JP2004262951A - Mold release sheet for producing substrate and method for producing substrate using the same - Google Patents

Mold release sheet for producing substrate and method for producing substrate using the same Download PDF

Info

Publication number
JP2004262951A
JP2004262951A JP2003009447A JP2003009447A JP2004262951A JP 2004262951 A JP2004262951 A JP 2004262951A JP 2003009447 A JP2003009447 A JP 2003009447A JP 2003009447 A JP2003009447 A JP 2003009447A JP 2004262951 A JP2004262951 A JP 2004262951A
Authority
JP
Japan
Prior art keywords
prepreg
substrate
release sheet
heating
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003009447A
Other languages
Japanese (ja)
Other versions
JP4465962B2 (en
Inventor
Kunio Kishimoto
邦雄 岸本
Toshiaki Takenaka
敏昭 竹中
Yukihiro Hiraishi
幸弘 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003009447A priority Critical patent/JP4465962B2/en
Priority to TW093100888A priority patent/TWI303959B/en
Priority to US10/509,754 priority patent/US20050144780A1/en
Priority to CN200480000092.8A priority patent/CN1698403B/en
Priority to CN201010136605A priority patent/CN101863127A/en
Priority to EP04703242A priority patent/EP1499169A4/en
Priority to PCT/JP2004/000353 priority patent/WO2004066698A1/en
Publication of JP2004262951A publication Critical patent/JP2004262951A/en
Priority to US12/471,850 priority patent/US8230891B2/en
Application granted granted Critical
Publication of JP4465962B2 publication Critical patent/JP4465962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold release sheet for producing a substrate used in a method for producing the substrate having high reliability and excellent productivity. <P>SOLUTION: Optional parts of a prepreg 1 and a copper foil 3a are hot-pressed through the mold release sheets 5 for producing the substrate with heater punches 4a and 4b to thereby soften a resin contained in the prepreg 1 and carry out adhesion. Only the heater punches 4a and 4b are then opened once. After the temperature of the prepreg 1 becomes a temperature not higher than the softening point of the resin contained in the prepreg, the mold release sheets 5 for producing the substrate are successively released from the one side and a copper foil 3b is further laminated to hot-press the optional parts again with the heater punches 4a and 4b. The whole surface is then hot-pressed with a hot press. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、両面の基板または複数層の回路パターンを接続してなる多層の基板の製造に用いる基板製造用離型シート及びそれを用いた基板の製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、高密度化に伴い、産業用にとどまらず民生用の分野においても多層基板が強く要望されるようになってきた。特に多層基板の高密度化は回路パターンの微細化が進み、より複数層の回路パターンの積層精度がその性能を左右するため、積層精度と同時に生産性の高い積層方法が望まれている。
【0003】
以下従来の多層基板、ここでは4層の基板の製造方法について説明する。
【0004】
まず、多層基板のベースとなる両面(2層)基板の製造方法を説明する。
【0005】
図5(a)〜(f)は従来の両面基板の製造方法の工程断面図である。
【0006】
図5(a)において、51は400mm角、厚さ150μmの不織布の芳香族ポリアミド繊維に熱硬化性エポキシ樹脂を含浸させた複合材からなるアラミド−エポキシシート(以下プリプレグと称する)、52はレーザーなどによって加工した貫通穴に印刷などの手段を用いて導電性ペーストを充填したビアである。
【0007】
図5(b)において、53aは銅箔、54a,54bは先端がφ10mmのヒーターポンチ、55はフッ素樹脂などを材料とした離型シート、56は位置決めステージである。
【0008】
位置決めステージ56上に静置された銅箔53aの上に、プリプレグ51を位置決め用のビア(図示せず)をCCDなどの認識装置(図示せず)で認識位置決めして積層した後、離型シート55を介して約300℃に加熱したヒーターポンチ54a,54bで任意の位置を圧力0.1Mpaにて3秒間加熱加圧してプリプレグ51の熱硬化性エポキシ樹脂を溶融させて銅箔53aに接着固定する。
【0009】
次に図5(c)に示すように、ヒーターポンチ54a,54bの加熱加圧を解除し離型シート55も剥離する。
【0010】
次に図5(d)に示すように、プリプレグ51を銅箔53aとで挟み込む様に銅箔53bを積層し、再度約100℃に熱せられたヒーターポンチ54a,54bで任意の部分を圧力0.1Mpaにて3秒間加熱加圧して接着固定することで上下の銅箔53a,53bとプリプレグ51は接着固定される。この時加圧する箇所は先に加圧した箇所とは異なるところにしないと銅箔との圧着は完成しない。
【0011】
次に、熱プレスで全面を温度200℃、圧力5Mpaで約2時間加熱加圧することでプリプレグ51に含まれた熱硬化性エポキシ樹脂を溶融硬化させて上下の銅箔53a,53bをプリプレグ51の全面に接着させ端部の余分な銅箔を切り落とすことで図5(e)に示す2層の銅張積層板57が形成される。この時、プリプレグ51に配置された導電性ペーストを充填したビア52によって上下の銅箔53a,53bの電気的接合が行われている。
【0012】
そして、図5(f)に示すようにエッチングなどにより銅張積層板57の表面銅箔の任意の部分を選択的に除去することで回路パターン58を形成することで基板59が完成する。
【0013】
次に多層化する場合の従来の実施例を図6(a)〜(f)を用いて説明する。
【0014】
図6は、従来の実施例である多層基板の製造方法を示す工程断面図であり、4層基板を例として示している。
【0015】
図6(a)において、図5の(a)〜(b)と同じ工程を経て位置決めステージ56上に銅箔53aとプリプレグ51aを載置する。
【0016】
その上に既述の基板59を内層用コア基板として積層する。
【0017】
プリプレグ51a上への基板59の積層にあたっては、基板59に形成された位置決め用パターン(図示せず)と、プリプレグ51aに形成した位置決め用ビア(図示せず)をCCDなどの認識装置(図示せず)などを用いて位置決めして積層を行う。
【0018】
その後、任意の部分を約300℃に加熱されたヒーターポンチ54a,54bで離型シート55を介して3秒間加熱加圧することで銅箔53a、プリプレグ51a、基板59を接着固定する。
【0019】
次に、図6(b)に示すように、プリプレグ51bの位置決め用ビア(図示せず)をCCDなどの認識装置を用いて認識し、既に位置決めステージ上に位置決め固定されている基板59の位置決め用パターンと位置決めを行い載置・積層する。
【0020】
そして任意の部分を約300℃に加熱したヒーターポンチ54a,54bで離型シート55を介して3秒間加熱加圧することで基板59とプリプレグ51bが接着固定される。
【0021】
次に図6(c)に示すように、プリプレグ51bの上から銅箔53bを積層し任意の位置を約300℃に加熱したヒーターポンチ54a,54bで3秒間加熱加圧することで下の銅箔53a、下のプリプレグ51a、基板59、上のプリプレグ51b、上の銅箔53bの接着固定を行う。
【0022】
その後に、熱プレスで温度200℃、圧力5Mpaで約2時間で全面を加熱加圧して上下プリプレグの熱硬化性エポキシ樹脂を溶融させて上下銅箔、上下プリプレグ、2層基板を熱硬化性エポキシ樹脂で接着固定させることで図6(d)に示すような4層銅張り板60ができあがる。
【0023】
さらに、図6(e)に示すように、4層銅張り板60の表面銅箔をエッチングなどで選択的に除去することで回路パターン61を形成し4層の多層基板62が完成する。
【0024】
さらに多層化する場合には4層基板をコア基板として上記工程を繰り返せばよい。
【0025】
なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
【0026】
【特許文献1】
特開平7−283534号公報
【0027】
【発明が解決しようとする課題】
上記の従来の技術における課題について以下説明する。
【0028】
図7は、従来の技術における課題を示す図である。
【0029】
離型シート55を介することでヒーターポンチ54を汚さずにプリプレグ51の任意の位置を加熱加圧することができプリプレグ51に含まれる樹脂を完全硬化させてプリプレグ51と銅箔等とを接着させている。
【0030】
このときプリプレグ51の加熱加圧された部分はまだ高温状態であるためプリプレグ51に含まれる熱硬化性エポキシ樹脂62は溶融状態であるため離型シート55と融着しているので剥離時に離型シート55に取られる。
【0031】
さらに高温で加熱加圧された部分63は樹脂が溶融流出して少なくなっているので凹状にへこみプリプレグ51の芯材が露出する。
【0032】
つまり、この場合ヒーターポンチ54で加熱加圧された部分63は高熱で樹脂が溶融し加圧されたことで樹脂が押し出され樹脂がほとんどなくなっている。
【0033】
また押し出された樹脂は離型シート55に付着した状態で樹脂62が除去されるためヒーターポンチ54で加熱加圧された部分63は樹脂不足になりかつ残りの樹脂も完全に硬化しているため、この後の熱プレス工程で周囲からの樹脂流れもなく基板になってもヒーターポンチで加熱加圧された部分63はポーラスな状態になりエッチング液などが浸入しやすい状態にあった。
【0034】
すなわち従来の製造方法においては、プリプレグを銅箔やコア基板に積層し接着固定する場合に高温でプリプレグを加熱加圧していたため加圧された部分の樹脂は流出し完全硬化するためプリプレグの芯材が露出しポーラスな状態になる。
【0035】
その部分に回路パターンの形成工程でエッチング液が入り込み、エッチング液の残渣が次工程に持ち出され工程汚染の要因になるという問題点を有していた。
【0036】
本発明は上記従来の問題を解決するもので、積層時にプリプレグ樹脂を完全硬化させることなく精度が高く、生産性に優れた多層基板を実現するための多層基板の製造方法を提供するものである。
【0037】
【課題を解決するための手段】
上記課題を解決するために、少なくともプリプレグを被積層物として用いる積層工程において、前記プリプレグの任意の部位を加熱加圧手段にて加熱加圧する際に、前記プリプレグと前記加熱加圧手段の間に介在させて用いるものであって、耐熱性と離型性を兼ね備えていることを特徴とする基板製造用離型シートを提供することである。
【0038】
また前記積層工程において、前記プリプレグの任意の部位を前記の基板製造用離型シートを介して加熱加圧手段にて加熱加圧する工程、前記加熱加圧手段の加熱加圧を解除する工程、前記プリプレグを冷却した後前記基板製造用離型シートを剥離する工程を備えた基板の製造方法を用いて、両面または多層の基板を提供するものである。
【0039】
【発明の実施の形態】
本発明は、加熱したヒーターポンチで基板製造用離型シートを介して前記プリプレグの任意の部位を加熱加圧することで前記プリプレグに含浸されたBステージ状態の樹脂を軟化もしくは溶融させて接着剤として利用し構成材料どうしを固定し、さらに加熱加圧が完了し前記ヒーターポンチが加熱加圧を解除しかつ、前記プリプレグの温度が冷えてから前記プリプレグより前記基板製造用離型シートを剥離する構成を有しており、これにより両面の基板あるいは多層基板を高精度に積層できるという効果を有する。
【0040】
また本発明は、特にヒーターポンチの温度をプリプレグに含浸されたBステージ樹脂の軟化点以上でかつBステージ状態を維持できる温度であり、これにより接着固定後もプリプレグに含浸された樹脂がBステージ状態を保つことができるという効果を有する。
【0041】
また本発明は、特にヒーターポンチとプリプレグ間に介在させる基板製造用離型シートが耐熱性と離型性を兼ね備える構成を有しており、これによりヒーターポンチの熱によって溶けることなくさらにプリプレグに接着しないという効果を有する。
【0042】
また本発明は、耐熱性と離型性を兼ね備えている基板製造用離型シートをフッ素樹脂とする構成を有しており、これにより耐熱性と離型性を兼ね備え、かつヒーターポンチの熱によって溶けることなくさらにプリプレグに接着しないという効果を有する。
【0043】
また本発明は、特に耐熱性と離型性を兼ね備えている基板製造用離型シートが離型処理を施したポリフェニレンサルファイドからなる構成を有しており、これにより安価に耐熱性と離型性を備え、かつヒーターポンチの熱によって溶けることなくさらにプリプレグに接着しないという効果を有する。
【0044】
また本発明は、特に耐熱性と離型性を兼ね備えている基板製造用離型シートが離型処理を施したポリエチレン樹脂からなる構成を有しており、これにより安価に耐熱性と離型性を備え、かつヒーターポンチの熱によって溶けることなくさらにプリプレグに接着しないという効果を有する。
【0045】
また本発明は、特に離型処理が基板製造用離型シートにシリコンコーティングする構成を有しており安価に離型性を付加し、かつヒーターポンチの熱によって溶けることなくさらにプリプレグに接着しないという効果を有する。
【0046】
また本発明は、特に離型処理が基板製造用離型シートに熱硬化性樹脂をコーティングし完全硬化する構成を有しており、これにより安価で被接着物にコーティング材を転写する可能性を抑制でき、かつヒーターポンチの熱によって溶けることなくさらにプリプレグに接着しないという効果を有する。
【0047】
また本発明は、特に請求項1記載のプリプレグから基板製造用離型シートを剥離する方法を離型シートの片側より残る片側に向かって順次剥離する構成を有しており、これによりスムーズにプリプレグより基板製造用離型シートを剥離できるという効果を有する。
【0048】
また本発明は、多層基板の製造方法とする構成を有しており、これにより高品質な多層基板を得ることができる。
【0049】
また本発明は、特にプリプレグおよび、もしくは少なくとも2層以上の回路パターンを有する多層基板が織布あるいは不織布と熱硬化性樹脂との複合材である構成を有しており、これにより完成した基板は高強度を得ることができる。
【0050】
また本発明は、特に任意の部分を加熱加圧する加熱手段を常時加熱ヒーターとする構成を有しており、これにより安価な加熱手段を手に入れることができるという効果を有する。
【0051】
また本発明は、特に任意の一部を部分的に加熱加圧する加熱手段にパルスヒーターあるいは超音波である構成を有しており、これにより加熱後の冷却が速やかに行えるという効果を有する。
【0052】
以下本発明の実施の形態における多層基板の製造方法について説明する。
【0053】
(実施の形態1)
まず、多層基板のベースとなる2層基板の製造方法について説明を行う。
【0054】
図1(a)〜(g)は、本発明の第1の実施の形態である多層基板の内層用コア基板となる両面の(2層)基板の製造方法を示す工程断面図である。
【0055】
図1(a)において、1は400mm角、厚さ150μmの不織布の芳香族ポリアミド(アラミド)繊維に熱硬化性エポキシ樹脂を含浸させた複合材からなるアラミド−エポキシシート(以下プリプレグと称する)であり、2はレーザーなどによって加工した貫通穴に印刷などの手段を用いて導電性ペーストを充填したビアである。
【0056】
図1(b)において、3aは銅箔、4a,4bは先端がφ10mmの加熱手段としてのヒーターポンチ、5は本発明の基板製造用離型シートである。
【0057】
基板製造用離型シート5は、厚さ75μmのポリフェニレンサルファイドにシリコンを塗布して離型性を高めており、圧着時には離型処理側がプリプレグ1と接触するようにしてある。
【0058】
6は位置決めステージであり、位置決めステージ6上に静置された銅箔3aの上に、プリプレグ1を位置決め用のビア(図示せず)をCCDなどの認識装置(図示せず)で認識位置決めして銅箔3a上に積層した後、基板製造用離型シート5を介して約100℃に加熱したヒーターポンチ4a,4bで任意の位置を圧力0.1Mpaにて3秒間加熱加圧してプリプレグ1の熱硬化性エポキシ樹脂を軟化もしくは溶融させて銅箔3aに接着固定する。
【0059】
次に図1(c)に示すように、一旦ヒーターポンチ4a,4bの加熱加圧の解除だけを行い、基板製造用離型シート5はプリプレグ1上に静置した状態にしておく。
【0060】
このときプリプレグ1の軟化点より僅かに高い程度の温度で加熱加圧されていたため、プリプレグ1に含浸された熱硬化性エポキシ樹脂は加圧されても押し出されず流出や硬化することなくBステージ状態を保持している。
【0061】
次に図1(d)に示すように、プリプレグ1の加熱加圧された部分の温度が下がってから基板製造用離型シート5の片側より残る片側に向かって順次、徐々に剥離することで、基板製造用離型シート5はプリプレグ1から軽く剥がすことができる(プリプレグ1に含浸された熱硬化性エポキシ樹脂の軟化点以下になるとさらに剥がし易くなる)。
【0062】
基板製造用離型シートの材質としてはポリエチレン樹脂表面にエポキシ樹脂を塗布し硬化させて耐熱性と離型性を向上させたものや、フッ素樹脂などを用いても同様の効果が得られる。
【0063】
次に図1(e)に示すように、プリプレグ1を銅箔3aとで挟み込む様に銅箔3bを積層し再度約100℃に熱せられたヒーターポンチ4a,4bで任意の部分を圧力0.1Mpaにて3秒間加熱加圧して接着固定することで上下銅箔3a,3bとプリプレグ1は接着固定される。
【0064】
次に、熱プレスで全面を温度200℃、圧力5Mpaで約2時間加熱加圧することでプリプレグ1に含まれた熱硬化性エポキシ樹脂を溶融硬化させて上下の銅箔3a,3bをプリプレグ1の全面に接着させ端部の余分な銅箔を切り落とすことで図1(f)に示す2層銅張積層板7が形成される。この工程により、プリプレグ1に配置された導電性ペーストを充填したビア2によって上下銅箔3a,3bの電気的接合が行われている。
【0065】
そして、図1(g)に示すようにエッチングなどにより2層の銅張積層板7の銅箔を選択的に除去することで回路パターン8を形成することで2層の基板9が完成する。
【0066】
この時、ヒーターポンチ4a,4bによって加熱加圧されていた部分はBステージ状態であるにもかかわらず、プレス時の流動による基板の芯材が露出状態とならず、エッチング液の染み込みもないので次工程へのエッチング液残渣の持ち出しを抑制することができる。
【0067】
図2(a)〜(f)は、本発明の第1の実施の形態である多層基板の製造方法を示す工程断面図であり、4層の基板を例として示している。
【0068】
図2(a)において、図1の(a)〜(d)と同じ工程を経て位置決めステージ6上に銅箔3aとプリプレグ1aを載置する。
【0069】
その上に前述の2層基板9を内層用コア基板として積層する。
【0070】
プリプレグ1a上への2層基板9の積層にあたっては、2層基板9に形成された位置決め用パターン(図示せず)と、プリプレグ1aに形成した位置決め用ビア(図示せず)をCCDなどの認識装置(図示せず)などを用いて位置決めをして積層を行う。
【0071】
その後、任意の部分を約100℃に加熱されたヒーターポンチ4a,4bで基板製造用離型シート5を介して3秒間加熱加圧することで銅箔3a、プリプレグ1a、2層基板9を接着固定する。
【0072】
この場合の基板製造用離型シート5の使用目的はヒーターポンチ4a,4bで直接内層基板を加圧しない様に内層基板の汚染防止を目的としており、基板製造用離型シート5と2層基板9は溶着することはないので加熱加圧完了後は速やかに基板製造用離型シート5を剥離しても問題ない。
【0073】
次に、図2(b)に示すように、位置決めステージ6上に位置決め固定されている2層基板9の位置決め用パターンと、プリプレグ1bの位置決め用ビア(図示せず)をCCDなどの認識装置を用いて認識して位置決めを行い積層する。
【0074】
そして、任意の部分を約100℃に加熱したヒーターポンチ4a,4bで基板製造用離型シートを介して3秒間加熱加圧することで2層基板9とプリプレグ1bが接着固定される。
【0075】
次に、図2(c)に示すように、ヒーターポンチ4a,4bの加熱加圧完了後、プリプレグ1bの加熱された部分が冷えてから基板製造用離型シートを片側より残る片側に向かって順次、徐々に剥離を行うことで積層した基板のずれが抑制できる(プリプレグ1bに含浸された熱硬化性エポキシ樹脂の軟化点以下になるとさらに剥がし易くなりずれも抑制できる)。
【0076】
次に図2(d)に示すように、プリプレグ1bの上から銅箔3bを積層し任意の位置を約100℃に加熱したヒーターポンチ4a,4bで3秒間加熱加圧することで、その下に位置する銅箔3a、プリプレグ1a、2層基板9、プリプレグ1b、及び銅箔3bの接着固定を行う。
【0077】
その後に、熱プレスで温度200℃、圧力5Mpaで約2時間で全面を加熱加圧して上下プリプレグ1a,1bの熱硬化性エポキシ樹脂を溶融させての銅箔3a,3b、プリプレグ1a,1b、及び2層基板9を熱硬化性エポキシ樹脂で接着固定させることで図2(e)に示すような4層の銅張積層板10を形成する。
【0078】
さらに、図2(f)に示すように、4層の銅張積層板10の表面銅箔をエッチングなどで選択的に除去することで回路パターン11を形成し4層の多層基板12が完成する。
【0079】
完成した多層基板のヒーターポンチ4a,4bで加熱加圧された部分は、熱プレス前にBステージ状態を保てていたため熱プレスによって樹脂流動が発生し基板表面は平坦性を保ち基板芯材であるアラミドが表面に露出しておらず良好な状態になっている。
【0080】
4層以上の多層基板を得ようとすれば上記の製造方法で製造した多層基板を2層基板9の代わりに内層用のコア基板に用い、図2で説明した工程を同様に繰返せばよい。
【0081】
なお本実施の形態においては、位置決めステージ上にまず銅箔を載置し、プリプレグ、コア基板、プリプレグ、銅箔と順次積層する工程について述べたが、コア基板を中心にその両側にプリプレグを配置した状態で上下同時に接着固定を行う方法や、最外層がプリプレグになるように複数枚のコア基板とプリプレグを交互に重ね合わせる積層方法においても応用することができる。
【0082】
すなわち、本発明の製造方法であるプリプレグとヒーターポンチの間に基板製造用離型シートを介在させて固着し、基板製造用離型シートを剥離した後に、銅箔を張り合わせ熱プレスで加熱し一括にて多層基板を得る場合も同様の効果が得られている。
【0083】
また、今回は芯材をアラミド不織布にて説明を行ったが芯材がガラスエポキシの織布でも同様の効果が得られている。
【0084】
従来の積層工程においては、熱プレス前の銅箔とプリプレグと多層基板との位置決め・固定の方法は、プリプレグの樹脂を高温で完全硬化させて固着させていた。
【0085】
このとき加熱加圧部の樹脂が流動・流出してプリプレグの芯材が露出しないようにするため、ヒーターポンチの温度を比較的低温(軟化点以上)として接着固定し、プリプレグ中の樹脂がBステージ状態を保ちつつ、かつ一定の接着(固着)強度を得る必要があった。
【0086】
しかしながら従来の製造方法においては、ヒーターポンチの温度を低温に設定しても圧着直後は、プリプレグ中の樹脂は溶融状態になっていた。
【0087】
したがって従来の離型シートはプリプレグと溶着しており、離型シートを剥離する際に、基板製造用離型シートに樹脂が付着してプリプレグ中の樹脂が取られるため、プリプレグは樹脂不足になる恐れがあった。
【0088】
また2次的な不具合としては、離型シートと密着したプリプレグが引っ張られ、これにより積層した材料どうし位置がずれる可能性もあった。
【0089】
本発明は以上の従来の製造方法における課題に着目し、基板製造用離型シートの剥離性と剥離の条件を実験の結果見出した。
【0090】
これにより、ヒーターポンチを高温に設定することはないので、プリプレグ中の樹脂が流動・流出せず、さらに軟化することもないので、従来の離型シートの剥離の際に離型シートへ樹脂が取られるという不具合が解消した。
【0091】
また、離型シートにプリプレグが引っ張られることも無くなったので積層位置がずれることも無くなり接着強度を確保することができた。
【0092】
本発明の製造方法と従来の製造方法で製造された基板の表面の凹凸状態を(表1)に示し、比較しながら説明する。
【0093】
【表1】

Figure 2004262951
【0094】
まず本発明および従来の製造方法ともに、加熱加圧前はプリプレグの芯材形状が表面に顕れ、約Ra=2.0μm程度の表面粗さになっている。
【0095】
この状態のものを加熱加圧した場合、従来の製造方法においては、ヒーターポンチで押し出された樹脂がヒーターポンチの周囲に樹脂溜まりを形成し、加熱加圧された部分はプリプレグの芯材が露出して表面粗さRa=8.1μmになっている。
【0096】
これに対し本発明の製造方法では、表面粗さRa=4.2μmと大きくなっているが樹脂の状態はまだBステージを保っている。
【0097】
以上の状態のプリプレグを熱プレスで加熱加圧すると、従来の製造方法では樹脂が既に硬化しかけているので十分に樹脂が流れず先に形成された凹凸がプレス後にも影響を及ぼしており、表面粗さRa=2.2μmとはっきりプリプレグの芯材が露出していることが分かる。
【0098】
一方本発明の製造方法では、加熱加圧時には若干面が荒れているように見えていたが樹脂がBステージ状態でプリプレグ表面に残っていたためプレス後には表面粗さRa=0.9μmと平坦にすることができる。
【0099】
この結果、エッチング液の次工程への持ち出しも抑制でき、さらに基板として使用できる範囲が従来より広がるので材料の使用効率も向上させることができる。
【0100】
そして、従来での加熱温度300℃と異なり、比較的低温で行えるので、ヒーターポンチの使用電力の節電、およびヒーターポンチの寿命の向上を図ることができ、基板の品質、生産性が向上した。
【0101】
(実施の形態2)
図3は、本発明の基板を製造するために用いる製造装置を示す斜視図である。
【0102】
4a,4bは加熱手段としてのヒーターポンチ、6は位置決めステージでありヒーターポンチ4aが下から基板の下面を押えられるように任意の位置に加圧用穴24が配置されている。
【0103】
22は位置決めステージ6の一辺の任意の位置に配置されたテープ状の基板製造用離型シート5をプラスチックのコアなどに巻き付けたものが取り付けられる離型シート5の供給リールであり、供給リール22から巻き出された基板製造用離型シート5はガイドロール25aを通過して位置決めステージ6上の任意の位置に配置された加圧用穴24の上をヒーターポンチ4a,4bを上下に分けるように通過させ対面に配置したガイドロール25bを通過後、離型シート5の巻き取りリール23で基板製造用離型シート5を巻き取る構造となっている。
【0104】
基板製造用離型シート5の配置を図3のようにすれば一度に4箇所の接着固定が可能となる。
【0105】
また基板製造用離型シート5が通過している任意の部分に加圧用穴を増設することで下層用プリプレグと上層用プリプレグの加圧を分けることができる。
【0106】
これによりプリプレグの同じ場所を複数回加圧することが避けることができる。この場合ヒーターポンチを増設するか、もしくはスライドベアリングなどで位置移動させて使用することも可能である。
【0107】
以上述べたように、本発明で使用する製造装置は、効率よく基板を製造するための装置であり、これにより生産性に優れ安定して基板を提供することができるものである。
【0108】
(実施の形態3)
次に本発明である基板の製造に用いるために製造装置の詳細な動きを図4を用いて説明する。
【0109】
図4は、本発明である多層基板の製造装置の動作を示した模式図である。
【0110】
本実施の形態では、銅箔上にプリプレグを積層してからの圧着動作、及び基板製造用離型シートの剥離動作について説明する。
【0111】
図4(a)は、位置決めステージ6の上に銅箔3aを載せさらにその上にプリプレグ1を位置決めして静置した状態となっている。
【0112】
その上に基板製造用離型シート5があり、基板製造用離型シート5の供給リール22から巻き出されガイドロール25aを通過してさらにガイドロール25bを通過して離型シートの巻き取りリール23に巻き取られるようになっている。
【0113】
基板製造用離型シート5の供給リール22及び離型シート5の巻き取りリール23は、テンション調整機能が備わっている。
【0114】
図4(b)では、ヒーターポンチによる加熱加圧の手順を示している。ヒーターポンチ4a,4bが加圧するときに、ほぼ同時に供給リール22、ガイドロール25a,25b、基板製造用離型シート5、巻き取りリール23(以上をまとめて離型シートユニットと称する。)が降下し、さらに供給リール22、巻き取りリール23間にかかっていたテンションが解除されそれぞれ基板製造用離型シート5がガイドロール25a,25bから外れ弛んだ状態で銅箔3とプリプレグ1の圧着を行う。
【0115】
次に図4(c)に示すように、ヒーターポンチ4a,4bが加圧を解除した時に同時に離型シートユニットも上昇する。このとき基板製造用離型シート5は弛ませていたのでプリプレグ1の上に接着された状態になっている。
【0116】
したがって図4(b)において、基板製造用離型シート5を弛ませる量は、離型シートユニットが上昇してもまだテンションがかからない状態になるようにしておく必要がある。
【0117】
その後プリプレグが軟化点まで冷えてから、供給リール22はそのままの状態とし、巻き取りリール23だけを巻き取り動作を行うと、基板製造用離型シート5は片側からのみ巻き上げられ、同時に片側から順次・徐々に剥離され、スムーズに剥離をすることができる。
【0118】
さらに巻き上げることで図4(d)に示すように巻出し側に近い圧着部分も順次剥離していくことが可能である。
【0119】
図4(e)は銅箔とプリプレグの圧着と基板製造用離型シートの剥離が完了した状態である。
【0120】
【発明の効果】
以上のように本発明は、プリプレグ表面をヒーターポンチで基板製造用離型シートを介して加熱加圧して銅箔やコア基板と接着する場合に、加熱温度をプリプレグに含まれる樹脂の軟化点以上でかつ樹脂のBステージ状態を保つ温度にすることができる。
【0121】
さらに基板製造用離型シートをプリプレグ表面から剥がす際には基板製造用離型シートの一方から順次徐々に剥離することで離型シートへプリプレグ中の樹脂が取られていくことを防止できる。
【0122】
これにより基板として成型されたときに圧着した部分のプリプレグ芯材が露出することがなくなるので回路形成の際におけるエッチング液の染み込みも防止できるため、基板の品質向上を図ることができ、積層工程の安定化も実現でき、さらに生産性に優れた基板の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における基板の製造方法を示す断面図
【図2】本発明の実施の形態1における多層基板の製造方法を示す断面図
【図3】本発明の実施の形態2における多層基板の製造方法を示す斜視図
【図4】本発明の実施の形態3における多層基板の製造装置の動作を示す図
【図5】従来の基板の製造方法を示す断面図
【図6】従来の多層基板の製造方法を示す断面図
【図7】従来の基板の製造方法における課題を示す図
【符号の説明】
1,1a,1b プリプレグ
2 ビア
3a,3b 銅箔
4a,4b ヒーターポンチ
5 基板製造用離型シート
6 位置決めステージ
7 2層銅張積層板
8 回路パターン
9 2層基板
10 4層銅張積層板
11 回路パターン
12 4層基板
22 供給リール
23 巻き取りリール
24 加圧用穴
25a,25b ガイドロール[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a release sheet for manufacturing a substrate used for manufacturing a multilayer substrate formed by connecting substrates on both sides or a plurality of circuit patterns, and a method for manufacturing a substrate using the same.
[0002]
[Prior art]
In recent years, with the miniaturization and high density of electronic devices, multilayer substrates have been strongly demanded not only for industrial use but also for consumer use. In particular, as the density of the multilayer substrate increases, the fineness of the circuit pattern advances, and the lamination accuracy of the circuit pattern of a plurality of layers affects its performance. Therefore, a lamination method having high productivity at the same time as the lamination accuracy is desired.
[0003]
Hereinafter, a method for manufacturing a conventional multilayer substrate, here, a four-layer substrate will be described.
[0004]
First, a method for manufacturing a double-sided (two-layer) substrate serving as a base of a multilayer substrate will be described.
[0005]
5A to 5F are process cross-sectional views of a conventional method for manufacturing a double-sided substrate.
[0006]
In FIG. 5A, reference numeral 51 denotes an aramid-epoxy sheet (hereinafter, referred to as a prepreg) made of a composite material obtained by impregnating a non-woven aromatic polyamide fiber of 400 mm square and 150 μm in thickness with a thermosetting epoxy resin, and 52 denotes a laser. This is a via in which a conductive paste is filled in a through hole processed by using a method such as printing.
[0007]
In FIG. 5B, 53a is a copper foil, 54a and 54b are heater punches having a tip of φ10 mm, 55 is a release sheet made of a material such as fluororesin, and 56 is a positioning stage.
[0008]
After the prepreg 51 is recognized and positioned on a copper foil 53a placed on the positioning stage 56 with a recognition device (not shown) such as a CCD for positioning, the mold release is performed. An arbitrary position is heated and pressed at a pressure of 0.1 Mpa for 3 seconds by the heater punches 54a and 54b heated to about 300 ° C. via the sheet 55 to melt the thermosetting epoxy resin of the prepreg 51 and adhere to the copper foil 53a. Fix it.
[0009]
Next, as shown in FIG. 5C, the heating and pressing of the heater punches 54a and 54b are released, and the release sheet 55 is also peeled off.
[0010]
Next, as shown in FIG. 5 (d), the copper foil 53b is laminated so that the prepreg 51 is sandwiched between the copper foil 53a, and the arbitrary portions are pressed again by the heater punches 54a and 54b heated to about 100 ° C. The upper and lower copper foils 53a, 53b and the prepreg 51 are bonded and fixed by heating and pressing at 1 Mpa for 3 seconds to bond and fix. At this time, the pressurized portion must be different from the previously pressurized portion to complete the pressure bonding with the copper foil.
[0011]
Next, the entire surface is heated and pressurized at a temperature of 200 ° C. and a pressure of 5 Mpa for about 2 hours by a hot press to melt and cure the thermosetting epoxy resin contained in the prepreg 51, thereby forming the upper and lower copper foils 53 a and 53 b into the prepreg 51. The two-layer copper-clad laminate 57 shown in FIG. 5E is formed by bonding the entire surface and cutting off excess copper foil at the ends. At this time, the upper and lower copper foils 53a and 53b are electrically connected by the vias 52 filled with the conductive paste disposed on the prepreg 51.
[0012]
Then, as shown in FIG. 5F, a circuit pattern 58 is formed by selectively removing an arbitrary portion of the surface copper foil of the copper-clad laminate 57 by etching or the like, thereby completing the substrate 59.
[0013]
Next, a conventional example in the case of multi-layering will be described with reference to FIGS.
[0014]
FIG. 6 is a process cross-sectional view showing a method for manufacturing a multilayer substrate according to a conventional example, and shows a four-layer substrate as an example.
[0015]
6A, the copper foil 53a and the prepreg 51a are placed on the positioning stage 56 through the same steps as in FIGS. 5A and 5B.
[0016]
The substrate 59 described above is laminated thereon as an inner core substrate.
[0017]
In laminating the substrate 59 on the prepreg 51a, a positioning pattern (not shown) formed on the substrate 59 and a positioning via (not shown) formed on the prepreg 51a are recognized by a recognition device such as a CCD (not shown). Lamination) is performed by positioning using a method such as
[0018]
Thereafter, the copper foil 53a, the prepreg 51a, and the substrate 59 are bonded and fixed by heating and pressing an arbitrary portion through the release sheet 55 using the heater punches 54a and 54b heated to about 300 ° C. for 3 seconds.
[0019]
Next, as shown in FIG. 6B, the positioning via (not shown) of the prepreg 51b is recognized using a recognition device such as a CCD, and the positioning of the substrate 59 already positioned and fixed on the positioning stage is performed. Place and stack with the pattern for positioning.
[0020]
Then, the substrate 59 and the prepreg 51b are bonded and fixed by heating and pressing for 3 seconds via the release sheet 55 with the heater punches 54a and 54b, which are heated to an arbitrary temperature of about 300 ° C.
[0021]
Next, as shown in FIG. 6 (c), a copper foil 53b is laminated from above the prepreg 51b and an arbitrary position is heated and pressed for 3 seconds by heater punches 54a and 54b heated to about 300 ° C., thereby lowering the copper foil 53b. 53a, the lower prepreg 51a, the substrate 59, the upper prepreg 51b, and the upper copper foil 53b are bonded and fixed.
[0022]
Thereafter, the entire surface is heated and pressed at a temperature of 200 ° C. and a pressure of 5 MPa for about 2 hours by a hot press to melt the thermosetting epoxy resin of the upper and lower prepregs, and the upper and lower copper foils, the upper and lower prepregs, and the two-layer substrate are thermoset epoxy. A four-layer copper-clad board 60 as shown in FIG. 6D is completed by bonding with a resin.
[0023]
Further, as shown in FIG. 6E, a circuit pattern 61 is formed by selectively removing the surface copper foil of the four-layer copper-clad board 60 by etching or the like, thereby completing a four-layer multilayer board 62.
[0024]
In the case of further multilayering, the above steps may be repeated using a four-layer substrate as a core substrate.
[0025]
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
[0026]
[Patent Document 1]
JP-A-7-283534
[0027]
[Problems to be solved by the invention]
The problems in the above-described conventional technology will be described below.
[0028]
FIG. 7 is a diagram illustrating a problem in the related art.
[0029]
By passing through the release sheet 55, any position of the prepreg 51 can be heated and pressurized without soiling the heater punch 54, the resin contained in the prepreg 51 is completely cured, and the prepreg 51 and the copper foil or the like are bonded. I have.
[0030]
At this time, since the heated and pressurized portion of the prepreg 51 is still in a high temperature state, the thermosetting epoxy resin 62 contained in the prepreg 51 is in a molten state and thus is fused with the release sheet 55, so that the mold is released at the time of peeling. Taken on sheet 55.
[0031]
Further, since the resin 63 is heated and pressed at a high temperature and the resin melts and flows out and is reduced, the core material of the prepreg 51 is dented and exposed.
[0032]
In other words, in this case, the resin 63 is heated and pressed by the heater punch 54, and the resin is melted and pressed by the high heat, so that the resin is extruded and the resin hardly runs out.
[0033]
Further, since the extruded resin is removed from the resin 62 while adhering to the release sheet 55, the portion 63 heated and pressed by the heater punch 54 becomes insufficient in resin and the remaining resin is completely cured. Even in the subsequent hot pressing step, even when the substrate became free from resin flow from the surroundings, the portion 63 heated and pressed by the heater punch was in a porous state, and was in a state where the etching liquid and the like easily entered.
[0034]
That is, in the conventional manufacturing method, when the prepreg is laminated and adhered and fixed to a copper foil or a core substrate, the prepreg is heated and pressurized at a high temperature. Is exposed and becomes porous.
[0035]
There has been a problem that an etching solution enters into that portion in a circuit pattern forming process, and a residue of the etching solution is taken out to the next process and causes process contamination.
[0036]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and provides a method of manufacturing a multilayer substrate for realizing a multilayer substrate having high accuracy without completely curing a prepreg resin at the time of lamination and having excellent productivity. .
[0037]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in a laminating step using at least a prepreg as an object to be laminated, when heating and pressurizing an arbitrary portion of the prepreg by heating and pressurizing means, between the prepreg and the heating and pressurizing means. An object of the present invention is to provide a release sheet for manufacturing a substrate, wherein the release sheet has both heat resistance and release properties.
[0038]
Further, in the laminating step, a step of heating and pressurizing an arbitrary portion of the prepreg via the substrate manufacturing release sheet by a heating and pressurizing unit, a step of releasing the heating and pressurizing of the heating and pressurizing unit, The present invention provides a double-sided or multi-layer substrate by using a substrate manufacturing method including a step of removing the release sheet for manufacturing a substrate after cooling the prepreg.
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention softens or melts the resin in the B-stage state impregnated in the prepreg by heating and pressing an arbitrary portion of the prepreg through a release sheet for substrate production with a heated heater punch to form an adhesive. A configuration in which the constituent materials are fixed together, and the heating and pressurizing is completed, the heater punch releases the heating and pressurizing, and the temperature of the prepreg is cooled, and then the release sheet for substrate production is separated from the prepreg. This has the effect that a double-sided substrate or a multilayer substrate can be laminated with high accuracy.
[0040]
In addition, the present invention particularly provides a heater punch having a temperature higher than the softening point of the B-stage resin impregnated in the prepreg and capable of maintaining the B-stage state. This has the effect that the state can be maintained.
[0041]
In addition, the present invention particularly has a configuration in which the release sheet for manufacturing a substrate interposed between the heater punch and the prepreg has both heat resistance and release properties, thereby further bonding to the prepreg without melting by the heat of the heater punch. It has the effect of not doing it.
[0042]
In addition, the present invention has a configuration in which a release sheet for substrate manufacture having both heat resistance and mold release properties is made of a fluororesin, thereby having both heat resistance and mold release properties, and using the heat of the heater punch. It has the effect of not adhering to the prepreg without melting.
[0043]
In addition, the present invention particularly has a configuration in which the release sheet for substrate production, which has both heat resistance and release properties, is made of polyphenylene sulfide that has been subjected to release processing, thereby making it possible to obtain heat resistance and release properties at low cost. And the effect of not melting to the prepreg without being melted by the heat of the heater punch.
[0044]
In addition, the present invention particularly has a configuration in which the release sheet for substrate production, which has both heat resistance and release properties, is made of a polyethylene resin subjected to release processing, thereby making it possible to obtain heat resistance and release properties at low cost. And the effect of not melting to the prepreg without being melted by the heat of the heater punch.
[0045]
In addition, the present invention particularly has a constitution in which the release treatment has a configuration in which the release sheet for substrate production is coated with silicon, so that the release property is added at a low cost, and it is not melted by the heat of the heater punch and further does not adhere to the prepreg. Has an effect.
[0046]
In addition, the present invention particularly has a configuration in which the release sheet is coated with a thermosetting resin on the release sheet for substrate manufacturing and is completely cured, thereby reducing the possibility of transferring the coating material to the adherend at low cost. This has the effect of being able to be suppressed and not to be melted by the heat of the heater punch and not to adhere to the prepreg.
[0047]
In addition, the present invention particularly has a structure in which the method for separating a release sheet for manufacturing a substrate from a prepreg according to claim 1 is configured to sequentially separate from one side of the release sheet toward the remaining one side, whereby the prepreg can be smoothly processed. This has the effect that the release sheet for substrate production can be more peeled off.
[0048]
Further, the present invention has a configuration as a method of manufacturing a multilayer substrate, whereby a high-quality multilayer substrate can be obtained.
[0049]
In addition, the present invention particularly has a configuration in which a prepreg and / or a multilayer substrate having a circuit pattern of at least two or more layers is a composite material of a woven fabric or a nonwoven fabric and a thermosetting resin. High strength can be obtained.
[0050]
Further, the present invention particularly has a configuration in which a heating means for heating and pressurizing an arbitrary part is always a heating heater, thereby having an effect that an inexpensive heating means can be obtained.
[0051]
In addition, the present invention particularly has a configuration in which a heating means for partially heating and pressing an arbitrary part is a pulse heater or an ultrasonic wave, and thereby has an effect that cooling after heating can be quickly performed.
[0052]
Hereinafter, a method of manufacturing a multilayer substrate according to an embodiment of the present invention will be described.
[0053]
(Embodiment 1)
First, a method for manufacturing a two-layer substrate serving as a base of a multilayer substrate will be described.
[0054]
FIGS. 1A to 1G are process cross-sectional views illustrating a method for manufacturing a double-sided (two-layer) substrate to be an inner core substrate of a multilayer substrate according to a first embodiment of the present invention.
[0055]
In FIG. 1A, reference numeral 1 denotes an aramid-epoxy sheet (hereinafter, referred to as a prepreg) made of a composite material in which a thermosetting epoxy resin is impregnated into a non-woven aromatic polyamide (aramid) fiber of 400 mm square and 150 μm in thickness. In addition, reference numeral 2 denotes a via in which a conductive paste is filled in a through hole processed by a laser or the like using a method such as printing.
[0056]
In FIG. 1 (b), 3a is a copper foil, 4a and 4b are heater punches having a tip of φ10 mm as heating means, and 5 is a release sheet for manufacturing a substrate of the present invention.
[0057]
The release sheet 5 for substrate production has a 75 μm-thick polyphenylene sulfide coated with silicon to enhance the releasability, and the release treatment side is in contact with the prepreg 1 during pressure bonding.
[0058]
Numeral 6 denotes a positioning stage, on which the prepreg 1 is recognized and positioned on a copper foil 3a settled on the positioning stage 6 by a recognition device (not shown) such as a CCD. After lamination on the copper foil 3a, the prepreg 1 is heated and pressed at an arbitrary position at a pressure of 0.1 Mpa for 3 seconds by the heater punches 4a and 4b heated to about 100 ° C. via the release sheet 5 for substrate production. Is softened or melted and bonded and fixed to the copper foil 3a.
[0059]
Next, as shown in FIG. 1C, only the heating and pressurizing of the heater punches 4a and 4b are once released, and the release sheet 5 for substrate production is left on the prepreg 1.
[0060]
At this time, the thermosetting epoxy resin impregnated in the prepreg 1 was not extruded even if pressurized because it was heated and pressurized at a temperature slightly higher than the softening point of the prepreg 1 and did not flow out or harden. Holding.
[0061]
Next, as shown in FIG. 1 (d), the temperature of the heated and pressurized portion of the prepreg 1 is lowered, and then the prepreg 1 is gradually peeled from one side of the release sheet 5 for substrate production to the remaining one side. In addition, the release sheet 5 for manufacturing a substrate can be lightly peeled off from the prepreg 1 (it becomes easier to peel off when the temperature is below the softening point of the thermosetting epoxy resin impregnated in the prepreg 1).
[0062]
The same effect can be obtained by using a material obtained by applying and curing an epoxy resin on the surface of a polyethylene resin to improve heat resistance and release properties, or using a fluororesin or the like as a material of the release sheet for substrate production.
[0063]
Next, as shown in FIG. 1 (e), the copper foil 3b is laminated so that the prepreg 1 is sandwiched between the copper foil 3a, and an arbitrary part is heated to about 100 ° C. again by applying pressure to the arbitrary parts by the heater punches 4a and 4b. The upper and lower copper foils 3a and 3b and the prepreg 1 are bonded and fixed by heating and pressing at 1 Mpa for 3 seconds to bond and fix.
[0064]
Next, the entire surface is heated and pressurized at a temperature of 200 ° C. and a pressure of 5 Mpa for about 2 hours by a hot press to melt and cure the thermosetting epoxy resin contained in the prepreg 1, thereby forming the upper and lower copper foils 3 a and 3 b into the prepreg 1. The two-layer copper-clad laminate 7 shown in FIG. 1 (f) is formed by bonding the entire surface and cutting off excess copper foil at the ends. By this step, the upper and lower copper foils 3a and 3b are electrically connected by the via 2 filled with the conductive paste disposed on the prepreg 1.
[0065]
Then, as shown in FIG. 1 (g), the circuit pattern 8 is formed by selectively removing the copper foil of the two-layer copper-clad laminate 7 by etching or the like, thereby completing the two-layer substrate 9.
[0066]
At this time, although the portions heated and pressed by the heater punches 4a and 4b are in the B-stage state, the core material of the substrate is not exposed due to the flow during pressing, and the etching liquid does not soak. The removal of the etchant residue to the next step can be suppressed.
[0067]
2A to 2F are process cross-sectional views illustrating a method for manufacturing a multilayer substrate according to the first embodiment of the present invention, and show a four-layer substrate as an example.
[0068]
2A, the copper foil 3a and the prepreg 1a are placed on the positioning stage 6 through the same steps as in FIGS. 1A to 1D.
[0069]
The above-described two-layer substrate 9 is laminated thereon as an inner-layer core substrate.
[0070]
When laminating the two-layer substrate 9 on the prepreg 1a, a positioning pattern (not shown) formed on the two-layer substrate 9 and a positioning via (not shown) formed on the prepreg 1a are recognized by a CCD or the like. Lamination is performed by positioning using an apparatus (not shown) or the like.
[0071]
Thereafter, the copper foil 3a, the prepreg 1a, and the two-layer substrate 9 are bonded and fixed by heating and pressing an arbitrary portion with the heater punches 4a and 4b heated to about 100 ° C. through the release sheet 5 for substrate production for 3 seconds. I do.
[0072]
The purpose of using the release sheet 5 for substrate production in this case is to prevent contamination of the inner substrate so that the inner substrates are not directly pressed by the heater punches 4a and 4b. Since 9 does not fuse, there is no problem even if the release sheet 5 for substrate production is promptly peeled off after the completion of the heating and pressing.
[0073]
Next, as shown in FIG. 2B, a positioning pattern of the two-layer substrate 9 positioned and fixed on the positioning stage 6 and a positioning via (not shown) of the prepreg 1b are recognized by a recognition device such as a CCD. The layers are recognized and positioned by using the above.
[0074]
Then, the two-layer substrate 9 and the prepreg 1b are bonded and fixed by applying heat and pressure for 3 seconds via the release sheet for substrate production with the heater punches 4a and 4b having an arbitrary portion heated to about 100 ° C.
[0075]
Next, as shown in FIG. 2C, after the heating and pressurization of the heater punches 4a and 4b are completed, the heated portion of the prepreg 1b is cooled, and then the release sheet for substrate production is moved from one side toward the remaining one side. By sequentially and gradually peeling, the displacement of the laminated substrates can be suppressed (when the temperature becomes lower than the softening point of the thermosetting epoxy resin impregnated in the prepreg 1b, the peeling becomes easier and the displacement can be suppressed).
[0076]
Next, as shown in FIG. 2 (d), a copper foil 3b is laminated from above the prepreg 1b and an arbitrary position is heated and pressed for 3 seconds with heater punches 4a and 4b heated to about 100 ° C. The copper foil 3a, the prepreg 1a, the two-layer substrate 9, the prepreg 1b, and the copper foil 3b that are located are bonded and fixed.
[0077]
Thereafter, copper foils 3a, 3b, prepregs 1a, 1b obtained by melting the thermosetting epoxy resin of the upper and lower prepregs 1a, 1b by heating and pressing the entire surface at a temperature of 200 ° C. and a pressure of 5 MPa for about 2 hours by a hot press. Then, the two-layer substrate 9 is bonded and fixed with a thermosetting epoxy resin to form a four-layer copper-clad laminate 10 as shown in FIG.
[0078]
Further, as shown in FIG. 2F, the circuit pattern 11 is formed by selectively removing the surface copper foil of the four-layer copper-clad laminate 10 by etching or the like, thereby completing the four-layer multilayer substrate 12. .
[0079]
The portions of the completed multilayer substrate heated and pressed by the heater punches 4a and 4b maintained the B-stage state before the hot pressing, so that the resin flow was generated by the hot pressing, and the substrate surface was kept flat and the substrate core material was used. A certain aramid is in good condition without being exposed on the surface.
[0080]
In order to obtain a multilayer substrate having four or more layers, the multilayer substrate manufactured by the above-described manufacturing method may be used as an inner-layer core substrate instead of the two-layer substrate 9, and the steps described in FIG. .
[0081]
In this embodiment, the step of placing copper foil on the positioning stage first and sequentially laminating the prepreg, the core substrate, the prepreg, and the copper foil has been described, but the prepreg is arranged on both sides of the core substrate as a center. The method can also be applied to a method of simultaneously performing adhesive fixing on the upper and lower sides in a state where the prepreg is formed, and a laminating method of alternately stacking a plurality of core substrates and prepregs so that the outermost layer becomes a prepreg.
[0082]
That is, a release sheet for substrate production is interposed and fixed between the prepreg and the heater punch, which is the production method of the present invention. After the release sheet for substrate production is peeled off, copper foil is laminated and heated by a hot press to collectively. The same effect is obtained when a multi-layer substrate is obtained by the above method.
[0083]
Also, this time, the core material is described as an aramid nonwoven fabric, but the same effect is obtained when the core material is a glass epoxy woven fabric.
[0084]
In the conventional laminating process, a method of positioning and fixing the copper foil, the prepreg, and the multilayer substrate before hot pressing is to completely cure and fix the resin of the prepreg at a high temperature.
[0085]
At this time, in order to prevent the resin in the heating and pressurizing section from flowing and flowing out to expose the core material of the prepreg, the temperature of the heater punch is fixed at a relatively low temperature (above the softening point) and the resin in the prepreg is B It is necessary to obtain a certain adhesive (fixed) strength while maintaining the stage state.
[0086]
However, in the conventional manufacturing method, the resin in the prepreg was in a molten state immediately after the pressing even if the temperature of the heater punch was set to a low temperature.
[0087]
Therefore, the conventional release sheet is welded to the prepreg, and when the release sheet is peeled off, the resin adheres to the release sheet for substrate production and the resin in the prepreg is removed, so the prepreg becomes insufficient in resin. There was fear.
[0088]
As a secondary problem, there is a possibility that the prepreg that is in close contact with the release sheet is pulled, and thereby the positions of the laminated materials are shifted.
[0089]
The present invention pays attention to the problems in the conventional manufacturing method described above, and has found the results of experiments on the releasability of the release sheet for substrate production and the conditions for the release.
[0090]
As a result, since the heater punch is not set at a high temperature, the resin in the prepreg does not flow or flow out and does not soften. The problem of being taken away has been resolved.
[0091]
Further, since the prepreg was not pulled by the release sheet, the lamination position was not shifted, and the adhesive strength was secured.
[0092]
The surface irregularities of the substrate manufactured by the manufacturing method of the present invention and the conventional manufacturing method are shown in (Table 1), and the comparison will be described.
[0093]
[Table 1]
Figure 2004262951
[0094]
First, in both the present invention and the conventional manufacturing method, before heating and pressing, the core material shape of the prepreg appears on the surface, and the surface roughness is about Ra = 2.0 μm.
[0095]
In the conventional manufacturing method, when the material in this state is heated and pressed, the resin extruded by the heater punch forms a resin pool around the heater punch, and the heated and pressed portion exposes the core material of the prepreg. As a result, the surface roughness Ra is 8.1 μm.
[0096]
On the other hand, in the manufacturing method of the present invention, the surface roughness Ra is as large as 4.2 μm, but the state of the resin still maintains the B stage.
[0097]
When the prepreg in the above state is heated and pressed by a hot press, the resin is already hardening in the conventional manufacturing method, so that the resin does not flow sufficiently, and the unevenness formed earlier has an effect even after pressing, and the surface is It can be seen that the core material of the prepreg is clearly exposed with the roughness Ra = 2.2 μm.
[0098]
On the other hand, in the manufacturing method of the present invention, the surface appeared to be slightly roughened during heating and pressing, but the resin remained on the prepreg surface in the B-stage state. can do.
[0099]
As a result, the removal of the etching solution to the next step can be suppressed, and the range of use as a substrate is wider than before, so that the use efficiency of the material can be improved.
[0100]
In addition, since the heating can be performed at a relatively low temperature, unlike the conventional heating temperature of 300 ° C., power consumption of the heater punch can be saved and the life of the heater punch can be improved, and the quality and productivity of the substrate have been improved.
[0101]
(Embodiment 2)
FIG. 3 is a perspective view showing a manufacturing apparatus used for manufacturing the substrate of the present invention.
[0102]
4a and 4b are heater punches as heating means, 6 is a positioning stage, and a pressurizing hole 24 is arranged at an arbitrary position so that the heater punch 4a can press the lower surface of the substrate from below.
[0103]
Reference numeral 22 denotes a supply reel of the release sheet 5 to which a tape-shaped substrate production release sheet 5 arranged at an arbitrary position on one side of the positioning stage 6 is wound around a plastic core or the like. The release sheet 5 for manufacturing a substrate, which has been unwound from the substrate, passes through the guide roll 25a and divides the heater punches 4a and 4b into upper and lower portions on a pressurizing hole 24 arranged at an arbitrary position on the positioning stage 6. After passing through the guide roll 25b disposed on the opposite surface, the take-up reel 23 of the release sheet 5 winds the release sheet 5 for substrate production.
[0104]
By arranging the release sheet 5 for substrate production as shown in FIG. 3, it is possible to bond and fix four places at a time.
[0105]
Further, the pressure of the lower layer prepreg and the pressure of the upper layer prepreg can be separated by additionally providing a pressurizing hole in an arbitrary portion through which the release sheet 5 for manufacturing a substrate passes.
[0106]
This can avoid pressurizing the same place of the prepreg a plurality of times. In this case, it is also possible to add a heater punch or to move the position with a slide bearing or the like for use.
[0107]
As described above, the manufacturing apparatus used in the present invention is an apparatus for efficiently manufacturing a substrate, and is capable of stably providing a substrate with excellent productivity.
[0108]
(Embodiment 3)
Next, a detailed operation of the manufacturing apparatus for use in manufacturing a substrate according to the present invention will be described with reference to FIG.
[0109]
FIG. 4 is a schematic diagram showing the operation of the multilayer substrate manufacturing apparatus according to the present invention.
[0110]
In the present embodiment, a pressure bonding operation after laminating a prepreg on a copper foil and a peeling operation of a release sheet for manufacturing a substrate will be described.
[0111]
FIG. 4A shows a state where the copper foil 3a is placed on the positioning stage 6 and the prepreg 1 is positioned thereon and left standing.
[0112]
The release sheet 5 for substrate production is provided thereon, and is unwound from the supply reel 22 of the release sheet 5 for substrate production, passes through the guide roll 25a, further passes through the guide roll 25b, and is a take-up reel for the release sheet. 23.
[0113]
The supply reel 22 of the release sheet 5 for substrate production and the take-up reel 23 of the release sheet 5 have a tension adjusting function.
[0114]
FIG. 4B shows a procedure of heating and pressurizing by a heater punch. When the heater punches 4a and 4b pressurize, the supply reel 22, the guide rolls 25a and 25b, the release sheet 5 for substrate production, and the take-up reel 23 (these are collectively referred to as a release sheet unit) drop at substantially the same time. Then, the tension applied between the supply reel 22 and the take-up reel 23 is released, and the copper foil 3 and the prepreg 1 are pressure-bonded in a state where the release sheet 5 for manufacturing a substrate comes off the guide rolls 25a and 25b and is loosened. .
[0115]
Next, as shown in FIG. 4C, when the heater punches 4a and 4b release the pressurization, the release sheet unit also rises at the same time. At this time, since the release sheet 5 for manufacturing a substrate has been loosened, the release sheet 5 is adhered onto the prepreg 1.
[0116]
Therefore, in FIG. 4B, it is necessary that the amount of slackening of the release sheet 5 for manufacturing a substrate is such that tension is not yet applied even when the release sheet unit is raised.
[0117]
Thereafter, after the prepreg cools to the softening point, the supply reel 22 is left as it is, and only the take-up reel 23 is wound up, and the release sheet 5 for substrate production is wound up from only one side and simultaneously from one side sequentially.・ Slowly peels off and can be peeled off smoothly.
[0118]
By further winding up, as shown in FIG. 4D, it is possible to sequentially peel off the pressure-bonded portion near the unwinding side.
[0119]
FIG. 4E shows a state in which the pressure bonding of the copper foil and the prepreg and the peeling of the release sheet for substrate production have been completed.
[0120]
【The invention's effect】
As described above, the present invention, when the surface of the prepreg is heated and pressed through a release sheet for substrate production with a heater punch and bonded to a copper foil or a core substrate, the heating temperature is equal to or higher than the softening point of the resin contained in the prepreg. And the temperature at which the B-stage state of the resin is maintained.
[0121]
Further, when the release sheet for substrate production is peeled off from the surface of the prepreg, the resin in the prepreg can be prevented from being taken into the release sheet by gradually peeling off from one of the release sheets for substrate production.
[0122]
As a result, since the prepreg core material in the crimped portion when being molded as a substrate is not exposed, it is possible to prevent the penetration of an etching solution during circuit formation, so that it is possible to improve the quality of the substrate, Stabilization can be realized, and a method for manufacturing a substrate with excellent productivity can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a method for manufacturing a substrate according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating the method for manufacturing the multilayer substrate according to the first embodiment of the present invention.
FIG. 3 is a perspective view illustrating a method for manufacturing a multilayer substrate according to a second embodiment of the present invention.
FIG. 4 is a diagram showing an operation of a multilayer substrate manufacturing apparatus according to a third embodiment of the present invention.
FIG. 5 is a sectional view showing a conventional substrate manufacturing method.
FIG. 6 is a sectional view showing a conventional method for manufacturing a multilayer substrate.
FIG. 7 is a diagram showing a problem in a conventional substrate manufacturing method.
[Explanation of symbols]
1,1a, 1b prepreg
2 Via
3a, 3b Copper foil
4a, 4b heater punch
5 Release sheet for substrate production
6 Positioning stage
7 Two-layer copper-clad laminate
8 Circuit pattern
9 Two-layer board
10 4-layer copper-clad laminate
11 Circuit pattern
12 Four-layer board
22 Supply reel
23 Take-up reel
24 Pressurizing hole
25a, 25b Guide roll

Claims (14)

少なくともプリプレグを被積層物として用いる積層工程において、前記プリプレグの任意の部位を加熱加圧手段にて加熱加圧する際に、前記プリプレグと前記加熱加圧手段の間に介在させて用いるものであって、耐熱性と離型性を兼ね備えていることを特徴とする基板製造用離型シート。In the laminating step of using at least the prepreg as the object to be laminated, when an arbitrary portion of the prepreg is heated and pressed by the heating and pressurizing unit, it is used by being interposed between the prepreg and the heating and pressing unit. A release sheet for manufacturing a substrate, which has both heat resistance and release properties. フッ素樹脂からなることを特徴とする請求項1記載の基板製造用離型シート。2. The release sheet according to claim 1, wherein the release sheet is made of a fluororesin. 離型処理を施したポリフェニレンサルファイドからなることを特徴とする請求項1記載の基板製造用離型シート。2. The release sheet according to claim 1, wherein the release sheet is made of polyphenylene sulfide that has been subjected to a release treatment. 離型処理を施したポリエチレン樹脂からなることを特徴とする請求項1記載の基板製造用離型シート。2. The release sheet according to claim 1, wherein the release sheet is made of a polyethylene resin subjected to a release treatment. 離型処理は、シリコンコーティング処理であることを特徴とする請求項3、または請求項4に記載の基板製造用離型シート。The release sheet for manufacturing a substrate according to claim 3 or 4, wherein the release processing is a silicon coating processing. 離型処理は、熱硬化性樹脂をコーティングする処理であることを特徴とする請求項3、または請求項4に記載の基板製造用離型シート。The release sheet for manufacturing a substrate according to claim 3 or 4, wherein the release processing is a processing of coating a thermosetting resin. 少なくともプリプレグを被積層物として用いる積層工程において、前記プリプレグの任意の部位を請求項1に記載の基板製造用離型シートを介して加熱加圧手段にて加熱加圧する工程、前記加熱加圧手段の加熱加圧を解除する工程、前記プリプレグを冷却した後前記基板製造用離型シートを剥離する工程を備えた基板の製造方法。2. A step of heating and pressurizing an arbitrary portion of the prepreg with a pressurizing unit via the release sheet for manufacturing a substrate according to claim 1, in the laminating step using at least the prepreg as an object to be laminated. (C) releasing the heating and pressurizing, and (c) cooling the prepreg and then peeling off the release sheet for substrate manufacturing. 少なくともプリプレグを被積層物として用いる積層工程は、プリプレグと金属箔、もしくはプリプレグと基板、もしくはプリプレグとプリプレグ同士を重ね合わせ、任意の部位を固定するものであることを特徴とする請求項7に記載の基板の製造方法。The laminating step of using at least the prepreg as the object to be laminated, wherein the prepreg and the metal foil, or the prepreg and the substrate, or the prepreg and the prepreg are overlapped, and an arbitrary portion is fixed, according to claim 7, characterized in that: Substrate manufacturing method. プリプレグは基材に樹脂が含浸されたものであり、前記樹脂はBステージ状態であることを特徴とする請求項7に記載の基板の製造方法。The method for manufacturing a substrate according to claim 7, wherein the prepreg is obtained by impregnating a base material with a resin, and the resin is in a B-stage state. 加熱加圧手段は、プリプレグに含浸された樹脂の軟化点以上で、かつBステージ状態を維持できる温度に設定されていることを特徴とする請求項9に記載の基板の製造方法。10. The method of manufacturing a substrate according to claim 9, wherein the heating and pressurizing means is set at a temperature higher than a softening point of the resin impregnated in the prepreg and capable of maintaining the B-stage state. 基板製造用離型シートを剥離する工程は、基板製造用離型シートの片側より残る片側に向かって順次剥離することを特徴とする請求項7に記載の基板の製造方法。The method of manufacturing a substrate according to claim 7, wherein in the step of peeling the release sheet for substrate production, the release sheet is sequentially peeled from one side of the release sheet for substrate production toward one remaining side. 加熱加圧手段は、常時加熱ヒーターであることを特徴とする請求項7に記載の基板の製造方法。The method for manufacturing a substrate according to claim 7, wherein the heating and pressurizing means is a constant heater. 加熱加圧手段は、パルスヒーターあるいは超音波であることを特徴とする請求項7に記載の基板の製造方法。8. The method according to claim 7, wherein the heating and pressurizing means is a pulse heater or an ultrasonic wave. 金属箔上にプリプレグを積層する工程と、プリプレグの任意の部位を加熱加圧して金属箔とプリプレグを固定する工程と、前記プリプレグの上に回路パターンを有する基板を積層する工程と、基板の任意の部位を加熱加圧してプリプレグと基板を固定する工程と、前記基板上にさらにプリプレグを積層する工程と、プリプレグの任意の部位を加熱加圧してプリプレグと基板を固定する工程と、その上にさらに金属箔を積層する工程と、金属箔の任意の部位を加熱加圧して金属箔とプリプレグを固定する工程と、これらの全面を加熱加圧する工程を備え、プリプレグの任意の部位を加熱加圧する方法は、プリプレグの任意の部位を請求項1に記載の基板製造用離型シートを介して加熱加圧手段にて加熱加圧する工程と、前記加熱加圧手段の加熱加圧を解除する工程と、前記プリプレグを冷却した後前記基板製造用離型シートを剥離する工程で構成されていることを特徴とした多層基板の製造方法。A step of laminating a prepreg on a metal foil, a step of heating and pressing an arbitrary part of the prepreg to fix the metal foil and the prepreg, and a step of laminating a substrate having a circuit pattern on the prepreg, A step of fixing the prepreg and the substrate by heating and pressurizing the part, a step of laminating the prepreg further on the substrate, and a step of fixing the prepreg and the substrate by heating and pressing an arbitrary part of the prepreg, The method further comprises a step of laminating a metal foil, a step of heating and pressing an arbitrary part of the metal foil to fix the metal foil and the prepreg, and a step of heating and pressing the entire surface thereof, and the arbitrary part of the prepreg is heated and pressed. A method comprising: heating and pressurizing an arbitrary portion of a prepreg via a release sheet for manufacturing a substrate according to claim 1 by means of heating and pressurizing means; Process and method of manufacturing a multilayer board is characterized in that it is constituted by a step of removing the release sheet substrate prepared after cooling the prepreg to release the pressure.
JP2003009447A 2003-01-17 2003-01-17 Substrate manufacturing method Expired - Fee Related JP4465962B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003009447A JP4465962B2 (en) 2003-01-17 2003-01-17 Substrate manufacturing method
TW093100888A TWI303959B (en) 2003-01-17 2004-01-14 Manufacturing method of substrate, release sheet, manufacturing method of substrate, and manufacturing method using the same
CN200480000092.8A CN1698403B (en) 2003-01-17 2004-01-19 Method for manufacturing substrate
CN201010136605A CN101863127A (en) 2003-01-17 2004-01-19 The manufacture method of substrate and the manufacturing installation of substrate
US10/509,754 US20050144780A1 (en) 2003-01-17 2004-01-19 Method for manufacturing substrate, release sheet, substrate manufacturing apparatus and method for manufacturing substrate using same
EP04703242A EP1499169A4 (en) 2003-01-17 2004-01-19 Method for manufacturing substrate, release sheet, substrate manufacturing apparatus and method for manufacturing substrate using same
PCT/JP2004/000353 WO2004066698A1 (en) 2003-01-17 2004-01-19 Method for manufacturing substrate, release sheet, substrate manufacturing apparatus and method for manufacturing substrate using same
US12/471,850 US8230891B2 (en) 2003-01-17 2009-05-26 Manufacturing method of boards, mold-releasing sheet, manufacturing apparatus for board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009447A JP4465962B2 (en) 2003-01-17 2003-01-17 Substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2004262951A true JP2004262951A (en) 2004-09-24
JP4465962B2 JP4465962B2 (en) 2010-05-26

Family

ID=33111930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009447A Expired - Fee Related JP4465962B2 (en) 2003-01-17 2003-01-17 Substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4465962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013000574A1 (en) * 2011-06-28 2013-01-03 Schweizer Electronic Ag Prepreg, method for producing a prepeg, method for producing a printed circuit board element and printed circuit board element

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61297172A (en) * 1985-06-26 1986-12-27 Nissha Printing Co Ltd Transfer material
JPH02241091A (en) * 1989-03-15 1990-09-25 Matsushita Electric Works Ltd Lamination of multilayer laminated board
JPH07249868A (en) * 1994-03-09 1995-09-26 Matsushita Electric Ind Co Ltd Manufacture of multilayer board
JPH07283534A (en) * 1994-04-15 1995-10-27 Matsushita Electric Ind Co Ltd Manufacture of multilayered board
JPH1067027A (en) * 1996-08-28 1998-03-10 Asahi Glass Co Ltd Release film
JPH1174632A (en) * 1997-08-27 1999-03-16 Matsushita Electric Ind Co Ltd Method and device for manufacturing laminated plate
JP2000022333A (en) * 1998-07-01 2000-01-21 Ibiden Co Ltd Manufacture of laminate
JP2000269639A (en) * 1999-03-17 2000-09-29 Hitachi Chem Co Ltd Manufacturing multilayer printed wiring board
JP2001028479A (en) * 1999-07-14 2001-01-30 Shiizu:Kk Inner layer board of printed wiring board
JP2002110722A (en) * 2000-10-03 2002-04-12 Nitto Denko Corp Method for encapsulating semiconductor chip with resin, and mold release film for encapsulating semiconductor chip with resin
JP2002232139A (en) * 2001-02-07 2002-08-16 Seiko Precision Inc Manufacturing method of multilayer printed-wiring board

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61297172A (en) * 1985-06-26 1986-12-27 Nissha Printing Co Ltd Transfer material
JPH02241091A (en) * 1989-03-15 1990-09-25 Matsushita Electric Works Ltd Lamination of multilayer laminated board
JPH07249868A (en) * 1994-03-09 1995-09-26 Matsushita Electric Ind Co Ltd Manufacture of multilayer board
JPH07283534A (en) * 1994-04-15 1995-10-27 Matsushita Electric Ind Co Ltd Manufacture of multilayered board
JPH1067027A (en) * 1996-08-28 1998-03-10 Asahi Glass Co Ltd Release film
JPH1174632A (en) * 1997-08-27 1999-03-16 Matsushita Electric Ind Co Ltd Method and device for manufacturing laminated plate
JP2000022333A (en) * 1998-07-01 2000-01-21 Ibiden Co Ltd Manufacture of laminate
JP2000269639A (en) * 1999-03-17 2000-09-29 Hitachi Chem Co Ltd Manufacturing multilayer printed wiring board
JP2001028479A (en) * 1999-07-14 2001-01-30 Shiizu:Kk Inner layer board of printed wiring board
JP2002110722A (en) * 2000-10-03 2002-04-12 Nitto Denko Corp Method for encapsulating semiconductor chip with resin, and mold release film for encapsulating semiconductor chip with resin
JP2002232139A (en) * 2001-02-07 2002-08-16 Seiko Precision Inc Manufacturing method of multilayer printed-wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013000574A1 (en) * 2011-06-28 2013-01-03 Schweizer Electronic Ag Prepreg, method for producing a prepeg, method for producing a printed circuit board element and printed circuit board element

Also Published As

Publication number Publication date
JP4465962B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
US8230891B2 (en) Manufacturing method of boards, mold-releasing sheet, manufacturing apparatus for board
JP5962094B2 (en) Manufacturing method of laminated substrate
US20110180205A1 (en) Carrier for manufacturing substrate and method of manufacturing substrate using the same
JP2002064269A (en) Multilayer circuit board and its manufacturing method
JP4170781B2 (en) Substrate manufacturing method
JP5047906B2 (en) Wiring board manufacturing method
JP2768236B2 (en) Method for manufacturing multilayer substrate
JP4465962B2 (en) Substrate manufacturing method
JP5057339B2 (en) Wiring board manufacturing method
JPH08222851A (en) Manufacture of circuit board
JP4151416B2 (en) Substrate manufacturing apparatus and substrate manufacturing method using the same
JP4590939B2 (en) Insulating resin film for printed wiring board and method of forming insulating layer using the same
JP2004265891A (en) Process for producing multilayer substrate
JP2006160899A (en) Manufacturing methods of electrically insulating substrate and wiring board
JP4742653B2 (en) Circuit board manufacturing method
JP2005340595A (en) Vacuum laminating apparatus and forming method of insulation layer using the same
JP3985764B2 (en) Circuit forming substrate manufacturing material and circuit forming substrate manufacturing method
JP2011165843A (en) Cushioning member for lamination
JP2008235640A (en) Circuit board and circuit board manufacturing method
JP6399422B2 (en) Printed wiring board material, printed wiring board material manufacturing method, printed wiring board manufacturing method
JP2001308521A (en) Method for manufacturing multilayered circuit board
JP2004259961A (en) Method of manufacturing wiring board
TWI428070B (en) Method for manufacturing printed circuit board embedded component
JP2012119510A (en) Vacuum lamination device, and method of forming insulating layer using the same
JP2003289182A (en) Wiring board for manufacturing multilayered wiring board and multilayered wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees