JP2004263209A - Vacuum treatment apparatus - Google Patents

Vacuum treatment apparatus Download PDF

Info

Publication number
JP2004263209A
JP2004263209A JP2003049632A JP2003049632A JP2004263209A JP 2004263209 A JP2004263209 A JP 2004263209A JP 2003049632 A JP2003049632 A JP 2003049632A JP 2003049632 A JP2003049632 A JP 2003049632A JP 2004263209 A JP2004263209 A JP 2004263209A
Authority
JP
Japan
Prior art keywords
mounting table
space
processing
pressure
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049632A
Other languages
Japanese (ja)
Other versions
JP4251887B2 (en
JP2004263209A5 (en
Inventor
Shigeru Kasai
河西  繁
Susumu Kato
進 河東
Tomohito Komatsu
智仁 小松
Tetsuya Saito
哲也 斉藤
Kiyoshi Tanaka
澄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003049632A priority Critical patent/JP4251887B2/en
Priority to CN2004800027367A priority patent/CN1742113B/en
Priority to PCT/JP2004/001479 priority patent/WO2004076715A1/en
Priority to US10/546,803 priority patent/US20060160359A1/en
Priority to KR1020057015823A priority patent/KR100715054B1/en
Publication of JP2004263209A publication Critical patent/JP2004263209A/en
Publication of JP2004263209A5 publication Critical patent/JP2004263209A5/ja
Application granted granted Critical
Publication of JP4251887B2 publication Critical patent/JP4251887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • C23C16/45521Inert gas curtains the gas, other than thermal contact gas, being introduced the rear of the substrate to flow around its periphery
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize an apparatus for, for instance, forming a film while heating a semiconductor wafer by a heater installed on a mounting table, when preventing a raw gas from infiltrating into the space in the lower part side of the mounting table and installing a thermocouple and a power supply path member in the space. <P>SOLUTION: This vacuum treatment apparatus has a cylindrical member 4 (a separated part) which is installed unitedly with a mounting table 3 and extends along the rim of the mounting table 3 toward the lower side; has the bottom end of the cylindrical member 4 engaged between a thermal insulation body 41 arranged on the bottom wall 21 of a treatment vessel 2 and a presser member 42, and contacted with the faces of the body and the member to airtightly seal the gap between the lower side space s of the mounting table 3 and a treatment atmosphere, to some extent, without using a sealing member made of a resin, and to separate it; and has the pressure of the above space s raised higher than that of the treatment atmosphere by a purging gas. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、真空雰囲気下(減圧下)で基板に対して例えば成膜処理などを行う真空処理装置に関する。
【0002】
【従来の技術】
半導体デバイスの製造工程においては、半導体ウエハ(以下ウエハという)に形成されたホールや溝の中に金属や金属化合物をCVD(chemical vapor deposition)処理により埋め込んで配線を形成する工程がある。金属あるいは金属化合物をウエハ上に成膜する装置としては例えば特許文献1に記載されている。
【0003】
この特許文献1に記載されている成膜装置の概略を図6に示す。1はチャンバであり、上部側が扁平な円筒部1aとして形成されると共に下部側が小径の円筒部1bとして形成されるきのこ型の構造をなしている。円筒部1a内には、抵抗発熱体からなるヒータ11a、11bが埋設されたセラミックスからなる載置台12が設けられ、この載置台12の裏面側中央部にはセラミックスからなる筒状体13の上端が接合されている。チャンバ1の底面中央部には開口部14が形成され、この開口部14を囲むように前記筒状体13の下端がチャンバ1の底面にリング状の樹脂製シール部材(Oリング)15を介して気密に取り付けられている。従って筒状体13の内部は大気雰囲気であり、この中にヒータ11a、11bに夫々給電するための給電ケーブル16a、16b及び載置台12の温度を検出するための熱電対17が配置されている。
【0004】
ヒータ11aは載置台12の中央部に設けられ、ヒータ11bはヒータ11aの外側にリング状に設けられている。熱電対17は先端が載置台12の中央部に接触していて接触部位の温度を検出し、この温度に基づいて例えばヒータ11a及びヒータ11bの供給電力の比を一定に維持しながらヒータ11a、11bの供給電力の制御が行われる。
【0005】
載置台12の上方にはウエハ10の表面全体に亘って高い均一性でガスが供給できるように構成されたガスシャワーヘッドなどと呼ばれているガス供給部18が設けられている。このガス供給部18から処理ガスが供給されると共に、円筒部11bの底部付近に設けられた図示しない排気口から排気されてチャンバ1内が所定圧力の真空雰囲気下に維持され、処理ガスがウエハ10表面において熱化学反応を起こし、所定の薄膜例えばW(タングステン)、WSix(タングステンシリサイド)、TiあるいはTiN(チタンナイトライド)などの金属あるいは金属化合物がウエハ10表面に成膜される。
【0006】
筒状体13は、給電ケーブル16a、16b及び熱電対17の存在する空間を処理雰囲気側から区画して、成膜ガスあるいはクリーニング時のクリーニングガスによるこれら部材の腐食を防止するために、また熱電対17による温度検出が高い精度で行われるようにするために設けられている。熱電対17は先端部と載置台12との接触により載置台12の温度を検出しているが、仮に接触部位が処理ガスの雰囲気にさらされるとすると、処理ガスを流すときと流さないときとで圧力が変動し、そのため接触部位の間に存在する空間の熱伝導の大きさが変わるので、温度制御が不安定になってしまう。このようなことから筒状体13内は処理ガスの雰囲気から気密に区画されており、この例では筒状体13内は大気圧とされている。
【0007】
【特許文献1】
特願2001−384649:図7
【0008】
【発明が解決しようとする課題】
ところでウエハ10の大口径化に伴い、いかにして面内均一性の高いプロセスを行うかが課題の一つになっており、このため載置台12の温度制御に関してもより一層の精度が要求される。しかしながら上述の装置では例えば載置台12の周縁部の温度が外乱により乱れても中央部の温度を検出しているため、その乱れに追従した温度制御ができない。外側のヒータ11bが配置されている領域にも熱電対17を設けようとすると、筒状体13の径を大きくしなければならず、その場合にはチャンバ1の容積がかなり大きくなってしまい、装置が大型化する。
【0009】
そして図6のように載置台12の中央部から伸びる小径の筒状体13を用いても、下部側の円筒部1bの長さが大きいことから設置スペースの点で得策ではない。下部側の円筒部1bの長さを大きくする理由については、載置台12の温度が例えば500℃〜700℃程度であり、この熱が筒状体13を介してチャンバ1の底部に伝わるが、チャンバ1の底部と筒状体13の下端部との間に介在するOリング15の耐熱性が小さいことから、筒状体13の長さをかなり大きくする必要があるからである。
【0010】
更にまた成膜処理を繰り返し行うと載置台12に付着する薄膜の膜厚が厚くなって膜剥がれによるパーティクルの発生のおそれがあることから、定期的にチャンバ1内はクリーニングガスによりクリーニングされるが、成膜処理後クリーニングの開始時までに長い時間がかかるという課題もある。即ち、クリーニング時の載置台12の温度は例えば250℃と成膜処理時よりも低いが、載置台12の周囲は真空雰囲気であるため、放熱して降温するのに長い時間がかかる。なおチャンバ1内の圧力を高くして放熱を促進させると、その後クリーニングを行うための適切な圧力まで真空引きするのに長い時間がかかってしまう。
【0011】
本発明は、このような背景の下になされたものであり、その目的は、載置台の裏側への処理ガスの回り込みを防止して載置台の温度を検出する温度検出部の腐食を防止し、更に抵抗発熱体に電力を給電する給電路部材を設ける場合にはこの給電路部材の腐食も防止し、しかも樹脂製シール材の熱劣化の問題を回避して載置台と処理容器の底部との距離を小さくすることのできる真空処理装置を提供することにある。本発明の更なる目的は、載置台の温度を速やかに降温して運転効率を高くすることのできる真空処理装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、処理容器内に設けられた載置台上に基板を載置し、処理容器内を真空雰囲気にすると共に加熱手段により基板を加熱しながら処理ガスにより基板に対して処理を行う真空処理装置において、
載置台と処理容器の底部との間の空間を処理雰囲気から区画するために、当該空間の周囲を囲み、その下端部と処理容器の底部とが互いに面接触している区画部と、
前記空間内にパージガスを供給するためのパージガス供給部と、
前記空間内のパージガスを排気するためのパージガス排気部と、
前記空間内の圧力を調整するための圧力調整部と、
前記処理容器の底部を貫通して前記空間内に挿入され、先端部が載置台に接触する温度検出部と、を備え、
前記区画部の下端部と処理容器の底部との間には樹脂製シール部材が介在せず、前記空間内への処理ガスの侵入を抑えるために前記空間の圧力は処理雰囲気の圧力よりも高くなるように調整されることを特徴とする。また加熱手段は、例えば載置台に設けられた抵抗発熱体からなり、この場合、加熱手段に電力を供給するための給電路部材が前記処理容器の底部を貫通して前記空間内に挿入される。
【0013】
この発明によれば、載置台の下方側の空間を区画部で囲み、樹脂製シール部材を用いずに区画部内の圧力を陽圧にして周囲からのガスの侵入を防止しているので、処理ガスやクリーニングガスなどによる熱電対や給電路部材の腐食を防止できる。また区画部と処理容器の底部との間に樹脂製シール部材が介在しないので、載置台からの伝熱による樹脂製シール部材の劣化を気にしなくてよく、載置台と処理容器の底部との間の距離を短くできる。
【0014】
本発明では、前記載置台の温度を降温するときに、例えば処理ガスによる基板の処理が終了した後、処理容器内をクリーニングする工程に移行するときに、前記空間の圧力を昇圧するように前記圧力調整部を介して制御する制御部を備えるようにしてもよい。またパージガスを冷却するパージガス冷却部を設け、前記載置台の温度を降温するときに前記パージガスを冷却するように前記冷却部を制御する制御部を備えた構成としてもよい。このようにすれば載置台を速やかに降温することができる。
【0015】
更にまた本発明は、処理雰囲気と処理容器の排気口との間において、処理容器の壁部と前記区画部との間に亘って設けられ、処理ガスを処理容器の排気口側に通流できるように孔部が形成されたバッファ板と、
このバッファ板に設けられた温調部と、を備えた構成としてもよい。
【0016】
【発明の実施の形態】
図1は本発明に係る真空処理装置の実施の形態の全体構成を示す図である。この実施の形態の真空処理装置は、例えばTiあるいはTiNを成膜するための成膜装置であり、円筒状の気密な処理容器(真空チャンバ)2を備えている。この処理容器2内には基板例えばウエハ10を水平に支持するための基板保持部である載置台3が設けられている。この載置台3はウエハ10よりもサイズの大きい円形状に形成され、載置台3の外周縁に連続して下方側に垂直に延びる円筒部4が設けられている。載置台3及び円筒部4は例えば窒化アルミニウム(AlN)あるいはアルミナ(Al2O3)などのセラミックスにより一体的に作られていて、全体構造は一端側が開口し、他端側が有底の筒状体を逆さまにした形状をしている。
【0017】
一方処理容器2の底部である底壁21の内壁面には円筒部4の口径に対応する径のリング状の断熱体41例えば石英製の断熱体41が設けられている。この断熱体41は、断面形状が四角形であり、前記底壁21の内壁面と面接触している。断熱体41の上には、断面形状が逆L字型のリング状の押さえ部材42が載置され、断熱体41の上面と面接触している。前記円筒部4の下端部は外側に屈曲されてフランジ部(鍔部)43として形成されており、断熱体41及び押さえ部材42により形成される、内側に向いたリング状の溝部内に前記フランジ部43が嵌合されている。円筒部4と断熱体41及び押さえ部材42とは互いに面接触しており、底壁21の内壁面、断熱体41、押さえ部材42及び円筒部4の互いに接触する面は研磨されていて、互いの面接触によりできるだけ気密性を確保するようにしている。
【0018】
従って円筒部4、断熱体41及び押さえ部材42により、載置台3と処理容器2の底部との間の空間Sの周囲が囲まれ、当該空間Sが処理雰囲気から区画されることとなり、この例では円筒部4、断熱体41及び押さえ部材42が区画部に相当する。
【0019】
また処理容器2の底壁21には、前記空間Sにパージガス例えば窒素ガスなどの不活性ガスを供給するためのパーガス供給部をなすパージガス供給管51が接続されると共に、空間Sからパージガスを排気するためのパージガス排気部をなすパージガス排気管52が接続されている。ここで図2は、図1の成膜装置の用力系及び制御系を詳しく記載した構成図であり、この図2に示されているように、パージガス供給管51には、バルブV及び流量調整部であるマスフローコントローラ53を介してパージガス供給源54が接続され、パージガス排気管52には、例えばバタフライバルブなどの圧力調整部55を介して真空排気手段である真空ポンプ56に接続されている。なおこの真空ポンプ56は例えば後述の処理容器2内を排気するための真空ポンプ20を共用してもよい。パージガス排気管52における処理容器2の近傍には、前記空間Sの圧力を検出するための圧力検出部57が設けられている。
【0020】
図2中6は制御部であり、この制御部6は圧力検出部57により検出された圧力検出値により圧力調整部55に制御信号を送り、空間Sの圧力を制御する機能、及び流量調整部53に制御信号を送ってパージガスの流量を調整する機能を備えている。そして制御部6による圧力制御により、空間Sの圧力が処理雰囲気の圧力よりも高くなるように調整され、また載置台3の温度を降温するときに、例えば処理ガスによるウエハ10の成膜処理が終了した後、処理容器2内をクリーニングする工程に移行するときに、載置台3の熱をパージガスを介して処理容器2の底壁21側に効率よく放熱させるために空間Sの圧力が昇圧するように調整される。載置台3の温度を降温するとき以外においては、例えば成膜処理の準備段階からウエハ10の連続成膜が終了するまでの間は、前記空間Sの圧力は、後述の熱電対の先端部と載置台3との接触部の微少な隙間にて十分な熱伝導が行われて精度のよい温度検出値が得られる圧力、例えば133Paから2660Paに設定される。
【0021】
載置台3内には、図2に示すように加熱手段例えば抵抗発熱体からなるヒータ7が設けられ、この例ではヒータ7は、載置台3の中央部に設けられた円形あるいはリング状のヒータ71と、このヒータ71の外側に設けられたリング状のヒータ72とに分割されている。前記空間Sには、例えば給電ケーブルなどの2本の給電路部材73、74が処理容器2の底部を貫通して外部から挿入されており、これら給電路部材73、74は先端部が夫々ヒータ71、72に電気的に接続され、他端部側の電源部61、62から夫々電力を供給するように構成されている。また前記空間Sには、温度検出部、例えば2本の熱電対75、76が処理容器2の底部を貫通して外部から挿入されており、これら熱電対75、76の先端部は、載置台3においてヒータ71、72に夫々割り当てられた加熱領域の下部側に接触、例えば載置台3の下面側から突出した孔部に嵌入されている。制御部6は、熱電対75からの温度検出値に基づいて電源部61に制御信号を送って内側のヒータ71の発熱量を制御し、更に熱電対76からの温度検出値に基づいて電源部62に制御信号を送って外側のヒータ72の発熱量を制御する機能を備えている。
【0022】
なお図1では、図示の便宜上、ヒータ71、72は記載を省略しており、また給電路部材73、74及び熱電対75、76は各々1本のみを記載してある。図1に示すように給電路部材73、74は、スリーブを組み合わせた取り付け部材77及び樹脂製のリング状のシール部材であるOリング77aを用いて処理容器2の底壁21との間の気密性が確保されており、また熱電対75、76はスリーブを組み合わせた取り付け部材78及びOリング78aを用いて処理容器2の底壁21との間の気密性が確保されている。この例ではヒータは2分割されているが、3以上に分割してその分割数に対応する数の給電路部材及び熱電対を設け、各ヒータを独立して制御するようにしてもよい。
【0023】
更に載置台3と処理容器2の底壁21との間には、載置台3からの輻射熱を載置台3側に反射するように上面が例えば鏡面に仕上げられた反射面部をなす反射板31が載置台3と対向して設けられている。このように反射板31を設ければ、底壁21の温度上昇を抑えることができると共にヒータ71、72の加熱効率が向上する。なお反射面部は、処理容器の底壁の表面を鏡面に仕上げることにより形成されたものであってもよい。
【0024】
前記処理容器2の底壁21の周縁部には、例えば周方向に複数個の排気口22が形成されており、これら排気口22には排気管23が接続され、真空排気手段である真空ポンプ20により処理容器2内を真空排気するように構成されている。前記円筒部4の周囲には、周方向に沿ってかつ円筒部4と処理容器2の側壁との間を塞ぐようにバッファ板32が設けられている。このバッファ板32には、処理雰囲気からの処理ガスが排気口22側に流れるように周方向に多数の孔部33が穿設されており、ウエハ10の周方向において均一に排気する役割があるが、円筒部4、断熱体41、押さえ部材42及び処理容器2の底壁21の間の面接触部位が例えば熱収縮により擦れてパーティクルが発生したとしても処理雰囲気に流入することを抑制してウエハ10の汚染を防止できる効果もある。
【0025】
バッファ板32内には、図2に示すように温調部である例えば冷媒流路34が設けられ、冷媒供給路35から供給された冷媒、例えば冷却水、ガルデン(アウジモント社の登録商標)などが冷媒流路34を通流してバッファ板32を冷却し、冷媒排出路36から排出される。冷媒排出路36から排出された冷媒は冷却ユニット37にて冷却され、冷媒供給路35を介して循環する。冷却ユニット37は、制御部6からの信号に基づいて冷媒流量及び/または冷媒の温度が調整されるように構成されている。冷媒供給路35及び冷媒排出路36は、図2では簡略化して記載されているが、例えば処理容器2の側壁を貫通する配管により構成される。またバッファ板32の温調部は冷媒流路に加えて例えば抵抗発熱体などの加熱手段を組み合わせて、広い温度域に亘って調整できるようにしてもよい。バッファ板32の温度調整については、成膜処理の種類に応じた温度、例えば薄膜やバイプロダクトが付着する温度以上の温度に調整され、バッファ板32にこれらが付着しないようにする。
【0026】
その他の部位について述べておくと、図1中24は受け渡し用の支持部材であり、ウエハ10の周縁部を支持して昇降部25により昇降し、受け渡し時以外では載置台3に形成された段部26内にに収まっている。処理容器2の側壁にはウエハ搬送口27が形成され、ゲートバルブ28により図示しない予備真空室に連通している。処理容器2の上部には載置台3に対向するようにガスシャワーヘッドからなるガス供給部29が設けられ、複数のガス供給管(図示では便宜上2本のガス供給管29a、29bを記載してある)から夫々供給される成膜ガスが別々に処理容器2に内に供給されるように構成されている。
【0027】
次に上述実施の形態の作用について述べる。先ずヒータ71、72により載置台3を例えば400〜700℃程度の範囲内の所定の温度に加熱しておくと共に処理容器2内を真空ポンプ20により引き切り状態としておき、搬送口27を介して基板であるウエハ10を図示しないアームにより処理容器2内に搬入し、支持部材24を介して載置台3上に載置する。ウエハ10が400〜700℃程度の範囲内の所定のプロセス温度まで加熱された後、処理雰囲気を例えば100〜1000Pa程度の範囲内の所定の圧力に維持しながら、処理ガス例えばTiCl4(四塩化チタン)及びNH3(アンモニア)を夫々所定流量でガス供給部29から処理容器2内に供給し、処理ガスを熱化学反応させて薄膜例えばTiNをウエハ10上に成膜する。このときバッファ板32の表面温度はTiN膜やバイプロダクトが成膜されない温度、例えば170℃に調整される。またNH3の代わりにH2(水素)を供給してTiを成膜するようにしてもよい。
【0028】
一方載置台3の下方側の空間Sは、パージガス供給管51からパージガスである例えばN2ガスが供給され、圧力調整部55により処理雰囲気の圧力よりも高い例えば1330Pa程度に調整されている。従って図3に示すように処理容器2の底壁21と断熱体41との間、断熱体41と押さえ部材42との間、円筒部4の下端部と断熱体41及び押さえ部材42との間の各微少な隙間から空間Sのパージガスが処理雰囲気側に漏洩し、これにより処理雰囲気側から処理ガスが空間Sに流入することを抑制している。
【0029】
こうして成膜工程が終了すると次のウエハ10に対して同様にして成膜が行われるが、このような成膜をくり返すことにより、積算されたトータル膜厚が予め決められた膜厚に達すると処理容器2内をクリーニングする。図4は、このようなシーケンスを示すフローであり、ステップS1にて前記空間Sの圧力を所定圧力P1に維持しながら既述のように成膜処理を行い、成膜工程が終了すると(ステップS2)、クリーニングを行うタイミングであるか否かを判断し(ステップS3)、クリーニングを行うタイミングでなければ次のウエハに対して成膜を行い、クリーニングを行うタイミングであれば、載置台3のヒータ71、72への電力供給を停止して載置台3をクリーニング工程の設定温度例えば250℃に向けて降温すると共に、載置台3からの放熱を大きくして降温を促進するために空間Sの圧力を成膜時の圧力P1からP2例えば2660Paへ昇圧する(ステップS4)。載置台3が設定温度まで降温すると、クリーニングガス例えばClF3(三フッ化塩素)ガスあるいはF2(フッ素)ガス+HF(フッ化水素)ガスを処理容器2内に供給して処理容器2の内壁や載置台3に付着している薄膜をエッチングにより除去するクリーニング工程を行う(ステップS5)。
【0030】
クリーニングが行われるときは、空間Sの圧力はP2のままであってもよいが、放熱を少なくするためにP2から降圧してもよい。この場合においてもクリーニングガスが空間Sに入り込まないように空間Sの圧力は処理雰囲気の圧力よりも高く設定される。
【0031】
なお、空間Sの圧力を処理雰囲気の圧力よりも高く設定する制御方法として、処理容器2内に設けた圧力センサー(図示せず)からの信号を制御部6に入力し、制御部6はこの処理容器2内の圧力センサー及び圧力検出部57の各検出信号により、例えば処理容器2内の圧力よりも一定値高い圧力で空間Sの圧力を制御したり、また処理容器2内の圧力より一定倍数高い圧力で空間Sの圧力を制御することも可能である。
【0032】
上述の実施の形態によれば、ウエハ10を載置する載置台3の下方側に周縁に沿って下方に伸びる円筒部4(区画部)を当該載置台3に一体的に設けると共に、当該円筒部4の下端のフランジ部43を断熱体41及び押さえ部材42の間に嵌合させ、そして処理容器2の底面と断熱体41との間、断熱体41と押さえ部材42との間、円筒部4の下端部と断熱体41及び押さえ部材42との間を面接触させて載置台3の下方側空間Sと処理雰囲気との間をある程度気密にシールして区画し、前記空間Sの圧力をパージガスにより処理雰囲気の圧力よりも高くしている。従って載置台3の裏側へのガスの回り込みを防止できるので、即ち処理雰囲気から前記空間Sへの処理ガスやクリーニングガスの流入を防止できるので、熱電対75、76及び給電路部材73、74の腐食を防止できる。また熱電対75、76と載置台3との接触部の微少空間の熱伝達が良好に行われて所定の温度検出精度を満足できる程度に前記空間Sの圧力を設定しているので、安定した載置台3の温度制御を行うことができる。
【0033】
しかも前記空間Sと処理雰囲気との間を気密に区画するためのOリングを用いていないので、Oリングの熱劣化を気にしなくてよく、このため載置台3と処理容器2の底部との距離を短くでき、処理容器2の設置スペースを小さくできる。そして処理雰囲気から区画された載置台3の下方側全体に亘って空間Sが処理雰囲気から区画されているので、熱電対75(76)及び給電路部材73(74)の設置数及び設置位置が制限されず、載置台3を所望のゾーンに分割してきめ細かく制御すること等により、結果としてウエハ10の温度について高い面内均一性が得られる。なお熱電対75、76及び給電路部材73、74は径が小さいのでこれらを伝って下方側に向かう熱は少ないことから、これら部材と処理容器2の底部との間はOリングを介在させて気密を確保することができる。
【0034】
更にまた成膜処理が終わって次の工程を行うために例えばクリーニングを行うために載置台3の温度を降温させる場合に、前記空間Sの圧力を高くして載置台3の放熱を促進させているので、載置台3が所定温度まで短時間で降温させることができ、従ってクリーニング工程を速やかに実施することができ、装置の稼働率が向上する。これに対し、載置台3の降温を早めるために、処理雰囲気の圧力を高くすると、その後クリーニング工程において、処理雰囲気を設定圧力まで下げるのに長い時間がかかることから、空間Sを昇圧することは非常に有効である。
【0035】
また載置台3の外周に沿って設けられたバッファ板32は、載置台3から処理ガスを介して熱が伝達されるので1枚目のウエハ10を処理しているときに比べてその後に続くウエハ10を処理しているときの温度が高くなり、そのためにウエハ10の間で(面間で)ウエハ10表面上でのガスの消費量が異なることとなり、ガスの濃度分布が変わってしまう懸念があるが、バッファ板32に温調部を設けて冷却し、ウエハ10の間においてバッファ板32の温度のばらつきを抑えるようにしているため、成膜処理について例えば膜厚について高い面間均一性を得ることができる。
【0036】
上述の実施の形態では、載置台3を降温するときに空間Sの圧力を高くして放熱を促進させるようにしているが、パージガス供給管51に冷却部を設けて、パージガスを冷却することにより載置台3の降温を促進させるようにしてもよいし、あるいは空間Sの昇圧とパージガスの冷却とを組み合わせてもよい。また載置台3を降温する場合としては、クリーニングに限らず、あるプロセスから他のプロセスに移行する場合、例えば互いに異なる膜を連続して成膜し、後半の成膜処理の温度が前半の成膜処理の温度よりも低い場合などであってもよい。
【0037】
載置台3の下方側の空間Sを処理雰囲気から区画する構造としては、図1の構成に限らず、例えば図5に示すように載置台3の下方側空間Sを囲むように区画部をなす筒状の断熱体8を設けて、断熱体8の上端を屈曲してその屈曲面と載置台3の下面との間を面接触させると共に断熱体8の下端を屈曲してその屈曲面と処理容器2の底壁21とを面接触させる構成としてもよい。このようにすれば載置台3と底壁21との間の断熱効果をより大きくできる。
【0038】
また断熱体8の下端部はリング状の押さえ部材81により押さえられており、この押さえ部材81と断熱体8との間及び押さえ部材81と底壁21との間は面接触している。更に載置台3の周縁部とバッファ板32との間の隙間は、リング状の中間部材82により塞がれており、この中間部材82と載置台3及びバッファ板32との間も面接触していて、パーティクルや金属粒子が処理雰囲気に飛散するのを防いでいる。
【0039】
以上において、本発明は、WF6(六フッ化タングステン)ガスとH2ガスあるいはSiH4(モノシラン)ガスとを用いてWを成膜する場合に適用してもよいし、WF6ガスとSiH2Cl2(ジクロルシランガス)とを用いてWSi2を成膜する場合に適用してもよい。更にウエハ10を加熱する手段としては例えば載置台3の上方に対向させた加熱ランプであってもよい。なお本発明は、エッチングやアッシングなどの真空処理を行う装置に対しても適用できる。
【0040】
【発明の効果】
本発明によれば、載置台の下方側の空間を区画部で囲み、区画部内の圧力を陽圧にして周囲からのガスの侵入を防止しているので、処理ガスやクリーニングガスなどによる熱電対や給電路部材の腐食を防止できる。また区画部と処理容器の底部との間に樹脂製シール部材が介在しないので、載置台からの伝熱による樹脂製シール部材の劣化を気にしなくてよく、載置台と処理容器の底部との間の距離を短くでき、装置の設置スペースを小さくできる。更にまた載置台の温度を降温するときに、空間の圧力を昇圧するかまたはパージガスを冷却するようにしているので、載置台を速やかに降温することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる真空処理装置(成膜装置)の全体構成を示す縦断側面図である。
【図2】上記真空処理装置の制御系を示す構成図である。
【図3】載置台の下方側の空間を形成する区画部における面接触部のガスの流れを示す説明図である。
【図4】上記真空処理装置における工程を説明するためのフロー図である。
【図5】本発明の他の実施の形態にかかる真空処理装置の一部構成を示す縦断側面図である。。
【図6】従来の真空処理装置の概略構成を示す縦断側面図である。
【符号の説明】
10 半導体ウエハ
2 処理容器
21 底壁
29 ガス供給部
3 載置台
31 反射板
32 バッファ板
34 冷媒流路
s 空間
4 円筒部
41 断熱体
42 押さえ部材
51 パージガス供給管
52 パージガス排気管
55 圧力調整部
6 制御部
7、71、72 ヒータ
73、74 給電路部材
75、76 熱電対
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vacuum processing apparatus that performs, for example, a film forming process on a substrate in a vacuum atmosphere (under reduced pressure).
[0002]
[Prior art]
2. Description of the Related Art In a semiconductor device manufacturing process, there is a process of forming a wiring by embedding a metal or a metal compound in a hole or a groove formed in a semiconductor wafer (hereinafter, referred to as a wafer) by a CVD (chemical vapor deposition) process. An apparatus for forming a film of a metal or a metal compound on a wafer is described in, for example, Patent Document 1.
[0003]
FIG. 6 shows an outline of the film forming apparatus described in Patent Document 1. Reference numeral 1 denotes a chamber, which has a mushroom type structure in which an upper side is formed as a flat cylindrical portion 1a and a lower side is formed as a small-diameter cylindrical portion 1b. In the cylindrical portion 1a, there is provided a mounting table 12 made of ceramics in which heaters 11a and 11b made of resistance heating elements are buried, and at the center on the back side of the mounting table 12, the upper end of a cylindrical body 13 made of ceramics is provided. Are joined. An opening 14 is formed at the center of the bottom surface of the chamber 1, and the lower end of the tubular body 13 is formed on the bottom surface of the chamber 1 via a ring-shaped resin sealing member (O-ring) 15 so as to surround the opening 14. And airtight. Therefore, the inside of the cylindrical body 13 is an atmospheric atmosphere, in which power supply cables 16a and 16b for supplying power to the heaters 11a and 11b, respectively, and a thermocouple 17 for detecting the temperature of the mounting table 12 are arranged. .
[0004]
The heater 11a is provided at the center of the mounting table 12, and the heater 11b is provided outside the heater 11a in a ring shape. The thermocouple 17 has a tip in contact with the central portion of the mounting table 12 and detects the temperature of the contact portion. Based on this temperature, for example, while maintaining a constant power supply ratio of the heater 11a and the heater 11b, the heater 11a, The control of the supply power of 11b is performed.
[0005]
Above the mounting table 12, a gas supply unit 18 called a gas shower head or the like configured to supply gas with high uniformity over the entire surface of the wafer 10 is provided. The processing gas is supplied from the gas supply unit 18 and exhausted from an exhaust port (not shown) provided near the bottom of the cylindrical portion 11b, the inside of the chamber 1 is maintained under a vacuum atmosphere at a predetermined pressure, and the processing gas is A thermochemical reaction occurs on the surface of the wafer 10, and a predetermined thin film, for example, a metal or a metal compound such as W (tungsten), WSix (tungsten silicide), Ti or TiN (titanium nitride) is formed on the surface of the wafer 10.
[0006]
The cylindrical body 13 partitions the space in which the power supply cables 16a and 16b and the thermocouple 17 are present from the processing atmosphere side to prevent corrosion of these members due to a film forming gas or a cleaning gas at the time of cleaning. It is provided so that temperature detection by the pair 17 can be performed with high accuracy. The thermocouple 17 detects the temperature of the mounting table 12 by contact between the distal end portion and the mounting table 12. However, if the contact portion is exposed to the atmosphere of the processing gas, when the processing gas flows and when the processing gas does not flow, As a result, the pressure fluctuates, and as a result, the amount of heat conduction in the space existing between the contact portions changes, so that the temperature control becomes unstable. For this reason, the inside of the tubular body 13 is airtightly partitioned from the atmosphere of the processing gas, and in this example, the inside of the tubular body 13 is set to the atmospheric pressure.
[0007]
[Patent Document 1]
Patent application 2001-384649: FIG.
[0008]
[Problems to be solved by the invention]
By the way, as the diameter of the wafer 10 increases, how to perform a process with high in-plane uniformity is one of the issues. Therefore, even higher precision is required for the temperature control of the mounting table 12. You. However, in the above-described apparatus, for example, even if the temperature of the peripheral portion of the mounting table 12 is disturbed by disturbance, the temperature of the central portion is detected, so that the temperature control that follows the disturbance cannot be performed. If the thermocouple 17 is to be provided also in the area where the outer heater 11b is arranged, the diameter of the tubular body 13 must be increased, in which case the volume of the chamber 1 becomes considerably large, The device becomes larger.
[0009]
Even if a small-diameter cylindrical body 13 extending from the center of the mounting table 12 as shown in FIG. 6 is used, it is not advantageous in terms of installation space because the length of the lower cylindrical part 1b is large. The reason for increasing the length of the lower cylindrical portion 1b is that the temperature of the mounting table 12 is, for example, about 500 ° C. to 700 ° C., and this heat is transmitted to the bottom of the chamber 1 via the tubular body 13. This is because the heat resistance of the O-ring 15 interposed between the bottom of the chamber 1 and the lower end of the cylindrical body 13 is small, so that the length of the cylindrical body 13 needs to be considerably increased.
[0010]
Further, if the film forming process is repeated, the thickness of the thin film adhered to the mounting table 12 becomes large, and there is a possibility that particles may be generated due to film peeling. Therefore, the inside of the chamber 1 is periodically cleaned with a cleaning gas. There is also a problem that it takes a long time until the start of cleaning after the film forming process. That is, the temperature of the mounting table 12 at the time of cleaning is, for example, 250 ° C. lower than that at the time of the film forming process, but since the surroundings of the mounting table 12 are in a vacuum atmosphere, it takes a long time to release heat and lower the temperature. If the pressure in the chamber 1 is increased to promote heat radiation, it takes a long time to evacuate the chamber 1 to an appropriate pressure for cleaning.
[0011]
The present invention has been made under such a background, and its object is to prevent corrosion of a temperature detection unit that detects the temperature of the mounting table by preventing the processing gas from flowing around to the back side of the mounting table. Further, when a power supply path member for supplying electric power to the resistance heating element is provided, corrosion of the power supply path member is also prevented, and furthermore, the problem of thermal deterioration of the resin sealing material is avoided, and the mounting table and the bottom of the processing vessel are connected. It is an object of the present invention to provide a vacuum processing apparatus capable of reducing the distance of the vacuum processing. It is a further object of the present invention to provide a vacuum processing apparatus capable of rapidly lowering the temperature of a mounting table to increase the operation efficiency.
[0012]
[Means for Solving the Problems]
The present invention provides a vacuum processing in which a substrate is placed on a mounting table provided in a processing vessel, and the processing vessel is processed with a processing gas while the inside of the processing vessel is in a vacuum atmosphere and the substrate is heated by a heating means. In the device,
To partition the space between the mounting table and the bottom of the processing container from the processing atmosphere, surround the periphery of the space, the lower end thereof and the partitioning portion where the bottom of the processing container is in surface contact with each other,
A purge gas supply unit for supplying a purge gas into the space,
A purge gas exhaust unit for exhausting a purge gas in the space,
A pressure adjusting unit for adjusting the pressure in the space,
A temperature detector that penetrates through the bottom of the processing container and is inserted into the space, the tip of which contacts the mounting table,
No resin sealing member is interposed between the lower end of the partition and the bottom of the processing container, and the pressure in the space is higher than the pressure of the processing atmosphere in order to suppress intrusion of the processing gas into the space. It is characterized by being adjusted so that In addition, the heating unit includes, for example, a resistance heating element provided on the mounting table. In this case, a power supply path member for supplying power to the heating unit is inserted into the space through the bottom of the processing container. .
[0013]
According to the present invention, the space below the mounting table is surrounded by the partition, and the pressure in the partition is made positive without using a resin seal member to prevent gas from entering from the surroundings. Corrosion of a thermocouple or a power supply path member due to gas, cleaning gas, or the like can be prevented. Further, since the resin sealing member is not interposed between the partition and the bottom of the processing container, it is not necessary to worry about the deterioration of the resin sealing member due to heat transfer from the mounting table, and the gap between the mounting table and the bottom of the processing container can be reduced. The distance between them can be shortened.
[0014]
In the present invention, when the temperature of the mounting table is lowered, for example, after the processing of the substrate by the processing gas is completed, when moving to a step of cleaning the inside of the processing container, the pressure of the space is increased so as to increase the pressure. A control unit for controlling via the pressure adjusting unit may be provided. Further, a purge gas cooling unit that cools the purge gas may be provided, and a control unit that controls the cooling unit so as to cool the purge gas when the temperature of the mounting table is lowered may be provided. With this configuration, the temperature of the mounting table can be rapidly lowered.
[0015]
Furthermore, the present invention is provided between the processing atmosphere and the exhaust port of the processing container, between the wall portion of the processing container and the partition portion, and can flow the processing gas to the exhaust port side of the processing container. Buffer plate with holes formed as
And a temperature control unit provided on the buffer plate.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a diagram showing an overall configuration of a vacuum processing apparatus according to an embodiment of the present invention. The vacuum processing apparatus of this embodiment is a film forming apparatus for forming a film of, for example, Ti or TiN, and includes a cylindrical airtight processing container (vacuum chamber) 2. A mounting table 3 as a substrate holding unit for horizontally supporting a substrate, for example, a wafer 10, is provided in the processing container 2. The mounting table 3 is formed in a circular shape having a size larger than that of the wafer 10, and a cylindrical portion 4 that extends vertically downward continuously to the outer peripheral edge of the mounting table 3 is provided. The mounting table 3 and the cylindrical portion 4 are integrally formed of ceramics such as aluminum nitride (AlN) or alumina (Al2O3), and the whole structure has a cylindrical body having an opening at one end and a bottom at the other end. It is shaped like
[0017]
On the other hand, a ring-shaped heat insulator 41 having a diameter corresponding to the diameter of the cylindrical portion 4, for example, a quartz heat insulator 41 is provided on the inner wall surface of the bottom wall 21 which is the bottom of the processing container 2. The heat insulator 41 has a square cross section and is in surface contact with the inner wall surface of the bottom wall 21. A ring-shaped holding member 42 having an inverted L-shaped cross section is placed on the heat insulator 41, and is in surface contact with the upper surface of the heat insulator 41. A lower end portion of the cylindrical portion 4 is bent outward to form a flange portion (flange portion) 43, and the flange portion is formed in an inwardly directed ring-shaped groove formed by a heat insulator 41 and a pressing member 42. The part 43 is fitted. The cylindrical portion 4, the heat insulator 41, and the pressing member 42 are in surface contact with each other, and the inner wall surface of the bottom wall 21, the heat insulator 41, the pressing member 42, and the surface in contact with each other of the cylindrical portion 4 are polished, and Air-tightness is ensured as much as possible by surface contact.
[0018]
Therefore, the periphery of the space S between the mounting table 3 and the bottom of the processing container 2 is surrounded by the cylindrical portion 4, the heat insulator 41, and the pressing member 42, and the space S is separated from the processing atmosphere. In the embodiment, the cylindrical portion 4, the heat insulator 41, and the pressing member 42 correspond to a partition.
[0019]
Further, a purge gas supply pipe 51 serving as a purge gas supply unit for supplying a purge gas, for example, an inert gas such as nitrogen gas, to the space S is connected to the bottom wall 21 of the processing container 2, and the purge gas is exhausted from the space S. A purge gas exhaust pipe 52 serving as a purge gas exhaust unit for performing the operation is connected. Here, FIG. 2 is a configuration diagram illustrating the utility system and the control system of the film forming apparatus of FIG. 1 in detail. As shown in FIG. A purge gas supply source 54 is connected via a mass flow controller 53 as a unit, and the purge gas exhaust pipe 52 is connected to a vacuum pump 56 as a vacuum exhaust unit via a pressure adjusting unit 55 such as a butterfly valve. The vacuum pump 56 may share, for example, the vacuum pump 20 for evacuating the inside of the processing container 2 described later. In the vicinity of the processing container 2 in the purge gas exhaust pipe 52, a pressure detection unit 57 for detecting the pressure in the space S is provided.
[0020]
In FIG. 2, reference numeral 6 denotes a control unit. The control unit 6 sends a control signal to the pressure adjustment unit 55 based on the pressure detection value detected by the pressure detection unit 57 to control the pressure in the space S. A function of adjusting the flow rate of the purge gas by sending a control signal to 53 is provided. The pressure of the space S is adjusted to be higher than the pressure of the processing atmosphere by the pressure control by the control unit 6, and when the temperature of the mounting table 3 is lowered, for example, the film forming process of the wafer 10 by the processing gas is performed. After the completion, when the process proceeds to the step of cleaning the inside of the processing container 2, the pressure of the space S is increased in order to efficiently radiate the heat of the mounting table 3 to the bottom wall 21 side of the processing container 2 via the purge gas. Is adjusted as follows. Except when the temperature of the mounting table 3 is lowered, for example, from the preparation stage of the film forming process to the end of the continuous film forming of the wafer 10, the pressure in the space S is equal to the tip of a thermocouple described later. The pressure is set at, for example, 133 Pa to 2660 Pa at which a sufficient heat conduction is performed in a minute gap at a contact portion with the mounting table 3 to obtain an accurate temperature detection value.
[0021]
As shown in FIG. 2, a heater 7 made of a heating means, for example, a resistance heating element is provided in the mounting table 3. In this example, the heater 7 is a circular or ring-shaped heater provided in the center of the mounting table 3. The heater 71 is divided into a heater 71 and a ring-shaped heater 72 provided outside the heater 71. In the space S, for example, two power supply path members 73 and 74 such as a power supply cable are inserted from the outside through the bottom of the processing container 2. It is electrically connected to 71 and 72, and is configured to supply power from power supply units 61 and 62 on the other end side, respectively. In the space S, a temperature detector, for example, two thermocouples 75 and 76 are inserted from the outside through the bottom of the processing chamber 2, and the tips of the thermocouples 75 and 76 are mounted on a mounting table. 3, the heater 3 is in contact with the lower side of the heating area assigned to each of the heaters 71 and 72, for example, is fitted into a hole projecting from the lower surface side of the mounting table 3. The control unit 6 sends a control signal to the power supply unit 61 based on the temperature detection value from the thermocouple 75 to control the amount of heat generated by the inner heater 71, and further based on the temperature detection value from the thermocouple 76. It has a function of sending a control signal to 62 to control the amount of heat generated by the outer heater 72.
[0022]
In FIG. 1, for convenience of illustration, the heaters 71 and 72 are omitted, and only one feed path member 73 and 74 and one thermocouple 75 and 76 are shown. As shown in FIG. 1, the power supply path members 73 and 74 are hermetically sealed between the bottom wall 21 of the processing container 2 by using an attachment member 77 combined with a sleeve and an O-ring 77 a which is a resin ring-shaped seal member. In addition, airtightness between the thermocouples 75 and 76 and the bottom wall 21 of the processing container 2 is ensured between the thermocouples 75 and 76 using an attachment member 78 combined with a sleeve and an O-ring 78a. In this example, the heater is divided into two. However, the heater may be divided into three or more, and the number of power supply path members and thermocouples corresponding to the number of divisions may be provided, and each heater may be independently controlled.
[0023]
Further, between the mounting table 3 and the bottom wall 21 of the processing container 2, there is provided a reflecting plate 31 having a reflecting surface portion whose upper surface is finished to, for example, a mirror surface so as to reflect radiant heat from the mounting table 3 toward the mounting table 3. It is provided facing the mounting table 3. By providing the reflection plate 31 in this manner, the temperature rise of the bottom wall 21 can be suppressed, and the heating efficiency of the heaters 71 and 72 is improved. Note that the reflection surface portion may be formed by finishing the surface of the bottom wall of the processing container to a mirror surface.
[0024]
For example, a plurality of exhaust ports 22 are formed in the peripheral portion of the bottom wall 21 of the processing container 2 in the circumferential direction, and an exhaust pipe 23 is connected to these exhaust ports 22 to provide a vacuum pump as a vacuum exhaust means. 20 is configured to evacuate the inside of the processing container 2. A buffer plate 32 is provided around the cylindrical portion 4 along the circumferential direction and so as to close a gap between the cylindrical portion 4 and a side wall of the processing container 2. The buffer plate 32 is provided with a large number of holes 33 in the circumferential direction so that the processing gas from the processing atmosphere flows toward the exhaust port 22, and serves to uniformly exhaust the wafer 10 in the circumferential direction. However, even if the surface contact portion between the cylindrical portion 4, the heat insulator 41, the pressing member 42 and the bottom wall 21 of the processing container 2 is rubbed by, for example, heat shrinkage and particles are generated, the flow is prevented from flowing into the processing atmosphere. There is also an effect that contamination of the wafer 10 can be prevented.
[0025]
As shown in FIG. 2, for example, a coolant flow path 34, which is a temperature control unit, is provided in the buffer plate 32, and a coolant supplied from a coolant supply path 35, such as cooling water, Galden (registered trademark of Ausimont Corporation), or the like Flows through the refrigerant flow path 34 to cool the buffer plate 32, and is discharged from the refrigerant discharge path 36. The refrigerant discharged from the refrigerant discharge passage 36 is cooled by the cooling unit 37 and circulates through the refrigerant supply passage 35. The cooling unit 37 is configured to adjust the refrigerant flow rate and / or the refrigerant temperature based on a signal from the control unit 6. Although the refrigerant supply path 35 and the refrigerant discharge path 36 are described in a simplified manner in FIG. 2, for example, the refrigerant supply path 35 and the refrigerant discharge path 36 are configured by pipes that penetrate the side wall of the processing container 2. In addition, the temperature control section of the buffer plate 32 may be adjusted over a wide temperature range by combining a heating means such as a resistance heating element in addition to the coolant flow path. The temperature of the buffer plate 32 is adjusted to a temperature according to the type of film forming process, for example, a temperature higher than the temperature at which a thin film or a by-product adheres, so that these do not adhere to the buffer plate 32.
[0026]
To describe other parts, reference numeral 24 in FIG. 1 denotes a transfer support member, which supports the peripheral portion of the wafer 10 and moves up and down by the elevating unit 25, and a step formed on the mounting table 3 except at the time of transfer. It is housed in the part 26. A wafer transfer port 27 is formed on a side wall of the processing container 2 and communicates with a preliminary vacuum chamber (not shown) by a gate valve 28. A gas supply unit 29 composed of a gas shower head is provided at an upper portion of the processing container 2 so as to face the mounting table 3, and a plurality of gas supply pipes (two gas supply pipes 29 a and 29 b are illustrated for convenience in the drawing). ) Are separately supplied into the processing vessel 2.
[0027]
Next, the operation of the above embodiment will be described. First, the mounting table 3 is heated to a predetermined temperature within a range of, for example, about 400 to 700 ° C. by the heaters 71 and 72, and the inside of the processing container 2 is cut off by the vacuum pump 20. A wafer 10 as a substrate is carried into the processing chamber 2 by an arm (not shown), and is mounted on the mounting table 3 via the support member 24. After the wafer 10 is heated to a predetermined process temperature in a range of about 400 to 700 ° C., a processing gas such as TiCl 4 (titanium tetrachloride) is maintained while maintaining a processing atmosphere at a predetermined pressure in a range of about 100 to 1000 Pa, for example. ) And NH3 (ammonia) are respectively supplied at a predetermined flow rate from the gas supply unit 29 into the processing vessel 2, and the processing gas is subjected to a thermochemical reaction to form a thin film such as TiN on the wafer 10. At this time, the surface temperature of the buffer plate 32 is adjusted to a temperature at which a TiN film or a by-product is not formed, for example, 170 ° C. Also, Ti may be formed by supplying H2 (hydrogen) instead of NH3.
[0028]
On the other hand, the space S on the lower side of the mounting table 3 is supplied with a purge gas, for example, N 2 gas from the purge gas supply pipe 51, and is adjusted by the pressure adjusting unit 55 to, for example, about 1330 Pa, which is higher than the pressure of the processing atmosphere. Therefore, as shown in FIG. 3, between the bottom wall 21 of the processing container 2 and the heat insulator 41, between the heat insulator 41 and the pressing member 42, and between the lower end portion of the cylindrical portion 4 and the heat insulating member 41 and the pressing member 42. The purge gas in the space S leaks to the processing atmosphere side from each of the minute gaps, thereby suppressing the processing gas from flowing into the space S from the processing atmosphere side.
[0029]
When the film formation process is completed, film formation is performed on the next wafer 10 in the same manner. By repeating such film formation, the integrated total film thickness reaches a predetermined film thickness. Then, the inside of the processing container 2 is cleaned. FIG. 4 is a flowchart showing such a sequence. In step S1, the film forming process is performed as described above while maintaining the pressure in the space S at the predetermined pressure P1, and when the film forming process is completed (step S1). S2) It is determined whether it is time to perform the cleaning (step S3). If it is not the time to perform the cleaning, a film is formed on the next wafer. The supply of power to the heaters 71 and 72 is stopped to lower the temperature of the mounting table 3 toward the set temperature of the cleaning step, for example, 250 ° C., and at the same time, the heat radiation from the mounting table 3 is increased to promote the temperature reduction. The pressure is increased from the pressure P1 during film formation to P2, for example, 2660 Pa (step S4). When the mounting table 3 cools down to the set temperature, a cleaning gas, for example, ClF3 (chlorine trifluoride) gas or F2 (fluorine) gas + HF (hydrogen fluoride) gas is supplied into the processing container 2 and the inner wall of the processing container 2 and the mounting plate are mounted. A cleaning step of removing a thin film attached to the mounting table 3 by etching is performed (step S5).
[0030]
When cleaning is performed, the pressure in the space S may remain at P2, but may be reduced from P2 to reduce heat radiation. Also in this case, the pressure of the space S is set higher than the pressure of the processing atmosphere so that the cleaning gas does not enter the space S.
[0031]
As a control method for setting the pressure of the space S to be higher than the pressure of the processing atmosphere, a signal from a pressure sensor (not shown) provided in the processing chamber 2 is input to the control unit 6, and the control unit 6 The pressure in the space S is controlled at a pressure higher than the pressure in the processing container 2 by a constant value, for example, or the pressure in the processing container 2 is controlled by the detection signals of the pressure sensor and the pressure detection unit 57 in the processing container 2. It is also possible to control the pressure in the space S at a pressure that is a multiple higher.
[0032]
According to the above-described embodiment, the cylindrical portion 4 (partition portion) extending downward along the peripheral edge below the mounting table 3 on which the wafer 10 is mounted is provided integrally with the mounting table 3 and the cylindrical portion 4 The flange portion 43 at the lower end of the portion 4 is fitted between the heat insulator 41 and the holding member 42, and between the bottom surface of the processing container 2 and the heat insulator 41, between the heat insulator 41 and the holding member 42, and the cylindrical portion. The lower end portion 4 is in surface contact with the heat insulator 41 and the holding member 42 to form a space between the lower space S of the mounting table 3 and the processing atmosphere in a hermetically sealed state. The pressure is set higher than the pressure of the processing atmosphere by the purge gas. Therefore, it is possible to prevent gas from flowing to the back side of the mounting table 3, that is, it is possible to prevent the processing gas and the cleaning gas from flowing from the processing atmosphere into the space S, so that the thermocouples 75 and 76 and the power supply path members 73 and 74 Corrosion can be prevented. Further, the pressure in the space S is set to such an extent that the heat transfer in the minute space at the contact portion between the thermocouples 75 and 76 and the mounting table 3 is performed well and the predetermined temperature detection accuracy can be satisfied. The temperature of the mounting table 3 can be controlled.
[0033]
Moreover, since an O-ring for airtightly partitioning the space S from the processing atmosphere is not used, there is no need to worry about thermal deterioration of the O-ring. The distance can be shortened, and the installation space for the processing container 2 can be reduced. Since the space S is partitioned from the processing atmosphere over the entire lower side of the mounting table 3 partitioned from the processing atmosphere, the number and positions of the thermocouples 75 (76) and the power supply path members 73 (74) are reduced. Without limitation, the mounting table 3 is divided into desired zones and finely controlled, and the like, so that high in-plane uniformity of the temperature of the wafer 10 can be obtained. Since the thermocouples 75 and 76 and the power supply path members 73 and 74 have small diameters, the amount of heat traveling down therethrough is small. Therefore, an O-ring is interposed between these members and the bottom of the processing chamber 2. Airtightness can be ensured.
[0034]
Further, when the temperature of the mounting table 3 is decreased for performing the next step after the film forming process, for example, for cleaning, the pressure of the space S is increased to promote heat radiation of the mounting table 3. Therefore, the temperature of the mounting table 3 can be lowered to the predetermined temperature in a short time, so that the cleaning step can be performed promptly and the operation rate of the apparatus is improved. On the other hand, if the pressure of the processing atmosphere is increased in order to accelerate the temperature drop of the mounting table 3, it takes a long time to reduce the processing atmosphere to the set pressure in the cleaning process thereafter. Very effective.
[0035]
In addition, the buffer plate 32 provided along the outer periphery of the mounting table 3 is transferred after heat is transferred from the mounting table 3 via the processing gas, compared to when the first wafer 10 is being processed. There is a concern that the temperature during the processing of the wafer 10 becomes high, so that the consumption of gas on the surface of the wafer 10 differs between the wafers 10 (between surfaces), and the gas concentration distribution changes. However, since the temperature control section is provided in the buffer plate 32 for cooling to suppress the temperature variation of the buffer plate 32 between the wafers 10, for example, a high film-to-surface uniformity in the film forming process is obtained. Can be obtained.
[0036]
In the above-described embodiment, when the temperature of the mounting table 3 is lowered, the pressure in the space S is increased to promote heat radiation. However, a cooling unit is provided in the purge gas supply pipe 51 to cool the purge gas. The temperature drop of the mounting table 3 may be promoted, or the pressure increase of the space S and the cooling of the purge gas may be combined. In addition, the temperature of the mounting table 3 is not limited to cleaning, and when shifting from one process to another process, for example, films different from each other are continuously formed, and the temperature of the film forming process in the latter half is the same as that in the first half. The temperature may be lower than the temperature of the film processing.
[0037]
The structure for partitioning the space S below the mounting table 3 from the processing atmosphere is not limited to the configuration in FIG. 1. For example, as shown in FIG. 5, a partition section is formed to surround the lower space S of the mounting table 3. A cylindrical heat insulator 8 is provided, and the upper end of the heat insulator 8 is bent to make a surface contact between the bent surface and the lower surface of the mounting table 3 and the lower end of the heat insulator 8 is bent to be treated with the bent surface. The bottom wall 21 of the container 2 may be brought into surface contact. By doing so, the heat insulating effect between the mounting table 3 and the bottom wall 21 can be further increased.
[0038]
The lower end of the heat insulator 8 is pressed by a ring-shaped pressing member 81, and the space between the pressing member 81 and the heat insulator 8 and the surface between the pressing member 81 and the bottom wall 21 are in surface contact. Further, the gap between the peripheral portion of the mounting table 3 and the buffer plate 32 is closed by a ring-shaped intermediate member 82, and the intermediate member 82 is in surface contact with the mounting table 3 and the buffer plate 32. To prevent particles and metal particles from scattering into the processing atmosphere.
[0039]
As described above, the present invention may be applied to the case where W is formed using WF6 (tungsten hexafluoride) gas and H2 gas or SiH4 (monosilane) gas, or WF6 gas and SiH2Cl2 (dichlorosilane gas). ) May be applied to the case where WSi2 is formed into a film. Further, as a means for heating the wafer 10, for example, a heating lamp facing above the mounting table 3 may be used. The present invention can be applied to an apparatus that performs a vacuum process such as etching or ashing.
[0040]
【The invention's effect】
According to the present invention, the space below the mounting table is surrounded by the partition, and the pressure in the partition is made positive to prevent intrusion of gas from the surroundings. And corrosion of the power supply path member can be prevented. Further, since the resin sealing member is not interposed between the partitioning portion and the bottom of the processing container, it is not necessary to worry about the deterioration of the resin sealing member due to heat transfer from the mounting table, and the gap between the mounting table and the bottom of the processing container is not required. The distance between them can be shortened, and the installation space for the device can be reduced. Furthermore, when the temperature of the mounting table is lowered, the pressure of the space is increased or the purge gas is cooled, so that the temperature of the mounting table can be rapidly lowered.
[Brief description of the drawings]
FIG. 1 is a vertical sectional side view showing an overall configuration of a vacuum processing apparatus (film forming apparatus) according to an embodiment of the present invention.
FIG. 2 is a configuration diagram showing a control system of the vacuum processing apparatus.
FIG. 3 is an explanatory diagram showing a gas flow at a surface contact portion in a partition forming a space below the mounting table.
FIG. 4 is a flowchart for explaining steps in the vacuum processing apparatus.
FIG. 5 is a vertical sectional side view showing a partial configuration of a vacuum processing apparatus according to another embodiment of the present invention. .
FIG. 6 is a vertical sectional side view showing a schematic configuration of a conventional vacuum processing apparatus.
[Explanation of symbols]
10 Semiconductor wafer
2 Processing container
21 Bottom wall
29 Gas supply unit
3 Mounting table
31 Reflector
32 buffer board
34 refrigerant channel
s space
4 cylindrical part
41 Insulation
42 Holding member
51 Purge gas supply pipe
52 Purge gas exhaust pipe
55 Pressure adjustment unit
6 control unit
7, 71, 72 heater
73, 74 power supply path member
75, 76 thermocouple

Claims (6)

処理容器内に設けられた載置台上に基板を載置し、処理容器内を真空雰囲気にすると共に加熱手段により基板を加熱しながら処理ガスにより基板に対して処理を行う真空処理装置において、
載置台と処理容器の底部との間の空間を処理雰囲気から区画するために、当該空間の周囲を囲み、その下端部と処理容器の底部とが互いに面接触している区画部と、
前記空間内にパージガスを供給するためのパージガス供給部と、
前記空間内のパージガスを排気するためのパージガス排気部と、
前記空間内の圧力を調整するための圧力調整部と、
前記処理容器の底部を貫通して前記空間内に挿入され、先端部が載置台に接触する温度検出部と、を備え、
前記区画部の下端部と処理容器の底部との間には樹脂製シール部材が介在せず、前記空間内への処理ガスの侵入を抑えるために前記空間の圧力は処理雰囲気の圧力よりも高くなるように調整されることを特徴とする真空処理装置。
In a vacuum processing apparatus, a substrate is placed on a mounting table provided in a processing container, and the inside of the processing container is processed into a vacuum atmosphere and the substrate is processed by a processing gas while heating the substrate by a heating unit.
To partition the space between the mounting table and the bottom of the processing container from the processing atmosphere, surround the periphery of the space, the lower end thereof and the partitioning portion where the bottom of the processing container is in surface contact with each other,
A purge gas supply unit for supplying a purge gas into the space,
A purge gas exhaust unit for exhausting a purge gas in the space,
A pressure adjusting unit for adjusting the pressure in the space,
A temperature detector that penetrates through the bottom of the processing container and is inserted into the space, the tip of which contacts the mounting table,
No resin sealing member is interposed between the lower end of the partition and the bottom of the processing container, and the pressure in the space is higher than the pressure of the processing atmosphere in order to suppress intrusion of the processing gas into the space. A vacuum processing apparatus characterized by being adjusted so as to be.
加熱手段は、載置台に設けられた抵抗発熱体からなり、
前記加熱手段に電力を供給するための給電路部材が前記処理容器の底部を貫通して前記空間内に挿入されることを特徴とする請求項1記載の真空処理装置。
The heating means comprises a resistance heating element provided on the mounting table,
2. The vacuum processing apparatus according to claim 1, wherein a power supply path member for supplying power to the heating unit is inserted into the space through a bottom of the processing container. 3.
前記載置台の温度を降温するときに前記空間の圧力を昇圧するように前記圧力調整部を介して制御する制御部を備えたことを特徴とする請求項1または2記載の真空処理装置。The vacuum processing apparatus according to claim 1, further comprising a control unit configured to control the pressure in the space via the pressure adjustment unit so as to increase the pressure in the space when the temperature of the mounting table is lowered. パージガスを冷却するパージガス冷却部を設け、前記載置台の温度を降温するときに前記パージガスを冷却するように前記冷却部を制御する制御部を備えたことを特徴とする請求項1ないし3のいずれかに記載の真空処理装置。4. The apparatus according to claim 1, further comprising a purge gas cooling unit configured to cool the purge gas, and a control unit configured to control the cooling unit so as to cool the purge gas when the temperature of the mounting table is lowered. A vacuum processing apparatus according to any one of the above. 載置台の温度を降温するときは、処理ガスによる基板の処理が終了した後、処理容器内をクリーニングする工程に移行するときであることを特徴とする請求項3または4記載の真空処理装置。5. The vacuum processing apparatus according to claim 3, wherein the temperature of the mounting table is lowered when the processing of the substrate with the processing gas is completed, and then the process shifts to a step of cleaning the inside of the processing container. 処理雰囲気と処理容器の排気口との間において、処理容器の壁部と前記区画部との間に亘って設けられ、処理ガスを処理容器の排気口側に通流できるように孔部が形成されたバッファ板と、
このバッファ板に設けられた温調部と、を備えたことを特徴とする請求項1ないし5のいずれかに記載の真空処理装置。
A hole is formed between the processing atmosphere and the exhaust port of the processing container, between the wall portion of the processing container and the partition, so that a processing gas can flow to the exhaust port side of the processing container. Buffer plate
The vacuum processing apparatus according to any one of claims 1 to 5, further comprising a temperature control unit provided on the buffer plate.
JP2003049632A 2003-02-26 2003-02-26 Vacuum processing equipment Expired - Fee Related JP4251887B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003049632A JP4251887B2 (en) 2003-02-26 2003-02-26 Vacuum processing equipment
CN2004800027367A CN1742113B (en) 2003-02-26 2004-02-12 Vacuum processing apparatus
PCT/JP2004/001479 WO2004076715A1 (en) 2003-02-26 2004-02-12 Vacuum processing apparatus
US10/546,803 US20060160359A1 (en) 2003-02-26 2004-02-12 Vacuum processing apparatus
KR1020057015823A KR100715054B1 (en) 2003-02-26 2004-02-12 Vacuum processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049632A JP4251887B2 (en) 2003-02-26 2003-02-26 Vacuum processing equipment

Publications (3)

Publication Number Publication Date
JP2004263209A true JP2004263209A (en) 2004-09-24
JP2004263209A5 JP2004263209A5 (en) 2006-06-15
JP4251887B2 JP4251887B2 (en) 2009-04-08

Family

ID=32923314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049632A Expired - Fee Related JP4251887B2 (en) 2003-02-26 2003-02-26 Vacuum processing equipment

Country Status (5)

Country Link
US (1) US20060160359A1 (en)
JP (1) JP4251887B2 (en)
KR (1) KR100715054B1 (en)
CN (1) CN1742113B (en)
WO (1) WO2004076715A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076689A (en) * 2007-09-20 2009-04-09 Tokyo Electron Ltd Substrate treatment device, and substrate mounting base used for it
JP2013021112A (en) * 2011-07-11 2013-01-31 Nuflare Technology Inc Vapor phase growth apparatus and vapor phase growth method
JP2023035497A (en) * 2021-09-01 2023-03-13 株式会社Kokusai Electric Method for manufacturing semiconductor device, substrate processing device, program and substrate processing method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0106410D0 (en) 2001-03-15 2001-05-02 Ucb Sa Labels
JP4597894B2 (en) * 2006-03-31 2010-12-15 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
JP5105396B2 (en) * 2006-04-12 2012-12-26 東京応化工業株式会社 Heat treatment device
JP5171969B2 (en) * 2011-01-13 2013-03-27 東京エレクトロン株式会社 Substrate processing equipment
KR101804128B1 (en) * 2011-12-26 2017-12-05 주식회사 원익아이피에스 Substrate processing apparatus
KR20130086806A (en) * 2012-01-26 2013-08-05 삼성전자주식회사 Thin film deposition apparatus
KR101452318B1 (en) * 2012-06-29 2014-10-22 세메스 주식회사 Apparatus and method for treating substrate
WO2014052388A1 (en) * 2012-09-26 2014-04-03 Applied Materials, Inc. An apparatus and method for purging gaseous compounds
JP6107327B2 (en) * 2013-03-29 2017-04-05 東京エレクトロン株式会社 Film forming apparatus, gas supply apparatus, and film forming method
DE102013020106A1 (en) * 2013-12-06 2015-06-11 Oliver Feddersen-Clausen Reaction chamber especially for Atomic Laver deposition
CN106367731A (en) * 2015-07-20 2017-02-01 广东昭信半导体装备制造有限公司 Oxide chemical vapor deposition apparatus and oxide chemical vapor deposition method
US10607817B2 (en) * 2016-11-18 2020-03-31 Applied Materials, Inc. Thermal repeatability and in-situ showerhead temperature monitoring
US20220178029A1 (en) * 2020-12-03 2022-06-09 Tokyo Electron Limited Deposition apparatus and deposition method
KR102621848B1 (en) * 2020-12-18 2024-01-09 세메스 주식회사 Support unit and apparatus for treating substrate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153706A (en) * 1993-05-27 1995-06-16 Applied Materials Inc Suscepter device
JP3165938B2 (en) * 1993-06-24 2001-05-14 東京エレクトロン株式会社 Gas treatment equipment
US5592581A (en) * 1993-07-19 1997-01-07 Tokyo Electron Kabushiki Kaisha Heat treatment apparatus
CN1137296A (en) * 1993-12-17 1996-12-04 布鲁克斯自动化公司 Apparatus for heating or cooling wafers
US5849076A (en) * 1996-07-26 1998-12-15 Memc Electronic Materials, Inc. Cooling system and method for epitaxial barrel reactor
JP4236329B2 (en) * 1999-04-15 2009-03-11 日本碍子株式会社 Plasma processing equipment
JP2001053030A (en) * 1999-08-11 2001-02-23 Tokyo Electron Ltd Film forming device
JP4592856B2 (en) * 1999-12-24 2010-12-08 東京エレクトロン株式会社 Baffle plate and gas treatment device
US20040020599A1 (en) * 2000-12-27 2004-02-05 Sumi Tanaka Treating device
JP4009100B2 (en) * 2000-12-28 2007-11-14 東京エレクトロン株式会社 Substrate heating apparatus and substrate heating method
CN1254854C (en) * 2001-12-07 2006-05-03 东京毅力科创株式会社 Nitriding method for insulation film, semiconductor device and its manufacturing method, substrate treating device and substrate treating method
JP2003253449A (en) * 2002-02-27 2003-09-10 Sumitomo Electric Ind Ltd Semiconductor or liquid crystal manufacturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076689A (en) * 2007-09-20 2009-04-09 Tokyo Electron Ltd Substrate treatment device, and substrate mounting base used for it
JP2013021112A (en) * 2011-07-11 2013-01-31 Nuflare Technology Inc Vapor phase growth apparatus and vapor phase growth method
JP2023035497A (en) * 2021-09-01 2023-03-13 株式会社Kokusai Electric Method for manufacturing semiconductor device, substrate processing device, program and substrate processing method
JP7317083B2 (en) 2021-09-01 2023-07-28 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus, program, and substrate processing method
US11942333B2 (en) 2021-09-01 2024-03-26 Kokusai Electric Corporation Method of manufacturing semiconductor device, cleaning method, and non-transitory computer-readable recording medium

Also Published As

Publication number Publication date
JP4251887B2 (en) 2009-04-08
KR20050105249A (en) 2005-11-03
CN1742113B (en) 2010-05-05
CN1742113A (en) 2006-03-01
WO2004076715A1 (en) 2004-09-10
US20060160359A1 (en) 2006-07-20
KR100715054B1 (en) 2007-05-07

Similar Documents

Publication Publication Date Title
TWI820036B (en) Epitaxy system integrated with high selectivity oxide removal and high temperature contaminant removal
JP4417362B2 (en) CVD chamber cleaning method
TWI687966B (en) Method of processing substrate and vacuum processing system and apparatus
KR101201964B1 (en) Epitaxial deposition process and apparatus
JP5044931B2 (en) Gas supply apparatus and substrate processing apparatus
JP6637420B2 (en) Method and apparatus for precleaning a substrate surface prior to epitaxial growth
US9528183B2 (en) Cobalt removal for chamber clean or pre-clean process
US5446824A (en) Lamp-heated chuck for uniform wafer processing
KR101456894B1 (en) Apparatus for radial delivery of gas to a chamber and methods of use thereof
JP2004263209A (en) Vacuum treatment apparatus
JP2011236506A (en) Cleaning method
US11164737B2 (en) Integrated epitaxy and preclean system
US9518322B2 (en) Film formation apparatus and film formation method
JP4815724B2 (en) Shower head structure and film forming apparatus
KR101942206B1 (en) Substrate processing apparatus and reaction tube
JPH03150365A (en) Heat treating device
JP2008106366A (en) Film-forming apparatus
JP2006274316A (en) Substrate treatment apparatus
JP3611780B2 (en) Semiconductor manufacturing equipment
JP2003158081A (en) Substrate processor
US20220298636A1 (en) Methods and apparatus for processing a substrate
WO2022250825A1 (en) Integrated epitaxy and preclean system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees