EP1961832A1 - Use of a steel alloy as a substance for producing dynamically loaded tube components and tube component - Google Patents

Use of a steel alloy as a substance for producing dynamically loaded tube components and tube component Download PDF

Info

Publication number
EP1961832A1
EP1961832A1 EP08002285A EP08002285A EP1961832A1 EP 1961832 A1 EP1961832 A1 EP 1961832A1 EP 08002285 A EP08002285 A EP 08002285A EP 08002285 A EP08002285 A EP 08002285A EP 1961832 A1 EP1961832 A1 EP 1961832A1
Authority
EP
European Patent Office
Prior art keywords
pipe component
mpa
steel alloy
alloy according
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08002285A
Other languages
German (de)
French (fr)
Other versions
EP1961832B1 (en
Inventor
Uwe Dr. Diekmann
Michael Dr. Gramlich
Dirk Tegethoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Deustchland GmbH
Original Assignee
Benteler Stahl Rohr GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Stahl Rohr GmbH filed Critical Benteler Stahl Rohr GmbH
Publication of EP1961832A1 publication Critical patent/EP1961832A1/en
Application granted granted Critical
Publication of EP1961832B1 publication Critical patent/EP1961832B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the invention relates to the use of a steel alloy as a material for the production of dynamically loaded pipe components and such a pipe component.
  • stabilizers which are used to reduce the tendency of the body to curve and to influence the self-steering behavior. They stiffen the suspension in one-sided load, since the resistance of the material of the stabilizer of the side slope resiliently counteracts.
  • Another example would be a torsionally loaded shaft.
  • Stabilizers are to be assigned with regard to the type of stress straight torsion springs or torsion bars, since a stabilizer at different Compression of the wheels is twisted about its longitudinal axis.
  • From the EP 0 753 595 B1 it is known to produce stabilizers from pipes. In this case, one makes the more favorable in a tube ratio of the moment of resistance against torsion to the tube mass in comparison to a solid rod advantage.
  • the materials used would have to maintain a higher by approximately a factor of 1.4 yield strength and tensile strength as materials of solid rods while maintaining the design in the vehicles structurally predetermined or usable outer diameter.
  • Another important factor for achieving a high permanent fatigue strength is the surface quality of the outer and inner surface of the tubes used.
  • the best surface qualities have longitudinally welded and possibly subsequently cold drawn tubes made of rolled steel strip. In this case, the errors occurring in seamless drawn pipes, such as pleats, etc., avoided.
  • this tensile strength is insufficient to compete with stabilizers of a higher strength solid material.
  • Even the steel 34MnB5 steel used to date for tubes for the manufacture of stabilizers only achieves tensile strengths of up to 1,800 MPa, but with a relatively low fatigue strength.
  • the state of the art also includes the EP 1 698 712 , which discloses a steel material for highly loaded springs, having the following composition: C 0.35 - 0.65%, Si 1.4 - 2.5%, Mn 0.1 - 1.0%, Cr> 2.0% , Ni> 1.0%, Cu> 1.0%, P> 0.020%, S> 0.020%, N> 0.006%, Al> 0.1% and balance iron. Although this steel also achieves strengths up to about 2,100 MPa.
  • High Ti and Al levels involve the risk of reduced fatigue strength, which can be attributed to the formation of hard phases. Titanium contents in the range greater than 0.01% lead to the primary precipitation of hard titanium nitrides, which produce internal notches in the material and have a negative influence on the fatigue strength of high-strength spring steels. Aluminum contents greater than 0.01% also lead to the formation of aluminum oxides and aluminum nitrides having the above-described negative fatigue properties. Furthermore, this steel material is at a copper content above 0.2% for the tube manufacturing process, d. H. Stretch reduction, less suitable and also expensive in view of the relatively high nickel content. A copper content of more than 0.2% leads to grain boundary failure during hot forming, especially if, as in the case of pipe production, there are existing high stresses in hot working.
  • the surface quality plays an important role.
  • the improvement of the surface quality can be achieved with seamless pipes by internal peeling, ie by a machining, which is associated with high costs and thus has a low cost.
  • the invention is based on the object to show the use of a steel alloy as a material for the production of dynamically loaded pipe components, wherein the material meets the high requirements for the production of dynamically loaded tubular components, in particular for the production of straight or tortuous torsion springs, such.
  • Coil springs, or hollow shafts is suitable and also reached the strength level of spring steels.
  • the steel material can still be welded even if the carbon content is greater than 0.35%, so that the production method for dynamically loaded pipe components a) both welding and drawing, b) direct welding, and c) seamless production are suitable ,
  • the good weldability is achieved by a comparatively high ductility in the weld area, so that a reduced tendency for brittle failure of the weld during cooling and when calibrating the tubes is present.
  • This can be attributed to the finest lamellae made of retained austenite in the hardened structure. In the transmission electron microscope, these lamellae become visible in the nanometer range. These lamellas increase the ductility of the hardness structure without lowering the yield strength and strength.
  • the lamellae have an average particle size of 60-70 nm.
  • a seamless production is particularly suitable in combination with an optimized internal machining, if the wall thickness s in a range greater than 18% of the outer diameter D is (s / D> 18%).
  • the material according to the invention is therefore suitable for all tube production methods mentioned above, is also inexpensive to produce and has the potential due to high achievable strength values, for torsionally loaded components, e.g. Torsion spring to replace solid materials.
  • the quenching is carried out by preferably inductive heating to Austenitmaschinestemperatur of 900 - 950 ° C, followed by quenching in water or oil (preferably water at a cooling rate> 200 K / s, in particular> 400 K / s) and then tempering to a Temperature of 200-300 ° C, preferably ⁇ 275 ° C, in particular to a temperature of 250 ° C.
  • dynamic loadable pipe components in diameter ranges from 3mm to 150 mm, especially in diameter ranges from 8 mm to 50 mm can be produced.
  • the wall thickness is preferably 10% to 22% of the outer diameter of the pipe component in such dynamically loaded pipe components.
  • the production of the pipe components is preferably carried out in soft annealed, pearlitic state.
  • the steel alloy no. 1 is the material as it is to be used in the pipe components according to the invention.
  • the comparison material no. 2 corresponds to the alloy 34MnB5.
  • the comparison material no. 3 corresponds to the alloy 25MnB5.
  • the comparison material no. 4 corresponds to the alloy 42CrMo4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Use of a steel alloy containing (in wt.%) 0.32-0.45 carbon, 0.8-2.2 silicon, 0.1-0.8 manganese, 0.8-1.8 chromium, maximum 0.015 nitrogen, 0.01-0.08 niobium, maximum 0.4 vanadium, 0.001-0.005 boron and a balance of iron as a material in the production of dynamically loaded tubular components is new. The tubular component has a tensile strength in the annealed state of more than 1800 MPa and a yield point of more than 1600 MPa. An independent claim is also included for a tubular component made from the above steel alloy.

Description

Die Erfindung betrifft die Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen sowie ein solches Rohrbauteil.The invention relates to the use of a steel alloy as a material for the production of dynamically loaded pipe components and such a pipe component.

Bauteile, die über sehr lange Zeiträume hohen dynamischen Beanspruchungen standhalten müssen, sind insbesondere im Bereich des Fahrwerks von Kraftfahrzeugen zu finden. Als Beispiel sind Stabilisatoren zu nennen, welche zur Verringerung der Kurvenneigung der Karosserie und zur Beeinflussung des Eigenlenkverhaltens eingesetzt werden. Sie versteifen bei einseitiger Belastung die Federung, da die Widerstandskraft des Werkstoffs des Stabilisators der Seitenneigung federnd entgegenwirkt. Ein weiteres Beispiel wäre eine torsionsbelastete Welle.Components that have to withstand high dynamic loads for very long periods of time can be found particularly in the area of the chassis of motor vehicles. As an example, stabilizers should be mentioned which are used to reduce the tendency of the body to curve and to influence the self-steering behavior. They stiffen the suspension in one-sided load, since the resistance of the material of the stabilizer of the side slope resiliently counteracts. Another example would be a torsionally loaded shaft.

Stabilisatoren sind hinsichtlich der Beanspruchungsart geraden Torsionsfedern oder auch Drehstäben zuzuordnen, da ein Stabilisator bei unterschiedlichem Einfedern der Räder um seine Längsachse verdrillt wird. Aus der EP 0 753 595 B1 ist es bekannt, Stabilisatoren aus Rohren herzustellen. Hierbei macht man sich das bei einem Rohr günstigere Verhältnis des Widerstandsmoments gegen Torsion zur Rohrmasse im Vergleich zu einem Vollstab zunutze. Bei dem für die Torsion optimalen Verhältnis von Wanddicke zu Durchmesser der Rohre müssten die zur Anwendung gelangenden Werkstoffe unter Beibehaltung der in den Fahrzeugen konstruktiv vorgegebenen bzw. verwendbaren Außendurchmesser eine um etwa den Faktor 1,4 höhere Streckgrenze und Zugfestigkeit als Werkstoffe von Vollstäben besitzen.Stabilizers are to be assigned with regard to the type of stress straight torsion springs or torsion bars, since a stabilizer at different Compression of the wheels is twisted about its longitudinal axis. From the EP 0 753 595 B1 it is known to produce stabilizers from pipes. In this case, one makes the more favorable in a tube ratio of the moment of resistance against torsion to the tube mass in comparison to a solid rod advantage. In the optimum for the torsion ratio of wall thickness to diameter of the pipes, the materials used would have to maintain a higher by approximately a factor of 1.4 yield strength and tensile strength as materials of solid rods while maintaining the design in the vehicles structurally predetermined or usable outer diameter.

Ein weiterer wesentlicher Faktor zur Erzielung einer hohen Dauerwechselfestigkeit ist die Oberflächengüte der Außen- und Innenoberfläche der verwendeten Rohre. Die besten Oberflächengüten weisen längsnahtgeschweißte und ggf. nachfolgend kalt gezogene Rohre aus gewalztem Stahlband auf. Hierbei werden die bei nahtlos gezogenen Rohren vorkommenden Fehler, wie Fältelungen usw., vermieden.Another important factor for achieving a high permanent fatigue strength is the surface quality of the outer and inner surface of the tubes used. The best surface qualities have longitudinally welded and possibly subsequently cold drawn tubes made of rolled steel strip. In this case, the errors occurring in seamless drawn pipes, such as pleats, etc., avoided.

Der in der EP 0 753 595 B1 beschriebene Stahlwerkstoff mit folgender Zusammensetzung: C0,18 - 0,3%, Si0,1 - 0,5 %, Mn 1,1 - 1,8 %, P max. 0,025 %, S max. 0,025%, Ti 0,02 - 0,05 %, B 0,0005 - 0,005%, Al 0,01 - 0,05 %, Rest Eisen und erschmelzungsbedingter Verunreinigungen, erreichte bereits Zugfestigkeiten von maximal 1.600 MPa. Allerdings reicht diese Zugfestigkeit nicht aus, um mit Stabilisatoren aus einem Vollmaterial höherer Festigkeit zur konkurrieren. Auch der bislang häufig zum Einsatz gelangende Stahl 34MnB5 für Rohre zur Herstellung von Stabilisatoren erreicht nur Zugfestigkeiten bis 1.800 MPa, allerdings bei einer relativ geringen Dauerfestigkeit.The Indian EP 0 753 595 B1 described steel material with the following composition: C0.18 - 0.3%, Si0.1 - 0.5%, Mn 1.1 - 1.8%, P max. 0.025%, S max. 0.025%, Ti 0.02-0.05%, B 0.0005-0.005%, Al 0.01-0.05%, remainder of iron and impurities caused by melting, already reached tensile strengths of up to 1600 MPa. However, this tensile strength is insufficient to compete with stabilizers of a higher strength solid material. Even the steel 34MnB5 steel used to date for tubes for the manufacture of stabilizers only achieves tensile strengths of up to 1,800 MPa, but with a relatively low fatigue strength.

Zum Stand der Technik zählt auch die EP 1 698 712 , die einen Stahlwerkstoff für hochbelastete Federn offenbart, welcher folgende Zusammensetzung aufweist: C 0,35 - 0,65 %, Si 1,4 - 2,5 %, Mn 0,1 - 1,0 %, Cr > 2,0 %, Ni > 1,0 %, Cu>1,0%, P > 0,020 %, S > 0,020 %, N > 0,006 %, Al > 0,1 % und Rest Eisen. Dieser Stahl erzielt zwar auch Festigkeiten bis ca. 2.100 MPa.The state of the art also includes the EP 1 698 712 , which discloses a steel material for highly loaded springs, having the following composition: C 0.35 - 0.65%, Si 1.4 - 2.5%, Mn 0.1 - 1.0%, Cr> 2.0% , Ni> 1.0%, Cu> 1.0%, P> 0.020%, S> 0.020%, N> 0.006%, Al> 0.1% and balance iron. Although this steel also achieves strengths up to about 2,100 MPa.

Hohe Ti- und Al-Gehafte beinhalten das Risiko einer verminderten Dauerschwingfestigkeit, was auf die Ausbildung harter Phasen zurückgeführt werden kann. Titangehalte im Bereich größer als 0,01 % führen zur primären Ausscheidung von harten Titannitriden, die innere Kerben im Werkstoff erzeugen und bei höchstfesten Federstählen die Dauerfestigkeit negativ beeinflussen. Aluminiumgehalte größer als 0,01 % führen ebenfalls zur Bildung von Aluminiumoxiden und Aluminiumnitriden mit den vorstehend beschriebenen negativen Eigenschaften auf die Dauerfestigkeit. Weiterhin ist dieser Stahlwerkstoff bei einem Kupfergehalt über 0,2 % für den Rohrherstellungsprozess, d. h. das Streckreduzieren, weniger geeignet und in Anbetracht des relativ hohen Nickelgehaltes zudem teuer. Ein Kupfergehalt von mehr als 0,2 % führt bei der Warmumformung zum Komgrenzenversagen, insbesondere wenn, wie im Fall der Rohrherstellung, vorhandene hohe Zuspannungsanteile bei der Warmumformung vorliegen.High Ti and Al levels involve the risk of reduced fatigue strength, which can be attributed to the formation of hard phases. Titanium contents in the range greater than 0.01% lead to the primary precipitation of hard titanium nitrides, which produce internal notches in the material and have a negative influence on the fatigue strength of high-strength spring steels. Aluminum contents greater than 0.01% also lead to the formation of aluminum oxides and aluminum nitrides having the above-described negative fatigue properties. Furthermore, this steel material is at a copper content above 0.2% for the tube manufacturing process, d. H. Stretch reduction, less suitable and also expensive in view of the relatively high nickel content. A copper content of more than 0.2% leads to grain boundary failure during hot forming, especially if, as in the case of pipe production, there are existing high stresses in hot working.

Die ebenfalls bekannten höchstfesten Federstähle 50CrV4, 55SiCr6 sind schweißtechnisch nicht zu verarbeiten und damit zur Herstellung von geschweißten und nachgezogenen Rohren nicht geeignet.The also known high-strength spring steels 50CrV4, 55SiCr6 are not technically weldable and therefore not suitable for the production of welded and redrawn tubes.

Stand der Technik ist nach Kenntnis der Anmelderin die Herstellung von geschweißten Rohren durch Press-Schweißverfahren bis zu einem Kohlenstoff Gehalt von ca. 0,35 %. Ein höherer Kohlenstoffgehalt führt in der Regel zu hohen Spitzenhärten in der Schweißnaht mit derart verringerter Duktilität, dass während der Kalibrierung und Abkühlung des Rohrbauteils Risse entstehen. Daher gelten Stähle mit Kohlenstoff-Gehalten über 0,35 % allgemein als nicht schweißbar.To the knowledge of the Applicant, the state of the art is the production of welded tubes by press-welding processes up to a carbon content of about 0.35%. A higher carbon content typically results in high peak hardness in the weld with such reduced ductility that cracks occur during calibration and cooling of the pipe component. Therefore, steels with carbon contents above 0.35% are generally considered non-weldable.

Wenn aufgrund eines hohen Kohlenstoffgehaltes nahtlos gezogene Stahlrohre zum Einsatz kommen sollen, spielt die Oberflächenqualität eine wichtige Rolle. Die Verbesserung der Oberflächenqualität kann bei nahtlosen Rohren durch Innenschälen, d.h. durch eine spanabhebende Bearbeitung, erreicht werden, die allerdings mit hohen Kosten verbunden ist und damit nur eine geringe Wirtschaftlichkeit aufweist.If, due to a high carbon content, seamlessly drawn steel tubes are to be used, the surface quality plays an important role. The improvement of the surface quality can be achieved with seamless pipes by internal peeling, ie by a machining, which is associated with high costs and thus has a low cost.

Aufgrund der Tatsache, dass die Festigkeit von geeigneten Rohrwerkstoffen bislang auf ca. 1.800 MPa begrenzt war und im Bereich der Vollmaterialien Festigkeiten in einer Größenordnung von 2.100 MPa realisiert werden konnten, wie z.B. in der Fedemindustrie bei der Verwendung von 55SiCr6, war es bislang nicht möglich, das Leichtbaupotenzial von dynamisch belasteten Rohrbauteilen vollständig auszunutzen.Due to the fact that the strength of suitable pipe materials has hitherto been limited to approximately 1,800 MPa and in the area of solid materials, it has been possible to achieve strengths of the order of 2,100 MPa, e.g. In the Fedem industry using 55SiCr6, it has not been possible to fully exploit the lightweight construction potential of dynamically loaded pipe components.

Der Erfindung liegt hiervon ausgehend die Aufgabe zugrunde, die Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen aufzuzeigen, wobei der Werkstoff den hohen Anforderungen für die Herstellung von dynamisch belasteten Rohrbauteilen, insbesondere zur Herstellung von geraden oder gewundenen Torsionsfedern, wie z.B. Schraubenfedern, oder auch Hohlwellen geeignet ist und zudem das Festigkeitsniveau von Federstählen erreicht.The invention is based on the object to show the use of a steel alloy as a material for the production of dynamically loaded pipe components, wherein the material meets the high requirements for the production of dynamically loaded tubular components, in particular for the production of straight or tortuous torsion springs, such. Coil springs, or hollow shafts is suitable and also reached the strength level of spring steels.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.This object is solved by the features of patent claim 1.

Vorteilhafte Weiterbildungen des Erfindungsgedankens sind Gegenstand der Unteransprüche. Ein Rohrbauteil mit den gewünschten Eigenschaften ist Gegenstand des Patentanspruchs 6.Advantageous developments of the inventive concept are the subject of the dependent claims. A pipe component with the desired properties is the subject of patent claim 6.

Die Lösung des vorstehend beschriebenen Problems wird in der Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen gesehen, wobei die Stahllegierung in Gewichtsprozenten aus

C
0,32 - 0,45
Si
0,8 - 2,2
Mn
0,1 - 0,8
Cr
0,8 - 1,8
N
max. 0,015
Nb
0,01 - 0,08
V
max. 0,04
B
0,001 - 0,005
sowie Eisen als Rest und üblicher Verunreinigungen besteht. Zu den üblichen Verunreinigungen zählen max. 0,015 % Phosphor, max. 0,01 % Schwefel, max. 0,2 % Nickel, max. 0,1 % Kupfer, max. 0,02 % Zinn, max. 0,015 % Aluminium, max. 0,01 % Titan, max. 0,08 % Molybdän. Die Zugfestigkeit des aus diesem Werkstoff hergestellten Rohrbauteils liegt im vergüteten Zustand in einem Bereich größer als 1.800 MPa, wobei die Streckgrenze Rp02 in einem Bereich größer als 1.600 MPa liegt. Dieser Werkstoff eignet sich hervorragend zur Herstellung von Stabilisatoren, Antriebswellen, Drehstäben und Schraubenfedern, d.h. allgemein für gerade oder gewundene Torsionsfedem sowie Hohlwellen, die dynamisch beansprucht werden. Zu diesen vorteilhaften Materialeigenschaften hat eine Variation der chemischen Zusammensetzungen durch Absenkung des Kohlenstoffgehaltes und eine Optimierung der Cr-Si-Mn-Balance und die Anwendung eines Mikrolegierungskonzepts (Nb, V, B) geführt. Ein weiterer wichtiger Aspekt ist, dass der Werkstoff sehr hohe Abkühlgeschwindigkeiten erträgt und daher mit Abschreckgeschwindigkeken größer als 200 K/s wasservergütbar ist, ohne dass Härterisse entstehen oder ein signifikanter Verzug auftritt. Übliche Federstähle werden demgegenüber in Öl bei deutlich langsameren Abkühlgeschwindigkeiten gehärtet (< 100 K/s).The solution to the problem described above is seen in the use of a steel alloy as a material for the production of dynamically loaded pipe components, wherein the steel alloy in weight percent of
C
0.32 - 0.45
Si
0.8 - 2.2
Mn
0.1 - 0.8
Cr
0.8-1.8
N
Max. 0,015
Nb
0.01-0.08
V
Max. 0.04
B
0.001 - 0.005
and iron as the remainder and common impurities. The usual impurities include max. 0.015% phosphorus, max. 0.01% sulfur, max. 0.2% nickel, max. 0.1% copper, max. 0.02% tin, max. 0.015% aluminum, max. 0.01% titanium, max. 0.08% molybdenum. The tensile strength of the pipe component produced from this material is in the tempered state in a range greater than 1,800 MPa, the yield strength Rp02 is in a range greater than 1,600 MPa. This material is ideal for the production of stabilizers, drive shafts, torsion bars and coil springs, ie in general for straight or tortuous torsion as well as hollow shafts, which are dynamically stressed. These favorable material properties have led to a variation of the chemical compositions by lowering the carbon content and an optimization of the Cr-Si-Mn balance and the use of a microalloying concept (Nb, V, B). Another important aspect is that the material can withstand very high cooling rates and can therefore be quenched with quenching velocities of greater than 200 K / s without causing any crazing or significant distortion. Conventional spring steels, on the other hand, are hardened in oil at much slower cooling rates (<100 K / s).

Der Stahlwerkstoff ist auch dann noch schweißbar, wenn der Kohlenstoffgehalt größer als 0,35 % ist, so dass sich als Herstellungsverfahren für dynamisch belastete Rohrbauteile a) sowohl das Schweißen und Ziehen, b) das direkte Schweißen, als auch c) die nahtlose Herstellung eignen.The steel material can still be welded even if the carbon content is greater than 0.35%, so that the production method for dynamically loaded pipe components a) both welding and drawing, b) direct welding, and c) seamless production are suitable ,

Die gute Schweißbarkeit wird durch eine vergleichsweise hohe Duktilität im Schweißnahtbereich erreicht, so dass eine verminderte Neigung zum spröden Versagen der Schweißnaht bei der Abkühlung und beim Kalibrieren der Rohre vorhanden ist. Dies kann auf feinste Lamellen aus Restaustenit im Härtegefüge zurückgeführt werden. Im Transmissionsetektronenmikroskop werden diese Lamellen im Nanometerbereich sichtbar. Diese Lamellen erhöhen die Duktilität des Härtegefüges ohne die Streckgrenze und Festigkeit abzusenken.Die Lamellen besitzen eine mittlere Korngröße von 60 - 70 nm.The good weldability is achieved by a comparatively high ductility in the weld area, so that a reduced tendency for brittle failure of the weld during cooling and when calibrating the tubes is present. This can be attributed to the finest lamellae made of retained austenite in the hardened structure. In the transmission electron microscope, these lamellae become visible in the nanometer range. These lamellas increase the ductility of the hardness structure without lowering the yield strength and strength. The lamellae have an average particle size of 60-70 nm.

Eine nahtlose Herstellung bietet sich insbesondere in Kombination mit einer optimierten Innenbearbeitung an, wenn die Wanddicke s in einem Bereich größer als 18% des Außendurchmessers D ist (s/D > 18%). Der erfindungsgemäße Werkstoff eignet sich daher für alle genannten Rohrherstellungsverfahren, ist zudem kostengünstig herstellbar und besitzt aufgrund hoher erreichbarer Festigkeitswerte das Potenzial, bei torsionsbelasteten Bauteilen, z.B. Torsionsfedem, Vollmaterialien zu ersetzen.A seamless production is particularly suitable in combination with an optimized internal machining, if the wall thickness s in a range greater than 18% of the outer diameter D is (s / D> 18%). The material according to the invention is therefore suitable for all tube production methods mentioned above, is also inexpensive to produce and has the potential due to high achievable strength values, for torsionally loaded components, e.g. Torsion spring to replace solid materials.

Die erfindungsgemäßen Vorteile ergeben sich insbesondere dann, wenn die Stahllegierung in Gewichtsprozenten ausgedrückt folgende Zusammensetzung aufweist:

C
0,40 - 0,44
Si
1,5 - 2,2
Cr
1,1 - 1,5
N
0,004 - 0,015
Nb
0,02 - 0,04
V
0,01 - 0,15
B
0,002 - 0,004
The advantages according to the invention arise in particular if the steel alloy has the following composition in terms of weight percent:
C
0.40 - 0.44
Si
1.5 - 2.2
Cr
1.1 - 1.5
N
0.004-0.015
Nb
0.02-0.04
V
0.01 - 0.15
B
0.002 - 0.004

Rest Eisen und üblicher Verunreinigungen. Im vergüteten Zustand ist es möglich, mit den zuvor genannten Legierungen Zugfestigkeiten Rm größer als 2.000 MPa und Streckgrenzen Rp0,2 größer als 1.900 MPa zu erreichen. Im vergüteten Zustand besitzt das hergestellte Rohrbauteil eine Dehnung A5 größer als 9 %. Bemerkenswert ist zudem, dass bereits bei einer sehr niedrigen. Anlasstemperatur von 250 C eine. Brucheinschnürung Z von größer als 30 % erreicht wird, so dass eine hohe Streckgrenze erhalten bleibt.Remaining iron and usual impurities. In the tempered state, it is possible to achieve with the aforementioned alloys tensile strengths Rm greater than 2,000 MPa and yield strengths Rp0,2 greater than 1,900 MPa. In the tempered state, the pipe component produced has an elongation A5 greater than 9%. It is also noteworthy that already at a very low. Tempering temperature of 250 C one. Fractional contraction Z of greater than 30% is achieved, so that a high yield strength is maintained.

Das Vergüten erfolgt durch vorzugsweise induktives Aufheizen auf Austenitisierungstemperatur von 900 - 950 °C, anschließendes Abschrecken in Wasser oder Öl (vorzugsweise Wasser mit einer Abkühlgeschwindigkeit > 200 K/s, insbesondere > 400 K/s) und anschließendes Anlassen auf eine Temperatur von 200 - 300 °C, vorzugsweise < 275°C, insbesondere auf eine Temperatur von 250°C.The quenching is carried out by preferably inductive heating to Austenitisierungstemperatur of 900 - 950 ° C, followed by quenching in water or oil (preferably water at a cooling rate> 200 K / s, in particular> 400 K / s) and then tempering to a Temperature of 200-300 ° C, preferably <275 ° C, in particular to a temperature of 250 ° C.

Auf diese Weise lassen sich dynamisch belastbare Rohrbauteile in Durchmesserbereichen von 3mm bis 150 mm, insbesondere in Durchmesserbereichen von 8 mm bis 50 mm herstellen. Die Wanddicke beträgt bei derart dynamisch belasteten Rohrbauteilen vorzugsweise 10 % bis 22 % des Außendurchmessers des Rohrbauteils. Die Herstellung der Rohrbauteile erfolgt bevorzugt im weichgeglühten, perlitischen Zustand.In this way, dynamic loadable pipe components in diameter ranges from 3mm to 150 mm, especially in diameter ranges from 8 mm to 50 mm can be produced. The wall thickness is preferably 10% to 22% of the outer diameter of the pipe component in such dynamically loaded pipe components. The production of the pipe components is preferably carried out in soft annealed, pearlitic state.

Durch die Verwendung der erfindungsgemäßen Legierung kann aufgrund der höheren Werkstofffestigkeiten eine Gewichtsreduktion größer als 20 % im Verhältnis zu vergleichbaren Bauteilen aus Vollmaterial erreicht werden. Zudem führt die geringere Masse zu einer vorteilhaften Erhöhung der Eigenfrequenzen der dynamisch belasteten Rohrbauteile. Ein weiterer Vorteil ist, dass dieser hochbelastbare Federstahl wasservergütbar ist.By using the alloy according to the invention, a weight reduction greater than 20% in relation to comparable components made of solid material can be achieved due to the higher material strengths. In addition, the lower mass leads to an advantageous increase in the natural frequencies of the dynamically loaded pipe components. Another advantage is that this heavy-duty spring steel is water-resistant.

Anhand der nachfolgenden Tabelle wird deutlich, welche hervorragenden Eigenschaften die Stahllegierung für den beanspruchten Verwendungszweck mit sich bringt.On the basis of the following table, it becomes clear which excellent properties the steel alloy brings for the claimed use.

In der nachfolgenden Tabelle sind Stahllegierungen 1 bis 5 unterschiedlicher chemischer Zusammensetzung aufgelistet. Die Stahllegierung Nr. 1 ist der Werkstoff, wie er bei den erfindungsgemäßen Rohrbauteilen verwendet werden soll. Der Vergleichswerkstoff Nr. 2 entspricht der Legierung 34MnB5. Der Vergleichswerkstoff Nr. 3 entspricht der Legierung 25MnB5. Der Vergleichswerkstoff Nr. 4 entspricht der Legierung 42CrMo4. Der Vergleichswerkstoff Nr. 5 entspricht der Legierung 70Mn7. Sämtliche Stahllegierungen befinden sich im Lieferzustand QT (QT= Quenched and Tempered, d.h.gehärtet und angelassen). Sie sind mit einer Anlasstemperatur von 250 °C vergütet worden. Es fällt auf, dass die Zugfestigkeit Rm bei der Stahllegierung Nr. 1 mit einem aus dem Wertebereich 2.138 MPa bis 2.152 MPa arithmetische gemittelten Wert für die Festigkeit Rm von 2.145 MPa Werte größer als 2.100 MPa erreicht. Dabei ist der aus dem Wertebereich von 2.072 MPa bis 2.085 MPa arithmetisch gemittelte Wert für die die Streckgrenze Rp0,2 mit 2.078 MPa größer als 2.000 MPa. Gleichzeitig liegt die Bruchdehnung A5 mit Werten von 9,3% bis 9.8% (arithmetisch gemittelt 9,5%) deutlich über den Werten der Vergleichswerkstoffe. Auch die Brucheinschnürung Z liegt mit Werten von 30,3 % bis 32,6 % (arithmetisch gemittelt 31,5%) höher als die Brucheinschnürungen der Vergleichsproben. Nr. C [%] Si [%] Mn [%] Cr [%] Nb [%] V [%] B [%] AI [%] Ti [%] Rm [MPa] Rp0,2 [MPa] A5 [%] Z [%] 1 0,42 2,0 0,5 1,4 0,04 0,01 0,002 - - 2145 2078 9,5 31,5 2 0,34 0,2 1,4 0,1 - - 0,002 0,02 0,03 1664 1490 8,5 25 3 0,25 0,22 1.33 0,1 - - 0,002 0,03 0.04 1511 1300 8 27 4 0,43 0,23 0.8 1.05 - - - 0,03 - 2020 1750 6 21 5 0,7 0,35 1,5 - - - - - - 1970 1790 0.6 2 The following table lists steel alloys 1 to 5 of different chemical composition. The steel alloy no. 1 is the material as it is to be used in the pipe components according to the invention. The comparison material no. 2 corresponds to the alloy 34MnB5. The comparison material no. 3 corresponds to the alloy 25MnB5. The comparison material no. 4 corresponds to the alloy 42CrMo4. The comparative material no. 5 corresponds to the alloy 70Mn7. All steel alloys are in the delivery condition QT (QT = Quenched and Tempered, ie hardened and tempered). They have been tempered with a tempering temperature of 250 ° C. It is noticeable that the tensile strength Rm in the case of steel alloy No. 1 with an arithmetic mean value for the strength Rm of 2,145 MPa, which ranges from the value range from 2,138 MPa to 2,152 MPa, is greater than 2,100 MPa. It is from the value range of 2,072 MPa to 2,085 MPa arithmetic average value for the yield strength Rp0,2 with 2,078 MPa greater than 2,000 MPa. At the same time, the elongation at break A5 with values of 9.3% to 9.8% (arithmetically averaged 9.5%) is significantly higher than the values of the comparative materials. Also, the fracture waist Z is higher than the fracture constrictions of the comparative samples with values of 30.3% to 32.6% (arithmetically averaged 31.5%). No. C [%] Si [%] Mn [%] Cr [%] Nb [%] V [%] B [%] AI [%] Ti [%] Rm [MPa] Rp0.2 [MPa] A5 [%] Z [%] 1 0.42 2.0 0.5 1.4 0.04 0.01 0,002 - - 2145 2078 9.5 31.5 2 0.34 0.2 1.4 0.1 - - 0,002 0.02 0.03 1664 1490 8.5 25 3 0.25 0.22 1:33 0.1 - - 0,002 0.03 12:04 1511 1300 8th 27 4 0.43 0.23 0.8 1:05 - - - 0.03 - 2020 1750 6 21 5 0.7 0.35 1.5 - - - - - - 1970 1790 0.6 2

Claims (14)

Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen, die in Gewichtsprozenten aus Kohlenstoff 0,32 - 0,45 Silizium 0,8 - 2,2 Mangan 0,1 - 0,8 Chrom 0,8 - 1,8 Stickstoff max. 0,015 Niob 0,01 - 0,08 Vanadium max. 0,4 Bor 0,001 - 0,005 Rest Eisen und üblicher Verunreinigungen besteht, wobei die Zugfestigkeit Rm des Rohrbauteils im vergüteten Zustand größer als 1.800 MPa und die Streckgrenze Rp0,2 größer als 1.600 MPa ist.Use of a steel alloy as a material for the production of dynamically loaded pipe components, in weight percent Carbon 0.32 - 0.45 Silicon 0.8 - 2.2 Manganese 0.1 - 0.8 Chrome 0.8 - 1.8 Nitrogen max. 0,015 Niobium 0.01-0.08 Vanadium max. 0.4 Boron 0,001 - 0,005 Residual iron and conventional impurities, wherein the tensile strength Rm of the pipe component in the quenched state greater than 1,800 MPa and the yield strength Rp0,2 greater than 1,600 MPa. Verwendung einer Stahllegierung nach Anspruch 1, die in Gewichtsprozenten aus Kohlenstoff 0,40 - 0,44 Silizium 1,5 - 2,2 Mangan 0,3 - 0,8 Chrom 1,1 - 1,5 Stickstoff 0,004- 0,015 Niob 0,02 - 0,04 Vanadium 0,01 - 0,015 Bor 0,002 - 0,004 Rest Eisen und üblicher Verunreinigungen besteht, wobei die Zugfestigkeit Rm des Rohrbauteils im vergüteten Zustand größer als 1.800 MPa und die Streckgrenze Rp0,2 größer als 1.600 MPa ist.Use of a steel alloy according to claim 1, in weight percent Carbon 0.40 - 0.44 Silicon 1.5 - 2.2 Manganese 0.3 - 0.8 Chromium 1,1 - 1,5 Nitrogen 0.004-0.015 Niobium 0.02-0.04 Vanadium 0.01-0.015 Boron 0.002 - 0.004 Residual iron and conventional impurities, wherein the tensile strength Rm of the pipe component in the quenched state greater than 1,800 MPa and the yield strength Rp0,2 greater than 1,600 MPa. Verwendung einer Stahllegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im vergüteten Zustand des Rohrbauteils die Zugfestigkeit Rm größer als 2.000 MPa und die Streckgrenze Rp0,2 größer als 1.900 MPa ist.Use of a steel alloy according to claim 1 or 2, characterized in that in the tempered state of the pipe component, the tensile strength Rm greater than 2,000 MPa and the yield strength Rp0,2 is greater than 1,900 MPa. Verwendung einer Stahllegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im vergüteten Zustand des Rohrbauteils die Zugfestigkeit Rm größer als 2.100 MPa und die Streckgrenze Rp0,2 größer als 2.000 MPa ist.Use of a steel alloy according to claim 1 or 2, characterized in that in the tempered state of the pipe component, the tensile strength Rm greater than 2100 MPa and the yield strength Rp0.2 is greater than 2,000 MPa. Verwendung einer Stahllegierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im vergüteten Zustand des Rohrbauteils die Dehnung A5 größer als 9 % ist.Use of a steel alloy according to one of claims 1 to 4, characterized in that in the tempered state of the pipe component, the elongation A5 is greater than 9%. Rohrbauteil hergestellt aus einer Stahllegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es mit einer Abschreckgeschwindigkeit größer als 200 Kelvin/Sekunde wasservergütet ist.Pipe component produced from a steel alloy according to one of claims 1 to 5, characterized in that it is quenched with a quenching rate greater than 200 Kelvin / second. Rohrbauteil hergestellt aus einer Stahllegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass bei einer Anlasstemperatur von 250 °C die Brucheinschnürung Z größer als 30 % ist.Pipe component made of a steel alloy according to one of claims 1 to 5, characterized in that at a tempering temperature of 250 ° C, the Brucheinschnürung Z is greater than 30%. Rohrbauteil hergestellt aus einer Stahllegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sein Außendurchmesser in einem Bereich von 3 mm bis 150 mm liegt.Pipe component made of a steel alloy according to one of claims 1 to 5, characterized in that its outer diameter is in a range of 3 mm to 150 mm. Rohrbauteil nach Anspruch 8, dadurch gekennzeichnet, dass der Außendurchmesser in einem Bereich von 8 mm bis 50 mm liegt.Pipe component according to claim 8, characterized in that the outer diameter is in a range of 8 mm to 50 mm. Rohrbauteil nach Anspruch. 8 oder 9, dadurch gekennzeichnet, dass seine Wanddicke zwischen 10 % und 25% seines Außendurchmessers beträgt.Pipe component according to claim. 8 or 9, characterized in that its wall thickness is between 10% and 25% of its outer diameter. Rohrbauteil hergestellt aus einer Stahllegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es ein Drehmoment übertragendes oder torsionsbelastetes Bauteil ist.Pipe component made of a steel alloy according to one of claims 1 to 5, characterized in that it is a torque transmitting or torsionally loaded component. Rohrbauteil nach Anspruch 11, dadurch gekennzeichnet, dass es eine gerade oder gewundene Torsionsfeder oder eine Hohlwelle ist.Pipe component according to claim 11, characterized in that it is a straight or tortuous torsion spring or a hollow shaft. Rohrbauteil nach einem der Ansprüche 5 bis 12, dadurch gekennzeichnet, dass die Randentkohlungstiefe maximal 50 µm beträgt.Pipe component according to one of claims 5 to 12, characterized in that the Randentkohlungstiefe is a maximum of 50 microns. Rohrbauteil nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, dass die Fehlertiefe maximal 50 µm beträgt.Pipe component according to one of claims 5 to 13, characterized in that the defect depth is a maximum of 50 microns.
EP08002285A 2007-02-07 2008-02-07 Use of a steel alloy as a substance for producing dynamically loaded tube components and tube component Not-in-force EP1961832B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007006875A DE102007006875A1 (en) 2007-02-07 2007-02-07 Use of a steel alloy containing alloying additions of carbon, silicon, manganese, chromium, niobium and boron as a material in the production of dynamically loaded tubular components

Publications (2)

Publication Number Publication Date
EP1961832A1 true EP1961832A1 (en) 2008-08-27
EP1961832B1 EP1961832B1 (en) 2011-11-30

Family

ID=39204871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08002285A Not-in-force EP1961832B1 (en) 2007-02-07 2008-02-07 Use of a steel alloy as a substance for producing dynamically loaded tube components and tube component

Country Status (3)

Country Link
EP (1) EP1961832B1 (en)
AT (1) ATE535625T1 (en)
DE (1) DE102007006875A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2617855A3 (en) * 2012-01-19 2013-09-11 Gesenkschmiede Schneider GmbH Low alloyed steel and components produced therefrom
WO2017085135A1 (en) * 2015-11-16 2017-05-26 Benteler Steel/Tube Gmbh Steel alloy with high energy absorption capacity and tubular steel product
US11519047B2 (en) 2016-05-12 2022-12-06 Benteler Automobiltechnik Gmbh Motor vehicle component and a method of manufacturing thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533402A (en) * 1984-02-16 1985-08-06 Nhk Spring Co., Ltd. Method of manufacturing a hollow stabilizer
DE4321241A1 (en) * 1993-06-25 1995-01-05 Hesonwerk Dr Iske Gmbh Use of steel pipes or bars for manufacturing chassis stabilisers for motor vehicles
EP1029720A2 (en) 1999-02-15 2000-08-23 Nhk Spring Co., Ltd. Manufacturing method for hollow stabilizer
EP0630417B1 (en) * 1992-03-09 2000-09-20 Consolidated Metal Products, Inc. High strength steel sway bars and method of making
EP0753595B1 (en) 1995-07-06 2001-08-08 Benteler Ag Pipes for manufacturing stabilisers and manufacturing stabilisers therefrom
US20020153070A1 (en) * 2000-06-14 2002-10-24 Takaaki Toyooka High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP2004263247A (en) * 2003-02-28 2004-09-24 Daido Steel Co Ltd Steel for cold-formed spring
DE102004053620A1 (en) * 2004-11-03 2006-05-04 Salzgitter Flachstahl Gmbh High-strength, air-hardening steel with excellent forming properties
EP1698712A1 (en) 2005-03-03 2006-09-06 Kabushiki Kaisha Kobe Seiko Sho Steels for high-strength springs excellent in cold workability and quality stability

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2023668B (en) * 1978-04-28 1982-10-13 Neturen Co Ltd Steel for cold plastic working
DE4440729C2 (en) * 1994-11-15 1999-07-29 Datec Scherdel Gmbh Relaxation-resistant steel spring
EP1018565A4 (en) * 1998-06-23 2003-07-23 Sumitomo Metal Ind Steel wire rod and method of manufacturing steel for the same
KR20010086358A (en) * 1999-06-16 2001-09-10 아사무라 타카싯 Highly cleaned steel
KR100408490B1 (en) * 1999-06-16 2003-12-03 신닛뽄세이테쯔 카부시키카이샤 High carbon steel wire rod excellent in drawability and fatigue resistance after wire drawing
US7789974B2 (en) * 2000-12-20 2010-09-07 Nippon Steel Corporation High-strength spring steel wire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533402A (en) * 1984-02-16 1985-08-06 Nhk Spring Co., Ltd. Method of manufacturing a hollow stabilizer
EP0630417B1 (en) * 1992-03-09 2000-09-20 Consolidated Metal Products, Inc. High strength steel sway bars and method of making
DE4321241A1 (en) * 1993-06-25 1995-01-05 Hesonwerk Dr Iske Gmbh Use of steel pipes or bars for manufacturing chassis stabilisers for motor vehicles
EP0753595B1 (en) 1995-07-06 2001-08-08 Benteler Ag Pipes for manufacturing stabilisers and manufacturing stabilisers therefrom
EP1029720A2 (en) 1999-02-15 2000-08-23 Nhk Spring Co., Ltd. Manufacturing method for hollow stabilizer
US20020153070A1 (en) * 2000-06-14 2002-10-24 Takaaki Toyooka High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP2004263247A (en) * 2003-02-28 2004-09-24 Daido Steel Co Ltd Steel for cold-formed spring
DE102004053620A1 (en) * 2004-11-03 2006-05-04 Salzgitter Flachstahl Gmbh High-strength, air-hardening steel with excellent forming properties
EP1698712A1 (en) 2005-03-03 2006-09-06 Kabushiki Kaisha Kobe Seiko Sho Steels for high-strength springs excellent in cold workability and quality stability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2617855A3 (en) * 2012-01-19 2013-09-11 Gesenkschmiede Schneider GmbH Low alloyed steel and components produced therefrom
US10041157B2 (en) 2012-01-19 2018-08-07 Gesenkschmiede Schneider Gmbh Low-alloyed steel and components made thereof
WO2017085135A1 (en) * 2015-11-16 2017-05-26 Benteler Steel/Tube Gmbh Steel alloy with high energy absorption capacity and tubular steel product
US11384415B2 (en) 2015-11-16 2022-07-12 Benteler Steel/Tube Gmbh Steel alloy with high energy absorption capacity and tubular steel product
US11519047B2 (en) 2016-05-12 2022-12-06 Benteler Automobiltechnik Gmbh Motor vehicle component and a method of manufacturing thereof

Also Published As

Publication number Publication date
DE102007006875A1 (en) 2008-08-14
EP1961832B1 (en) 2011-11-30
ATE535625T1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
DE112010003614B4 (en) High strength screw
EP1538232B1 (en) Corrosion resistant austenitic steel
DE102005052069B4 (en) Process for the production of semi-finished steel by hot working
EP3168312B1 (en) Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
DE60300561T3 (en) Process for producing a hot-rolled steel strip
DE102015112889A1 (en) High-strength manganese-containing steel, use of the steel for flexibly rolled flat steel products and production methods together with flat steel product for this purpose
EP1546426B1 (en) Steel composition and parts forged by a forging die
DE3029658A1 (en) FERRITIC STEEL
DE3041565C2 (en)
DE112016005198T5 (en) Wire rod with excellent cold forgeability and process for its production
EP2111475B1 (en) Components made of steels with an ultrahigh carbon content and with a reduced density and high scaling resistance
EP2009120B1 (en) Use of an extremely resistant steel alloy for producing steel pipes with high resistance and good plasticity
EP2662461A1 (en) Iron-chromium-manganese-nickel alloy
EP1961832B1 (en) Use of a steel alloy as a substance for producing dynamically loaded tube components and tube component
WO2008074313A2 (en) Ball pin and bushings composed of rust-resistant steel
DE102015111150A1 (en) Steel alloy, in particular for chassis or drive component, and chassis or drive component
DE112008001181B4 (en) Use of a steel alloy for axle tubes and axle tube
EP2414552B1 (en) Ball pins made of bainitic steels for passenger car and light commercial vehicle
EP2255021B1 (en) Steel alloy for a low alloy steel for producing high-tensile seamless steel tubing
DE112015003075T5 (en) Casing tube for ultra-high strength and toughened petroleum and its manufacturing process
DE112017006053T5 (en) HIGH-TEN AND HIGH-TIMING TUBE FOR A PERFORIER PISTOL AND METHOD OF MANUFACTURING THEREOF
DE102016107141A1 (en) Motor vehicle trailer, suspension axle, in particular for a motor vehicle trailer and use of the chassis axle and a material
EP0753597A2 (en) Pipes for manufacturing stabilisers and manufacturing stabilisers therefrom
DE1608181A1 (en) Use of a nickel steel
EP2628807A1 (en) Tempered pin-shaped connection element and method for producing same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090227

17Q First examination report despatched

Effective date: 20090402

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BENTELER DEUTSCHLAND GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BENTELER DEUTSCHLAND GMBH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008005702

Country of ref document: DE

Effective date: 20120202

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120301

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120330

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

BERE Be: lapsed

Owner name: BENTELER DEUTSCHLAND G.M.B.H.

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

26N No opposition filed

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008005702

Country of ref document: DE

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20170213

Year of fee payment: 10

Ref country code: SE

Payment date: 20170216

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170217

Year of fee payment: 10

Ref country code: NL

Payment date: 20170216

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 535625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180207

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190227

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190220

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008005702

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901