JP2004244584A - Insulating resin composition and use thereof - Google Patents
Insulating resin composition and use thereof Download PDFInfo
- Publication number
- JP2004244584A JP2004244584A JP2003038227A JP2003038227A JP2004244584A JP 2004244584 A JP2004244584 A JP 2004244584A JP 2003038227 A JP2003038227 A JP 2003038227A JP 2003038227 A JP2003038227 A JP 2003038227A JP 2004244584 A JP2004244584 A JP 2004244584A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- insulating
- insulating resin
- insulating layer
- wiring board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、絶縁樹脂組成物、並びにそれを用いた支持体付き絶縁フィルム、多層配線板及び多層配線板の製造法に関する。
【0002】
【従来の技術】
多層配線板の製造方法としては、回路パターンを形成した絶縁基板上に、ガラスクロスにエポキシ樹脂を含浸し半硬化状態にした材料(プリプレグと呼ばれる)を銅箔と重ねて、熱プレスにより積層一体化した後、ドリルで層間接続用の孔をあけ、次いで孔の内壁と銅箔表面上に無電解めっきを行い、必要ならば更に電解めっきを行って導体層として必要な厚さとした後、不要な銅を除去して回路パターンを形成し、多層化させていく方法が一般的であった。
【0003】
ところで、近年、電子機器の小型化、軽量化、多機能化の一段の進展に伴い、LSIやチップ部品等の高集積化が進み、その形態も多ピン化、小型化へと急速に変化している。このため、電子部品の実装密度を向上すべく、多層配線板については、配線の微細化の開発が進められている。これらの要求に合致する多層配線板の製造手法として、プリプレグの代わりに、ガラスクロスを含まない絶縁樹脂組成物を用いて絶縁層を形成し、必要な部分のみバイアホールで層間接続しながら多層化させていくビルドアップ法があり、軽量化や小型化、細線化に適した手法として主流になりつつある。
【0004】
ビルドアップ法に用いる絶縁樹脂組成物は、表面平滑性に優れる絶縁層表面が得られるものであることが、絶縁層上に回路パターンを形成する際のエッチング時の銅残りやレジストの追従の点から求められており、また、例えば100℃付近まで温度が上昇した場合でも、基材、導体(銅)、はんだ等との膨張率にミスマッチが起こりにくい低膨張率で熱変形が少ない絶縁層が得られるものであることが求められている。
【0005】
更に、多層配線板の生産性の点から、絶縁樹脂組成物をフィルム状にして内層回路上にラミネートし、硬化させて絶縁層を形成する手法が有利であり、この場合には、フィルム状態での絶縁樹脂組成物の保存安定性が必要となる。しかし、上記をはじめとする要求を満足しながら保存安定性を両立させることは難易度が高く、通常、このようなフィルムは冷蔵保管されており、使用に関する制約がある。
【0006】
これらの問題に対して、例えば回路充填性に優れた接着フィルムが提案されている(例えば、特許文献1参照)。この技術は、ラミネート時の絶縁樹脂組成物の流動性を向上させて、絶縁層の表面平滑性を達成するものであるが、回路パターンと絶縁層の接着性を確保するためには、粗化後の絶縁層の表面粗度を大きくする必要があり、そのため細線化に支障が生じたり、そもそも細線化が制約されるといった問題がある。
【0007】
また、架橋アクリロニトリルブタジエン粒子(架橋NBR粒子)の配合により、絶縁層の改質や半硬化状態での取り扱い性を改善した絶縁樹脂組成物が提案されている(例えば、特許文献2参照)。しかし、エポキシ樹脂とカルボン酸変性の架橋NBR粒子とを組み合せた場合、カルボン酸とエポキシ樹脂の反応が生じて絶縁樹脂組成物の保存安定性、特にフィルム状態での保存安定性が低下するといった問題がある。
【0008】
更に、絶縁層の熱膨張率を低下させるためには、一般に絶縁樹脂組成物に配合する無機フィラーを多くする手法がとられる。しかし、無機フィラー分が多くすると、絶縁樹脂組成物の流動性が低下し、特に保管後の流動性の低下傾向が著しくなる。
【0009】
このような問題を解決するために研究を進めた結果、(A)エポキシ樹脂、(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子、(C)エポキシ基含有シランカップリング剤及び(D)無機フィラーを含む絶縁樹脂組成物が、硬化させて塗膜とした際に、微細な低粗度の粗化形状でも導体層との高接着性を有し、低熱膨張率であり、フィルム状のような半硬化状態でも、室温下において保管安定性を示すことが見出された。
【0010】
【特許文献1】
特開平11−87927号公報
【特許文献2】
特開2000−256537号公報
【0011】
【発明が解決しようとする課題】
本発明は、フィルム状のような半硬化状態で、室温下において保管安定性を示し、かつ硬化させて塗膜とした際に、低膨張率で熱変形が少なく、微細な低粗度の粗化形状でも高接着性を有する絶縁樹脂組成物を提供するものである。また本発明は、係る絶縁樹脂組成物を用いた支持体付き絶縁フィルム、多層配線板及び多層配線板の製造法を提供するものである。
【0012】
【課題を解決する手段】
本発明1は、(A)エポキシ樹脂、(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子、(C)エポキシ基含有シランカップリング剤、及び(D)無機フィラーを含む、絶縁樹脂組成物に関する。また、本発明2は、(B)成分と(C)成分を予め混合し、該混合物を、(A)成分及び(D)成分と配合して得られる、本発明1の絶縁樹脂組成物に関する。さらに、本発明3は、(B)成分が、(A)〜(D)成分の合計100重量部に対して、2〜15重量部であり、(C)成分が、(B)成分100重量部に対して、0.5〜8重量部である、本発明1又は本発明2の絶縁樹脂組成物に関する。
【0013】
本発明4は、本発明1〜3のいずれかの絶縁樹脂組成物を支持体表面に半硬化させた、支持体付き絶縁フィルムに関し、本発明5は、本発明4の支持体付き絶縁フィルムの絶縁フィルムを硬化させた絶縁層を含む、多層配線板に関する。さらに、本発明6は、本発明1〜3のいずれかの絶縁樹脂組成物を硬化させた絶縁層を含む、多層配線板に関する。
【0014】
本発明7は、(イ)本発明1〜3のいずれかの絶縁樹脂組成物を、内層回路を有する基板に塗工する工程;(ロ)絶縁樹脂組成物を硬化させて絶縁層を得る工程;(ハ)絶縁層表面に外層回路を形成する工程、を含む、多層配線板の製造方法に関し、本発明8は、(イ′)本発明4の支持体付き絶縁フィルムを内層回路を有する基板上に積層する工程;(ロ′)場合により支持体付き絶縁フィルムから支持体を剥離させた後、絶縁フィルムを硬化させて絶縁層を得る工程;(ハ′)絶縁層表面に外層回路を形成する工程、を含む、多層配線板の製造方法に関する。
【0015】
【発明の実施の形態】
本発明の絶縁樹脂組成物は、(A)エポキシ樹脂、(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子、(C)エポキシ基含有シランカップリング剤及び(D)無機フィラーを含む
【0016】
本発明における、(A)エポキシ樹脂は、特に限定されないが、例えばビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のジグリシジルエーテル化物、アルコール類のジグリシジルエーテル化物、及びこれらのアルキル置換体、ハロゲン化物、水素添加物等が挙げられる。エポキシ樹脂は、重量平均分子量が好ましくは1000〜3000であり、1500〜2500がより好ましい。本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。
【0017】
これらのエポキシ樹脂の中では、樹脂組成物を硬化させて塗膜とした際の伸びと、多層配線板の誘電特性の観点からビフェニル型エポキシ樹脂が好ましい。
【0018】
ビフェニル型エポキシ樹脂としては、例えば、式(1):
【0019】
【化1】
【0020】
(式中、pは、1〜5を示す)で示されるエポキシ樹脂が挙げられる。これらは単独でも、2種以上を組み合せて用いてもよい。
【0021】
市販品としては、日本化薬株式会社製のNC−3000S(pが1.7の式(1)のエポキシ樹脂)、NC−3000S−H(pが2.8の式(1)のエポキシ樹脂)が挙げられる。
【0022】
本発明における、(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子は、アクリロニトリル、ブタジエン及びカルボン酸(アクリル酸、メタクリル酸等)を共重合させ、かつ共重合する段階で、部分的に架橋させ、粒子状にしたものをいう。カルボン酸は、アクリル酸が好ましい。粒子の大きさは、一次平均粒子径で、60〜80nmであることができる。これらは、単独でも、2種以上を組み合せて用いてもよい。
【0023】
市販品としては、例えば、日本合成ゴム株式会社製のXER−91が挙げられる。
【0024】
本発明における、(C)エポキシ基含有シランカップリング剤は、エポキシ基を官能基に有するシランカップリング剤であれば特に限定されないが、例えば、式(2)又は(3):
R−SiX3 (2) 又は R−Si(CH3)X2 (3)
(ここで、Rは、エポキシ基を有する有機官能基であり、Xは、メトキシ基又はエトキシ基である)で示されるシランカップリング剤が挙げられる。具体的には、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシランが使用可能である。
【0025】
本発明における、(D)無機フィラーは、特に限定されないが、シリカ、溶融シリカ、タルク、アルミナ、水酸化アルミニウム、硫酸バリウム、水酸化カルシウム、アエロジル及び炭酸カルシウムが挙げられる。これらは、単独又は2種以上を混合して用いてもよい。低熱膨張の点からは、シリカが好ましい。
【0026】
本発明の絶縁樹脂組成物における、(A)エポキシ樹脂の配合量は、(A)〜(D)成分の合計100重量部に対して、40〜70重量部の範囲が好ましく、より好ましくは50〜60重量部である。40重量部以上であると、内層回路基板への樹脂組成物の充填性が適切であり、絶縁層としたときに、例えば288℃のはんだ耐熱性試験で剥離しにくく、耐熱性に優れる。また、70重量部以下であると、絶縁樹脂組成物のワニスを用いて絶縁層を形成する場合、溶剤を熱的に乾燥・除去する工程後の状態が脆くなりすぎることもなく、取り扱い性の点からも好ましいためである。
【0027】
本発明の絶縁樹脂組成物における、(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子の配合量は、(A)〜(D)成分の合計100重量部に対して、2〜15重量部の範囲が好ましく、より好ましくは、3〜10重量部である。2重量部以上であると、絶縁層の表面に微細な粗化形状を形成しやすく、導体層との接着強度も充分であり、また15重量部以下であると、絶縁性の点から好ましい。
【0028】
本発明の絶縁樹脂組成物における、(C)エポキシ基含有シランカップリング剤の配合量は、(B)アクリロニトリルブタジエンゴム粒子100重量部に対して、0.5〜8重量部の範囲が好ましく、より好ましくは、1〜5重量部である。0.5重量部以上であると、保存安定性が得られやすく、8重量部以下であると、絶縁性の点から好ましい。
【0029】
本発明の絶縁樹脂組成物における、(D)無機フィラーの配合量は、(A)〜(D)成分の容積の合計中、5〜35容量%の範囲であることが好ましく、より好ましくは、10〜30容量%である。5容量%以上であると、熱膨張係数が大きくなりすぎることもなく、絶縁層表面に微細な粗化形状を形成でき、35容量%以下であると、配線の微細化にも適切である。なお、本発明の絶縁樹脂組成物に無機フィラーを分散させるには、ニーダー、ボールミル、ビーズミル、3本ロール等既知の混練方法を用いることができる。
【0030】
本発明の絶縁樹脂組成物は、エポキシ樹脂を硬化する硬化剤を含有することができる。エポキシ樹脂用硬化剤は、公知の熱硬化剤を使用することができ、例えば、各種フェノール樹脂類、酸無水物類、アミン類、ヒドラジット類等が挙げられる。導体層に使用される銅箔等との接着性の点からジシアンジアミドが好ましく、耐熱性や絶縁性の点からはフェノールノボラック樹脂等のフェノール系硬化剤が好ましい。これらの熱硬化剤は(A)成分のエポキシ基に対して0.5〜1.5当量で使用することが好ましい。熱硬化剤をこの範囲で使用すると、接着性が良好で、ガラス転移温度や絶縁性も適切である。
【0031】
本発明の絶縁樹脂組成物には、反応促進剤として、潜在性の熱硬化剤である各種イミダゾール類やBF3アミン錯体を配合してもよい。絶縁樹脂組成物の保存安定性、Bステージにした際の取り扱い性及びはんだ耐熱性の点から、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテートが好ましい。これらの配合量は、絶縁樹脂組成物中の(A)エポキシ樹脂に対して、0.2〜0.6重量%の範囲が好ましい。
【0032】
本発明の絶縁樹脂組成物には、必要に応じて、顔料、レベリング剤、消泡剤、イオントラップ剤等の添加剤を配合してもよい。
【0033】
本発明の絶縁樹脂組成物は、公知の方法により、各成分及び硬化剤、反応促進剤、添加剤等の原料を配合することに得られる。原料の配合の順は、特に限定されないが、(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子及び(C)エポキシ基含有シランカップリング剤を予め、混合しておくことが好ましい。この混合は、公知の攪拌機を使用することができ、例えば300〜800rpmの攪拌機で室温、10〜30分間混合することができる。
【0034】
本発明の絶縁樹脂組成物は、予め混合した(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子及び(C)エポキシ基含有シランカップリング剤と、(A)エポキシ樹脂及び(D)無機フィラーとを配合する手順で調製してもよく、(A)エポキシ樹脂と、予め混合した(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子及び(C)エポキシ基含有シランカップリング剤とを配合し、次いで(D)無機フィラーを配合する手順で調製してもよい。更には(D)無機フィラーと、予め混合した(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子及び(C)エポキシ基含有シランカップリング剤とを配合し、次いで(A)エポキシ樹脂を配合する手順で調製してもよい。
【0035】
本発明の絶縁樹脂組成物は、溶剤に希釈してワニスにして、内層回路を形成した絶縁基板に塗工し、硬化させて絶縁層とすることができる。溶剤としては、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、ベンゼン、キシレン、トルエン等の芳香族炭化水素類、エチレングリコールモノエチルエーテル等のアルコール類、エチルエトキシプロピオネート等のエステル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類が挙げられる。これらの溶剤は、単独でも、2種以上を混合して用いてもよい。絶縁樹脂組成物に対する溶剤の使用量は、特に限定されず、従来から使用されている量とすることができる。
【0036】
本発明の絶縁樹脂組成物は、例えば、別容器で(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子と(C)エポキシ基含有シランカップリング剤を攪拌機で混合したものを作製し、これを、エポキシ樹脂、無機フィラー、その他の添加剤を配合してある容器に加え、攪拌機で混合して、ビーズミル等の無機フィラーを粉砕、分散可能な装置で処理して、ワニスとすることができる。
【0037】
本発明の絶縁樹脂組成物及び上記のワニスを、支持体の少なくとも片面に塗工し、半硬化させることにより、支持体付き絶縁フィルムを形成することができる。支持体としては、銅やアルミニウム等の金属箔、ポリエステルやポリイミド等の樹脂のキャリアフィルムが挙げられる。絶縁樹脂組成物のワニスをコンマコータでキャリアフィルムや銅箔に塗工する場合は、絶縁樹脂組成物の全固形分量が、40〜70重量%となるように溶剤の使用量を調節することが好ましい。
【0038】
具体的に、図1を参照して、本発明の絶縁樹脂組成物を用いた多層配線板の製造工程を説明する。ただし、多層配線板の製造工程は、これらには限定されない。
【0039】
まず、絶縁基板2上に第一の回路パターン1aを形成した回路板3を用意する〔図1−(a)参照〕。絶縁基板2は、通常の配線板において用いられている公知の積層板、例えば、ガラスクロス−エポキシ樹脂、紙−フェノール樹脂、紙−エポキシ樹脂、ガラスクロス・ガラス紙−エポキシ樹脂等を用いることができるが、特に限定されない。
【0040】
また、回路パターン1aを形成する方法も特に限定されず、銅箔と前記絶縁基板を張り合わせた銅張積層板を用い、銅箔の不要な部分をエッチング除去するサブトラクティブ法や、前記絶縁基板の必要な部分に無電解めっきによって回路を形成するアディティブ法等、公知の配線板の製造法を用いることができる。
【0041】
また、図1−(a)には絶縁基板2の片面に形成した導体層をエッチングして回路パターン1aを形成した例を示すが、両面銅張積層板を用いて回路パターン1aを絶縁基板2の両面に形成することもできる。
【0042】
次に、回路パターン1aの表面を接着性に適した状態となるように粗化処理する。この手法も、特に限定されず、例えば、次亜塩素酸ナトリウムのアルカリ水溶液により導体層1aの表面に酸化銅の針状結晶を形成し、形成した酸化銅の針状結晶をジメチルアミンボラン水溶液に浸漬して還元するといった公知の製造方法を用いることができる。そして、回路パターン1aを有する回路板3の片面又は両面に絶縁樹脂組成物層4bを形成する。絶縁樹脂組成物層は、本発明の絶縁樹脂組成物を用いるものであれば、その形成方法は特に限定されない。例えば、本発明の絶縁樹脂組成物を、回路パターン1aを有する回路板3の片面又は両面にカーテンコート、ロールコータ等を用いて塗布し、形成する方法、本発明の絶縁樹脂組成物の支持体付き絶縁フィルムを用いて、ラミネート法又はプレスによって形成する方法が挙げられる。その後、絶縁樹脂組成物層を硬化させ、絶縁層を得る。なお、支持体付き絶縁フィルムを用いた場合は、適宜、支持体をはがして、硬化させる。硬化の温度、時間は、後のめっき処理、銅のアニール処理等を考慮した温度、時間であり、例えば160℃〜200℃で20〜60分間とすることができる。この範囲であれば、後のめっき処理時に適切な銅との接着性が得られ、まためっき処理時にアルカリ処理液に浸食されにくい傾向が得られる。
【0043】
更に、内層回路1aと外層回路を層間接続するために絶縁層にホール5cを形成することもできる。このホールの形成手法も特に限定されず、レーザー法やサンドブラスト法等の公知の方法を用いることができる。
【0044】
次いで、絶縁層6c上に第二の回路パターン1d及びバイアホールを形成し、第一の回路パターン1aと層間接続させる〔図1−(d)参照〕。
【0045】
導体層を、めっき法で形成する場合は、まず、絶縁層6cを酸性粗化液で処理する。酸性粗化液としては、クロム/硫酸粗化液、アルカリ過マンガン酸粗化液、フッ化ナトリウム/クロム/硫酸粗化液、テトラフルオロホウ酸)粗化液などを用いることができる。次に、塩化第一スズの塩酸水溶液に浸漬して、中和処理を行い、更に塩化パラジウム系の液に浸漬して、パラジウムを付着させる種付処理を行う。
【0046】
次に、無電解めっき液に浸漬することにより、絶縁層6c上に厚さが0.3〜1.5μmの無電解めっき層を析出させ、必要により更に電気めっきを行い、導体層として適切な厚さとする。無電解めっき液、及び電気めっきの方法は、公知のものを用いることができ、特に限定されない。次いで、不要な部分をエッチング除去して回路パターン1dを形成する。
【0047】
なお、絶縁層を粗化し、種付した後、めっきレジストでマスクを形成し、必要な部分にのみ無電解めっき層を析出させ、次いでめっきレジストを除去して、回路パターン1dを形成することもできる。更に、絶縁層の形成に銅箔を支持体とした支持体付き絶縁フィルムを用いた場合には、第二の回路パターンをエッチング法で形成することができる。エッチング法は、特に限定されず、厚み3μmの極薄銅箔を用いて、パターンめっき法も用いることができる。
【0048】
以下、上記と同様にして、回路パターン1dの粗化処理を行い、第二の絶縁層6fを形成し、更に第三の回路パターン1gを形成し、第二の回路パターン1dと層間接続させる〔図1−(f)、図1−(g)参照〕。
【0049】
同様の工程を繰り返して、層数の多い多層配線板を製造することができる。
【0050】
本発明の絶縁樹脂組成物、支持体付き絶縁フィルム及び多層配線板は、LSIやチップ部品等の電子部品に使用することができる。
【0051】
以下、具体例を挙げて本発明を具体的に説明するが、本発明はこれらに限られるものではない。
【0052】
【実施例】
実施例1
(1)ガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.8mm、両面粗化箔を両面に有する日立化成工業株式会社製、MCL−E−67)にエッチングを施して、片面に回路パターン(以下、第1回路パターンとする)を有する回路板を作製した。
【0053】
(2)下記の手順で絶縁樹脂組成物のワニスを作成した。
▲1▼下記の組成で、カルボン酸変性アクリロニトリルブタジエンゴム粒子とエポキシ基含有シランカップリング剤を配合し、次いで、600rpmの攪拌機で室温、20分間混合処理した。
【0054】
【0055】
▲2▼下記の組成で、上記工程▲1▼で配合しなかった残りの原料を配合した。エポキシ樹脂中のエポキシ基の個数に対するフェノールノボラック中の水酸基の個数の比(水酸基の個数/エポキシ基の個数)は0.7であり、シリカの配合量は、溶剤を除いた全固形分中、20容量%であった。
【0056】
【0057】
上記工程▲2▼の生成物に、上記工程▲1▼の生成物を加え、800rpmの攪拌機で室温、20分間混合処理し、次いでビーズミル装置(アイメックス社製)で30分間処理して、絶縁樹脂組成物のワニスを作製した。この絶縁樹脂組成物のワニスを、PETフィルム上に塗工し、80℃で、10分間乾燥させて、膜厚50±3μmの絶縁樹脂付フィルムロールを作製した。更に、絶縁樹脂付フィルムを、上記の回路板の片面に、絶縁樹脂側が第1回路パターンと接するようにして、バッチ式真空加圧ラミネーター(名機株式会社製、MVLP−500)を用いてラミネートした。
【0058】
(3)回路板にラミネートされた絶縁樹脂付フィルムからPETフィルムを剥がし、180℃、60分間の硬化条件で絶縁樹脂を硬化させ、第1の絶縁層を形成させた。
【0059】
(4)第1の絶縁層に、層間接続用のホールを、CO2レーザ加工機(日立ビアメカニクス製、LCO−1B21型)を使用し、ビーム径80μm、周波数500Hzでパルス幅5μsec、ショット数7の条件で作製した。
【0060】
(5)このホールを作製した回路板を、膨潤液(ジエチレングリコールモノブチルエーテル:200ml/l、NaOH:5g/lの水溶液)を70℃に加温して5分間浸漬処理し、次いで、粗化液(KMnO4:60g/l、NaOH:40g/lの水溶液)を80℃に加温して10分間浸漬処理し、その後、中和液(SnCl2:30g/l、HCl:300ml/l)の水溶液に室温で5分間浸漬処理して中和し、第1の絶縁層を粗化させた。
【0061】
(6)粗化させた第1の絶縁層表面に、第2の回路パターンを形成するために、まず回路基板を、PdCl2を含む種付け処理用液(日立化成工業株式会社製、HS−202B)に、室温で10分間浸漬処理し、水洗し、次いで無電解銅めっき液(日立化成工業株式会社製、CUST−201)に、室温で15分間浸漬し、更に硫酸銅電解めっきを行った。その後、アニールを180℃で、30分間行い絶縁層表面上に厚さ20μmの導体層を形成させた。次に、導体層の銅表面の酸化皮膜を#600のバフロール研磨で除去した後、エッチングレジストを形成し、不要な部分をエッチングで除去した後、その後エッチングレジストを除去して、バイアホールで第1の回路パターンと接続させた、第2の回路パターンの形成を行った。
【0062】
(7)更に多層化するために、第2の回路パターンの導体表面を、亜塩素酸ナトリウム:50g/l、NaOH:20g/l、リン酸三ナトリウム:10g/lの水溶液に85℃で、20分間浸漬した後、水洗し、80℃で20分間乾燥させて、第2の回路パターンの導体表面上に酸化銅の凹凸を形成させた。
【0063】
(8)更に(2)〜(6)の工程を繰り返して、3層の多層配線板を作製した。
【0064】
実施例2
実施例1における3−グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM−403)を、3−グリシドキシプロピルメチルジエトキシシラン(信越化学工業株式会社製、KBE−402)に、配合量はそのままで置き換えた。その他は、実施例1と同様にして行った。
【0065】
実施例3
実施例1における3−グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM−403)を、3−グリシドキシプロピルトリエトキシシラン(信越化学工業株式会社製、KBE−403)に、配合量はそのままで置き換えた。その他は、実施例1と同様にして行った。
【0066】
実施例4
実施例1における3−グリシドキシプロピルトリメトキシシラン、KBM−403(信越化学工業株式会社製、商品名)の配合量を0.5重量部とした。その他は、実施例1と同様にして行った。
【0067】
比較例1
実施例1において、3−グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM−403)を用いずに行った。その他は、実施例1と同様にして行った。
【0068】
比較例2
実施例1において、カルボン酸変性アクリロニトリルブタジエンゴム粒子(JSR株式会社製、XER−91SE−15)と3−グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM−403)を用いずに行った。その他は、実施例1と同様にして行った。
【0069】
比較例3
実施例1において、カルボン酸変性アクリロニトリルブタジエンゴム粒子(JSR株式会社製、XER−91SE−15)と球状シリカ(株式会社アドマテックス社製、アドマファインSC−2050)を用いずに行った。その他は実施例1と同様にして行った。
【0070】
以上の様にして作製した多層配線板について、外層回路との接着強度、絶縁層の粗化後の表面粗さ、絶縁層(塗膜)の伸び率、不飽和雰囲気下での絶縁信頼性加速試験、288℃はんだ耐熱性試験、熱膨張係数、絶縁樹脂付きフィルムを室温で1ヶ月間放置した後の内層回路充填性を評価した。その結果を表1に示す。
【0071】
〔外層回路との接着強度〕
実施例1〜4、比較例1〜3で得られた多層配線板のL1回路層(第3回路パターン)の一部(幅10mm、長さ100mm)の一端を剥がして、つかみ具(東洋ボールドウィン社製、100kgテンシロン装置)でつかみ、垂直方向に約50mm室温中で引き剥がした時の荷重を測定した。
【0072】
〔粗化後の表面粗さ〕
実施例1〜4、比較例1〜3で得られた多層配線板の外層回路(第3回路パターン)を過硫安アンモニウム水溶液中でエッチングして、銅を除去した試験片を作製した。この試験片を2mm角程度に切断し、超深度形状測定顕微鏡((株)キーエンス社製、VK−8500型)を用いて、試験片中の異なる箇所3点について、測定長さ149μm、倍率2000倍、分解能0.05μmの条件で測定し、測定長さ149μm中の粗さの最大部から最小部を引いた値を粗化後の表面粗さとし、3箇所の平均値を算出した。
【0073】
〔塗膜の伸び率〕
実施例1〜4、比較例1〜3の工程で得られた絶縁樹脂組成物のワニスを、それぞれ銅箔に塗工し、配線板作製と同様に、80℃、10分間で乾燥させ、180℃、60分間で硬化させ、さらに電解めっき後、180℃、30分間のアニールをした後、銅をエッチング除去し、硬化させた絶縁樹脂塗膜を得た。この塗膜を、幅10mm、塗膜の膜厚50μm、長さ100mmに切断し、オートグラフ引張試験(チャック間距離50mm)により引っ張り、破断するまでの伸びを求めた。
【0074】
〔不飽和雰囲気下での絶縁信頼性加速試験〕
実施例1〜4、比較例1〜3で作製した多層配線板において、絶縁層の層間方向に電圧印加できるように端子部にリード線をはんだ付けで固定した。そして、絶縁層の層間方向の絶縁抵抗を、室温中で50V、1分印加して測定した。更に、これを試料とし、130℃、85%RHの不飽和雰囲気下で、直流電圧6Vを印加しながら50時間毎に試料を取り出し、室温中で50V、1分印加して測定した時に、108Ω以上を示す時間を絶縁信頼性の時間として表した。
【0075】
〔288℃はんだ耐熱性〕
実施例1〜4、比較例1〜3で作製した多層配線板を、25mm角に切断し、288℃±2℃に調整したはんだ浴に浮かべ、ふくれが発生するまでの時間を調べた。
【0076】
〔熱膨張係数〕
実施例1〜4、比較例1〜3の工程で得られた絶縁樹脂組成物のワニスを、銅箔に塗工し、配線板作製と同様に、80℃、10分間で乾燥させ、180℃、60分間で硬化させ、さらに電解めっき後、180℃、30分間のアニールをした後、銅をエッチング除去し、硬化させた絶縁樹脂塗膜を得た。この塗膜を、幅4mm、塗膜の膜厚50μm、長さ20mmに切断し、2000型熱分析システム943TMA(Du Pont製)を用いて、引っ張り法、加重5gの条件で測定し、30〜100℃間の平均熱膨張係数で表した。
【0077】
〔絶縁フィルムを室温で1ヶ月間放置した後の内層回路充填性〕
実施例1〜4、比較例1〜3の工程で得られた絶縁樹脂付フィルムを、室温で1ヶ月間放置した。その後、実施例と同様にして絶縁樹脂付フィルムを、内層回路板の片面に絶縁樹脂側が第1の回路パターンを接するようにしてバッチ式真空加圧ラミネーター(名機株式会社製、MVLP−500)を用いてラミネートし、次いで絶縁樹脂付きフィルムからPETフィルムを剥がし、180℃、60分間の硬化条件で上記絶縁樹脂を硬化させた。この段階で、絶縁樹脂の内層回路板への充填性を評価した。充填性の評価は、φ2mmの丸穴が空いている箇所50穴を金属顕微鏡で観察し、絶縁樹脂で埋め込みされている穴の割合で示した。50穴全てが埋め込みされている場合は、100%と表示した。
【0078】
【表1】
【0079】
表1から、本発明の絶縁樹脂組成物を用いた実施例1〜4は、フィルム状態で室温下における保管性に優れることがわかる。また多層配線板に用いる場合、本発明の絶縁樹脂組成物による絶縁層は、粗化後の表面粗さが小さいながら、外層回路の銅との接着強度が良好であり、微細配線化に適しており、熱膨張係数に優れていることがわかる。また、多層配線板は、絶縁信頼性、288℃はんだ耐熱性にも優れている。
【0080】
一方、比較例1〜3に示す絶縁樹脂組成物は、フィルム状態での保管性又は絶縁層と外層回路の接着強度に劣るものである。
【0081】
【発明の効果】
本発明の絶縁樹脂組成物は、フィルム状のような半硬化状態で、室温下において保管安定性を示し、かつ硬化させて塗膜とした際に、低膨張率で熱変形が少なく、微細な低粗度の粗化形状でも高接着性を有するものである。この絶縁樹脂組成物を用いた支持体付き絶縁フィルム、多層配線板は、近年の電子機器の小型化、軽量化、多機能化に対応し得るものである。
【図面の簡単な説明】
【図1】(a)〜(i)は多層配線板を製造する工程を説明する断面図である。
【符号の説明】
1a、1d、1g 回路パターン
2 絶縁基板
3 回路板
4b、4c 絶縁樹脂組成物層
5c、5f ホール
6c、6f 絶縁層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulating resin composition, an insulating film with a support using the same, a multilayer wiring board, and a method for producing a multilayer wiring board.
[0002]
[Prior art]
As a method of manufacturing a multilayer wiring board, a material (called prepreg) in which a glass cloth is impregnated with epoxy resin and is in a semi-cured state is laminated on a copper foil on an insulating substrate on which a circuit pattern is formed, and laminated by hot pressing. After drilling, drill holes for interlayer connection, then perform electroless plating on the inner wall of the holes and the copper foil surface, and if necessary, further perform electrolytic plating to obtain the required thickness as a conductor layer, and then unnecessary In general, a method of forming a circuit pattern by removing unnecessary copper and forming a circuit pattern is used.
[0003]
By the way, in recent years, as electronic devices have become smaller, lighter, and more multifunctional, high integration of LSIs and chip components has been progressing, and the form has rapidly changed to multipins and miniaturization. ing. For this reason, in order to improve the mounting density of electronic components, development of miniaturization of wiring has been promoted for multilayer wiring boards. As a method of manufacturing a multilayer wiring board that meets these requirements, instead of prepreg, an insulating layer is formed using an insulating resin composition that does not contain glass cloth. There is a build-up method that makes it possible, and it is becoming mainstream as a method suitable for weight reduction, miniaturization, and thinning.
[0004]
The insulating resin composition used for the build-up method is such that an insulating layer surface having excellent surface smoothness can be obtained, which is a point of following copper residue and resist during etching when forming a circuit pattern on the insulating layer. In addition, even when the temperature rises to, for example, around 100 ° C., an insulating layer having a low expansion coefficient and a small thermal deformation that does not easily cause a mismatch with the expansion coefficient with the base material, conductor (copper), solder, etc. It is required to be obtained.
[0005]
Further, from the viewpoint of productivity of the multilayer wiring board, a method of laminating the insulating resin composition in a film form on the inner layer circuit, and curing and forming an insulating layer is advantageous. Storage stability of the insulating resin composition is required. However, it is very difficult to satisfy storage requirements while satisfying the above and other requirements, and such films are usually stored refrigerated, and there are restrictions on use.
[0006]
To solve these problems, for example, an adhesive film excellent in circuit filling property has been proposed (for example, see Patent Document 1). This technology improves the fluidity of the insulating resin composition during lamination and achieves surface smoothness of the insulating layer.However, in order to ensure the adhesion between the circuit pattern and the insulating layer, roughening is required. It is necessary to increase the surface roughness of the later insulating layer, which causes problems such as hindrance to thinning and restriction of thinning in the first place.
[0007]
Further, an insulating resin composition has been proposed in which the insulating layer is modified and the handleability in a semi-cured state is improved by blending crosslinked acrylonitrile butadiene particles (crosslinked NBR particles) (for example, see Patent Document 2). However, when the epoxy resin is combined with the carboxylic acid-modified crosslinked NBR particles, a reaction between the carboxylic acid and the epoxy resin occurs, and the storage stability of the insulating resin composition, particularly the storage stability in a film state, is reduced. There is.
[0008]
Further, in order to reduce the coefficient of thermal expansion of the insulating layer, a method of increasing the amount of the inorganic filler to be mixed into the insulating resin composition is generally employed. However, when the amount of the inorganic filler is large, the fluidity of the insulating resin composition is reduced, and the tendency of the fluidity after storage is particularly reduced.
[0009]
As a result of studying to solve such a problem, it contains (A) an epoxy resin, (B) carboxylic acid-modified acrylonitrile butadiene rubber particles, (C) an epoxy group-containing silane coupling agent, and (D) an inorganic filler. When the insulating resin composition is cured to form a coating film, it has high adhesion to the conductor layer even in a fine, low-roughness roughened shape, has a low coefficient of thermal expansion, and is semi-cured like a film. Even in the state, it was found that storage stability was exhibited at room temperature.
[0010]
[Patent Document 1]
JP-A-11-87927
[Patent Document 2]
JP 2000-256537 A
[0011]
[Problems to be solved by the invention]
The present invention provides a storage stability at room temperature in a semi-cured state such as a film, and when cured to form a coating film, has a low expansion coefficient, has little thermal deformation, and has a fine low-roughness. An object of the present invention is to provide an insulating resin composition having high adhesiveness even in a modified shape. The present invention also provides an insulating film with a support, a multilayer wiring board, and a method for manufacturing a multilayer wiring board using the insulating resin composition.
[0012]
[Means to solve the problem]
The
[0013]
The present invention 4 relates to an insulating film with a support, wherein the insulating resin composition according to any one of the
[0014]
The present invention 7 includes (a) a step of applying the insulating resin composition of any of the
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The insulating resin composition of the present invention comprises (A) an epoxy resin, (B) carboxylic acid-modified acrylonitrile butadiene rubber particles, (C) an epoxy group-containing silane coupling agent, and (D) an inorganic filler.
[0016]
The epoxy resin (A) in the present invention is not particularly limited, and examples thereof include a bisphenol A epoxy resin, a biphenyl epoxy resin, a naphthalene epoxy resin, a bisphenol F epoxy resin, a phosphorus-containing epoxy resin, a bisphenol S epoxy resin, Alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, diglycidyl etherified bisphenol, diglycidyl etherified naphthalenediol, phenol Examples thereof include diglycidyl ether products, diglycidyl ether products of alcohols, and alkyl-substituted products, halides, and hydrogenated products thereof. The epoxy resin preferably has a weight average molecular weight of 1,000 to 3,000, more preferably 1,500 to 2,500. In the present specification, the weight average molecular weight is a value obtained by a gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
[0017]
Among these epoxy resins, a biphenyl-type epoxy resin is preferable from the viewpoints of elongation when the resin composition is cured to form a coating film and dielectric properties of the multilayer wiring board.
[0018]
As the biphenyl type epoxy resin, for example, a compound represented by the formula (1):
[0019]
Embedded image
[0020]
(Where p represents 1 to 5). These may be used alone or in combination of two or more.
[0021]
As commercially available products, Nippon Kayaku Co., Ltd.'s NC-3000S (epoxy resin of formula (1) with a p of 1.7) and NC-3000S-H (epoxy resin of formula (1) with a p of 2.8) ).
[0022]
In the present invention, (B) carboxylic acid-modified acrylonitrile butadiene rubber particles are partially crosslinked at the stage of copolymerizing acrylonitrile, butadiene and carboxylic acid (acrylic acid, methacrylic acid, etc.) and copolymerizing, It is what we made. The carboxylic acid is preferably acrylic acid. The size of the particles can be 60 to 80 nm in terms of the primary average particle size. These may be used alone or in combination of two or more.
[0023]
Examples of commercially available products include XER-91 manufactured by Nippon Synthetic Rubber Co., Ltd.
[0024]
In the present invention, the epoxy group-containing silane coupling agent (C) is not particularly limited as long as it is a silane coupling agent having an epoxy group as a functional group. For example, the formula (2) or (3):
R-Six 3 (2) or R-Si (CH 3 ) X 2 (3)
(Where R is an organic functional group having an epoxy group, and X is a methoxy group or an ethoxy group). Specifically, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane Can be used.
[0025]
The inorganic filler (D) in the present invention is not particularly limited, and examples thereof include silica, fused silica, talc, alumina, aluminum hydroxide, barium sulfate, calcium hydroxide, Aerosil, and calcium carbonate. These may be used alone or in combination of two or more. Silica is preferred from the viewpoint of low thermal expansion.
[0026]
In the insulating resin composition of the present invention, the compounding amount of the epoxy resin (A) is preferably in the range of 40 to 70 parts by weight, more preferably 50 to 100 parts by weight in total of the components (A) to (D). 6060 parts by weight. When it is 40 parts by weight or more, the filling property of the resin composition into the inner circuit board is appropriate, and when it is used as an insulating layer, it is difficult to peel off in a solder heat resistance test at 288 ° C., for example, and the heat resistance is excellent. When the amount is 70 parts by weight or less, when the insulating layer is formed using a varnish of the insulating resin composition, the state after the step of thermally drying and removing the solvent does not become too brittle, and the handleability is improved. This is because it is preferable from the viewpoint.
[0027]
In the insulating resin composition of the present invention, the amount of the carboxylic acid-modified acrylonitrile butadiene rubber particles (B) is preferably in the range of 2 to 15 parts by weight based on 100 parts by weight of the total of the components (A) to (D). And more preferably 3 to 10 parts by weight. When the amount is 2 parts by weight or more, a fine roughened shape is easily formed on the surface of the insulating layer, and the adhesive strength with the conductor layer is sufficient. When the amount is 15 parts by weight or less, it is preferable from the viewpoint of insulating properties.
[0028]
In the insulating resin composition of the present invention, the compounding amount of the (C) epoxy group-containing silane coupling agent is preferably in the range of 0.5 to 8 parts by weight based on 100 parts by weight of the (B) acrylonitrile butadiene rubber particles. More preferably, it is 1 to 5 parts by weight. When the amount is 0.5 parts by weight or more, storage stability is easily obtained, and when it is 8 parts by weight or less, it is preferable from the viewpoint of insulation.
[0029]
In the insulating resin composition of the present invention, the amount of the inorganic filler (D) is preferably in the range of 5 to 35% by volume, more preferably the total volume of the components (A) to (D). It is 10 to 30% by volume. When the content is 5% by volume or more, the thermal expansion coefficient does not become too large, and a fine roughened shape can be formed on the surface of the insulating layer. When the content is 35% by volume or less, it is suitable for finer wiring. In order to disperse the inorganic filler in the insulating resin composition of the present invention, a known kneading method such as a kneader, a ball mill, a bead mill, and a three-roll mill can be used.
[0030]
The insulating resin composition of the present invention can contain a curing agent for curing the epoxy resin. As the curing agent for the epoxy resin, a known heat curing agent can be used, and examples thereof include various phenol resins, acid anhydrides, amines, and hydrazites. Dicyandiamide is preferred from the viewpoint of adhesion to a copper foil or the like used for the conductor layer, and a phenol-based curing agent such as phenol novolak resin is preferred from the viewpoint of heat resistance and insulation. These thermosetting agents are preferably used in an amount of 0.5 to 1.5 equivalents to the epoxy group of the component (A). When the thermosetting agent is used in this range, the adhesiveness is good, and the glass transition temperature and the insulating property are appropriate.
[0031]
In the insulating resin composition of the present invention, various imidazoles and BFs, which are latent thermosetting agents, are used as reaction accelerators. 3 An amine complex may be blended. From the viewpoint of the storage stability of the insulating resin composition, the handleability in the B stage, and the solder heat resistance, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellit. Tate is preferred. The amount of these components is preferably in the range of 0.2 to 0.6% by weight based on the epoxy resin (A) in the insulating resin composition.
[0032]
The insulating resin composition of the present invention may optionally contain additives such as a pigment, a leveling agent, an antifoaming agent, and an ion trapping agent.
[0033]
The insulating resin composition of the present invention can be obtained by blending each component and raw materials such as a curing agent, a reaction accelerator, and additives by a known method. The order of compounding the raw materials is not particularly limited, but it is preferable to previously mix (B) the carboxylic acid-modified acrylonitrile butadiene rubber particles and (C) the epoxy group-containing silane coupling agent. For this mixing, a known stirrer can be used. For example, mixing can be performed at room temperature for 10 to 30 minutes using a stirrer at 300 to 800 rpm.
[0034]
The insulating resin composition of the present invention comprises premixed (B) carboxylic acid-modified acrylonitrile butadiene rubber particles and (C) an epoxy group-containing silane coupling agent, (A) an epoxy resin, and (D) an inorganic filler. It may be prepared according to the following procedure: (A) an epoxy resin, (B) carboxylic acid-modified acrylonitrile butadiene rubber particles and (C) an epoxy group-containing silane coupling agent mixed in advance, and (D) an inorganic filler May be prepared by the procedure of blending Further, (D) an inorganic filler, (B) carboxylic acid-modified acrylonitrile butadiene rubber particles and (C) an epoxy group-containing silane coupling agent previously mixed are blended, and then (A) an epoxy resin is blended. May be.
[0035]
The insulating resin composition of the present invention can be diluted with a solvent to form a varnish, applied to an insulating substrate having an inner circuit formed thereon, and cured to form an insulating layer. Examples of the solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as benzene, xylene and toluene; alcohols such as ethylene glycol monoethyl ether; esters such as ethyl ethoxy propionate; Amides such as -dimethylformamide and N, N-dimethylacetamide. These solvents may be used alone or as a mixture of two or more. The amount of the solvent to be used with respect to the insulating resin composition is not particularly limited, and may be a conventionally used amount.
[0036]
The insulating resin composition of the present invention is prepared, for example, by mixing (B) carboxylic acid-modified acrylonitrile butadiene rubber particles and (C) an epoxy group-containing silane coupling agent in a separate container with a stirrer, Varnish can be obtained by adding to a container in which the inorganic filler and other additives are blended, mixing with a stirrer, and treating the inorganic filler such as a bead mill with a device capable of pulverizing and dispersing the inorganic filler.
[0037]
An insulating film with a support can be formed by applying the insulating resin composition of the present invention and the above-described varnish on at least one surface of the support and semi-curing the coating. Examples of the support include metal foils such as copper and aluminum, and carrier films of resins such as polyester and polyimide. When applying a varnish of the insulating resin composition to a carrier film or a copper foil with a comma coater, it is preferable to adjust the amount of the solvent used so that the total solid content of the insulating resin composition is 40 to 70% by weight. .
[0038]
Specifically, with reference to FIG. 1, a process for manufacturing a multilayer wiring board using the insulating resin composition of the present invention will be described. However, the manufacturing process of the multilayer wiring board is not limited to these.
[0039]
First, a circuit board 3 having a first circuit pattern 1a formed on an insulating
[0040]
Further, the method of forming the circuit pattern 1a is not particularly limited, and a subtractive method in which an unnecessary portion of the copper foil is removed by etching using a copper-clad laminate in which a copper foil and the insulating substrate are bonded, A known wiring board manufacturing method such as an additive method of forming a circuit by electroless plating at a necessary portion can be used.
[0041]
FIG. 1A shows an example in which a circuit pattern 1a is formed by etching a conductor layer formed on one side of an insulating
[0042]
Next, the surface of the circuit pattern 1a is roughened so as to be in a state suitable for adhesiveness. This method is not particularly limited, either. For example, needle-like crystals of copper oxide are formed on the surface of the conductor layer 1a with an aqueous alkali solution of sodium hypochlorite, and the needle-like crystals of copper oxide formed are converted into an aqueous solution of dimethylamine borane. A known manufacturing method such as immersion and reduction can be used. Then, the insulating resin composition layer 4b is formed on one or both sides of the circuit board 3 having the circuit pattern 1a. The method for forming the insulating resin composition layer is not particularly limited as long as the insulating resin composition layer of the present invention is used. For example, a method of applying and forming the insulating resin composition of the present invention on one or both sides of the circuit board 3 having the circuit pattern 1a using a curtain coat, a roll coater, or the like, and a support for the insulating resin composition of the present invention. Using an attached insulating film, a method of forming by a laminating method or pressing. Then, the insulating resin composition layer is cured to obtain an insulating layer. When an insulating film with a support is used, the support is appropriately peeled off and cured. The curing temperature and time are temperatures and times in consideration of the subsequent plating treatment, copper annealing treatment, and the like, and may be, for example, 160 ° C. to 200 ° C. for 20 to 60 minutes. Within this range, appropriate adhesion to copper can be obtained at the time of the subsequent plating treatment, and there is a tendency that it is hard to be eroded by the alkali treatment liquid at the time of the plating treatment.
[0043]
Further, a hole 5c may be formed in the insulating layer for interlayer connection between the inner layer circuit 1a and the outer layer circuit. The method for forming the holes is not particularly limited, and a known method such as a laser method or a sandblast method can be used.
[0044]
Next, a second circuit pattern 1d and a via hole are formed on the insulating layer 6c, and are connected to the first circuit pattern 1a by interlayer (see FIG. 1- (d)).
[0045]
When the conductor layer is formed by a plating method, first, the insulating layer 6c is treated with an acidic roughening liquid. As the acidic roughening solution, a roughening solution of chromium / sulfuric acid, a roughening solution of alkali permanganate, a roughening solution of sodium fluoride / chromium / sulfuric acid, a roughening solution of tetrafluoroboric acid and the like can be used. Next, it is immersed in a stannous chloride aqueous hydrochloric acid solution to perform a neutralization treatment, and further immersed in a palladium chloride-based solution to perform a seeding treatment for adhering palladium.
[0046]
Next, by immersing in an electroless plating solution, an electroless plating layer having a thickness of 0.3 to 1.5 μm is deposited on the insulating layer 6c. Thickness. Known methods can be used for the electroless plating solution and the electroplating method, and there is no particular limitation. Next, an unnecessary portion is removed by etching to form a circuit pattern 1d.
[0047]
After roughening and seeding the insulating layer, a mask is formed with a plating resist, an electroless plating layer is deposited only on necessary portions, and then the plating resist is removed to form a circuit pattern 1d. it can. Further, when an insulating film with a support using a copper foil as a support is used for forming the insulating layer, the second circuit pattern can be formed by an etching method. The etching method is not particularly limited, and a pattern plating method using an extremely thin copper foil having a thickness of 3 μm can also be used.
[0048]
Thereafter, in the same manner as described above, the roughening treatment of the circuit pattern 1d is performed, the second insulating layer 6f is formed, the third circuit pattern 1g is further formed, and the second circuit pattern 1d is interlayer-connected [ FIG. 1- (f) and FIG. 1- (g)).
[0049]
By repeating the same steps, a multilayer wiring board having a large number of layers can be manufactured.
[0050]
The insulating resin composition, the insulating film with a support, and the multilayer wiring board of the present invention can be used for electronic components such as LSIs and chip components.
[0051]
Hereinafter, the present invention will be described specifically with reference to specific examples, but the present invention is not limited thereto.
[0052]
【Example】
Example 1
(1) Glass cloth base epoxy resin double-sided copper-clad laminate (MCL-E-67, manufactured by Hitachi Chemical Co., Ltd., having a copper foil thickness of 18 μm, a substrate thickness of 0.8 mm, and a double-sided roughened foil on both sides) Etching was performed to produce a circuit board having a circuit pattern on one side (hereinafter, referred to as a first circuit pattern).
[0053]
(2) A varnish of the insulating resin composition was prepared according to the following procedure.
{Circle around (1)} The carboxylic acid-modified acrylonitrile butadiene rubber particles and the epoxy group-containing silane coupling agent having the following composition were blended, and then mixed with a stirrer at 600 rpm for 20 minutes at room temperature.
[0054]
[0055]
{Circle around (2)} The remaining ingredients that were not blended in the above step (1) were blended with the following composition. The ratio of the number of hydroxyl groups in the phenol novolak to the number of epoxy groups in the epoxy resin (the number of hydroxyl groups / the number of epoxy groups) is 0.7, and the compounding amount of silica is as follows: It was 20% by volume.
[0056]
[0057]
The product obtained in the above step (1) is added to the product obtained in the above step (2), mixed with a stirrer at 800 rpm at room temperature for 20 minutes, and then treated with a bead mill (manufactured by Imex Co.) for 30 minutes to obtain an insulating resin. A varnish of the composition was made. The varnish of this insulating resin composition was applied on a PET film, and dried at 80 ° C. for 10 minutes to prepare a film roll with an insulating resin having a thickness of 50 ± 3 μm. Further, a film with an insulating resin is laminated on one surface of the circuit board using a batch type vacuum pressure laminator (MVLP-500, manufactured by Meiki Co., Ltd.) so that the insulating resin side is in contact with the first circuit pattern. did.
[0058]
(3) The PET film was peeled off from the film with the insulating resin laminated on the circuit board, and the insulating resin was cured under curing conditions of 180 ° C. for 60 minutes to form a first insulating layer.
[0059]
(4) A hole for interlayer connection is formed in the first insulating layer by CO 2 Using a laser beam machine (LCO-1B21, manufactured by Hitachi Via Mechanics), the laser beam was manufactured under the conditions of a beam diameter of 80 μm, a frequency of 500 Hz, a pulse width of 5 μsec, and the number of shots was 7.
[0060]
(5) A swelling solution (diethylene glycol monobutyl ether: 200 ml / l, aqueous solution of NaOH: 5 g / l) was heated to 70 ° C. and immersed in the circuit board on which the holes were formed for 5 minutes, and then the roughening solution was used. (KMnO 4 : 60 g / l, NaOH: 40 g / l aqueous solution) was heated to 80 ° C and immersed for 10 minutes, and then neutralized (SnCl 2 : 30 g / l, HCl: 300 ml / l) at room temperature for 5 minutes to neutralize and roughen the first insulating layer.
[0061]
(6) In order to form a second circuit pattern on the roughened surface of the first insulating layer, first, a circuit board is made of PdCl 2 Immersion treatment at room temperature for 10 minutes in a seeding solution (HS-202B, manufactured by Hitachi Chemical Co., Ltd.), washing with water, and then to an electroless copper plating solution (CUST-201, manufactured by Hitachi Chemical Co., Ltd.) Immersion at room temperature for 15 minutes, followed by copper sulfate electrolytic plating. Thereafter, annealing was performed at 180 ° C. for 30 minutes to form a conductor layer having a thickness of 20 μm on the surface of the insulating layer. Next, an oxide film on the copper surface of the conductor layer is removed by # 600 buffling polishing, an etching resist is formed, unnecessary portions are removed by etching, and then the etching resist is removed, and a via hole is removed. A second circuit pattern connected to the first circuit pattern was formed.
[0062]
(7) In order to further form a multilayer, the conductor surface of the second circuit pattern was subjected to an aqueous solution of sodium chlorite: 50 g / l, NaOH: 20 g / l, and trisodium phosphate: 10 g / l at 85 ° C. After being immersed for 20 minutes, it was washed with water and dried at 80 ° C. for 20 minutes to form copper oxide irregularities on the conductor surface of the second circuit pattern.
[0063]
(8) The steps (2) to (6) were further repeated to produce a three-layer multilayer wiring board.
[0064]
Example 2
3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) in Example 1 was replaced with 3-glycidoxypropylmethyldiethoxysilane (KBE-402, manufactured by Shin-Etsu Chemical Co., Ltd.) The amount was replaced as it was. Other than that, it carried out similarly to Example 1.
[0065]
Example 3
The 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-403) in Example 1 was converted into 3-glycidoxypropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-403). The amount was replaced as it was. Other than that, it carried out similarly to Example 1.
[0066]
Example 4
The blending amount of 3-glycidoxypropyltrimethoxysilane and KBM-403 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) in Example 1 was 0.5 part by weight. Other than that, it carried out similarly to Example 1.
[0067]
Comparative Example 1
In Example 1, the reaction was performed without using 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.). Other than that, it carried out similarly to Example 1.
[0068]
Comparative Example 2
In Example 1, without using carboxylic acid-modified acrylonitrile butadiene rubber particles (manufactured by JSR Corporation, XER-91SE-15) and 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) went. Other than that, it carried out similarly to Example 1.
[0069]
Comparative Example 3
In Example 1, the reaction was carried out without using carboxylic acid-modified acrylonitrile butadiene rubber particles (XER-91SE-15, manufactured by JSR Corporation) and spherical silica (Admafine SC-2050, manufactured by Admatex Co., Ltd.). Others were performed similarly to Example 1.
[0070]
For the multilayer wiring board manufactured as described above, the adhesive strength with the outer layer circuit, the surface roughness after roughening of the insulating layer, the elongation rate of the insulating layer (coating), and the acceleration of insulation reliability in an unsaturated atmosphere Tests: 288 ° C. solder heat resistance test, thermal expansion coefficient, inner layer circuit filling after leaving film with insulating resin for one month at room temperature were evaluated. Table 1 shows the results.
[0071]
[Adhesive strength to outer layer circuit]
One end of a part (width 10 mm, length 100 mm) of the L1 circuit layer (third circuit pattern) of the multilayer wiring board obtained in Examples 1 to 4 and Comparative Examples 1 to 3 was peeled off, and a gripper (Toyo Baldwin) was peeled off. (100 kg Tensilon device), and the load when peeled off in a vertical direction at room temperature of about 50 mm was measured.
[0072]
(Surface roughness after roughening)
The outer layer circuits (third circuit patterns) of the multilayer wiring boards obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were etched in an aqueous ammonium persulfate solution to prepare test pieces from which copper was removed. The test piece was cut into a size of about 2 mm square, and a measuring length of 149 μm and a magnification of 2000 were measured at three different points in the test piece using an ultra-depth shape measuring microscope (VK-8500, manufactured by Keyence Corporation). The surface roughness after roughening was determined as a value obtained by subtracting the minimum part from the maximum part of the roughness in the measurement length of 149 μm, and the average value at three places was calculated.
[0073]
[Elongation of coating film]
Each of the varnishes of the insulating resin compositions obtained in the steps of Examples 1 to 4 and Comparative Examples 1 to 3 was applied to a copper foil, and dried at 80 ° C. for 10 minutes in the same manner as in the preparation of the wiring board. After curing at 60 ° C. for 60 minutes, and after electrolytic plating, annealing at 180 ° C. for 30 minutes, copper was removed by etching to obtain a cured insulating resin coating film. This coating film was cut into a width of 10 mm, a thickness of the coating film of 50 μm, and a length of 100 mm, and was pulled by an autograph tensile test (distance between chucks of 50 mm) to determine the elongation until breaking.
[0074]
[Accelerated insulation reliability test under unsaturated atmosphere]
In the multilayer wiring boards manufactured in Examples 1 to 4 and Comparative Examples 1 to 3, lead wires were fixed to the terminals by soldering so that voltage could be applied in the interlayer direction of the insulating layer. Then, the insulation resistance in the interlayer direction of the insulation layer was measured by applying 50 V for 1 minute at room temperature. Further, using this as a sample, the sample was taken out every 50 hours while applying a DC voltage of 6 V in an unsaturated atmosphere of 130 ° C. and 85% RH, and measured at room temperature by applying 50 V for 1 minute. 8 The time showing Ω or more was expressed as insulation reliability time.
[0075]
[288 ° C solder heat resistance]
The multilayer wiring boards manufactured in Examples 1 to 4 and Comparative Examples 1 to 3 were cut into 25 mm squares, floated in a solder bath adjusted to 288 ° C. ± 2 ° C., and the time until blistering was generated was examined.
[0076]
(Coefficient of thermal expansion)
The varnish of the insulating resin composition obtained in the steps of Examples 1 to 4 and Comparative Examples 1 to 3 was applied to a copper foil, and dried at 80 ° C for 10 minutes in the same manner as in the preparation of the wiring board. After curing for 60 minutes, and after electrolytic plating, annealing was performed at 180 ° C. for 30 minutes, and then copper was removed by etching to obtain a cured insulating resin coating film. This coating film was cut into a width of 4 mm, a film thickness of the coating film of 50 μm, and a length of 20 mm, and was measured using a 2000-type thermal analysis system 943TMA (manufactured by Du Pont) under the conditions of a pulling method and a load of 5 g. It was represented by an average coefficient of thermal expansion between 100 ° C.
[0077]
[Fillability of inner layer circuit after leaving insulating film at room temperature for 1 month]
The films with insulating resin obtained in the steps of Examples 1 to 4 and Comparative Examples 1 to 3 were left at room temperature for one month. Then, in the same manner as in the example, a batch type vacuum pressure laminator (MVLP-500, manufactured by Meiki Co., Ltd.) is applied to the film with the insulating resin so that the insulating resin side contacts the first circuit pattern on one side of the inner circuit board. Then, the PET film was peeled off from the film with the insulating resin, and the insulating resin was cured under curing conditions of 180 ° C. for 60 minutes. At this stage, the filling property of the insulating resin into the inner circuit board was evaluated. The evaluation of the filling property was performed by observing 50 holes where a φ2 mm round hole was formed with a metallographic microscope, and indicated the ratio of holes filled with insulating resin. When all 50 holes were buried, it was indicated as 100%.
[0078]
[Table 1]
[0079]
Table 1 shows that Examples 1 to 4 using the insulating resin composition of the present invention have excellent storage stability at room temperature in a film state. Further, when used for a multilayer wiring board, the insulating layer of the insulating resin composition of the present invention has a small surface roughness after roughening, but has a good adhesive strength with copper of the outer layer circuit, and is suitable for fine wiring. This indicates that the thermal expansion coefficient is excellent. Further, the multilayer wiring board is excellent in insulation reliability and 288 ° C. solder heat resistance.
[0080]
On the other hand, the insulating resin compositions shown in Comparative Examples 1 to 3 are inferior in storability in a film state or adhesive strength between an insulating layer and an outer layer circuit.
[0081]
【The invention's effect】
The insulating resin composition of the present invention, in a semi-cured state like a film, shows storage stability at room temperature, and when cured to form a coating film, has a low thermal expansion and a small thermal deformation, and has a fine structure. It has high adhesiveness even in a roughened shape with low roughness. An insulating film with a support and a multilayer wiring board using the insulating resin composition can respond to recent miniaturization, weight reduction, and multifunctionality of electronic devices.
[Brief description of the drawings]
FIGS. 1A to 1I are cross-sectional views illustrating steps for manufacturing a multilayer wiring board.
[Explanation of symbols]
1a, 1d, 1g Circuit pattern
2 Insulating substrate
3 circuit board
4b, 4c Insulating resin composition layer
5c, 5f hall
6c, 6f insulating layer
Claims (8)
(B)カルボン酸変性アクリロニトリルブタジエンゴム粒子、
(C)エポキシ基含有シランカップリング剤、及び
(D)無機フィラー
を含む、絶縁樹脂組成物。(A) epoxy resin,
(B) carboxylic acid-modified acrylonitrile butadiene rubber particles,
An insulating resin composition comprising (C) an epoxy group-containing silane coupling agent and (D) an inorganic filler.
(イ)請求項1〜3のいずれか1項記載の絶縁樹脂組成物を、内層回路を有する基板に塗工する工程、
(ロ)絶縁樹脂組成物を硬化させて絶縁層を得る工程、及び
(ハ)絶縁層表面に外層回路を形成する工程、
を含む、多層配線板の製造方法。The following process:
(A) a step of applying the insulating resin composition according to any one of claims 1 to 3 to a substrate having an inner layer circuit,
(B) a step of curing the insulating resin composition to obtain an insulating layer, and (c) a step of forming an outer layer circuit on the surface of the insulating layer,
A method for manufacturing a multilayer wiring board, comprising:
(イ′)請求項4記載の支持体付き絶縁フィルムを内層回路を有する基板上に積層する工程、
(ロ′)場合により支持体付き絶縁フィルムから支持体を剥離させた後、絶縁フィルムを硬化させて絶縁層を得る工程、及び
(ハ′)絶縁層表面に外層回路を形成する工程、
を含む、多層配線板の製造方法。The following process:
(B) laminating the insulating film with a support according to claim 4 on a substrate having an inner circuit;
(B ′) a step of, if necessary, peeling the support from the insulating film with the support and curing the insulating film to obtain an insulating layer; and (c ′) a step of forming an outer layer circuit on the surface of the insulating layer;
A method for manufacturing a multilayer wiring board, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003038227A JP4400060B2 (en) | 2003-02-17 | 2003-02-17 | Insulating resin composition and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003038227A JP4400060B2 (en) | 2003-02-17 | 2003-02-17 | Insulating resin composition and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004244584A true JP2004244584A (en) | 2004-09-02 |
JP4400060B2 JP4400060B2 (en) | 2010-01-20 |
Family
ID=33022807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003038227A Expired - Fee Related JP4400060B2 (en) | 2003-02-17 | 2003-02-17 | Insulating resin composition and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4400060B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006165094A (en) * | 2004-12-03 | 2006-06-22 | Hitachi Chem Co Ltd | Insulating adhesive sheet for printed wiring board and method of manufacturing printed wiring board |
JP2006189364A (en) * | 2005-01-07 | 2006-07-20 | Olympus Corp | Eddy current flaw detection multi-coil type probe, and manufacturing method therefor |
JP2006291094A (en) * | 2005-04-13 | 2006-10-26 | Yokohama Rubber Co Ltd:The | Epoxy resin composition for reinforced composite material |
JP2011001424A (en) * | 2009-06-17 | 2011-01-06 | Hitachi Industrial Equipment Systems Co Ltd | Insulated casting resin for electric appliance, and high voltage electric appliance using the same |
CN114058034A (en) * | 2021-12-20 | 2022-02-18 | 洛阳赛图新材料科技有限公司 | Nano rubber dispersing method |
US11319406B2 (en) * | 2017-11-14 | 2022-05-03 | Eneos Corporation | Prepreg, fiber-reinforced composite material, and molded article |
-
2003
- 2003-02-17 JP JP2003038227A patent/JP4400060B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006165094A (en) * | 2004-12-03 | 2006-06-22 | Hitachi Chem Co Ltd | Insulating adhesive sheet for printed wiring board and method of manufacturing printed wiring board |
JP2006189364A (en) * | 2005-01-07 | 2006-07-20 | Olympus Corp | Eddy current flaw detection multi-coil type probe, and manufacturing method therefor |
JP4608322B2 (en) * | 2005-01-07 | 2011-01-12 | オリンパス株式会社 | Eddy current flaw detection multi-coil probe manufacturing method |
JP2006291094A (en) * | 2005-04-13 | 2006-10-26 | Yokohama Rubber Co Ltd:The | Epoxy resin composition for reinforced composite material |
JP2011001424A (en) * | 2009-06-17 | 2011-01-06 | Hitachi Industrial Equipment Systems Co Ltd | Insulated casting resin for electric appliance, and high voltage electric appliance using the same |
US11319406B2 (en) * | 2017-11-14 | 2022-05-03 | Eneos Corporation | Prepreg, fiber-reinforced composite material, and molded article |
CN114058034A (en) * | 2021-12-20 | 2022-02-18 | 洛阳赛图新材料科技有限公司 | Nano rubber dispersing method |
Also Published As
Publication number | Publication date |
---|---|
JP4400060B2 (en) | 2010-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4576794B2 (en) | Insulating resin composition and use thereof | |
US11319457B2 (en) | Support-provided insulating layer, laminate, and wiring board | |
JP5251464B2 (en) | Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board | |
KR20190037251A (en) | Interlayer insulating film and manufacturing method thereof | |
JP5023732B2 (en) | Laminated board | |
JP2007001291A (en) | Metallic foil with adhesion adjuvant, printed-wiring board using the same, and manufacturing method for printed-wiring board | |
JP4760932B2 (en) | Insulating resin film for multilayer wiring board, insulating resin film with copper foil for multilayer wiring board, and multilayer wiring board using these | |
JP5728998B2 (en) | Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board | |
JP4400060B2 (en) | Insulating resin composition and use thereof | |
JP5803399B2 (en) | Wiring board manufacturing method | |
JP4300890B2 (en) | Manufacturing method of multilayer wiring board | |
JP5728997B2 (en) | Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board | |
JP2004014611A (en) | Insulation film with supports, multilayer printed circuit board, and its manufacturing method | |
JP4019800B2 (en) | Insulating resin composition manufacturing method, insulating resin composition, multilayer wiring board and manufacturing method thereof | |
JP2013045858A (en) | Coreless multilayer wiring board and manufacturing method thereof | |
JP5879801B2 (en) | Wiring board manufacturing method | |
JP2017035843A (en) | Metal foil with adhesive layer, metal clad laminate and multilayer printed board using the same | |
JP5055659B2 (en) | Insulating resin composition, use thereof and method for producing wiring board | |
JP2009272533A (en) | Insulating film with support for multilayer printed wiring board, multilayer printed wiring board, and method of manufacturing the same | |
JP5790272B2 (en) | Wiring board manufacturing method | |
JP2005171318A (en) | Printed wiring board and method of manufacturing printed wiring board | |
JP2004196983A (en) | Method for producing adhesive sheet and printed-wiring board by using halogen-free insulation resin composition | |
JP6065354B2 (en) | Coreless multilayer wiring board and manufacturing method thereof | |
JP2002134655A (en) | Board for semiconductor package, its manufacturing method, the semiconductor package and its manufacturing method | |
JP2003309377A (en) | Manufacturing method for multilayer wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050822 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080701 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091019 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |