JP2004259610A - セラミックヒータとその製造方法、およびグロープラグ - Google Patents

セラミックヒータとその製造方法、およびグロープラグ Download PDF

Info

Publication number
JP2004259610A
JP2004259610A JP2003049437A JP2003049437A JP2004259610A JP 2004259610 A JP2004259610 A JP 2004259610A JP 2003049437 A JP2003049437 A JP 2003049437A JP 2003049437 A JP2003049437 A JP 2003049437A JP 2004259610 A JP2004259610 A JP 2004259610A
Authority
JP
Japan
Prior art keywords
rod
ceramic heater
electrically insulating
ceramic
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049437A
Other languages
English (en)
Other versions
JP4018998B2 (ja
Inventor
Masao Yoshida
政生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003049437A priority Critical patent/JP4018998B2/ja
Publication of JP2004259610A publication Critical patent/JP2004259610A/ja
Application granted granted Critical
Publication of JP4018998B2 publication Critical patent/JP4018998B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】腐蝕雰囲気でかつ、1000℃以上の高温で用いられるセラミックヒータにおいて、筒状体によって覆われていない露出部分の温度分布ばらつきを小さくして、露出する根元部分の基体の耐熱衝撃性を十分に備えるセラミックヒータおよび、このセラミックヒータを用い急速に昇温することが可能なグロープラグを提供する。
【解決手段】電気絶縁性セラミックスからなる棒状基体の先端に抵抗発熱体を埋設し、前記棒状基体の他端を筒状体に嵌装して保持したセラミックヒータにおいて、前記棒状基体には、少なくとも筒状体から突き出した部分の表面に、前記電気絶縁性セラミックスよりも低い熱伝導率を有する電気絶縁性膜が形成され、かつ前記棒状基体の先端から他端側に向かうにつれて、前記電気絶縁性膜の厚さが薄くなっている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックヒータおよび、それを用いたグロープラグに関する。詳しくは、本発明は石油ファンヒーターの着火用ヒータなどに使用されるセラミックヒータ、またはその他の加熱に用いられるセラミックヒータおよびディーゼルエンジンの始動促進用などに使用されるグロープラグに関する。
【0002】
【従来の技術】
従来から、特許文献1などに開示されているように、図3に示す略棒状のセラミックヒータ32の一端側を筒状体34に密着するように挿入して使用する、ディーゼルエンジン用のグロープラグ30が知られている。グロープラグ30は、グロープラグ本体31、中軸33、筒状体34およびセラミックヒータ32を備える。また、このセラミックヒータ32は、中軸33を介してグロープラグ本体31に電気的に接続されている。さらに、セラミックヒータ32の一端側はグロープラグ本体31および筒状体34によって覆われて保護されている。
【0003】
このようなグロープラグ30に用いられるセラミックヒータ32は、電圧印加時に基体発熱体側の温度と露出するセラミックヒータ32の根元部分の温度差が大きくなることによる熱衝撃や、腐蝕雰囲気でかつ、1000℃以上の高温で用いられるため、筒状体34によって覆われていない露出部分の基体の損傷が激しく、セラミックヒータ32の強度が低下したり、耐久性が劣化したりする問題があった。
【0004】
【特許文献1】特開2001−132949号公報(第5頁、図1)
【0005】
【発明が解決しようとする課題】
近年燃焼効率の向上のため、ますますグロープラグ30の急速昇温化が要求されるようになってきた。そのため、特にグロープラグ30への電圧印加時に急速にセラミックヒータ32が昇温するため、筒状体34によって覆われていない露出部分の基体の温度分布が悪くなり、このときの温度差による熱衝撃によって基体の損傷が大変起こりやすくなってきた。特に、露出するセラミックヒータ32の根元部分(図3における部位C)から亀裂が生じ、破損することも多々あった。このため、セラミックヒータに対して、これまで以上に耐熱衝撃性を備えることが望まれている。
【0006】
本発明は、このような問題点を解決するものであり、基体の温度分布を均一にして、基体の耐熱衝撃性を向上させたセラミックヒータおよび、このセラミックヒータを用いて、急速に昇温しても十分な耐久性を有するグロープラグを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明のセラミックヒータは、電気絶縁性セラミックスからなる棒状基体の先端に抵抗発熱体を埋設したセラミックヒータにおいて、棒状基体の他端を筒状体に嵌装して保持するとともに、棒状基体の少なくとも筒状体から突き出した部分の表面に、電気絶縁性セラミックスよりも低い熱伝導率を有する電気絶縁性膜が形成され、かつ棒状基体の先端から他端側に向かうにつれて、電気絶縁性膜の厚さが薄くなっている。
【0008】
これにより電圧を印加した際、発熱体から発生する熱を棒状基体の先端から逃げにくくし、棒状基体の他端へ効率的に伝えることができ、棒状基体の先端と他端側との温度差を小さくして、均一化することができるので、熱衝撃を受けにくくなる。
【0009】
また、電気絶縁性セラミックスは窒化物セラミックスとすることが望ましい。窒化物セラミックスは、他のセラミックスより熱伝導率が高く、棒状基体の先端から他端側へ効率的に熱を伝えることができ、棒状基体の先端から他端側への温度差を小さくすることができるからである。そして、窒化物セラミックスの中でも窒化ケイ素質セラミックスとすることにより、高温強度や熱衝撃に強く、耐久性の優れたセラミックヒータ、およびグロープラグとすることができる。
【0010】
さらに、電気絶縁性セラミックスは窒化物セラミックスとしたときは、電気絶縁性膜をシリカ膜とすることが望ましい。シリカ膜はほとんどの窒化物セラミックスよりも熱伝導率が低く、棒状基体の先端と他端側との温度差を小さくして均熱化する効果が高いからである。さらに、棒状基体を構成する電気絶縁性セラミックスとして窒化ケイ素質セラミックスや炭化ケイ素セラミックスなどのケイ素を含有するセラミックス材料を用いた場合、棒状基体の内部に埋設されている抵抗発熱体を用いて、大気中で加熱するという極めて簡単な操作で、シリカ膜を棒状基体の表面に設けることができるという特徴を有する。
【0011】
そして、電気絶縁性膜の棒状基体周方向における厚みばらつきを12%以下とすることが望ましい。これは厚みばらつきが12%を超えると周方向の温度分布が悪化し、電圧印加時の繰り返し熱衝撃により発熱体への負荷が大きくなることから、発熱体が抵抗変化を起こしセラミックヒータの性能が劣化する恐れがあるためである。
【0012】
なお、ここでいう電気絶縁性膜の棒状基体の周方向の厚みばらつきは、以下のように測定する。棒状基体の先端部から根元部までの間で任意の点において、棒状基体の外周面を周方向に均等に8点選び、その部分の電気絶縁性膜の厚みを測定し、最大値と最小値の差を8点の平均値で割ったものを周方向の厚みばらつきと定める。また、厚みの測定は、同じ条件で電気絶縁性膜を作製した同一形状のリファレンスの試料の表面を破断することによって測定を行う。
【0013】
さらに、本発明のセラミックヒータの製造方法は、棒状基体の先端から他端側に向けて、基体表面の温度が低くなるように温度勾配を設けた状態で、電気絶縁性膜を形成することを特徴とする。
【0014】
棒状基体の先端から他端側に向けて、基体表面の温度が低くなるように温度勾配を設ける方法は、棒状基体を嵌装した筒状体根元部に熱伝導性のよいヒートシンクブロックなどを装着し、棒状基体に埋設されたセラミックヒータに通電して棒状基体を昇温すればよい。このとき、棒状基体と外部との熱の出入りが飽和した平衡状態になるようにすると、筒状体の根元部からは、上記ヒートシンクブロックを介して熱が外部に激しく流出するため、棒状基体は、ちょうど先端部から根元部に向けて表面の温度勾配が低くなった状態で安定する。
【0015】
このように、棒状基体の先端部から根元部に向けて温度勾配が低くなった状態とし、この状態で電気絶縁性膜の形成を行うことにより、棒状基体の先端から他端側の根元部方向に向かうにつれて、形成される膜の厚さを薄くすることができる。
【0016】
例えば、電気絶縁性膜としてシリカの酸化膜を窒化ケイ素製の棒状基体に形成する場合、最も温度が高い棒状基体の先端で、酸化の速度が大きく、他の部分に比べて酸化膜が厚くなり、先端から他端側に向かうにつれて、酸化膜の厚さを薄くすることができる。
【0017】
その他、CVDなどによって電気絶縁性膜を棒状基体の表面に成膜する場合にも、最も温度が高い棒状基体の先端で、反応速度が大きく、他の部分に比べて膜を厚く成膜することが可能となる。
【0018】
また特に、電圧印加直後は、棒状基体の先端の発熱体が急速に加熱され、棒状基体表面の温度勾配が、非常に大きくなるため、電気絶縁性膜の形成速度の勾配も大きい。したがって、電圧印加−所定時間経過後電圧切断−所定時間経過後電圧印加のサイクルを適度に調整することにより、棒状基体表面の電気絶縁性膜の膜厚の勾配をコントロールすることが可能となる。
【0019】
また、本発明のグロープラグは、本発明のセラミックヒータにグロープラグ本体を取り付けたことを特徴とする。本発明のセラミックヒータは、棒状基体の先端と他端側との温度差を小さくして、均熱化する効果を有していることから、本発明のセラミックヒータが備えられた本発明のグロープラグでは、動作中も表面の温度は均一に保たれるため、熱衝撃を受けにくくなる。したがって、セラミックヒータの強度が低下したり、耐久性が劣化したりすることを防ぐことができる。
【0020】
【発明の実施の形態】
本発明の実施の形態について、図を用いて説明する。
【0021】
図1は、本発明のセラミックヒータの断面図である。セラミックヒータ10は棒状基体11、抵抗発熱体12、給電部13aおよび13b、筒状体14を備える。棒状基体11は窒化ケイ素質セラミックスからなり、先端側の内部に抵抗発熱体12を埋設するとともに、他端側に給電部13a、13bを表面に露出させて保護する。さらに、棒状基体11は給電部13a、13bが存在する側の端部が筒状体に嵌装されて保持されている。
【0022】
抵抗発熱体12はU字形の棒状体であり、棒状基体11内に埋設される形で配設されている。さらに、この抵抗発熱体12は導電成分、抵抗温度係数を調節するための調整成分、および絶縁成分であるセラミック成分を含有している。また、給電部13a、13bは図1に示すように、セラミックヒータ10外から供給される電力を棒状基体11内の抵抗発熱体12へ給電できるように、それぞれの端部は棒状基体11の表面に配設され、他端部はそれぞれ抵抗発熱体12の端部に接続されている。
【0023】
また、筒状体14はステンレスなどの導電材料によって形成され、棒状基体11を嵌装し、ロウ付けなどにより固着されている。また、給電部13aと筒状体14は互いに電気的に接触し、筒状体14自体が接地電極としての作用を有しているため、筒状体14を他の部材に取り付けたときに、筒状体14自体を介して、給電することが可能となる。
【0024】
本発明のセラミックヒータ10の表面には、少なくとも筒状体14から突き出した部分の表面に、棒状基体11よりも低い熱伝導率を有する電気絶縁性膜15が形成され、かつ棒状基体11の先端から他端側に向かうにつれて、電気絶縁性膜15の厚さが薄くなっている。さらに、棒状基体11の周方向における電気絶縁性膜15の厚みばらつきは、12%以下となっている。
【0025】
給電部13a、13bに外部電源から通電すると、棒状基体11内に設けられたU字型の抵抗発熱体12の端部に給電され、抵抗発熱体12が発熱を開始する。発生した熱は棒状基体11内部を伝導して、表面に到達する。
【0026】
このとき、棒状基体11の表面から熱が外部に向かって放出されるが、棒状基体11の根元部は筒状体14などが接しているため、熱が逃げやすい。したがって、棒状基体11の表面温度分布は、先端部よりも根元部のほうが低くなりやすいが、本発明のセラミックヒータにおいては、棒状基体11の先端部から根元部にかけて、熱伝導率が低い電気絶縁性膜15が、先端部は厚く、根元部は薄くなるように設けられているため、棒状基体11の表面温度分布を均一化する作用効果を奏する。
【0027】
図2は、本発明のセラミックヒータを用いたグロープラグの断面図である。グロープラグ20は、本発明のセラミックヒータ10と、グロープラグ本体21、中軸22を備える。また、セラミックヒータ10の他端側は、グロープラグ本体21に嵌装され、ロウ付けなどで固着されている。
【0028】
また、セラミックヒータ10の抵抗発熱体12の一端は、給電部13bと導電性の棒材から構成される中軸22を経てプラグ電極23に接続され、さらに他端側は給電部13a、筒状体14を介して、グロープラグ本体21と電気的に接続されている。したがって、プラグ電極23とグロープラグ本体21に給電すれば、セラミックヒータ10を加熱することができる。
【0029】
本発明のセラミックヒータおよびグロープラグの製造方法は以下のとおりである。
【0030】
棒状基体11を構成する電気絶縁性セラミックスは通常、抵抗発熱体12及びリード線などと一体に焼成され、焼成後これらは一体となっている。この電気絶縁性セラミックスは抵抗発熱体12およびリード線などに対して−20〜1500℃において十分な絶縁性を有すればよい。特に、抵抗発熱体に対して、10倍以上の絶縁性を有することが好ましい。
【0031】
この電気絶縁性セラミックスを構成する成分は特に限定されないが、窒化物セラミックスが望ましい。窒化物セラミックスは、比較的熱伝導率が高く、棒状基体11の先端から他端側へ効率的に熱を伝えることができ、棒状基体11の先端と他端側との温度差を小さくすることができるからである。例えば、窒化ケイ素質セラミックス、サイアロン及び窒化アルミニウムセラミックスのうちのいずれかのみから構成されてもよく、窒化ケイ素質セラミックス、サイアロン及び窒化アルミニウムセラミックスのうちの少なくとも一種を主成分としてもよい。
【0032】
特に、窒化物セラミックスの中でも窒化ケイ素質セラミックスとすることにより、熱衝撃に強く、耐久性の優れたセラミックヒータ、およびグロープラグとすることができる。この窒化ケイ素質セラミックスは、窒化ケイ素を主成分とするものが広く含まれ、窒化ケイ素のみならず、サイアロンなども含まれる。さらに、通常、焼結助剤(Y、Yb、Erなどの各酸化物など)が数質量%(2〜10質量%程度)配合されて焼成される。また、焼結助剤粉末は特に限定されず、窒化ケイ素の焼成に一般に用いられる希土類酸化物などの粉末を使用することができる。とくに、Erなど、焼結した場合の粒界が結晶相となる焼結助剤粉末を用いると耐熱性が高くなることからより好ましい。
【0033】
さらに、抵抗発熱体12を構成する各金属元素の硼化物が含有されてもよく、下記導電成分との熱膨張率の差を小さくするために少量の導電成分を含有してもよい。
【0034】
また、抵抗発熱体12は、通常、導電成分と絶縁成分とを含有する。この導電成分は、W、Ta、Nb、Ti、Mo、Zr、Hf、V、及びCr等から選ばれる1種以上の元素の珪化物、炭化物又は窒化物等の少なくとも1種であり、絶縁成分は窒化ケイ素質焼結体等である。特に、絶縁成分及び/又は絶縁体を構成する成分に窒化ケイ素が含有される場合は、導電成分として炭化タングステン、珪化モリブデン、窒化チタン又は珪化タングステン等の少なくとも1種を用いることが好ましい。
【0035】
導電成分は、絶縁成分及び絶縁体を構成する成分との熱膨張差が小さいことが好ましく、融点はセラミックヒータの使用温度(1400℃以上、更には1500℃以上)を越えることが好ましい。また、抵抗発熱体12中に含まれる導電成分と絶縁成分との量比は特に限定されないが、抵抗発熱体を100体積%とした場合に、導電成分を15〜40体積%とすることが好ましく、20〜30体積%とすることがより好ましい。
【0036】
セラミックヒータ10を作製するためには、まず、上記抵抗発熱体12を構成する成分として示した導電成分と、絶縁成分を含有するペーストを作製し、これを上記の電気絶縁性セラミックス中に埋入させることが必要である。
【0037】
まず、ペーストは、通常、ペースト全体を100質量%とした場合に、導電成分及び絶縁成分を合計で75〜90質量%含有する。このペーストは、例えば、これらの成分を各原料粉末として所定量を湿式混合し、その後、乾燥させ、更に、ポリプロピレン、ワックス等の所定量のバインダ等と混合することにより得ることができる。このペーストは更に、適度に乾燥させて取り扱い易いように成形加工したペレット状等のものであってもよい。
【0038】
また、埋入はどのように行ってもよいが、例えば、型内に突出するリード線の長さを調節して固定し、この型内に上記ペーストを注入することにより行うことができる。更に、所定の形状に成形したペーストにリード線を挿入するように接触長を調製し、埋入させることもできる。
【0039】
その他、棒状基体の原料粉末をプレス成形法により成形体を得、成形体の上面に適度なバインダなどを調合した上記ペーストを作り、これを発熱部リード部および電極部の導体形状にスクリーン印刷法によりプリントして形成しても良い。
【0040】
このようにして、この抵抗発熱体12を棒状基体11用の原料とともに、プレス成形して一体に加圧することにより、基体の形状を有する粉末成形体を得る。そして、さらにこのセラミックヒータ成形体を、黒鉛製などの加圧用ダイスに収納し、これを焼成炉に収容し、必要に応じて仮焼してバインダを除去した後、所定の温度で所要時間、ホットプレス焼成することによって、セラミックヒータ10を得ることができる。
【0041】
セラミックヒータ10の表面には、少なくとも筒状体14から突き出した部分の表面に、棒状基体11よりも低い熱伝導率を有する電気絶縁性膜15が、棒状基体11の先端から根元部にかけて膜の厚さが薄くなるように形成されている。この電気絶縁性膜15および膜厚の分布を得るためには、セラミックヒータ10自身に通電して大気中で発熱させるとともに、棒状基体11の先端から他端側に向けて、棒状基体11の温度が低くなるように温度勾配を設け、その状態で電気絶縁性膜15を熱酸化やCVDなどの方法により形成してやれば良い。
【0042】
特に、棒状基体11を構成する材料として、窒化ケイ素質セラミックスや炭化ケイ素セラミックスなどのケイ素を含有するセラミックス材料を用いた場合、棒状基体11の表面を熱酸化してやるだけで、電気絶縁性膜として熱伝導率の低いシリカ膜を棒状基体11の表面に設けることができるという利点がある。
【0043】
そこで、窒化ケイ素質セラミックス製の棒状基体11に電気絶縁性膜15としてシリカ膜を形成する方法を説明する。
【0044】
まず、棒状基体11を嵌装した筒状体14根元部に熱伝導性のよいヒートシンクブロックを装着し、セラミックヒータ10に通電して棒状基体11を高温にする。そして、棒状基体11を熱飽和させ、熱の出入りが飽和している状態で保つと、筒状体14の根元部からは、上記ヒートシンクブロックを介して熱が外部に激しく流出するため、棒状基体11は、ちょうど先端部から根元部に向けて温度勾配が低くなった状態で安定する。この状態で、大気中で所定時間保持することにより、窒化ケイ素質セラミックス製の棒状基体11の表面にシリカの酸化膜が形成される。このとき、最も温度が高い棒状基体11の先端で、酸化の速度が大きく、他の部分に比べてシリカの酸化膜が厚くなる。このようにして、棒状基体11の先端から他端側に向かうにつれて、シリカの酸化膜の厚さを薄くすることができる。
【0045】
なお、上記棒状基体11の加熱は、セラミックヒータ10自体に通電して加熱させるのが、最も手軽であるが、電気絶縁性膜15の厚さを制御するときは、棒状基体11を電気炉や外部ヒータのような外部加熱装置によって加熱する手法を併用することが望ましい。
【0046】
上述の方法により作製したセラミックヒータ10を、ステンレス製の筒状体14に嵌装し、ロウ付けした後、中軸22を取り付ける。その後、中軸22などを取り付けたセラミックヒータ10を、グロープラグ本体21にロウ付けおよびかしめを行うことで固定し、グロープラグ20が完成する。
【0047】
また、本発明者は検討の結果、電気絶縁性膜15の厚みは、30μm〜140μmの範囲で形成するのが好ましいことを見いだした。薄すぎると、セラミックヒータの断熱効果が薄れ、厚すぎるとセラミックヒータに発生する熱応力が高くなるからである。
【0048】
そして、電気絶縁性膜15の棒状基体11の周方向における厚みばらつきを12%以下とすることが望ましい。これは厚みばらつきが12%を超えると周方向の温度分布が悪化し、電圧印加時の繰り返し熱衝撃により抵抗発熱体12への負荷が大きくなることから、抵抗発熱体12が抵抗変化を起こしセラミックヒータの性能が劣化する恐れがあるためである。この電気絶縁性膜15の厚みを調整するためには、セラミックヒータ10自体に通電して加熱するだけではなく、電気炉や外部ヒータのような外部加熱装置を併用することが必要である。これにより、セラミックヒータ10の均熱性を良く保つことができるので、周方向の厚みばらつきを抑えることが可能となる。したがって、セラミックヒータ10自体への通電加熱と、外部加熱装置による加熱を適切に組み合わせれば良い。
【0049】
また、電気絶縁性膜15の厚みを均一にするには、セラミックヒータの長手方向の温度勾配も均一にする必要があるが、セラミックヒータ10自体への通電加熱だけでは長手方向の温度分布を均一にすることは難しいため、外部加熱を併用して、長手方向の温度分布を小さく保つことが望ましい。
【0050】
さらに、セラミックヒータ10自体に通電した直後は、抵抗発熱体12が急速に加熱されるため、棒状基体11表面の温度勾配が、非常に大きくなる。そのため、電気絶縁性膜15の形成速度の勾配が大きくなる。したがって、通電−切断のサイクルを適度に調整することにより、棒状基体11表面の電気絶縁性膜の膜厚の勾配をコントロールすることができる。
【0051】
なお、電気絶縁性膜の長手方向厚みの変化率は、先端部(グロープラグ電圧印加時の最高温度部)厚みと根元部の周方向厚みの平均値により、
100×(先端部−根元部)/根元部 (%)
の式により、計算した値であるが、この電気絶縁性膜の長手方向厚みの変化率が6%以上12%以下であることが望ましい。その理由として、6%より小さいときは、セラミックヒータの長手方向の温度差が大きくなり、抗折強度が劣化しやすいという問題があり、12%を超えるとセラミックヒータの長手方向の温度差は小さくなるが、根元部の温度が高くなるため、筒状体14の表面が酸化しやすいという問題があるからである。
【0052】
また、電気絶縁性膜15は、棒状基体11を構成する電気絶縁性セラミックスよりも熱伝導率が5W/m・k以上小さいことが望ましい。この値よりも低いと棒状基体11の表面温度を均熱化する効果に乏しいためである。
【0053】
さらに、上述のように、棒状基体11を構成する材料として、窒化ケイ素質セラミックスが好ましいことから、電気絶縁性膜15の材質としては、窒化ケイ素質セラミックス製の棒状基体11の表面を熱酸化してやるだけで、電気絶縁性膜15として熱伝導率の低いシリカ膜を棒状基体11の表面に設けることができるため、シリカが最も望ましい。
【0054】
その他、棒状基体11として、熱伝導率の高い窒化アルミニウム(約60W/m・k)を用いたときは、プラズマCVDや熱CVDなどにより容易に形成することができる比較的熱伝導率の高い窒化シリコン(約35W/m・k)を電気絶縁性膜15として用いることも可能となる。
【0055】
上述の説明では、熱酸化により、棒状基体11に電気絶縁性膜15を形成する方法を説明したが、これに限るものではなく、セラミックヒータ10に温度勾配を設けた状態でCVDやスパッタなどにより電気絶縁性膜15を成膜しても良い。この方法によって、例えば、棒状基体11の材質が窒化ケイ素やアルミナ、窒化アルミニウムといった電気絶縁性セラミックスの表面にシリカや窒化シリコンなどの絶縁膜を形成することができる。
【0056】
【実施例】
次に本発明の実施例を説明する。
【0057】
次に示す方法により、図1に示すセラミックヒータ10を作製した。
【0058】
棒状基体11を構成する電気絶縁性セラミックスの主成分として90〜92モル%の窒化ケイ素に焼結助剤として希土類元素酸化物を2〜10モル%、酸化アルミニウム、酸化ケイ素を窒化ケイ素と希土類元素酸化物の総量に対して各々0.2〜2.0質量%と1〜5質量%添加混合して原料粉末を調整した。
【0059】
その後、原料粉末をプレス成形法により成形体を得、成形体の上面にタングステンに適当な有機溶剤、溶媒を添加混合した発熱体ペーストを作り、これを発熱部リード部および電極部の導体形状にスクリーン印刷法によりプリントした。
【0060】
さらに、上記リード部と電極部成形体の間に、タングステンを主成分とする導電体を挟み込んで密着させ、約1650〜1800℃の温度でホットプレス焼成することにより、棒状基体11と抵抗発熱体12を一括焼成した。
【0061】
その後、導体部の一部を露出させ、電極取り出し部を形成し、Ag−Cuを含有したペーストを塗布し、真空中で焼成してメタライズ層を形成、Niからなるメッキ層を施した後、筒状体14に棒状基体11を嵌装したのち、ロウ付けを行って、図1に示す本願のセラミックヒータ10を得た。
【0062】
次に、筒状体14に棒状基体11を嵌装した根元部にヒートシンクとして、アルミニウムの円盤状のブロックを装着した。その後、セラミックヒータ10に通電して最高温度まで到達させた。平衡状態に達した時点でセラミックヒータ10の先端から1mm〜3mmの範囲の最高温度1400℃とし、棒状基体11の根元部の温度が250℃〜700℃となるようにセラミックヒータ10に印加する電圧を設定し、5分間保持した。
【0063】
この熱サイクルを100回繰り返すことによりシリカ膜の厚みを変えた試料を作製した。さらに、外部加熱炉として、1000℃の酸化炉でセラミックヒータの筒状体から突き出した部分を均一に加熱処理して、周方向の厚みばらつきの均一化を図った試料も作製を行った。
【0064】
それぞれ用意した試料の均熱性については、棒状基体の先端2mmの位置の周方向の温度分布を均等に8点放射温度計により測定し、その平均温度を他端側手前2mmの位置の周方向の温度分布を均等に8点放射温度計により測定した値の平均温度の温度差を求めた。
【0065】
また、シリカ膜の厚さは、同一ロットで作製した試料を抜き取り、必要部位を破断して断面をSEM(走査型電子顕微鏡)で観察して厚さを確認した。なお、長手方向の厚み変化率を求めるために、厚さは先端部、根元部の2箇所を測定するとともに、周方向も輪切りにして断面を観測して厚さの確認を行い、周方向の厚みばらつきも測定した。
【0066】
次に、セラミックヒータの発熱体に電圧を印加して発熱体をジュール発熱させ、セラミックヒータの飽和温度が1400℃となるようにし、電圧印加時間を5分、その後電圧をカットし常温の圧縮空気をセラミックヒータ最高発熱部に吹き付け冷却させることにより強制冷却する時間を2分とした熱サイクルで10000サイクル後の抗折強度を調べた。
【0067】
セラミックヒータの直径は3.2mmであり、ステンレス製筒状体内に挿入固定した状態における片持ち試験を行い、抗折強度を求めた。
【0068】
また、上述した窒化ケイ素質セラミックス製の棒状基体11の表面に熱酸化により電気絶縁性膜15としてシリカ膜を設ける方法以外にも、本発明の範囲内の試料として、CVD法でシリカ膜を設けたもの(試料No.22)、高純度アルミナセラミックス上にCVD法でシリカ膜を設けたもの(試料No.23)、窒化アルミニウムセラミックス上にCVD法で窒化シリコン膜を設けたもの(試料No.24)の作製も行った。
【0069】
さらに、本発明の範囲外の試料として、筒状体14に棒状基体11が嵌装されている根元部に昇温用のヒータを取り付け、熱処理を行うことにより、シリカ膜を棒状基体11の先端から他端側に向かうにつれて厚く形成した試料も作製し、試料No.13〜20とした。また、棒状基体11の高純度アルミナセラミックスよりも熱伝導率が大きい窒化シリコン膜をCVD法により設けたもの(試料No.25)についても作製を行った。
【0070】
そして、従来例として、電気絶縁性膜を設けないもの(試料No.26)についても作製を行った。これらの試料はすべて上記の本発明の実施例と全く同様にして評価を実施した。以上の結果を表1および表2に示す。
【0071】
なお、抗折強度は、基体の筒状体に覆われていない側の先端側2mmの位置を加圧する片持ち抗折試験(筒状体端から加圧点までのスパン12mm、クロスヘッドスピード0.5mm/min)によって求めた。また、抗折強度については10000サイクル後の抗折強度で評価し、試料10本の平均強度が450MPa以上の条件を○、450MPa未満350MPaを超える条件を△、350MPa以下の条件を×とした。
【0072】
さらに、抵抗変化については10000サイクル後の抵抗変化率で評価し、10%以上のものが0本の条件を○、1本以上3本以下の条件を△、4本を超える条件を×とした。
【0073】
そして、総合判定として、上記の2つの評価項目に対して、○が2つのものを◎(大変良い)、○が1つのものを○(良い)、△が2つのものを△(許容範囲内)、×を1つでも含むものを×(不可)とした。
【0074】
【表1】
Figure 2004259610
【0075】
【表2】
Figure 2004259610
【0076】
表1、表2に示した結果より、本発明の範囲内であるNo.1〜12、およびNo.22〜24の試料については、抗折強度、抵抗変化率の評価項目すべてにおいて、許容範囲内の結果を得ることができた。しかしながら、試料No.13〜21、No.25に示した本発明の範囲外である試料は、抗折強度、抵抗変化率の全項目にわたって、良好な結果を得ることができなかった。また、従来例のNo.26も良好な結果は得られなかった。
【0077】
以下、各試料について得られた結果の説明を行う。
【0078】
最初に、No.1〜12の試料については、棒状基体11の先端側のシリカ膜の厚みが棒状基体の他端側のシリカ膜の厚みよりも厚く、断熱効果が得られ、基体発熱体側の温度と露出するセラミックヒータ10の根元部分の温度差が小さくなり、耐熱衝撃性が向上する傾向が見られた。
【0079】
しかしながら、本発明の範囲内の試料の中でも、No.1〜5の試料については、シリカ膜の長手方向の変化率が12%以上あり、抗折強度は540MPa以上の良好な結果が得られたものの、ステンレスからなる筒状体14の温度が上がりすぎて表面が一部酸化する傾向となったため、許容範囲ぎりぎりとみなし、△の評価とした。
【0080】
本願発明の範囲外である、No.13〜20の試料については、棒状基体11の先端側のシリカ膜の厚みが棒状基体11の他端側のシリカ膜の厚みよりも薄い試料であるNo.13〜20は、当然ながら長手方向の厚み変化率は負の値となり、基体発熱体側の温度と露出するセラミックヒータ10の根元部分の温度差が大きくなって、抗折強度が悪化する傾向があった。
【0081】
また、本発明の範囲内の試料の中でもNo.1〜2、No.4〜7、No.10〜12の試料についてはシリカ膜の周方向の厚みばらつきが12%以下であり、周方向の温度差を抑えることができたため、抵抗発熱体への耐熱衝撃性が高くなり、抵抗変化率が10%を超える試料は3本以下と少なく、良好な結果となった。
【0082】
それに対して、シリカ膜の周方向の厚みばらつきが12%以上の試料No.3、8、9については周方向の温度差を抑えることができず、抵抗発熱体への耐熱衝撃性が悪化する傾向があった。
【0083】
また、棒状基体11の先端側のシリカ膜の厚みと棒状基体11の他端側のシリカ膜の厚みに差を持たせずに膜の作製を行ったNo.21は基体発熱体側の温度と露出するセラミックヒータ10の根元部分の温度差が大きくなり、抗折強度が悪化する傾向があった。
【0084】
シリカをCVDで成膜したNo.22は、熱酸化で成膜を行ったNo.11と同等の結果が得られた。
【0085】
さらに、棒状基体11の材質を高純度アルミナセラミックスとし、それよりも低い熱伝導率を有するシリカをCVDにより成膜して電気絶縁性膜とした試料であるNo.23は、抗折強度が370MPaであり、抵抗変化が10%を超えた試料が1本と優れた結果を示し、本発明の効果が得られることが確認された。
【0086】
また、棒状基体11の材質を窒化アルミニウムセラミックスとし、それよりも低い熱伝導率を有する窒化シリコンを電気絶縁性膜とした試料であるNo.24は抗折強度が350MPaであり、抵抗変化が10%を超えた試料が1本であって、本発明の効果が得られることを確認した。
【0087】
一方、棒状基体11の高純度アルミナセラミックスよりも高い熱伝導率を有する窒化シリコンを電気絶縁性膜とした試料であるNo.25は基体発熱体側の温度と露出するセラミックヒータ10の根元部分の温度差が大きくなり、抗折強度が悪化し、抵抗変化が10%を超えた試料も4本であって悪い結果となった。
【0088】
さらに、電気絶縁性膜のない従来例の試料であるNo.26は基体発熱体側の温度と露出するセラミックヒータ10の根元部分の温度差が大きくなり、抗折強度が悪化する傾向があり、なおかつ周方向の温度差を抑えることができず、抵抗発熱体への耐熱衝撃性が悪化する傾向があった。
【0089】
また、今回の実施例により良好な結果が得られた、試料No.5の条件で作製したセラミックヒータ10に、中軸22を取り付けて、グロープラグ本体21にロウ付けおよびかしめを行って固定し、グロープラグ20を作製したところ、電圧を印加して発熱体をジュール発熱させ、グロープラグ先端の飽和温度が1400℃とし、電圧印加時間を5分、その後電圧をカットし常温の圧縮空気を最高発熱部に吹き付け冷却させることにより強制冷却する時間を2分とした熱サイクルで50000サイクルの評価を行ったが、筒状体14と棒状基体11との接触点をはじめ、どの点においても全く破損は認められず、グロープラグとして優れた耐熱衝撃性を示すことがわかった。
【0090】
【発明の効果】
本発明のセラミックヒータ、およびグロープラグは、電気絶縁性セラミックスからなる棒状基体の先端に抵抗発熱体を埋設し、上記棒状基体の他端を筒状体に嵌装して保持したセラミックヒータからなり、上記棒状基体には、少なくとも筒状体から突き出した部分の表面に、上記電気絶縁性セラミックスよりも低い熱伝導率を有する電気絶縁性膜が形成され、かつ上記棒状基体の先端から他端側に向かうにつれて、上記電気絶縁性膜の厚さを薄くすることによって筒状体によって覆われていない露出部分の基体の温度分布の悪化を低減し、電圧印加時の耐熱衝撃に強く、耐久性の優れたセラミックヒータ、およびグロープラグとすることができる。
【図面の簡単な説明】
【図1】本発明のセラミックヒータの断面図である。
【図2】本発明のセラミックヒータを用いたグロープラグの断面図である。
【図3】従来のグロープラグの断面図である。
【符号の説明】
10:セラミックヒータ
11:棒状基体
12:抵抗発熱体
13a:給電部
13b:給電部
14:筒状体
15:電気絶縁性膜
20:グロープラグ
21:グロープラグ本体
22:中軸
23:プラグ電極

Claims (6)

  1. 電気絶縁性セラミックスからなる棒状基体の先端に抵抗発熱体を埋設したセラミックヒータにおいて、前記棒状基体の他端を筒状体に嵌装して保持するとともに、前記棒状基体の少なくとも筒状体から突き出した部分の表面に、前記電気絶縁性セラミックスよりも低い熱伝導率を有する電気絶縁性膜が形成され、かつ前記棒状基体の先端から他端側に向かうにつれて、前記電気絶縁性膜の厚さが薄くなっていることを特徴とするセラミックヒータ。
  2. 前記電気絶縁性セラミックスは窒化物セラミックスであり、前記電気絶縁性膜はシリカ膜であることを特徴とする請求項1記載のセラミックヒータ。
  3. 前記窒化物セラミックスは窒化ケイ素質セラミックスであることを特徴とする請求項2記載のセラミックヒータ。
  4. 前記電気絶縁性膜の前記棒状基体周方向における厚みばらつきを12%以下としたことを特徴とする請求項1から3のいずれかに記載のセラミックヒータ。
  5. 前記棒状基体の先端から他端側に向けて、基体表面の温度が低くなるように温度勾配を設けた状態で、前記電気絶縁性膜を形成することを特徴とする請求項1から4のいずれかに記載のセラミックヒータの製造方法。
  6. 請求項1から5のいずれかのセラミックヒータにグロープラグ本体を取り付けたことを特徴とするグロープラグ。
JP2003049437A 2003-02-26 2003-02-26 セラミックヒータおよびグロープラグ Expired - Fee Related JP4018998B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049437A JP4018998B2 (ja) 2003-02-26 2003-02-26 セラミックヒータおよびグロープラグ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049437A JP4018998B2 (ja) 2003-02-26 2003-02-26 セラミックヒータおよびグロープラグ

Publications (2)

Publication Number Publication Date
JP2004259610A true JP2004259610A (ja) 2004-09-16
JP4018998B2 JP4018998B2 (ja) 2007-12-05

Family

ID=33115156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049437A Expired - Fee Related JP4018998B2 (ja) 2003-02-26 2003-02-26 セラミックヒータおよびグロープラグ

Country Status (1)

Country Link
JP (1) JP4018998B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039587A (ja) * 2006-08-07 2008-02-21 Bosch Corp 円柱状発熱部材の温度測定方法
JP2008076044A (ja) * 2006-09-22 2008-04-03 Robert Bosch Gmbh 内燃機関における燃焼過程に用いられる始動エレメントを被覆するための方法および装置
JP2009231161A (ja) * 2008-03-25 2009-10-08 Ngk Spark Plug Co Ltd セラミックヒータ及びグロープラグ
WO2010001888A1 (ja) 2008-07-03 2010-01-07 ボッシュ株式会社 グロープラグの駆動制御方法
WO2014073267A1 (ja) * 2012-11-08 2014-05-15 ボッシュ株式会社 セラミックスヒータ型グロープラグ
JP2017166758A (ja) * 2016-03-17 2017-09-21 日本特殊陶業株式会社 加熱装置及び温度推定装置
WO2020054554A1 (ja) * 2018-09-11 2020-03-19 京セラ株式会社 ヒータおよびこれを備えたタバコ用加熱具
KR102412408B1 (ko) * 2021-11-10 2022-06-23 (주)에타 저항값 조정이 가능한 세라믹 히터의 제조방법

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039587A (ja) * 2006-08-07 2008-02-21 Bosch Corp 円柱状発熱部材の温度測定方法
JP2008076044A (ja) * 2006-09-22 2008-04-03 Robert Bosch Gmbh 内燃機関における燃焼過程に用いられる始動エレメントを被覆するための方法および装置
JP2009231161A (ja) * 2008-03-25 2009-10-08 Ngk Spark Plug Co Ltd セラミックヒータ及びグロープラグ
WO2010001888A1 (ja) 2008-07-03 2010-01-07 ボッシュ株式会社 グロープラグの駆動制御方法
JP5119329B2 (ja) * 2008-07-03 2013-01-16 ボッシュ株式会社 グロープラグの駆動制御方法
WO2014073267A1 (ja) * 2012-11-08 2014-05-15 ボッシュ株式会社 セラミックスヒータ型グロープラグ
JPWO2014073267A1 (ja) * 2012-11-08 2016-09-08 ボッシュ株式会社 セラミックスヒータ型グロープラグ
JP2017166758A (ja) * 2016-03-17 2017-09-21 日本特殊陶業株式会社 加熱装置及び温度推定装置
WO2020054554A1 (ja) * 2018-09-11 2020-03-19 京セラ株式会社 ヒータおよびこれを備えたタバコ用加熱具
KR20210008526A (ko) * 2018-09-11 2021-01-22 교세라 가부시키가이샤 히터 및 이것을 구비한 담배용 가열구
CN112335334A (zh) * 2018-09-11 2021-02-05 京瓷株式会社 加热器以及具备该加热器的香烟用加热用具
JPWO2020054554A1 (ja) * 2018-09-11 2021-08-30 京セラ株式会社 ヒータおよびこれを備えたタバコ用加熱具
JP7129485B2 (ja) 2018-09-11 2022-09-01 京セラ株式会社 ヒータおよびこれを備えた加熱具
CN112335334B (zh) * 2018-09-11 2022-12-09 京瓷株式会社 加热器以及具备该加热器的加热用具
KR102551999B1 (ko) * 2018-09-11 2023-07-06 교세라 가부시키가이샤 히터 및 이것을 구비한 가열구
KR102412408B1 (ko) * 2021-11-10 2022-06-23 (주)에타 저항값 조정이 가능한 세라믹 히터의 제조방법

Also Published As

Publication number Publication date
JP4018998B2 (ja) 2007-12-05

Similar Documents

Publication Publication Date Title
JP5989896B2 (ja) セラミックヒータ
JP5261103B2 (ja) セラミックヒーター
CN108476558B (zh) 加热器
JP2009287920A (ja) グロープラグ
JP2003229236A (ja) セラミックヒータの製造方法及びグロープラグの製造方法
JP4018998B2 (ja) セラミックヒータおよびグロープラグ
JP2005315447A (ja) セラミックヒーターおよびグロープラグ
JP4546756B2 (ja) セラミックヒータおよびグロープラグ
JP2001130967A (ja) 窒化珪素質焼結体、その製造方法及び該窒化珪素質焼結体を用いたセラミックヒータ並びに該セラミックヒータを備えるグロープラグ
JP2006351446A (ja) セラミックヒータの製造方法及びグロープラグ
JP3078418B2 (ja) セラミック発熱体
JP2010506130A (ja) セラミック発熱体
JP4340143B2 (ja) セラミックヒータ
JP6791636B2 (ja) セラミックヒータ
JP3962216B2 (ja) セラミックヒータ及びこれを備えるグロープラグ
JP2534847B2 (ja) セラミツクヒ−タ
JP6869839B2 (ja) セラミックヒータ、及びグロープラグ
JP4153840B2 (ja) セラミックヒータ
JP2537606B2 (ja) セラミツクヒ−タ
JP3903458B2 (ja) セラミックヒータ及びそれを備えるグロープラグ
JPH07151332A (ja) セラミックグロープラグ
JP3160226B2 (ja) セラミックヒータ
JP4199604B2 (ja) 窒化アルミニウムのセラミックスヒータ
JPH07302681A (ja) セラミック発熱素子
JP4025641B2 (ja) セラミックヒータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070921

R150 Certificate of patent or registration of utility model

Ref document number: 4018998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees