JP2004259907A - Pn junction diode device and method of manufacturing the same - Google Patents

Pn junction diode device and method of manufacturing the same Download PDF

Info

Publication number
JP2004259907A
JP2004259907A JP2003048523A JP2003048523A JP2004259907A JP 2004259907 A JP2004259907 A JP 2004259907A JP 2003048523 A JP2003048523 A JP 2003048523A JP 2003048523 A JP2003048523 A JP 2003048523A JP 2004259907 A JP2004259907 A JP 2004259907A
Authority
JP
Japan
Prior art keywords
concentration
type semiconductor
semiconductor region
main surface
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003048523A
Other languages
Japanese (ja)
Inventor
Yoshio Kadota
義生 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003048523A priority Critical patent/JP2004259907A/en
Publication of JP2004259907A publication Critical patent/JP2004259907A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pn junction diode device which can further be reduced in size and also provide a method of manufacturing the same pn junction diode device. <P>SOLUTION: Both cathode electrode 22 and anode electrode 23 are bonded to a lead frame 26 without connection through a wire or the like, by forming the cathode electrode 22 and anode electrode 23 of the pn junction diode on one principal surface of a silicon substrate 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、PN接合ダイオード装置及びその製造方法に関する。
【0002】
【従来の技術】
従来、PN接合ダイオードとしてn型の半導体基体の第1の主面側に高濃度p型半導体領域を形成する一方、この高濃度p型半導体領域から離れるようにして、第2の主面側に高濃度n型半導体領域を形成したものがある。この種のPN接合ダイオードは、製造方法が比較的簡易なこともあって、一般に広く用いられている。このPN接合ダイオードにおいては、ダイオードの種類としてメサ型ダイオード、反転防止型ダイオード等があるが、いずれも一方の主面に形成された高濃度p型半導体領域上にアノード電極を、他方の主面に形成された高濃度n型半導体領域にカソード電極を形成している(例えば、特許文献1参照。)。
【0003】
このように半導体基体の両主面に電極を形成しているため、リードフレームを備えたパッケージにダイオードを配置し、配線する場合は、一方の主面の電極から金等のワイヤーを使用して、インナーリード部等と接続する。反転防止型シリコンダイオード装置を例にとり、図6を用いて説明する。シリコン基板60はパッケージ66に収められている。シリコン基板60においては、その第1の主面側に第1の高濃度n型半導体領域61が形成されており、また、領域61の上にはカソード電極62が形成されている。また、第2の主面側に、高濃度P型半導体領域64及び領域64から離れて第2の高濃度n型半導体領域である反転防止層63が形成されている。この反転防止層63によって、高濃度p型半導体領域64からの基板表面リーク電流は抑制される。また、高濃度p型半導体領域64上にアノード電極65が形成されている。
【0004】
このように構成されたシリコンチップ60aにおいては、カソード電極62がリードフレーム67の上に接着するように実装されている。一方、アノード電極65には金ワイヤー69が金ボール68によって接着され、金ワイヤー69が、更にもう一方のリードフレーム67に接続されている。パッケージ66内のシリコンチップ66aは図示しない樹脂で封止されており、更に、パッケージの外枠70によって覆われ、保護されている。
【0005】
【特許文献1】
特許第3,313,566号公報(第4頁、図4)
【0006】
【発明が解決しようとする課題】
このようなPN接合ダイオード装置の用途を拡大するうえで、より一層の小型化が要求されており、外形の高さや幅を更に縮小することが課題となっている。
【0007】
本発明はこのような事情に鑑みてなされたもので、その目的は、より一層の小型化が可能なPN接合ダイオード装置及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、本発明の第1の発明は、n型半導体で構成される第1の半導体基体の第1の主面側に第1の高濃度n型半導体領域を形成する工程と、前記第1の半導体基体の第1の主面と、少なくとも第1の主面側に第2の高濃度n型半導体領域が形成されている第2の半導体基体の前記第1の主面とを接着して半導体基板を形成する工程と、前記第1の半導体基体の第2の主面側に高濃度p型半導体領域を形成する工程と、前記第1の半導体基体の第2の主面側に、前記高濃度p型半導体領域から離れて、且つ前記第1の高濃度n型半導体領域と接続する第3の高濃度n型半導体領域を形成する工程と、前記高濃度p型半導体領域上及び前記第3の高濃度n型半導体領域上にそれぞれ電極を形成する工程とを有することを特徴とする。
【0009】
また、第2の発明は、n型半導体基板の第1の主面側の一部に第1の高濃度n型半導体領域を形成する工程と、前記半導体基板の第1の主面側に、前記第1の高濃度n型半導体領域より浅く第2の高濃度n型半導体領域を形成する工程と、前記半導体基板の第2の主面側に高濃度p型半導体領域を形成する工程と、前記半導体基板の第2の主面側の前記高濃度p型半導体領域から離れて、且つ前記第1の高濃度n型半導体領域と接続する第3の高濃度n型半導体領域を形成する工程と、前記高濃度p型半導体領域及び前記第3の高濃度n型半導体領域上にそれぞれ電極を形成する工程とを有することを特徴とすることを特徴とする。
【0010】
本発明の第1の発明及び第2の発明によれば、同じ主面上に高濃度p型半導体領域及び前記第3の高濃度n型半導体領域が存在することにより、それぞれの電極を同じ主面側でパッケージのリードフレームに接着して接続することが可能になる。従って、小型化が可能なPN接合ダイオード装置の製造方法を提供することができる。
【0011】
更に、本発明の第3の発明は、n型半導体基板と、前記半導体基板の第1の主面側に形成された高濃度p型半導体領域と、前記半導体基板の前記高濃度p型半導体領域から離れて前記第1の主面側に形成された第3の高濃度n型半導体領域と、前記高濃度p型半導体領域及び第3の高濃度n型半導体領域から離れ、且つ前記半導体基板に形成された第2の高濃度n型半導体領域と、前記高濃度p型半導体領域から離れ、且つ前記第3の高濃度n型半導体領域及び前記第2の高濃度n型半導体領域と接続し、前記半導体基板に形成された第1の高濃度n型半導体領域と、前記高濃度p型半導体領域上及び前記第3の高濃度n型半導体領域上にそれぞれ形成された電極とを有することを特徴とする。
【0012】
本発明によれば、同じ主面上に高濃度p型半導体領域及び前記第3の高濃度n型半導体領域が存在することにより、それぞれの電極を同じ主面側でパッケージのリードフレームに接着して接続することが可能になる。従って、小型化が可能なPN接合ダイオード装置を提供することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施例を、図面を参照して説明する。
【0014】
(第1の実施の形態)
図1及び図2は本発明によるPN接合ダイオード装置の製造方法の第1の実施の形態を工程順に示す断面図である。また、図2(f)は本発明によるPN接合ダイオード装置の第1の実施の形態を示す断面図である。
【0015】
先ず、図1(a)に示すように半導体基体としてn型シリコン基板10を用意する。次に、後の不純物拡散のマスクとして、CVD法を用いて第1のシリコン酸化膜11をn型シリコン基板10の上に形成し、続いてリソグラフィ法とエッチング法を用いてパターニングする。更に、その上に第1の燐添加シリコン酸化膜12をCVD法で形成した後、n型不純物の外方拡散を防止するため、第1のキャップ膜12aをCVD法で形成する。次に、熱処理を行って、燐をn型シリコン基板10の中に拡散させ、第1の高濃度n型半導体領域13を形成する。
【0016】
続いて、n型シリコン基板10の上の、第1のキャップ膜12a、第1の燐添加シリコン酸化膜12及び第1のシリコン酸化膜11をウェットエッチングで除去する。次に、高濃度n型シリコン基板14を用意し、図1(b)に示すように、n型シリコン基板10の高濃度n型半導体領域13を形成した主面と高濃度n型シリコン基板14の一方の主面とを、両方の表面のシリコン原子が化学的に結合するように、貼り合せ法によって接着させる。更に、n型シリコン基板10のn層全面が露出している主面側からn型シリコン基板10を研削することによって、研削層10aを除去し、貼り合せシリコン基板15を形成する。
【0017】
次に、図1(c)に示すように、貼り合せシリコン基板15のn層が全面に露出している主面の上に、後の不純物拡散のマスクとして、CVD法を用いて第2のシリコン酸化膜16を形成し、続いてリソグラフィ法とエッチング法を用いてパターニングする。次に、ボロン添加シリコン酸化膜17をCVD法で形成した後、p型不純物の外方拡散を防止するため、第2のキャップ膜17aをCVD法で形成する。更に、熱処理を行って、ボロンを貼り合せシリコン基板15の中に拡散させ、高濃度p型半導体領域18を形成する。この時、高濃度n型シリコン基板14の部分であった第2の高濃度n型半導体領域14aからn型不純物がn型シリコン基板10に拡散し、しみ出し層14bが形成される。続いて、第2のキャップ膜17a、ボロン添加シリコン酸化膜17及び第2のシリコン酸化膜16をウェットエッチングで除去する。
【0018】
次に、図1(d)に示すように、後の不純物拡散のマスクとして、CVD法を用いて、貼り合せシリコン基板15における高濃度p型半導体領域18を形成した主面側の上に第3のシリコン酸化膜19を形成し、続いてリソグラフィ法とエッチング法を用いてパターニングする。更に、その上に第2の燐添加シリコン酸化膜20をCVD法で形成した後、n型不純物の外方拡散を防止するため、第3のキャップ膜20aをCVD法で形成する。更に、熱処理を行って、燐を貼り合せシリコン基板15の中に拡散させ、燐が第1の高濃度n型半導体領域13まで届くように、第3の高濃度n型半導体層21を形成する。この時、第1の高濃度n型半導体領域13が存在することによって、第3の高濃度n型半導体領域21の深さが比較的浅くて良いため、しみ出し層14bの更なる拡散は少なく抑制される。続いて、貼り合せシリコン基板15の上の、第3のキャップ膜20a、第2の燐添加シリコン酸化膜20及び第3のシリコン酸化膜19をウェットエッチングで除去する。
【0019】
次に、図2(e)に示すように、貼り合せシリコン基板15の高濃度p型半導体領域18を形成した主面側の上に、スパッタ法或いは蒸着法によるCr−Ni−Ag膜の成膜と、リソグラフィ法、リフトオフ法、エッチング法等によるパターニングを行って、カソード電極22及びアノード電極23を形成し、PN接合ダイオードを完成させる。
【0020】
貼り合せシリコン基板15に複数のPN接合ダイオードが形成されている場合には、次に、図示しないが、貼り合せシリコン基板15を、例えばダイヤモンドブレードによりダイシングし、シリコンチップ24に分割する。続いて、分割したシリコンチップ24を図2(f)に示すように、パッケージ25に配置する。
即ち、電極22、23がリードフレーム26の部分26a、26bに接着するようにシリコンチップ24をマウントし、図示しない樹脂でシリコンチップ24を封止し、更に保護用としてパッケージの外枠27を被せてPN接合ダイオード装置が完成する。
【0021】
本実施の形態によれば、PN接合ダイオードのカソード電極22及びアノード電極23を共に、貼り合せシリコン基板15の一方の主面に形成することにより、小型化が可能になる。特に、電極とリードフレームをワイヤー等で接続することなく、接着することが可能になる。このため、PN接合ダイオードを小型なパッケージに実装可能になる。また、一方の主面の高濃度n型不純物領域と他方の主面の高濃度n型半導体領域を接続する熱処理を抑えることにより、しみ出し層14bを小さくし、PN接合ダイオードの容量及び抵抗を小さく抑えることができる。
【0022】
(第2の実施の形態)
図3は本発明によるPN接合ダイオード及びその製造方法の第2の実施の形態を示す断面図である。本実施の形態では、第1の実施の形態とパッケージの形態が異なり、更に、小型化が可能になる。第2の実施の形態では、第1の実施の形態による図1(a)〜(d)及び図2(e)までのPN接合ダイオードを形成する工程までは同じである。即ち、不純物導入及び貼り合せ法によるn型シリコン基板と高濃度n型シリコン基板の接着を経て、アノード電極及びカソード電極を形成し、更に、貼り合せシリコン基板をダイシングし、シリコンチップに分割する。
【0023】
その後、本実施の形態では、図3に示すように、シリコンチップ24を、パッケージ25におけるパッケージ基板25aに同一化されて形成してあるリードフレーム25bの部分25c、25dにカソード電極22及びアノード電極23が接着するようにマウントし、図示しない樹脂で封止し、パッケージの外枠27を被せてPN接合ダイオード装置が完成する。
【0024】
本実施の形態によれば、PN接合ダイオードのアノード電極22及びカソード電極23を共に、貼り合せシリコン基板15の第1の主面に形成すること、及びパッケージ基板25aに同一化して形成してあるリードフレーム25bを用いることによって、ワイヤー等で接続することなく、より小型化が可能ななPN接合ダイオードが得られる。
【0025】
(第3の実施の形態)
図4及び図5は本発明によるPN接合ダイオード装置の製造方法の第3の実施の形態を示す断面図である。また、図5(f)は本発明によるPN接合ダイオード装置の第3の実施の形態を示す断面図である。
【0026】
先ず、図4(a)に示すように半導体基体としてn型シリコン基板30を用意する。次に、後の不純物拡散のマスクとして、CVD法を用いて第1のシリコン酸化膜31をn型シリコン基板30の上に形成し、続いてリソグラフィ法とエッチング法を用いてパターニングする。更に、その上に第1の燐添加シリコン酸化膜32をCVD法で形成した後、n型不純物の外方拡散を防止するため、第1のキャップ膜33をCVD法で形成する。次に、熱処理を行って、燐をn型シリコン基板30の中に拡散させ、第1の高濃度n型半導体領域34を形成する。
【0027】
続いて、n型シリコン基板30の上の、第1のキャップ膜33、第1の燐添加シリコン酸化膜32及び第1のシリコン酸化膜31をウェットエッチングで除去する。
【0028】
次に、図4(b)に示すように、n型シリコン基板30の全面に第2の燐添加シリコン酸化膜35をCVD法で形成した後、n型不純物の外方拡散を防止するため、第2のキャップ膜36をCVD法で形成する。次に、熱処理を行って、燐をn型シリコン基板30の中に拡散させ、第2の高濃度n型半導体領域37を形成する。この時、第1の高濃度n型半導体領域34の燐は更に基板中に深く拡散する。
【0029】
次に、図4(c)に示すように、n型シリコン基板30のn型半導体層が露出している主面の上に、後の不純物拡散のマスクとして、CVD法を用いて第2のシリコン酸化膜38を形成し、続いてリソグラフィ法とエッチング法を用いてパターニングする。続いて、ボロン添加シリコン酸化膜39をCVD法で形成した後、p型不純物の外方拡散を防止するため、第3のキャップ膜40をCVD法で形成する。更に、熱処理を行って、ボロンをn型シリコン基板30の中に拡散させ、高濃度p型半導体層41を形成する。この時、第2の高濃度n型半導体領域37からn型半導体層に燐が拡散し、しみ出し層42を形成する。続いて、第3のキャップ膜40、ボロン添加シリコン酸化膜39及び第2のシリコン酸化膜38をウェットエッチングで除去する。
【0030】
更に、図4(d)に示すように、後の不純物拡散のマスクとして、CVD法を用いて第3のシリコン酸化膜43をn型シリコン基板30の高濃度n型半導体領域41を形成した主面側の上に形成し、続いてリソグラフィ法とエッチング法を用いてパターニングする。更に、その上に第3の燐添加シリコン酸化膜44をCVD法で形成した後、n型不純物の外方拡散を防止するため、第4のキャップ膜45をCVD法で形成する。更に、熱処理を行って、燐が第1の高濃度n型半導体領域34まで届くように、燐をn型シリコン基板30の中に拡散させ、第3の高濃度n型半導体領域46を形成する。続いて、n型シリコン基板30上の第4のキャップ膜45、第3の燐添加シリコン酸化膜44及び第3のシリコン酸化膜43をウェットエッチングで除去する。
【0031】
次に、図5(e)に示すように、n型シリコン基板30の高濃度p型半導体領域41を形成した主面側の上に、スパッタ法或いは蒸着法によるCr−Ni−Ag膜の成膜と、リソグラフィ法、リフトオフ法、エッチング法等によるパターニングを行って、カソード電極47及びアノード電極48を形成し、PN接合ダイオードを完成させる。
【0032】
n型シリコン基板30に複数のPN接合ダイオードが形成されている場合には、次に、図示しないが、n型シリコン基板30を、例えばダイヤモンドブレードによりダイシングし、シリコンチップ49に分割する。続いて、分割したシリコンチップ49を図5(f)に示すようにパッケージ50に配置する。即ち、電極47、48がリードフレーム51の部分51a、51bに接着するようにシリコンチップ49をマウントし、図示しない樹脂でシリコンチップ49を封止し、更に保護用としてパッケージの外枠27を被せてPN接合ダイオード装置が完成する。
【0033】
本実施の形態によれば、PN接合ダイオードのカソード電極47アノード電極48及びアノード電極48を共に、シリコン基板30の第1の主面に形成することにより、小型化を達成できる。特に、電極47、48とリードフレーム51をワイヤー等で接続することなく、直接に接着することが可能になる。このため、小型化が可能なPN接合ダイオード装置が得られる。
【0034】
なお、本発明は上述した実施形態に何ら限定されるものではなく、例えば、半導体基体としてはシリコン基板だけでなく、化合物半導体であっても良い。また、不純物導入方法は拡散法だけでなく、イオン注入法でも良く、不純物種も燐、ボロンに限るものではない。電極材料はAl、Cu、Au等をベースにしても良い。その他、本発明の主旨を逸脱しない範囲内で種々変更して実施することができる。
【0035】
【発明の効果】
以上、詳述したように、本発明によれば、PN接合ダイオードのアノード電極及びカソード電極を共に、シリコン基板の第1の主面に形成することにより、小型化が可能になる。
【図面の簡単な説明】
【図1】本発明によるPN接合ダイオード装置の製造方法の第1の実施の形態を工程順に示す断面図。
【図2】本発明によるPN接合ダイオード装置の製造方法の第1の実施の形態を工程順に示す断面図。
【図3】本発明によるPN接合ダイオード装置の製造方法の第2の実施の形態を工程順に示す断面図。
【図4】本発明によるPN接合ダイオード装置の製造方法の第3の実施の形態を工程順に示す断面図。
【図5】本発明によるPN接合ダイオード装置の製造方法の第3の実施の形態を工程順に示す断面図。
【図6】従来例を示す断面図。
【符号の説明】
10、30、60 n型シリコン基板
10a 研削層
11、31 第1のシリコン酸化膜
12、32 第1の燐添加シリコン酸化膜
12a、33 第1のキャップ膜
13、34 第1の高濃度n型半導体領域
14 高濃度n型シリコン基板
14a、37 第2の高濃度n型半導体領域
14b、42、61a しみ出し層
15 貼り合せシリコン基板
16、38 第2のシリコン酸化膜
17、39 ボロン添加シリコン酸化膜
17a、36 第2のキャップ膜
18、41、64 高濃度p型半導体領域
19、43 第3のシリコン酸化膜
20、35 第2の燐添加シリコン酸化膜
20a、40 第3のキャップ膜
21、46 第3の高濃度n型半導体領域
22、47 カソード電極
23、48、65 アノード電極
24、49、60a シリコンチップ
25、50、66 パッケージ
25a、50a、66a パッケージ基板
26、25b、51、67 リードフレーム
26a、26b、25c、25d、51a、51b リードフレームの部分
27、52、70 外枠
44 第3の燐添加シリコン酸化膜
45 第4のキャップ膜
61 高濃度n型半導体領域
63 反転防止層
68 金ボール
69 金ワイヤー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a PN junction diode device and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, a high-concentration p-type semiconductor region is formed on the first main surface side of an n-type semiconductor substrate as a PN junction diode, while being separated from the high-concentration p-type semiconductor region on the second main surface side. In some cases, a high-concentration n-type semiconductor region is formed. This type of PN junction diode is generally widely used because of its relatively simple manufacturing method. In this PN junction diode, there are a mesa diode, an inversion prevention diode, and the like as a diode type. In each case, an anode electrode is formed on a high concentration p-type semiconductor region formed on one main surface, and the other main surface is formed. The cathode electrode is formed in the high-concentration n-type semiconductor region formed as described above (for example, see Patent Document 1).
[0003]
Since electrodes are formed on both main surfaces of the semiconductor substrate in this way, when a diode is arranged in a package having a lead frame and wiring is performed, use a wire such as gold from the electrode on one main surface. , And the inner lead part. An inversion prevention type silicon diode device will be described as an example with reference to FIG. The silicon substrate 60 is contained in a package 66. In the silicon substrate 60, a first high-concentration n-type semiconductor region 61 is formed on the first main surface side, and a cathode electrode 62 is formed on the region 61. On the second main surface side, a high-concentration P-type semiconductor region 64 and an inversion prevention layer 63 that is a second high-concentration n-type semiconductor region apart from the region 64 are formed. The inversion prevention layer 63 suppresses a substrate surface leak current from the high-concentration p-type semiconductor region 64. An anode electrode 65 is formed on the high-concentration p-type semiconductor region 64.
[0004]
In the silicon chip 60 a thus configured, the cathode electrode 62 is mounted on the lead frame 67 so as to adhere thereto. On the other hand, a gold wire 69 is bonded to the anode electrode 65 by a gold ball 68, and the gold wire 69 is further connected to the other lead frame 67. The silicon chip 66a in the package 66 is sealed with a resin (not shown), and further covered and protected by an outer frame 70 of the package.
[0005]
[Patent Document 1]
Patent No. 3,313,566 (page 4, FIG. 4)
[0006]
[Problems to be solved by the invention]
In order to expand the applications of such PN junction diode devices, further miniaturization is required, and there is a need to further reduce the height and width of the outer shape.
[0007]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a PN junction diode device that can be further miniaturized and a method of manufacturing the same.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a first invention of the present invention is a step of forming a first high-concentration n-type semiconductor region on a first main surface side of a first semiconductor substrate composed of an n-type semiconductor. A first main surface of the first semiconductor substrate; and a first main surface of a second semiconductor substrate having a second high-concentration n-type semiconductor region formed on at least the first main surface. Bonding a first semiconductor substrate, forming a high-concentration p-type semiconductor region on the second main surface side of the first semiconductor substrate, and forming a second main region of the first semiconductor substrate. Forming a third high-concentration n-type semiconductor region on the surface side, which is apart from the high-concentration p-type semiconductor region and connected to the first high-concentration n-type semiconductor region; Forming electrodes on the region and on the third high-concentration n-type semiconductor region, respectively. To.
[0009]
In a second aspect of the present invention, a step of forming a first high-concentration n-type semiconductor region on a part of the first main surface side of the n-type semiconductor substrate; Forming a second high-concentration n-type semiconductor region shallower than the first high-concentration n-type semiconductor region; and forming a high-concentration p-type semiconductor region on a second main surface side of the semiconductor substrate; Forming a third high-concentration n-type semiconductor region apart from the high-concentration p-type semiconductor region on the second main surface side of the semiconductor substrate and connected to the first high-concentration n-type semiconductor region; Forming electrodes on the high-concentration p-type semiconductor region and the third high-concentration n-type semiconductor region, respectively.
[0010]
According to the first and second aspects of the present invention, the presence of the high-concentration p-type semiconductor region and the third high-concentration n-type semiconductor region on the same main surface allows each electrode to have the same It becomes possible to bond and connect to the package lead frame on the surface side. Accordingly, it is possible to provide a method of manufacturing a PN junction diode device that can be downsized.
[0011]
Furthermore, a third invention of the present invention provides an n-type semiconductor substrate, a high-concentration p-type semiconductor region formed on the first main surface side of the semiconductor substrate, and the high-concentration p-type semiconductor region of the semiconductor substrate. A third high-concentration n-type semiconductor region formed on the first main surface side, away from the high-concentration p-type semiconductor region and the third high-concentration n-type semiconductor region; Forming the second high-concentration n-type semiconductor region, away from the high-concentration p-type semiconductor region, and connecting to the third high-concentration n-type semiconductor region and the second high-concentration n-type semiconductor region; A first high-concentration n-type semiconductor region formed on the semiconductor substrate; and electrodes formed on the high-concentration p-type semiconductor region and the third high-concentration n-type semiconductor region, respectively. And
[0012]
According to the present invention, the presence of the high-concentration p-type semiconductor region and the third high-concentration n-type semiconductor region on the same main surface allows the respective electrodes to be bonded to the package lead frame on the same main surface. Connection. Therefore, it is possible to provide a PN junction diode device that can be reduced in size.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
(First Embodiment)
1 and 2 are sectional views showing a first embodiment of a method for manufacturing a PN junction diode device according to the present invention in the order of steps. FIG. 2F is a cross-sectional view showing a first embodiment of the PN junction diode device according to the present invention.
[0015]
First, as shown in FIG. 1A, an n-type silicon substrate 10 is prepared as a semiconductor substrate. Next, as a mask for impurity diffusion later, a first silicon oxide film 11 is formed on the n-type silicon substrate 10 by using a CVD method, and then patterned by using a lithography method and an etching method. Further, after a first phosphorus-doped silicon oxide film 12 is formed thereon by a CVD method, a first cap film 12a is formed by a CVD method in order to prevent outward diffusion of an n-type impurity. Next, heat treatment is performed to diffuse phosphorus into the n-type silicon substrate 10 to form a first high-concentration n-type semiconductor region 13.
[0016]
Subsequently, the first cap film 12a, the first phosphorus-doped silicon oxide film 12, and the first silicon oxide film 11 on the n-type silicon substrate 10 are removed by wet etching. Next, a high-concentration n-type silicon substrate 14 is prepared, and as shown in FIG. 1B, the main surface of the n-type silicon substrate 10 on which the high-concentration n-type semiconductor region 13 is formed and the high-concentration n-type silicon substrate 14. Is bonded by a bonding method such that silicon atoms on both surfaces are chemically bonded. Further, the ground layer 10a is removed by grinding the n-type silicon substrate 10 from the main surface side where the entire surface of the n-layer of the n-type silicon substrate 10 is exposed, and the bonded silicon substrate 15 is formed.
[0017]
Next, as shown in FIG. 1 (c), a second impurity diffusion mask is formed on the main surface of the bonded silicon substrate 15 where the n-layer is entirely exposed, using a CVD method as a mask for impurity diffusion later. A silicon oxide film 16 is formed and subsequently patterned by using a lithography method and an etching method. Next, after the boron-added silicon oxide film 17 is formed by the CVD method, a second cap film 17a is formed by the CVD method in order to prevent outward diffusion of the p-type impurity. Further, heat treatment is performed to diffuse boron into the bonded silicon substrate 15 to form a high-concentration p-type semiconductor region 18. At this time, the n-type impurity diffuses into the n-type silicon substrate 10 from the second high-concentration n-type semiconductor region 14a, which is the portion of the high-concentration n-type silicon substrate 14, and the exudation layer 14b is formed. Subsequently, the second cap film 17a, the boron-added silicon oxide film 17 and the second silicon oxide film 16 are removed by wet etching.
[0018]
Next, as shown in FIG. 1D, as a mask for impurity diffusion later, the CVD method is used to form a mask on the main surface side of the bonded silicon substrate 15 where the high-concentration p-type semiconductor region 18 is formed. A silicon oxide film 19 of No. 3 is formed, and subsequently patterned by using a lithography method and an etching method. Further, after a second phosphorus-containing silicon oxide film 20 is formed thereon by a CVD method, a third cap film 20a is formed by a CVD method in order to prevent outward diffusion of an n-type impurity. Further, heat treatment is performed to diffuse phosphorus into the bonded silicon substrate 15, and a third high-concentration n-type semiconductor layer 21 is formed so that the phosphorus reaches the first high-concentration n-type semiconductor region 13. . At this time, since the first high-concentration n-type semiconductor region 13 is present, the depth of the third high-concentration n-type semiconductor region 21 may be relatively shallow, so that the further diffusion of the seepage layer 14b is small. Be suppressed. Subsequently, the third cap film 20a, the second phosphorus-containing silicon oxide film 20, and the third silicon oxide film 19 on the bonded silicon substrate 15 are removed by wet etching.
[0019]
Next, as shown in FIG. 2E, a Cr—Ni—Ag film is formed on the main surface side of the bonded silicon substrate 15 on which the high-concentration p-type semiconductor region 18 is formed by sputtering or vapor deposition. The film is patterned by a lithography method, a lift-off method, an etching method or the like to form a cathode electrode 22 and an anode electrode 23, thereby completing a PN junction diode.
[0020]
In the case where a plurality of PN junction diodes are formed on the bonded silicon substrate 15, the bonded silicon substrate 15 is then diced by a diamond blade, for example, and is divided into silicon chips 24, though not shown. Subsequently, the divided silicon chip 24 is arranged in a package 25 as shown in FIG.
That is, the silicon chip 24 is mounted so that the electrodes 22 and 23 adhere to the portions 26a and 26b of the lead frame 26, the silicon chip 24 is sealed with a resin (not shown), and the outer frame 27 of the package is further covered for protection. Thus, a PN junction diode device is completed.
[0021]
According to the present embodiment, since both the cathode electrode 22 and the anode electrode 23 of the PN junction diode are formed on one main surface of the bonded silicon substrate 15, the size can be reduced. In particular, it is possible to bond the electrode and the lead frame without connecting them with a wire or the like. Therefore, the PN junction diode can be mounted in a small package. Further, by suppressing the heat treatment for connecting the high-concentration n-type impurity region on one main surface to the high-concentration n-type semiconductor region on the other main surface, the exudation layer 14b is reduced, and the capacitance and resistance of the PN junction diode are reduced. It can be kept small.
[0022]
(Second embodiment)
FIG. 3 is a sectional view showing a second embodiment of a PN junction diode and a method for manufacturing the same according to the present invention. In the present embodiment, the form of the package is different from that of the first embodiment, and further downsizing is possible. In the second embodiment, the steps up to the step of forming the PN junction diode shown in FIGS. 1A to 1D and 2E according to the first embodiment are the same. That is, an anode electrode and a cathode electrode are formed through bonding of an n-type silicon substrate and a high-concentration n-type silicon substrate by an impurity introduction and bonding method, and then the bonded silicon substrate is diced and divided into silicon chips.
[0023]
Thereafter, in the present embodiment, as shown in FIG. 3, a silicon chip 24 is provided on a portion 25c, 25d of a lead frame 25b formed in the same manner as a package substrate 25a of a package 25, by a cathode electrode 22 and an anode electrode. 23 is mounted so as to adhere to it, sealed with a resin (not shown), and covered with an outer frame 27 of the package, thereby completing a PN junction diode device.
[0024]
According to the present embodiment, both the anode electrode 22 and the cathode electrode 23 of the PN junction diode are formed on the first main surface of the bonded silicon substrate 15 and are formed identically on the package substrate 25a. By using the lead frame 25b, it is possible to obtain a PN junction diode that can be further reduced in size without being connected by a wire or the like.
[0025]
(Third embodiment)
4 and 5 are sectional views showing a third embodiment of the method for manufacturing a PN junction diode device according to the present invention. FIG. 5F is a sectional view showing a third embodiment of the PN junction diode device according to the present invention.
[0026]
First, as shown in FIG. 4A, an n-type silicon substrate 30 is prepared as a semiconductor substrate. Next, as a mask for impurity diffusion later, a first silicon oxide film 31 is formed on the n-type silicon substrate 30 by using the CVD method, and then patterned by using the lithography method and the etching method. Further, after a first phosphorus-containing silicon oxide film 32 is formed thereon by a CVD method, a first cap film 33 is formed by a CVD method in order to prevent outward diffusion of an n-type impurity. Next, heat treatment is performed to diffuse phosphorus into the n-type silicon substrate 30 to form a first high-concentration n-type semiconductor region 34.
[0027]
Subsequently, the first cap film 33, the first phosphorus-doped silicon oxide film 32, and the first silicon oxide film 31 on the n-type silicon substrate 30 are removed by wet etching.
[0028]
Next, as shown in FIG. 4B, after a second phosphorus-doped silicon oxide film 35 is formed on the entire surface of the n-type silicon substrate 30 by a CVD method, in order to prevent outward diffusion of n-type impurities, The second cap film 36 is formed by a CVD method. Next, heat treatment is performed to diffuse phosphorus into the n-type silicon substrate 30 to form a second high-concentration n-type semiconductor region 37. At this time, the phosphorus in the first high-concentration n-type semiconductor region 34 further diffuses deep into the substrate.
[0029]
Next, as shown in FIG. 4C, a second impurity diffusion mask is formed on the main surface of the n-type silicon substrate 30 where the n-type semiconductor layer is exposed, using a CVD method. A silicon oxide film 38 is formed, and subsequently patterned using a lithography method and an etching method. Subsequently, after the boron-added silicon oxide film 39 is formed by the CVD method, a third cap film 40 is formed by the CVD method in order to prevent outward diffusion of the p-type impurity. Further, heat treatment is performed to diffuse boron into the n-type silicon substrate 30 to form a high-concentration p-type semiconductor layer 41. At this time, phosphorus diffuses from the second high-concentration n-type semiconductor region 37 into the n-type semiconductor layer to form a seepage layer 42. Subsequently, the third cap film 40, the boron-added silicon oxide film 39, and the second silicon oxide film 38 are removed by wet etching.
[0030]
Further, as shown in FIG. 4D, a third silicon oxide film 43 is formed using a CVD method as a mask for impurity diffusion later, in which the high-concentration n-type semiconductor region 41 of the n-type silicon substrate 30 is formed. It is formed on the surface side, and is subsequently patterned using lithography and etching. Further, after a third phosphorus-added silicon oxide film 44 is formed thereon by a CVD method, a fourth cap film 45 is formed by a CVD method in order to prevent outward diffusion of an n-type impurity. Further, a heat treatment is performed to diffuse phosphorus into the n-type silicon substrate 30 so that the phosphorus reaches the first high-concentration n-type semiconductor region 34 to form a third high-concentration n-type semiconductor region 46. . Subsequently, the fourth cap film 45, the third phosphorus-doped silicon oxide film 44, and the third silicon oxide film 43 on the n-type silicon substrate 30 are removed by wet etching.
[0031]
Next, as shown in FIG. 5E, a Cr—Ni—Ag film is formed on the main surface side of the n-type silicon substrate 30 on which the high-concentration p-type semiconductor region 41 is formed by a sputtering method or a vapor deposition method. The film is patterned by a lithography method, a lift-off method, an etching method or the like to form a cathode electrode 47 and an anode electrode 48, thereby completing a PN junction diode.
[0032]
In the case where a plurality of PN junction diodes are formed on the n-type silicon substrate 30, the n-type silicon substrate 30 is then diced by a diamond blade, for example, and is divided into silicon chips 49, though not shown. Subsequently, the divided silicon chips 49 are arranged in a package 50 as shown in FIG. That is, the silicon chip 49 is mounted so that the electrodes 47 and 48 adhere to the portions 51a and 51b of the lead frame 51, the silicon chip 49 is sealed with a resin (not shown), and the outer frame 27 of the package is further covered for protection. Thus, a PN junction diode device is completed.
[0033]
According to the present embodiment, downsizing can be achieved by forming both the cathode electrode 47 and the anode electrode 48 of the PN junction diode on the first main surface of the silicon substrate 30. In particular, it is possible to directly bond the electrodes 47 and 48 to the lead frame 51 without connecting them with wires or the like. Therefore, a PN junction diode device that can be reduced in size can be obtained.
[0034]
Note that the present invention is not limited to the above-described embodiment at all. For example, the semiconductor substrate may be not only a silicon substrate but also a compound semiconductor. Further, the impurity introduction method may be not only the diffusion method but also an ion implantation method, and the impurity species is not limited to phosphorus and boron. The electrode material may be based on Al, Cu, Au or the like. In addition, various changes can be made without departing from the spirit of the present invention.
[0035]
【The invention's effect】
As described in detail above, according to the present invention, by forming both the anode electrode and the cathode electrode of the PN junction diode on the first main surface of the silicon substrate, miniaturization becomes possible.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a first embodiment of a method for manufacturing a PN junction diode device according to the present invention in the order of steps.
FIG. 2 is a sectional view illustrating a first embodiment of a method for manufacturing a PN junction diode device according to the present invention in the order of steps.
FIG. 3 is a sectional view illustrating a second embodiment of the method of manufacturing the PN junction diode device according to the present invention in the order of steps.
FIG. 4 is a sectional view showing a third embodiment of a method for manufacturing a PN junction diode device according to the present invention in the order of steps.
FIG. 5 is a sectional view showing a third embodiment of a method for manufacturing a PN junction diode device according to the present invention in the order of steps.
FIG. 6 is a sectional view showing a conventional example.
[Explanation of symbols]
10, 30, 60 n-type silicon substrate 10a ground layer 11, 31 first silicon oxide film 12, 32 first phosphorus-doped silicon oxide film 12a, 33 first cap film 13, 34 first high-concentration n-type Semiconductor region 14 High-concentration n-type silicon substrate 14a, 37 Second high-concentration n-type semiconductor region 14b, 42, 61a Exudation layer 15 Bonded silicon substrate 16, 38 Second silicon oxide film 17, 39 Boron-doped silicon oxide Films 17a, 36 second cap films 18, 41, 64 high-concentration p-type semiconductor regions 19, 43 third silicon oxide films 20, 35 second phosphorus-doped silicon oxide films 20a, 40 third cap films 21, 46 Third high-concentration n-type semiconductor regions 22, 47 Cathode electrodes 23, 48, 65 Anode electrodes 24, 49, 60a Silicon chips 25, 50, 66 Cages 25a, 50a, 66a Package substrates 26, 25b, 51, 67 Lead frames 26a, 26b, 25c, 25d, 51a, 51b Lead frame portions 27, 52, 70 Outer frame 44 Third phosphorus-doped silicon oxide film 45 4 cap film 61 high-concentration n-type semiconductor region 63 inversion prevention layer 68 gold ball 69 gold wire

Claims (8)

n型半導体で構成される第1の半導体基体の第1の主面側に第1の高濃度n型半導体領域を形成する工程と、
前記第1の半導体基体の第1の主面と、少なくとも第1の主面側に第2の高濃度n型半導体領域が形成されている第2の半導体基体の前記第1の主面とを接着して半導体基板を形成する工程と、
前記第1の半導体基体の第2の主面側に高濃度p型半導体領域を形成する工程と、
前記第1の半導体基体の第2の主面側に、前記高濃度p型半導体領域から離れて、且つ前記第1の高濃度n型半導体領域と接続する第3の高濃度n型半導体領域を形成する工程と、
前記高濃度p型半導体領域上及び前記第3の高濃度n型半導体領域上にそれぞれ電極を形成する工程とを有することを特徴とするPN接合ダイオード装置の製造方法。
forming a first high-concentration n-type semiconductor region on a first main surface side of a first semiconductor substrate composed of an n-type semiconductor;
A first main surface of the first semiconductor substrate, and a first main surface of a second semiconductor substrate having a second high-concentration n-type semiconductor region formed at least on the first main surface side; Bonding and forming a semiconductor substrate;
Forming a high concentration p-type semiconductor region on the second main surface side of the first semiconductor substrate;
A third high-concentration n-type semiconductor region which is separated from the high-concentration p-type semiconductor region and connected to the first high-concentration n-type semiconductor region is provided on the second main surface side of the first semiconductor substrate. Forming,
Forming electrodes on the high-concentration p-type semiconductor region and on the third high-concentration n-type semiconductor region, respectively.
n型半導体基板の第1の主面側の一部に第1の高濃度n型半導体領域を形成する工程と、
前記半導体基板の第1の主面側に、前記第1の高濃度n型半導体領域より浅く第2の高濃度n型半導体領域を形成する工程と、
前記半導体基板の第2の主面側に高濃度p型半導体領域を形成する工程と、
前記半導体基板の第2の主面側の前記高濃度p型半導体領域から離れて、且つ前記第1の高濃度n型半導体領域と接続する第3の高濃度n型半導体領域を形成する工程と、
前記高濃度p型半導体領域及び前記第3の高濃度n型半導体領域上にそれぞれ電極を形成する工程とを有することを特徴とするPN接合ダイオード装置の製造方法。
forming a first high-concentration n-type semiconductor region on a portion of the first main surface side of the n-type semiconductor substrate;
Forming a second high-concentration n-type semiconductor region shallower than the first high-concentration n-type semiconductor region on the first main surface side of the semiconductor substrate;
Forming a high-concentration p-type semiconductor region on the second main surface side of the semiconductor substrate;
Forming a third high-concentration n-type semiconductor region apart from the high-concentration p-type semiconductor region on the second main surface side of the semiconductor substrate and connected to the first high-concentration n-type semiconductor region; ,
Forming electrodes on the high-concentration p-type semiconductor region and the third high-concentration n-type semiconductor region, respectively.
前記高濃度p型半導体領域上及び前記第3の高濃度n型半導体領域上に電極を形成する工程の後に、前記第1の半導体基体の第2の主面側をリードフレームに対向させ、前記電極を前記リードフレームに接着させる工程を有することを特徴とする請求項1に記載するPN接合ダイオード装置の製造方法。After a step of forming electrodes on the high-concentration p-type semiconductor region and the third high-concentration n-type semiconductor region, the second main surface side of the first semiconductor base is opposed to a lead frame, 2. The method according to claim 1, further comprising the step of bonding an electrode to the lead frame. 前記高濃度p型半導体領域上及び前記第3の高濃度n型半導体領域上に電極を形成する工程の後に、前記n型半導体基板の第2の主面側をリードフレームに対向させ、前記電極を前記リードフレームに接着させる工程を有することを特徴とする請求項2に記載するPN接合ダイオード装置の製造方法。After a step of forming an electrode on the high-concentration p-type semiconductor region and on the third high-concentration n-type semiconductor region, the second main surface side of the n-type semiconductor substrate is opposed to a lead frame, and 3. A method for manufacturing a PN junction diode device according to claim 2, further comprising the step of: bonding the PN junction to the lead frame. 前記リードフレームはパッケージ基板と同一化して形成されていることを特徴とする請求項3及び請求項4に記載するPN接合ダイオード装置の製造方法。5. The method according to claim 3, wherein the lead frame is formed in the same manner as a package substrate. n型半導体基板と、
前記半導体基板の第1の主面側に形成された高濃度p型半導体領域と、
前記半導体基板の前記高濃度p型半導体領域から離れて前記第1の主面側に形成された第3の高濃度n型半導体領域と、
前記高濃度p型半導体領域及び第3の高濃度n型半導体領域から離れ、且つ前記半導体基板に形成された第2の高濃度n型半導体領域と、
前記高濃度p型半導体領域から離れ、且つ前記第3の高濃度n型半導体領域及び前記第2の高濃度n型半導体領域と接続し、前記半導体基板に形成された第1の高濃度n型半導体領域と、
前記高濃度p型半導体領域上及び前記第3の高濃度n型半導体領域上にそれぞれ形成された電極とを有することを特徴とするPN接合ダイオード装置。
an n-type semiconductor substrate;
A high-concentration p-type semiconductor region formed on the first main surface side of the semiconductor substrate;
A third high-concentration n-type semiconductor region formed on the first main surface side away from the high-concentration p-type semiconductor region of the semiconductor substrate;
A second high-concentration n-type semiconductor region which is separated from the high-concentration p-type semiconductor region and the third high-concentration n-type semiconductor region and is formed on the semiconductor substrate;
A first high-concentration n-type formed on the semiconductor substrate, separated from the high-concentration p-type semiconductor region and connected to the third high-concentration n-type semiconductor region and the second high-concentration n-type semiconductor region; A semiconductor region;
A PN junction diode device, comprising: electrodes formed on the high-concentration p-type semiconductor region and on the third high-concentration n-type semiconductor region, respectively.
前記電極を接着するリードフレームを有するパッケージを具備したことを特徴とする請求項6に記載するPN接合ダイオード装置。The PN junction diode device according to claim 6, further comprising a package having a lead frame to which the electrodes are bonded. 前記リードフレームは前記パッケージが有するパッケージ基板に同一化して形成されていることを特徴とする請求項7に記載するPN接合ダイオード装置。The PN junction diode device according to claim 7, wherein the lead frame is formed identically to a package substrate of the package.
JP2003048523A 2003-02-26 2003-02-26 Pn junction diode device and method of manufacturing the same Pending JP2004259907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048523A JP2004259907A (en) 2003-02-26 2003-02-26 Pn junction diode device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048523A JP2004259907A (en) 2003-02-26 2003-02-26 Pn junction diode device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004259907A true JP2004259907A (en) 2004-09-16

Family

ID=33114457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048523A Pending JP2004259907A (en) 2003-02-26 2003-02-26 Pn junction diode device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004259907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300892A (en) * 2018-09-04 2019-02-01 中国电子科技集团公司第五十五研究所 Super high power limiter MMIC and preparation method based on bonding transfer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300892A (en) * 2018-09-04 2019-02-01 中国电子科技集团公司第五十五研究所 Super high power limiter MMIC and preparation method based on bonding transfer
CN109300892B (en) * 2018-09-04 2021-01-26 中国电子科技集团公司第五十五研究所 MMIC (monolithic microwave Integrated Circuit) of ultrahigh-power amplitude limiter based on bonding transfer and preparation method

Similar Documents

Publication Publication Date Title
JP2927158B2 (en) Semiconductor light emitting device
JP2006528435A5 (en)
US10134636B2 (en) Methods for producing semiconductor devices
JP2009158589A (en) Mesa semiconductor device and method of manufacturing the method
TW200929552A (en) Mesa type semiconductor device and manufacturing method thereof
JP2007207796A (en) Method of manufacturing semiconductor device
JP2007266044A (en) Method of manufacturing semiconductor device
JP2012238741A (en) Semiconductor device and manufacturing method for the same
JP2009188148A (en) Semiconductor device and method for manufacturing same
KR100491851B1 (en) Semiconductor device and manufacturing method therefor
JP2004259907A (en) Pn junction diode device and method of manufacturing the same
JP2007116058A (en) Semiconductor device
JPS6097659A (en) Semiconductor integrated circuit
JP3981324B2 (en) Bidirectional Zener diode
JP2000277463A (en) Semiconductor device
JP2004071886A (en) Vertical power semiconductor device and its manufacturing method
JP2008135592A (en) Schottky barrier semiconductor device
JP2005333147A (en) Semiconductor device and manufacturing method of same
JP2006173321A (en) Semiconductor device and its manufacturing method
JP2006237210A (en) Semiconductor device
TW202320180A (en) A semiconductor device and process for making same
JPS60103661A (en) Semiconductor ic device and manufacture thereof
JPH033335A (en) Bipolar bump transistor and manufacture thereof
JPS6084878A (en) Semiconductor device having negative resistance characteristic and manufacture thereof
JP2006344839A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612