Jfe Steel Kk Steel product having excellent fatigue property, and its production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108189A (en) * 1996-06-14 1998-01-13 Daido Steel Co Ltd Steel for induction hardening excellent in bendability and induction hardened part excellent in bendability using the same steel
JPH10195589A (en) * 1996-12-26 1998-07-28 Nippon Steel Corp Induction hardened steel material with high torsional fatigue strength
KR100702491B1 (en) * 2003-01-17 2007-04-02 제이에프이 스틸 가부시키가이샤 Steel product for induction hardening, induction hardened member using the same, and manufacturing methods therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124190A (en) * 2002-10-03 2004-04-22 Jfe Steel Kk Induction-tempered steel having excellent twisting property
JP2005194614A (en) * 2003-01-17 2005-07-21 Jfe Steel Kk Steel product having excellent fatigue property, and its production method
JP2005048211A (en) * 2003-07-30 2005-02-24 Jfe Steel Kk Method for producing steel excellent in fatigue characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414479A (en) * 2009-04-23 2012-04-11 Ntn株式会社 Shaft part with rolling groove

Also Published As

Publication number Publication date
JP2007107029A (en) 2007-04-26
US20090110589A1 (en) 2009-04-30
CN101283111A (en) 2008-10-08

Similar Documents

Publication Publication Date Title
KR20060134199A (en) Seamless steel pipe and method for production thereof
WO2006104023A1 (en) Hollow driving shaft obtained through induction hardening
JP2007131871A (en) Steel for induction hardening
EP1647608B1 (en) High strength constant velocity joint intermediate shaft
JP4219023B2 (en) High-strength drive shaft and manufacturing method thereof
JPH10195589A (en) Induction hardened steel material with high torsional fatigue strength
WO2007043316A1 (en) Steel material and process for producing the same
JP3494799B2 (en) High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP3876384B2 (en) High strength connecting rod and manufacturing method thereof
JP3593255B2 (en) Manufacturing method of high strength shaft
JPH08283910A (en) Steel material for induction hardened shaft parts, combining cold workability with torsional fatigue strength characteristic
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP5304507B2 (en) Non-tempered steel for induction hardening
JP2004353005A (en) Steel bar for steering rack
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP5583352B2 (en) Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JP2010270358A (en) Hot-forged component having excellent fracture splittability
JP2008266782A (en) Steel for spring excellent in hydrogen embrittlement resistance and corrosion fatigue strength and high strength spring part using the same
WO2007043315A1 (en) Steel material and process for producing the same
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JPH1129836A (en) Steel for machine structural use for induction hardening

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037828.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12083353

Country of ref document: US

Ref document number: 2971/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810463

Country of ref document: EP

Kind code of ref document: A1