JP5728998B2 - Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board - Google Patents

Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board Download PDF

Info

Publication number
JP5728998B2
JP5728998B2 JP2011031131A JP2011031131A JP5728998B2 JP 5728998 B2 JP5728998 B2 JP 5728998B2 JP 2011031131 A JP2011031131 A JP 2011031131A JP 2011031131 A JP2011031131 A JP 2011031131A JP 5728998 B2 JP5728998 B2 JP 5728998B2
Authority
JP
Japan
Prior art keywords
layer
insulating resin
wiring board
resin material
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011031131A
Other languages
Japanese (ja)
Other versions
JP2012166515A (en
Inventor
信之 小川
信之 小川
雅晴 松浦
雅晴 松浦
村井 曜
曜 村井
弘之 深井
弘之 深井
広明 藤田
広明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011031131A priority Critical patent/JP5728998B2/en
Publication of JP2012166515A publication Critical patent/JP2012166515A/en
Application granted granted Critical
Publication of JP5728998B2 publication Critical patent/JP5728998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ビルドアップ方式の多層配線板において、平滑な樹脂表面でも無電解めっきとの高接着力を示し、低熱膨張率で、加工性及び耐熱性に優れ、微細な回路の形成が可能で、信頼性の高い多層配線板を提供できる配線板用絶縁樹脂材料、多層配線板及び多層配線板の製造方法に関する。   The present invention is a build-up multilayer wiring board that exhibits high adhesion to electroless plating even on a smooth resin surface, has a low coefficient of thermal expansion, excellent workability and heat resistance, and can form fine circuits. The present invention relates to an insulating resin material for wiring boards that can provide a highly reliable multilayer wiring board, a multilayer wiring board, and a method for manufacturing the multilayer wiring board.

多層配線板を製造するには、片面または両面に内層回路を形成した絶縁基板上に、プリプレグと呼ばれる、ガラス布にエポキシ樹脂を含浸し半硬化状態にした材料を銅箔と重ねて熱プレスにより積層一体化した後、ドリルで層間接続用のスルーホールと呼ばれる穴をあけ、スルーホール内壁と銅箔表面上に無電解めっきを行って、必要ならば更に電解めっきを行って回路導体として必要な厚さとした後、不要な銅を除去して多層配線板を製造するのが一般的であった。   In order to manufacture a multilayer wiring board, a material called a prepreg, which is impregnated with epoxy resin in a semi-cured state, is laminated with a copper foil on an insulating substrate having an inner layer circuit formed on one or both sides by hot pressing. After stacking and integrating, drill holes called through holes for interlayer connection are drilled, and electroless plating is performed on the inner wall of the through hole and the copper foil surface. After making the thickness, it is common to produce a multilayer wiring board by removing unnecessary copper.

ところが、近年、電子機器の小型化、軽量化、多機能化が一段と進み、これに伴い、LSIやチップ部品等の高集積化が進みその形態も多ピン化、小型化へと急速に変化している。この為、多層配線板は、電子部品の実装密度を向上するために、微細配線化の開発が進められている。また、低線熱膨張係数を兼備することが要求されている。
これらの要求に合致する多層配線板の製造手法として、ガラスクロスを含まない絶縁樹脂をプリプレグの代わりに絶縁層として用い、必要な部分のみビアホールで接続しながら配線層を形成するビルドアップ方式の多層配線板があり、軽量化や小型化、微細化に適した手法として主流になりつつある。
However, in recent years, electronic devices have been further reduced in size, weight, and functionality, and along with this, LSIs and chip components have been highly integrated, and their forms have rapidly changed to multiple pins and downsizing. ing. For this reason, in order to improve the mounting density of electronic components, multilayer wiring boards are being developed for fine wiring. Further, it is required to have a low linear thermal expansion coefficient.
As a manufacturing method of multilayer wiring boards that meet these requirements, a build-up multilayer that uses insulating resin that does not contain glass cloth as an insulating layer instead of prepreg, and forms wiring layers while connecting only necessary parts with via holes. There is a wiring board, and it is becoming mainstream as a technique suitable for weight reduction, miniaturization, and miniaturization.

このようなビルドアップ方式の多層配線板は、絶縁樹脂フィルムを内層回路板にラミネートし、加熱により硬化させて後、レーザ加工によるビアホール形成し、アルカリ過マンガン酸処理等によって粗化処理とスミア処理を行って無電解銅めっきして、第二の回路と層間接続可能とするビアホールを形成させて製造される(例えば、特許文献1〜3参照)。
このビルドアップ方式では、樹脂と無電解銅めっきとの接着力は、樹脂表面の粗さ(アンカー効果)により確保され、その表面粗さ(Ra)が0.5μm以上であり、表面粗さが大きい。
In such a build-up type multilayer wiring board, an insulating resin film is laminated on an inner circuit board, cured by heating, then a via hole is formed by laser processing, and roughening treatment and smear treatment are performed by alkali permanganate treatment or the like. And performing electroless copper plating to form via holes that allow interlayer connection with the second circuit (see, for example, Patent Documents 1 to 3).
In this build-up method, the adhesive force between the resin and the electroless copper plating is ensured by the roughness of the resin surface (anchor effect), the surface roughness (Ra) is 0.5 μm or more, and the surface roughness is large.

このビルドアップ方式の多層配線板においては、近年の半導体パッケージの小型化・高密度化に伴って、さらに回路の微細化が要求されている。
このような状況において、従来のような表面を粗化して得られる大きな粗化形状(アンカー効果)を利用して無電解銅めっきとの接着力を確保する方法では、10μm以下の微細な回路はショート不良やオープン不良が発生し、歩留り良く製造することができない。一方で、粗化形状を小さくすると、無電解銅めっきとの接着力が低下し、ラインが剥離するなどの不良が発生するため、平滑な表面で無電解銅めっきと高接着力を示す絶縁樹脂フィルムが必要となる。
In this build-up type multilayer wiring board, further miniaturization of the circuit is required with the recent miniaturization and higher density of the semiconductor package.
In such a situation, a fine circuit having a size of 10 μm or less is obtained by a method of securing an adhesive force with electroless copper plating using a large roughened shape (anchor effect) obtained by roughening the surface as in the prior art. Short circuit defects and open defects occur, making it impossible to manufacture with good yield. On the other hand, if the roughened shape is reduced, the adhesive strength with the electroless copper plating decreases, and defects such as peeling of the line occur. Therefore, the insulating resin exhibits electroless copper plating and high adhesive strength on a smooth surface. A film is required.

また、無電解銅めっきと樹脂との接着を確保することを目的として、無電解銅めっき触媒を含む接着層と絶縁樹脂層との2層化構造の絶縁フィルムも開示されている。しかしながら、この2層化構造の絶縁フィルムでは、表面の粗化形状を平滑にすることが行われず、近年の微細化の半導体パッケージ用基板としては、不十分である(例えば、特許文献4参照)。   Also, an insulating film having a two-layer structure of an adhesive layer containing an electroless copper plating catalyst and an insulating resin layer is disclosed for the purpose of ensuring adhesion between the electroless copper plating and the resin. However, in this insulating film having a two-layer structure, the roughened shape of the surface is not smoothed, which is insufficient as a recent miniaturized semiconductor package substrate (see, for example, Patent Document 4). .

さらに、環境意識の高まりから燃焼時に有害な物質を発生する可能性がある材料は電子部品も含めて規制する動きが活発になっている。従来の多層配線板には、燃焼時に有害な物質を発生する可能性があるブロム化合物が難燃化のために使用されてきたが、このようなブロム化合物は近い将来の使用できなくなるものと予想される。
また、電子部品を多層配線板に接続するために一般的に用いられるはんだも鉛を有さない鉛フリーはんだが実用化されつつある。この鉛フリーはんだは、従来の共晶はんだよりも使用温度が約20〜30℃高くなることから従来にもまして材料には高いはんだ耐熱性が必要になっている。
Furthermore, there is an active movement to regulate electronic materials and other materials that may generate harmful substances during combustion due to increased environmental awareness. In conventional multilayer wiring boards, bromine compounds that may generate harmful substances during combustion have been used for flame resistance, but such bromine compounds are expected to be unusable in the near future. Is done.
Also, lead-free solder that does not contain lead is also being put into practical use as a solder generally used for connecting electronic components to a multilayer wiring board. This lead-free solder has a use temperature higher than that of a conventional eutectic solder by about 20 to 30 ° C. Therefore, the material is required to have higher solder heat resistance than ever before.

特開平7−304931号公報Japanese Patent Laid-Open No. 7-304931 特開2002-3705号公報Japanese Patent Laid-Open No. 2002-3705 特開平11−1547号公報JP-A-11-1547 特開平1−99288号公報JP-A-1-99288

本発明の目的は、こうした現状に鑑み、ビルドアップ方式の多層配線板において、平滑な樹脂表面でも無電解めっきとの高接着力を示し、低熱膨張率で、加工性及び耐熱性に優れ、微細な回路の形成が可能で、信頼性の高い多層配線板を提供できる配線板用絶縁樹脂材料、多層配線板及び多層配線板の製造方法を提供することである。   In view of the current situation, the object of the present invention is a build-up type multilayer wiring board, which exhibits high adhesive strength with electroless plating even on a smooth resin surface, has a low thermal expansion coefficient, excellent workability and heat resistance, and is fine. It is to provide an insulating resin material for a wiring board, a multilayer wiring board, and a method for manufacturing the multilayer wiring board, which can form a reliable circuit and can provide a highly reliable multilayer wiring board.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、絶縁樹脂層はビスマレイミド化合物を含むエポキシ樹脂とし、接着補助層では多官能型エポキシ樹脂とエポキシ樹脂硬化剤を予備反応させると共に、平均一次粒径が1μm以下の架橋有機フィラーを含む樹脂組成物からなる厚みが1〜10μmの接着補助層を設けることにより、Raが0.3μm以下の平滑な樹脂面でも良好な接着性、高信頼性を確保できる配線板用絶縁樹脂材料を見出した。
このような平均一次粒径が1μm以下の架橋有機フィラーを20質量%以上含む樹脂組成物とすることで、平均一次粒径が1μmより大きな架橋有機フィラーを用いた場合と比較し、耐熱性を低下させることなく、樹脂の強靭化並びに高伸び率化が可能であり、さらに、Raが0.3μm以下の非常に微細で緻密な粗化形状が得られ、めっき銅との接着性が著しく向上する。
さらに、多官能型エポキシ樹脂とエポキシ樹脂硬化剤を予備反応させ、樹脂の分子量や溶融粘度を調整することで、接着補助層と絶縁樹脂層との2層構造の絶縁フィルムにおいて、樹脂成分の互いにそれぞれの層への移行を抑制でき、安定した接着強度が発現する。また、ジシアンジアミドのような結晶性の硬化剤を用いる際には樹脂組成物中に単体で残存することがあり、耐電食性の低下が懸念されるが、予備反応によりエポキシ樹脂と反応させることで、単体で結晶化して残存することがなくなる。
As a result of intensive research to achieve the above object, the present inventors have made an insulating resin layer an epoxy resin containing a bismaleimide compound, and a pre-reaction of a polyfunctional epoxy resin and an epoxy resin curing agent in an adhesion auxiliary layer. In addition, by providing an adhesion auxiliary layer having a thickness of 1 to 10 μm made of a resin composition containing a crosslinked organic filler having an average primary particle size of 1 μm or less, good adhesion can be achieved even on a smooth resin surface with Ra of 0.3 μm or less. Insulating resin materials for wiring boards that can secure high reliability and high reliability have been found.
By using a resin composition containing 20% by mass or more of a crosslinked organic filler having an average primary particle size of 1 μm or less, heat resistance is improved as compared with the case of using a crosslinked organic filler having an average primary particle size of greater than 1 μm. It is possible to toughen the resin and increase the elongation without lowering, and furthermore, a very fine and dense rough shape with Ra of 0.3 μm or less is obtained, and the adhesiveness with the plated copper is remarkably improved. To do.
Furthermore, by pre-reacting the polyfunctional epoxy resin and the epoxy resin curing agent and adjusting the molecular weight and melt viscosity of the resin, in the insulating film having a two-layer structure of the adhesion auxiliary layer and the insulating resin layer, the resin components are mutually bonded. Transition to each layer can be suppressed, and stable adhesive strength is expressed. In addition, when using a crystalline curing agent such as dicyandiamide, it may remain alone in the resin composition, and there is concern about a decrease in resistance to electric corrosion, but by reacting with an epoxy resin by a preliminary reaction, It will not crystallize and remain alone.

すなわち、本発明は、以下の配線板用絶縁樹脂材料、多層配線板及び多層配線板の製造方法を提供するものである。
1.絶縁樹脂層(A)と接着補助層(B)を有し、絶縁樹脂層(A)が、多官能型エポキシ樹脂(a-1)、ビスマレイミド化合物(a-2)、エポキシ樹脂硬化剤(a-3)及び無機フィラー(a-4)を含有する層であり、接着補助層(B)が、多官能型エポキシ樹脂(b-1)、エポキシ樹脂硬化剤(b-2)の予備反応生成物及び、平均一次粒径1μm以下の架橋有機フィラー(b-3)を含有し、厚みが1〜10μmの層であることを特徴とする配線板用絶縁樹脂材料。
2.絶縁樹脂層(A)が、さらに、リン系難燃剤(a-5)を含有する上記1の配線板用絶縁樹脂材料。
3.接着補助層(B)が、さらに、ヒュームドシリカ(b-4)を含有する上記1又は2の配線板用絶縁樹脂材料。
4.接着補助層(B)に含有する架橋有機フィラー(b-3)がコアシェル構造架橋ゴム粒子である上記1〜3いずれかの配線板用絶縁樹脂材料。
5.接着補助層(B)における固形分基準の架橋有機フィラー(b-3)の含有量が20〜40質量%である上記1〜4いずれかの配線板用絶縁樹脂材料。
6.接着補助層(B)における多官能型エポキシ樹脂(b-1)がビフェニル構造を有するアラルキル型エポキシ樹脂であり、エポキシ樹脂硬化剤(b-2)がトリアジン環含有ノボラック型フェノール樹脂及び/又はジシアンジアミドである上記1〜5いずれかの配線板用絶縁樹脂材料。
7.配線板用絶縁樹脂材料を硬化し、粗化処理した後の接着補助層(B)の表面粗さ(Ra)が0.3μm以下である上記1〜6いずれかの配線板用絶縁樹脂材料。
8.内層回路を有する基板の片面または両面に絶縁層及び外層回路層が逐次積層されてなる多層配線板であって、前記絶縁層が上記1〜7いずれかの配線板用絶縁樹脂材料の硬化物であることを特徴とする多層配線板。
9.内層回路を有する基板に上記1〜7いずれかの配線板用絶縁樹脂材料を積層する工程(イ)、前記配線板用絶縁樹脂材料を硬化して絶縁層を得る工程(ロ)、前記絶縁層表面に外層回路層を形成する工程(ハ)を含むことを特徴とする多層配線板の製造方法。
That is, the present invention provides the following insulating resin material for wiring boards, multilayer wiring boards, and methods for producing multilayer wiring boards.
1. It has an insulating resin layer (A) and an adhesion auxiliary layer (B). The insulating resin layer (A) is composed of a polyfunctional epoxy resin (a-1), a bismaleimide compound (a-2), an epoxy resin curing agent ( a-3) and an inorganic filler (a-4) containing layer, the adhesion auxiliary layer (B) is a pre-reaction of the polyfunctional epoxy resin (b-1) and the epoxy resin curing agent (b-2) An insulating resin material for a wiring board comprising a product and a crosslinked organic filler (b-3) having an average primary particle size of 1 μm or less and a thickness of 1 to 10 μm.
2. The insulating resin material for a wiring board according to 1 above, wherein the insulating resin layer (A) further contains a phosphorus-based flame retardant (a-5).
3. 3. The insulating resin material for a wiring board according to 1 or 2 above, wherein the adhesion auxiliary layer (B) further contains fumed silica (b-4).
4). The insulating resin material for a wiring board according to any one of 1 to 3, wherein the crosslinked organic filler (b-3) contained in the adhesion auxiliary layer (B) is a core-shell structured crosslinked rubber particle.
5. The insulating resin material for a wiring board according to any one of 1 to 4, wherein the content of the crosslinked organic filler (b-3) based on solid content in the adhesion auxiliary layer (B) is 20 to 40% by mass.
6). The multifunctional epoxy resin (b-1) in the adhesion auxiliary layer (B) is an aralkyl epoxy resin having a biphenyl structure, and the epoxy resin curing agent (b-2) is a triazine ring-containing novolac phenol resin and / or dicyandiamide The insulating resin material for a wiring board according to any one of 1 to 5 above.
7). The insulating resin material for wiring boards according to any one of 1 to 6 above, wherein the surface roughness (Ra) of the adhesion auxiliary layer (B) after curing and roughening the insulating resin material for wiring boards is 0.3 μm or less.
8). A multilayer wiring board in which an insulating layer and an outer layer circuit layer are sequentially laminated on one or both sides of a substrate having an inner layer circuit, wherein the insulating layer is a cured product of the insulating resin material for a wiring board according to any one of 1 to 7 above. A multilayer wiring board characterized by being.
9. A step (a) of laminating the insulating resin material for a wiring board according to any one of 1 to 7 above on a substrate having an inner layer circuit, a step (b) of obtaining the insulating layer by curing the insulating resin material for a wiring board, and the insulating layer A method for producing a multilayer wiring board, comprising a step (c) of forming an outer circuit layer on a surface.

本発明によれば、ビルドアップ方式の多層配線板において、平滑な樹脂表面でも無電解めっきとの高接着力を示し、低熱膨張率で、加工性及び耐熱性に優れ、微細な回路の形成が可能で、信頼性の高い配線板用絶縁樹脂材料を提供する。
また、本発明によれば、環境に悪影響を与える可能性があるブロム化合物を一切使用しないで難燃性を有し、鉛フリー化に対応可能な高いはんだ耐熱性を有する配線板用絶縁樹脂材料を提供する。
また、本発明における多層配線板の製造方法によれば、レーザーによる層間接続用ビア形成時において、接着補助層だけが残存するような不良が発生しなくなる。
According to the present invention, in a multilayer wiring board of a build-up system, even a smooth resin surface exhibits high adhesion with electroless plating, has a low thermal expansion coefficient, excellent workability and heat resistance, and can form fine circuits. An insulating resin material for a wiring board that is possible and highly reliable is provided.
In addition, according to the present invention, the insulating resin material for wiring boards has high flame resistance without using any bromine compound that may adversely affect the environment, and has high solder heat resistance that can be made lead-free. I will provide a.
In addition, according to the method for manufacturing a multilayer wiring board in the present invention, when the interlayer connection via is formed by the laser, a defect in which only the adhesion auxiliary layer remains does not occur.

本発明の多層配線板を製造する工程の一例を説明する断面図である。It is sectional drawing explaining an example of the process of manufacturing the multilayer wiring board of this invention.

以下、本発明について詳細に説明する。
本発明の配線板用絶縁樹脂材料は、絶縁樹脂層(A)と接着補助層(B)を有し、絶縁樹脂層(A)が、多官能型エポキシ樹脂(a-1)、ビスマレイミド化合物(a-2)、エポキシ樹脂硬化剤(a-3)及び無機フィラー(a-4)を含有する層であり、接着補助層(B)が、多官能型エポキシ樹脂(b-1)、エポキシ樹脂硬化剤(b-2)の予備反応生成物及び、平均一次粒径1μm以下の架橋有機フィラー(b-3)を含有し、厚みが1〜10μmの層であることを特徴とするものである。
Hereinafter, the present invention will be described in detail.
The insulating resin material for a wiring board of the present invention has an insulating resin layer (A) and an adhesion auxiliary layer (B), and the insulating resin layer (A) is a polyfunctional epoxy resin (a-1), a bismaleimide compound. (A-2) is a layer containing an epoxy resin curing agent (a-3) and an inorganic filler (a-4). The adhesion auxiliary layer (B) is a polyfunctional epoxy resin (b-1), epoxy It contains a preliminary reaction product of a resin curing agent (b-2) and a crosslinked organic filler (b-3) having an average primary particle size of 1 μm or less, and is a layer having a thickness of 1 to 10 μm. is there.

先ず、本発明の配線板用絶縁樹脂材料の絶縁樹脂層(A)は、多官能型エポキシ樹脂(a-1)、ビスマレイミド化合物(a-2)、エポキシ樹脂硬化剤(a-3)及び無機フィラー(a-4)を含有する層であり、さらに、リン系難燃剤(a-5)を含むことが好ましい。   First, the insulating resin layer (A) of the insulating resin material for wiring boards of the present invention comprises a polyfunctional epoxy resin (a-1), a bismaleimide compound (a-2), an epoxy resin curing agent (a-3) and It is a layer containing an inorganic filler (a-4), and preferably further contains a phosphorus-based flame retardant (a-5).

多官能エポキシ樹脂(a-1)は、分子中に2つ以上のエポキシ基を有するエポキシ樹脂であり、フェノールノボラック型エポキシ樹脂や、クレゾールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂などが挙げられる。
絶縁樹脂層(A)における多官能エポキシ樹脂(a-1)の配合量は、溶剤を除いた絶縁樹脂層用組成物の全固形分中で20〜50質量%であることが好ましい。前記(a-1)成分の配合量が20質量%以上とすることによりはんだ耐熱性が向上し、50質量%以下とすることにより回路導体との接着強度が低下することがない。また、多官能エポキシ樹脂として、液状エポキシ樹脂を併用すると、樹脂の流動性が向上するので好適に使用される。
The polyfunctional epoxy resin (a-1) is an epoxy resin having two or more epoxy groups in the molecule, and examples thereof include a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, and an aralkyl type epoxy resin.
It is preferable that the compounding quantity of the polyfunctional epoxy resin (a-1) in an insulating resin layer (A) is 20-50 mass% in the total solid of the composition for insulating resin layers except a solvent. When the blending amount of the component (a-1) is 20% by mass or more, the solder heat resistance is improved, and when it is 50% by mass or less, the adhesive strength with the circuit conductor does not decrease. Further, when a liquid epoxy resin is used in combination as the polyfunctional epoxy resin, the fluidity of the resin is improved, so that it is preferably used.

ビスマレイミド化合物(a-2)は、溶剤に溶解するものであればどのようなものでも使用できる。ビスマレイミド化合物として、例えば大和化成製のBMI−2300、BMI−4000などが使用できるが、さらにアミノフェノール類やジアミン類を溶媒中で加熱し、マイケル付加させて得た変性ビスマレイミド化合物も使用できる。特にアミノフェノール類をマイケル付加させて得た変性ビスマレイミド化合物は、エポキシ樹脂と反応可能なフェノール性水酸基を有するため、エポキシ樹脂との相溶させることができ、好適に使用することができる。マイケル付加させて得る変性ビスマレイミド樹脂は、マレイミド基に対して、アミノ基を0.1〜0.5当量であるのが好ましい。0.1当量以上とすることによりエポキシ樹脂との相溶性が得られ、0.5当量以下とすることにより耐熱性が低下することがない。
ビスマレイミド化合物(a-2)の配合量は、エポキシ樹脂100質量部に対して、100〜900質量部が好ましい。ビスマレイミド化合物の配合量を100質量部以上とすることにより低熱膨張率が得られ、900質量部以下とすることにより反応性が低下することがなく、200℃程度の硬化温度で反応を終了することができる。
Any bismaleimide compound (a-2) can be used as long as it is soluble in a solvent. As the bismaleimide compound, for example, BMI-2300 and BMI-4000 manufactured by Daiwa Kasei can be used, and a modified bismaleimide compound obtained by heating aminophenols and diamines in a solvent and Michael addition can also be used. . In particular, a modified bismaleimide compound obtained by Michael addition of aminophenols has a phenolic hydroxyl group capable of reacting with an epoxy resin, so that it can be compatible with the epoxy resin and can be preferably used. The modified bismaleimide resin obtained by Michael addition preferably has an amino group in an amount of 0.1 to 0.5 equivalents relative to the maleimide group. When the amount is 0.1 equivalent or more, compatibility with the epoxy resin is obtained, and when the amount is 0.5 equivalent or less, the heat resistance does not decrease.
As for the compounding quantity of a bismaleimide compound (a-2), 100-900 mass parts is preferable with respect to 100 mass parts of epoxy resins. A low coefficient of thermal expansion can be obtained by setting the blending amount of the bismaleimide compound to 100 parts by mass or more, and the reaction does not decrease by setting it to 900 parts by mass or less, and the reaction is completed at a curing temperature of about 200 ° C. be able to.

エポキシ樹脂硬化剤(a-3)には、各種フェノール樹脂類、酸無水物類、アミン類、ヒドラジット類などが使用できる。フェノール樹脂類としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂など、酸無水物類としては、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、メチルハイミック酸など、アミン類として、ジシアンジアミド、ジアミノジフェニルメタン、グアニル尿素等が挙げられる。信頼性を向上させるためには、ノボラック型フェノール樹脂であることが好ましい。
エポキシ樹脂硬化剤(a-3)の使用量は、エポキシ基に対して0.5〜1.5当量であることが好ましい。エポキシ樹脂硬化剤をエポキシ基に対して0.5当量以上とすることにより外層銅との接着性が向上し、1.5当量以下とすることによりガラス転移温度(Tg)や絶縁性が低下することがない。
As the epoxy resin curing agent (a-3), various phenol resins, acid anhydrides, amines, hydragits and the like can be used. Examples of phenolic resins include novolak-type phenolic resins and resol-type phenolic resins, examples of acid anhydrides include phthalic anhydride, benzophenonetetracarboxylic dianhydride, and methyl hymic acid, and examples of amines include dicyandiamide and diaminodiphenylmethane. , Guanylurea and the like. In order to improve reliability, a novolac type phenol resin is preferable.
It is preferable that the usage-amount of an epoxy resin hardening | curing agent (a-3) is 0.5-1.5 equivalent with respect to an epoxy group. Adhesion with the outer layer copper is improved by setting the epoxy resin curing agent to 0.5 equivalent or more with respect to the epoxy group, and the glass transition temperature (Tg) and insulating properties are reduced by setting the epoxy resin curing agent to 1.5 equivalent or less. There is nothing.

また、絶縁樹脂層(A)には、エポキシ樹脂硬化剤(a-3)の他に、必要に応じて反応促進剤を使用することができる。反応促進剤としては潜在性の熱硬化剤である各種イミダゾール類やBF3アミン錯体が使用できる。絶縁樹脂層用組成物の保存安定性やBステージ状(半硬化状)の絶縁樹脂層用組成物の取り扱い性及びはんだ耐熱性の点から、反応促進剤として2−フェニルイミダゾールや2−エチル−4−メチルイミダゾールが好適に使用される。
エポキシ樹脂硬化剤(a-3)の配合量はエポキシ樹脂100質量部に対して0.2〜1.0質量部が好ましい。0.2質量部以上とすることにより、はんだ耐熱性が得られ、1.0質量部以下とすることにより、絶縁樹脂層用組成物の保存安定性やBステージ状の絶縁樹脂層用組成物の取り扱い性が低下することがない。
In addition to the epoxy resin curing agent (a-3), a reaction accelerator can be used in the insulating resin layer (A) as necessary. As the reaction accelerator, various imidazoles and BF 3 amine complexes which are latent thermosetting agents can be used. From the viewpoint of storage stability of the insulating resin layer composition, handling property of the B-stage (semi-cured) insulating resin layer composition and solder heat resistance, 2-phenylimidazole and 2-ethyl- 4-methylimidazole is preferably used.
As for the compounding quantity of an epoxy resin hardening | curing agent (a-3), 0.2-1.0 mass part is preferable with respect to 100 mass parts of epoxy resins. When the content is 0.2 parts by mass or more, solder heat resistance is obtained. When the content is 1.0 parts by mass or less, the storage stability of the composition for insulating resin layers and the B-stage composition for insulating resin layers are obtained. The handleability of the is not reduced.

無機フィラー(a-4)としては、例えばシリカ、溶融シリカ、タルク、アルミナ、水酸化アルミニウム、硫酸バリウム、水酸化カルシウム、エーロジル、炭酸カルシウムの中から選ばれるものが使用でき、これらは単独でもあるいは混合して用いても良い。なお、難燃性や低熱膨張の点から水酸化アルミニウムとシリカとを単独あるいは併用して用いることが好ましい。
無機フィラー(a-4)の配合量は、溶剤を除く絶縁樹脂層用組成物全体の固形分中で10〜50質量%にするのが好ましい。さらに好ましくは、30〜40質量%であり、10質量%以上とすることにより低熱膨脹が得られ、また50質量%以下とすることによりレーザ加工性が低下することがない。
As the inorganic filler (a-4), for example, those selected from silica, fused silica, talc, alumina, aluminum hydroxide, barium sulfate, calcium hydroxide, aerosil, and calcium carbonate can be used. You may mix and use. From the viewpoint of flame retardancy and low thermal expansion, it is preferable to use aluminum hydroxide and silica alone or in combination.
It is preferable that the compounding quantity of an inorganic filler (a-4) shall be 10-50 mass% in solid content of the whole composition for insulating resin layers except a solvent. More preferably, it is 30 to 40% by mass. When it is 10% by mass or more, low thermal expansion is obtained, and when it is 50% by mass or less, laser workability is not lowered.

任意に配合されるリン系難燃剤(a-5)は、絶縁信頼性、耐熱性を考慮すれば、エポキシ樹脂と反応性を有するものが好ましく、例えば三光株式会社製のHCA−HQ(商品名)、やダウケミカル製XZ92741(商品名)等が使用できる。
リン系難燃剤(a-5)の含有量は、リン含有量が無機フィラーを除く絶縁樹脂層用組成物の固形分中で0.7〜3質量%の範囲になるようにするのが難燃性を発現するために好ましい。リン含有量が0.7質量%以上とすることにより難燃性が発現し、リン含有量が3質量%以下とすることによりはんだ耐熱性が低下することがない。
The phosphorus-based flame retardant (a-5) optionally blended preferably has reactivity with an epoxy resin in view of insulation reliability and heat resistance. For example, HCA-HQ (trade name) manufactured by Sanko Co., Ltd. And XZ92741 (trade name) manufactured by Dow Chemical Co., Ltd. can be used.
It is difficult for the content of the phosphorus-based flame retardant (a-5) to be in the range of 0.7 to 3% by mass in the solid content of the composition for an insulating resin layer excluding the inorganic filler. It is preferable in order to develop flammability. When the phosphorus content is 0.7% by mass or more, flame retardancy is exhibited, and when the phosphorus content is 3% by mass or less, the solder heat resistance is not lowered.

絶縁樹脂層(A)には、前記(a-1)〜(a-5)の他に、通常の絶縁樹脂層用組成物に使用されるチキソ性付与剤、界面活性剤、カップリング剤等の各種添加剤を適宜配合できる。これらを充分に撹拌した後、泡がなくなるまで静置して絶縁樹脂層(A)用樹脂組成物を得ることができる。   For the insulating resin layer (A), in addition to the above (a-1) to (a-5), a thixotropic agent, a surfactant, a coupling agent and the like used in a normal insulating resin layer composition These various additives can be appropriately blended. After sufficiently stirring these, the resin composition for the insulating resin layer (A) can be obtained by standing until the bubbles disappear.

絶縁樹脂層(A)用組成物は溶剤中で混合して希釈または分散させてワニスの形態とすることが作業性の点で好ましい。この溶剤には、メチルエチルケトン、キシレン、トルエン、アセトン、エチレングリコールモノエチルエーテル、シクロヘキサノン、エチルエトキシプロピオネート、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド等を使用できる。これらの溶剤は、単独あるいは混合系でも良い。この溶剤の前記樹脂層(A)用組成物に対する割合は、一般にワニスとして使用できる割合であればよく、絶縁樹脂層(A)用組成物の塗膜形成の設備に合わせてその使用量を調整する。
絶縁樹脂層(A)用組成物をコンマコータでキャリアフィルムや銅箔に塗工する場合は、溶剤を除く樹脂層用組成物の固形分がワニス中30〜60質量%となるように溶剤の使用量を調節することが好ましい。
本発明の配線板用絶縁樹脂材料における絶縁樹脂層(A)の厚みは10〜100μmとすることが好ましく、15〜60μmとすることがより好ましい。
It is preferable from the viewpoint of workability that the composition for the insulating resin layer (A) is mixed in a solvent and diluted or dispersed to form a varnish. As this solvent, methyl ethyl ketone, xylene, toluene, acetone, ethylene glycol monoethyl ether, cyclohexanone, ethyl ethoxypropionate, N, N-dimethylformamide, N, N-dimethylacetamide and the like can be used. These solvents may be used alone or in a mixed system. The ratio of the solvent to the composition for the resin layer (A) may be a ratio that can generally be used as a varnish, and the use amount thereof is adjusted according to the equipment for forming the coating film of the composition for the insulating resin layer (A). To do.
When the composition for insulating resin layer (A) is applied to a carrier film or copper foil with a comma coater, the use of a solvent is used so that the solid content of the resin layer composition excluding the solvent is 30 to 60% by mass in the varnish. It is preferred to adjust the amount.
The thickness of the insulating resin layer (A) in the insulating resin material for wiring boards of the present invention is preferably 10 to 100 μm, and more preferably 15 to 60 μm.

接着補助層(B)における多官能型エポキシ樹脂(b-1)は、分子中に2つ以上のエポキシ基を有するエポキシ樹脂であり、フェノールノボラック型エポキシ樹脂や、クレゾールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂などが挙げられる。
特に接着補助層(B)における多官能型エポキシ樹脂(b-1)として、アラルキルノボラック型エポキシ樹脂、またはアラルキルノボラック型エポキシ樹脂を含むことが望ましい。アラルキルノボラック型エポキシ樹脂はビフェニル構造を有するアラルキルノボラック型エポキシ樹脂であることが好ましい。
ビフェニル構造を有するノボラック型エポキシ樹脂とは、分子中にビフェニル誘導体の芳香族環を含有したアラルキルノボラック型のエポキシ樹脂であり、例えば、下記の一般式(1)で表されるエポキシ樹脂が挙げられる。これらは単独でも、2種以上を組み合せて用いてもよい。
The multifunctional epoxy resin (b-1) in the adhesion auxiliary layer (B) is an epoxy resin having two or more epoxy groups in the molecule, such as a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, or an aralkyl type. An epoxy resin etc. are mentioned.
In particular, the polyfunctional epoxy resin (b-1) in the adhesion auxiliary layer (B) desirably contains an aralkyl novolac epoxy resin or an aralkyl novolac epoxy resin. The aralkyl novolac type epoxy resin is preferably an aralkyl novolak type epoxy resin having a biphenyl structure.
The novolak type epoxy resin having a biphenyl structure is an aralkyl novolak type epoxy resin containing an aromatic ring of a biphenyl derivative in the molecule, and examples thereof include an epoxy resin represented by the following general formula (1). . These may be used alone or in combination of two or more.

Figure 0005728998
(式中、pは1〜5の数を示す。)
Figure 0005728998
(In formula, p shows the number of 1-5.)

上記一般式(1)で表されるエポキシ樹脂の市販品としては、日本化薬株式会社製のNC−3000(pが1.7の一般式(1)のエポキシ樹脂)、NC−3000−H(pが2.8の一般式(1)のエポキシ樹脂)が挙げられる。
接着補助層(B)における多官能型エポキシ樹脂(b-1)の配合量は、溶剤を除いた全固形分中の割合で20〜50質量%であるのが好ましい。多官能型エポキシ樹脂(b-1)を20質量%以上とすることによりはんだ耐熱性が向上し、50質量%以下とすることにより回路導体との接着強度が向上する。
As a commercial item of the epoxy resin represented by the above general formula (1), NC-3000 (epoxy resin of the general formula (1) having p of 1.7) manufactured by Nippon Kayaku Co., Ltd., NC-3000-H (Epoxy resin of general formula (1) where p is 2.8).
The blending amount of the polyfunctional epoxy resin (b-1) in the adhesion auxiliary layer (B) is preferably 20 to 50% by mass in the total solid content excluding the solvent. When the polyfunctional epoxy resin (b-1) is 20% by mass or more, the solder heat resistance is improved, and when it is 50% by mass or less, the adhesive strength with the circuit conductor is improved.

接着補助層(B)におけるエポキシ樹脂硬化剤(b-2)としては、各種フェノール樹脂類、酸無水物類、アミン類、ヒドラジット類などが挙げられる。フェノール樹脂類としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等、酸無水物類としては、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、メチルハイミック酸等、アミン類として、ジシアンジアミド、ジアミノジフェニルメタン、グアニル尿素等が挙げられる。
エポキシ樹脂硬化剤(b-2)として、信頼性を向上させるためにはノボラック型フェノール樹脂であることが好ましく、トリアジン環含有ノボラック型フェノール樹脂やジシアンジアミドであると金属箔の引き剥がし強さや化学粗化後の無電解めっきの引き剥がし強さが向上するので更に好適に使用される。
Examples of the epoxy resin curing agent (b-2) in the adhesion auxiliary layer (B) include various phenol resins, acid anhydrides, amines, hydrazines, and the like. Examples of phenolic resins include novolak-type phenolic resin and resol-type phenolic resin. Examples of acid anhydrides include phthalic anhydride, benzophenonetetracarboxylic dianhydride, methylhymic acid, and the like. Examples of amines include dicyandiamide and diaminodiphenylmethane. , Guanylurea and the like.
The epoxy resin curing agent (b-2) is preferably a novolak type phenol resin in order to improve reliability, and if it is a triazine ring-containing novolac type phenol resin or dicyandiamide, the metal foil peel strength and chemical roughening are preferred. Since the peel strength of the electroless plating after the formation is improved, it is more preferably used.

上記のトリアジン環含有ノボラック型フェノール樹脂は、ノボラック型フェノール樹脂の主鎖にトリアジン環を含むノボラック型フェノール樹脂を示し、トリアジン環を含むクレゾールノボラック型フェノール樹脂でも構わない。窒素含有量は、トリアジン環含有ノボラック型フェノール樹脂中、10〜25質量%が好ましく、より好ましくは12〜19質量%である。分子中の窒素含有量がこの範囲であると、誘電損失が大きく
なりすぎることもなく、応力緩和層をワニスとする場合に、溶剤への溶解度が適切で、未溶解物の残存量が抑えられる。トリアジン環含有ノボラック型フェノール樹脂は、数平均分子量が、500〜600であるものを用いることができる。これらは単独でも、2種以上を組み合せて用いてもよい。
The above-mentioned triazine ring-containing novolak type phenol resin indicates a novolak type phenol resin containing a triazine ring in the main chain of the novolak type phenol resin, and may be a cresol novolak type phenol resin containing a triazine ring. The nitrogen content is preferably 10 to 25% by mass, more preferably 12 to 19% by mass in the triazine ring-containing novolac type phenol resin. When the nitrogen content in the molecule is within this range, the dielectric loss does not become too large, and when the stress relaxation layer is used as a varnish, the solubility in the solvent is appropriate, and the residual amount of undissolved material can be suppressed. . As the triazine ring-containing novolac type phenol resin, one having a number average molecular weight of 500 to 600 can be used. These may be used alone or in combination of two or more.

トリアジン環含有ノボラック型フェノール樹脂は、フェノールとアデヒドとトリアジン環含有化合物を、pH5〜9の条件下で反応させて得ることができる。フェノールに換えクレゾールを用いるとトリアジン環含有クレゾールノボラック型フェノール樹脂となる。クレゾールは、o−、m−、p−クレゾールのいずれも使用することができ、トリアジン環含有化合物としてはメラミン、グアナミン及びその誘導体、シアヌル酸及びその誘導体を使用することができる。
トリアジン環含有ノボラック型フェノール樹脂の市販品としては、大日本インキ化学工業株式会社製のトリアジン環含有クレゾールノボラック型フェノール樹脂フェノライトEXB−9829(窒素含有量18質量%)が挙げられる。
The triazine ring-containing novolac-type phenol resin can be obtained by reacting phenol, aldehyde, and a triazine ring-containing compound under conditions of pH 5-9. When cresol is used instead of phenol, a triazine ring-containing cresol novolac type phenol resin is obtained. Any of o-, m-, and p-cresol can be used as the cresol, and melamine, guanamine and derivatives thereof, cyanuric acid and derivatives thereof can be used as the triazine ring-containing compound.
As a commercial item of a triazine ring-containing novolac type phenol resin, Dainippon Ink & Chemicals, Inc., a triazine ring-containing cresol novolac type phenol resin phenolite EXB-9829 (nitrogen content 18% by mass) can be mentioned.

接着補助層(B)におけるエポキシ樹脂硬化剤(b-2)は、エポキシ基に対して0.5〜1.5当量であるのが好ましい。エポキシ樹脂硬化剤がエポキシ基に対して0.5当量以上とすることにより外層銅との接着性が向上し、1.5当量以下とすることによりガラス転移温度(Tg)や絶縁性が低下することがない。   The epoxy resin curing agent (b-2) in the adhesion auxiliary layer (B) is preferably 0.5 to 1.5 equivalents relative to the epoxy group. When the epoxy resin curing agent is 0.5 equivalent or more with respect to the epoxy group, the adhesiveness with the outer layer copper is improved, and when it is 1.5 equivalent or less, the glass transition temperature (Tg) and the insulation are lowered. There is nothing.

本発明では接着補助層(B)において、多官能型エポキシ樹脂(b-1)とエポキシ樹脂硬化剤(b-2)の予備反応生成物を使用する。
多官能型エポキシ樹脂(b-1)とエポキシ樹脂硬化剤(b-2)の予備反応は、樹脂の分子量や溶融粘度を調整することで、絶縁樹脂層(A)と接着補助層(B)との2層構造のフィルムにおいて、樹脂成分の互いにそれぞれの層への移行を抑制でき、安定した接着強度を発現させるために必要である。また、ジシアンジアミドのような結晶性の硬化剤を用いる際には接着補助層(B)中に単体で残存することがあり、耐電食性の低下が懸念されるが、予備反応によりエポキシ樹脂とエポキシ樹脂硬化剤を反応させることで、単体で結晶化して残存することがなくなる。
予備反応には、多官能型エポキシ樹脂(b-1)やエポキシ樹脂硬化剤(b-2)を溶解する溶剤を用いることができるが、反応速度の制御や副反応の抑制を目的として溶剤を使用することが好ましい。使用される溶剤には、メチルエチルケトン、キシレン、トルエン、アセトン、エチレングリコールモノエチルエーテル、シクロヘキサノン、エチルエトキシプロピオネート、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド等を使用できる。これらの溶剤は、単独あるいは混合系でも良い。この溶剤の接着補助層(B)用樹脂組成物に対する割合は、ワニスとして使用できる割合でよく、多官能型エポキシ樹脂(b-1)やエポキシ樹脂硬化剤(b-2)の種類によりその使用量を調整する。
予備反応の条件は、目的とする樹脂の分子量や溶融粘度、またはジシアンジアミドのような結晶性硬化剤の残存量を調整するように決定される。一般には80℃から180℃の範囲で、30分から10時間程度で予備反応を行う。
また、予備反応時に、必要に応じて反応促進剤を使用することができる。反応促進剤として各種イミダゾール類やフォスフィン類、BF3アミン錯体が使用できるが、プレ反応中にゲル化しないような反応促進剤を用いる必要がある。
In the present invention, a preliminary reaction product of a polyfunctional epoxy resin (b-1) and an epoxy resin curing agent (b-2) is used in the adhesion auxiliary layer (B).
The preliminary reaction between the polyfunctional epoxy resin (b-1) and the epoxy resin curing agent (b-2) is to adjust the molecular weight and melt viscosity of the resin so that the insulating resin layer (A) and the adhesion auxiliary layer (B) In the film having the two-layer structure, it is necessary to suppress the migration of the resin components to each other and to develop stable adhesive strength. In addition, when a crystalline curing agent such as dicyandiamide is used, it may remain alone in the auxiliary adhesion layer (B), and there is a concern about a decrease in electric corrosion resistance. By reacting the curing agent, it does not crystallize and remain alone.
In the preliminary reaction, a solvent that dissolves the polyfunctional epoxy resin (b-1) or the epoxy resin curing agent (b-2) can be used, but the solvent is used for the purpose of controlling the reaction rate and suppressing side reactions. It is preferable to use it. As a solvent to be used, methyl ethyl ketone, xylene, toluene, acetone, ethylene glycol monoethyl ether, cyclohexanone, ethyl ethoxypropionate, N, N-dimethylformamide, N, N-dimethylacetamide and the like can be used. These solvents may be used alone or in a mixed system. The ratio of this solvent to the resin composition for the auxiliary adhesion layer (B) may be a ratio that can be used as a varnish, and the use depends on the type of the polyfunctional epoxy resin (b-1) or the epoxy resin curing agent (b-2). Adjust the amount.
The conditions for the preliminary reaction are determined so as to adjust the molecular weight and melt viscosity of the target resin or the residual amount of the crystalline curing agent such as dicyandiamide. In general, the preliminary reaction is carried out in the range of 80 ° C. to 180 ° C. for about 30 minutes to 10 hours.
Moreover, a reaction accelerator can be used as needed during the preliminary reaction. Various imidazoles, phosphines, and BF 3 amine complexes can be used as the reaction accelerator, but it is necessary to use a reaction accelerator that does not gel during the pre-reaction.

さらに、予備反応後に必要に応じて反応促進剤を追加して使用することができる。この際の反応促進剤としては潜在性の熱硬化剤である各種イミダゾール類やBF3アミン錯体が使用できる。
予備反応後に追加して使用される反応促進剤は、配線板用絶縁樹脂材料の保存安定性やBステージ状(半硬化状)の配線板用絶縁樹脂材料の取り扱い性及びはんだ耐熱性の点から2−フェニルイミダゾールや2−エチル−4−メチルイミダゾールが好ましい。その配合量はエポキシ樹脂100質量部に対して0.2〜1.0質量部が好ましい。0.2質量部以上とすることにより硬化反応が不十分となってはんだ耐熱性が低下することがなく、1.0質量部以下とすることにより配線板用絶縁樹脂材料の保存安定性やBステージ状の配線板用絶縁樹脂材料の取り扱い性が低下するためである。
Furthermore, a reaction accelerator can be additionally used as necessary after the preliminary reaction. As the reaction accelerator at this time, various imidazoles and BF 3 amine complexes which are latent thermosetting agents can be used.
Additional reaction accelerators used after the preliminary reaction are from the viewpoint of storage stability of insulating resin materials for wiring boards, handling properties of B-stage (semi-cured) insulating resin materials for wiring boards, and solder heat resistance. 2-phenylimidazole and 2-ethyl-4-methylimidazole are preferred. The blending amount is preferably 0.2 to 1.0 part by mass with respect to 100 parts by mass of the epoxy resin. By setting the amount to 0.2 parts by mass or more, the curing reaction is insufficient and the solder heat resistance is not lowered. By setting the amount to 1.0 parts by mass or less, the storage stability of the insulating resin material for wiring boards and B This is because the handleability of the stage-like insulating resin material for wiring boards is lowered.

接着補助層(B)における架橋有機フィラー(b-3)は、平均一次粒径が1μm以下であれば、どのようなものでもよいが、例えばアクリロニトリルブタジエンの共重合物として、アクリロニトリルとブタジエンとを共重合した架橋NBR粒子や、アクリロニトリルとブタジエンとアクリル酸などのカルボン酸とを共重合したもの、ポリブタジエンやNBR、シリコンゴムをコアとしアクリル酸誘導体をシェルとした、いわゆるコア−シェルゴム粒子も使用可能である。   The crosslinked organic filler (b-3) in the adhesion auxiliary layer (B) may be any one as long as the average primary particle size is 1 μm or less. For example, as a copolymer of acrylonitrile butadiene, acrylonitrile and butadiene are used. Copolymerized crosslinked NBR particles, those obtained by copolymerizing acrylonitrile, butadiene and carboxylic acids such as acrylic acid, so-called core-shell rubber particles using polybutadiene, NBR, or silicon rubber as the core and acrylic acid derivatives as the shell can also be used. It is.

上記の架橋NBR粒子とは、アクリロニトリル、ブタジエンを共重合させ、かつ共重合する段階で、部分的に架橋させ、粒子状にしたものである。またアクリル酸、メタクリル酸等のカルボン酸を併せて共重合することにより、カルボン酸変性架橋NBR粒子を得ることも可能である。ブタジエンゴム−アクリル樹脂のコア−シェルゴム粒子は、乳化重合でブタジエン粒子を重合させ、引き続きアクリル酸エステル、アクリル酸等のモノマーを添加して重合を続ける二段階の重合方法で得ることができる。架橋シリコンゴム−アクリル樹脂のコア−シェルゴム粒子は、乳化重合でシリコン粒子を重合させ、引き続きアクリル酸エステル、アクリル酸等のモノマーを添加して重合を続ける二段階の重合方法で得ることができる。粒子の大きさは、一次平均粒子径で、50nm〜1μmにすることができる。これらは、単独でも、2種以上を組み合せて用いてもよい。   The above-mentioned crosslinked NBR particles are those obtained by partially crosslinking and forming particles in a stage where acrylonitrile and butadiene are copolymerized and copolymerized. It is also possible to obtain carboxylic acid-modified crosslinked NBR particles by copolymerizing together carboxylic acids such as acrylic acid and methacrylic acid. The core-shell rubber particles of butadiene rubber-acrylic resin can be obtained by a two-stage polymerization method in which butadiene particles are polymerized by emulsion polymerization, and then monomers such as acrylic acid ester and acrylic acid are added to continue polymerization. The core-shell rubber particles of the crosslinked silicone rubber-acrylic resin can be obtained by a two-stage polymerization method in which the silicone particles are polymerized by emulsion polymerization, and then a monomer such as an acrylate ester or acrylic acid is added to continue the polymerization. The size of the particles can be 50 nm to 1 μm as the primary average particle size. These may be used alone or in combination of two or more.

カルボン酸変性アクリロニトリルブタジエンゴム粒子の市販品としては日本合成ゴム株式会社製のXER−91(商品名)が挙げられ、ブタジエンゴム−アクリル樹脂のコアシェル粒子はロームアンドハース株式会社製のパラロイドEXL2655(商品名)やガンツ化成工業株式会社のAC−3832(商品名)が挙げられる。
架橋シリコンゴム−アクリル樹脂のコア−シェルゴム粒子は、旭化成ワッカーシリコーン株式会社製GENIOPERL P52(商品名)などがある。
Examples of commercially available carboxylic acid-modified acrylonitrile butadiene rubber particles include XER-91 (trade name) manufactured by Nippon Synthetic Rubber Co., Ltd., and core-shell particles of butadiene rubber-acrylic resin are Paraloid EXL2655 (commercial product) manufactured by Rohm and Haas Co., Ltd. Name) and AC-3832 (trade name) of Gantz Kasei Kogyo Co., Ltd.
Examples of the core-shell rubber particles of the crosslinked silicone rubber-acrylic resin include GENIOPERL P52 (trade name) manufactured by Asahi Kasei Wacker Silicone Co., Ltd.

接着補助層(B)において、架橋有機フィラー(b-3)の含有量は20〜40質量%が好ましい。この架橋有機フィラーの含有量を20質量%以上とすることにより樹脂の強靭性や伸び率が高く、さらに緻密な粗化形状が得られるので、めっき銅との接着力が向上する。また、架橋有機フィラーの含有量を40質量%以下とすることにより耐熱性が低下することがない。
これらの架橋有機フィラー(b-3)は、分散性を高めるために、ニーダー、ボールミル、ビーズミル、3本ロール、ナノマイザー等既知の混練・分散方法により分散することが好ましい。
In the adhesion auxiliary layer (B), the content of the crosslinked organic filler (b-3) is preferably 20 to 40% by mass. By setting the content of the crosslinked organic filler to 20% by mass or more, the toughness and elongation of the resin are high and a finer roughened shape can be obtained, so that the adhesive strength with the plated copper is improved. Moreover, heat resistance does not fall by content of a crosslinked organic filler being 40 mass% or less.
These crosslinked organic fillers (b-3) are preferably dispersed by a known kneading / dispersing method such as a kneader, a ball mill, a bead mill, a three-roll mill, or a nanomizer in order to enhance dispersibility.

接着補助層(B)において任意に使用されるヒュームドシリカ(b-4)はどのようなものでも良いが、絶縁信頼性、耐熱性を考慮すれば、エポキシ樹脂中での分散性が良好なものが好ましく、表面を疎水性化処理した例えば日本アエロジル株式会社製のAEROSIL R972(商品名)や同社製AEROSIL R202(商品名)等が使用できる。
ヒュームドシリカ(b-4)の含有量は、接着補助層(B)の固形分中で3〜20質量%の範囲になるようにすることがレーザ加工性を良好にするために好ましい。ヒュームドシリカの含有量を3質量%以上とすることによりレーザ加工性が低下して接着補助層の残存することがなく、20質量%以下とすることにより接着強度が低下することがない。
Any fumed silica (b-4) used arbitrarily in the adhesion auxiliary layer (B) may be used, but in view of insulation reliability and heat resistance, dispersibility in the epoxy resin is good. For example, AEROSIL R972 (trade name) manufactured by Nippon Aerosil Co., Ltd. or AEROSIL R202 (trade name) manufactured by Nippon Aerosil Co., Ltd. can be used.
The content of fumed silica (b-4) is preferably in the range of 3 to 20% by mass in the solid content of the adhesion auxiliary layer (B) in order to improve the laser processability. When the fumed silica content is 3% by mass or more, the laser workability does not decrease and the auxiliary adhesion layer does not remain, and when the content is 20% by mass or less, the adhesive strength does not decrease.

接着補助層(B)には、前記(A)〜(D)の成分の他、通常の絶縁樹脂組成物に使用されるチキソ性付与剤、界面活性剤、カップリング剤等の各種添加剤を適宜配合できる。これらを充分に撹拌した後、泡がなくなるまで静置して接着補助層用樹脂組成物を得ることができる。   In addition to the components (A) to (D), various additives such as a thixotropic agent, a surfactant and a coupling agent used in ordinary insulating resin compositions are added to the auxiliary adhesion layer (B). It can mix | blend suitably. After sufficiently stirring these, it is allowed to stand until there are no bubbles to obtain a resin composition for an auxiliary adhesion layer.

接着補助層(B)を形成する際は、接着補助層用樹脂組成物を溶剤中で混合して希釈または分散させてワニスの形態とするのが作業性の点で好ましい。この溶剤には、メチルエチルケトン、キシレン、トルエン、アセトン、エチレングリコールモノエチルエーテル、シクロヘキサノン、エチルエトキシプロピオネート、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド等を使用できる。これらの溶剤は、単独あるいは混合系でも良い。この溶剤の接着補助層用樹脂組成物に対する割合は、一般にワニスとして使用できる割合であればよく、樹脂組成物の塗膜形成の設備に合わせてその使用量を調整する。
接着補助層(B)用樹脂組成物をコンマコータでキャリアフィルム(支持体)に塗工する場合は、溶剤を除く樹脂組成物の固形分がワニス中で10〜40質量%となるように溶剤の使用量を調節することが好ましい。
接着補助層(B)の厚さは1〜10μmであり、好ましくは2〜5μmである。接着補助層(B)の厚さを1μm以上とすることにより接着力が向上し、10μm以下とすることにより配線板用絶縁樹脂としての低熱膨張率化に有効である。
When forming the adhesion auxiliary layer (B), it is preferable from the viewpoint of workability that the resin composition for the adhesion auxiliary layer is mixed in a solvent and diluted or dispersed to form a varnish. As this solvent, methyl ethyl ketone, xylene, toluene, acetone, ethylene glycol monoethyl ether, cyclohexanone, ethyl ethoxypropionate, N, N-dimethylformamide, N, N-dimethylacetamide and the like can be used. These solvents may be used alone or in a mixed system. The ratio of the solvent to the resin composition for the auxiliary adhesion layer is generally a ratio that can be used as a varnish, and the amount used is adjusted in accordance with the equipment for forming the coating film of the resin composition.
When the adhesive auxiliary layer (B) resin composition is applied to a carrier film (support) with a comma coater, the solvent content is adjusted so that the solid content of the resin composition excluding the solvent is 10 to 40% by mass in the varnish. It is preferable to adjust the amount used.
The thickness of the adhesion auxiliary layer (B) is 1 to 10 μm, preferably 2 to 5 μm. Adhesive strength is improved by setting the thickness of the auxiliary adhesion layer (B) to 1 μm or more, and by setting the thickness to 10 μm or less, it is effective for reducing the thermal expansion coefficient as an insulating resin for wiring boards.

本発明のビルドアップ方式の多層配線板に使用される配線板用絶縁樹脂材料(アディティブ用絶縁樹脂材料)は、例えば、支持体上に絶縁樹脂層(A)用組成物の半硬化状態のフィルムとして形成される。
即ち、配線板用絶縁樹脂材料の一形態例としてアディティブ用絶縁樹脂フィルムを得る場合には、先ず、接着補助層(B)用組成物のワニスを支持体上に塗布・乾燥して接着補助層付き支持体を作成し、得られた支持体の接着補助層上に絶縁樹脂層(A)用組成物のワニスを塗布し、乾燥する方法が挙げられる。
絶縁樹脂層(A)用組成物のワニスを接着補助層付き支持体上に塗布する際は、コンマコータ、バーコータ、キスコータ、ロールコーター等が利用でき、アディティブ絶縁フィルムの厚みによって適宜使用される。塗布厚、塗布後の乾燥条件等は、使用目的に合わせて適宜選択されるため特に制限するものではないが、一般にワニスに使用した溶剤が80質量%以上揮発していることが好ましい。
アディティブ用絶縁樹脂フィルムが表面に形成される支持体としては、PET等のプラスチックフィルムや金属箔等が挙げられ、アディティブ用絶縁樹脂フィルムの硬化後に支持体を剥離除去する場合は離型性のプラスチックフィルム等が好ましい。
The insulating resin material for wiring boards (additive insulating resin material) used for the multilayer wiring board of the buildup method of the present invention is, for example, a semi-cured film of the composition for the insulating resin layer (A) on the support Formed as.
That is, when an insulating resin film for additive is obtained as an example of the insulating resin material for wiring boards, first, the varnish of the composition for the adhesion auxiliary layer (B) is applied and dried on the support, and then the adhesion auxiliary layer. There is a method in which an attached support is prepared, a varnish of the composition for an insulating resin layer (A) is applied on the adhesion auxiliary layer of the obtained support, and dried.
When applying the varnish of the composition for the insulating resin layer (A) onto the support with an adhesion auxiliary layer, a comma coater, a bar coater, a kiss coater, a roll coater, or the like can be used, and it is appropriately used depending on the thickness of the additive insulating film. The coating thickness, drying conditions after coating, and the like are not particularly limited because they are appropriately selected according to the purpose of use, but it is generally preferred that the solvent used in the varnish is volatilized by 80% by mass or more.
Examples of the support on which the insulating resin film for additive is formed include a plastic film such as PET, a metal foil, and the like. When the support is peeled off after the additive insulating resin film is cured, a releasable plastic is used. A film or the like is preferable.

本発明の多層配線板は、内層回路を有する基板の片面または両面に絶縁層及び外層回路層が逐次積層されているものであり、絶縁層が本発明の配線板用絶縁樹脂材料が硬化物であることを特徴とするものである。配線板用絶縁樹脂材料は、通常、多層配線板作製時の熱履歴により硬化される。
以下、図面を用いて本発明の多層配線板の製造方法を説明する。図1は本発明の多層配線板を製造する工程の一例を説明する断面図である。
本発明の多層配線板は、配線板用絶縁樹脂材料を積層する工程(イ)、前記配線板用絶縁樹脂材料を硬化させて絶縁層を得る工程(ロ)、絶縁層表面に外層回路層を形成する工程(ハ)を繰り返すことにより多層化されて製造される。
In the multilayer wiring board of the present invention, an insulating layer and an outer circuit layer are sequentially laminated on one or both sides of a substrate having an inner layer circuit, and the insulating resin material for the wiring board of the present invention is a cured product. It is characterized by being. Insulating resin materials for wiring boards are usually cured by a thermal history during the production of multilayer wiring boards.
Hereinafter, the manufacturing method of the multilayer wiring board of this invention is demonstrated using drawing. FIG. 1 is a cross-sectional view for explaining an example of a process for producing a multilayer wiring board of the present invention.
The multilayer wiring board of the present invention comprises a step (a) of laminating an insulating resin material for a wiring board, a step (b) of obtaining an insulating layer by curing the insulating resin material for the wiring board, and an outer layer circuit layer on the surface of the insulating layer. It is manufactured in multiple layers by repeating the forming step (c).

図1の(a)は、本発明の多層配線板の製造に使用される回路板の断面図であり、絶縁基板2上に第一の回路1(内層配線)が形成されている。
内層基板として、通常の配線板において用いられている公知の積層板、例えば、ガラス布−エポキシ樹脂、紙−フェノール樹脂、紙−エポキシ樹脂、ガラス布・ガラス紙−エポキシ樹脂等が使用でき特に制限はない。また、ビスマレイミド−トリアジン樹脂を含浸させたBT基板、さらにはポリイミドフィルムを基材として用いたポリイミドフィルム基板等も用いることができる。
第一の回路1を形成するための方法は特に制限はなく、銅箔と前記絶縁基板を張り合わせた銅張り積層板を用い、銅箔の不要な部分をエッチング除去するサブトラクティブ法や、前記絶縁基板の必要な個所に無電解めっきによって回路を形成するアディティブ法等、公知の配線板の製造方法を用いることができる。
なお、図1(a)には絶縁基板2の片面に第一の回路1を形成した例を示すが、両面銅張積層板を用いて回路1を絶縁基板2の両面に形成することもできる。
第一の回路1は、必要に応じて回路1の表面を接着性に適した状態に表面処理する。この手法は、特に制限はなく、例えば、次亜塩素酸ナトリウムのアルカリ水溶液により第一の回路1の表面に酸化銅の針状結晶を形成し、形成した酸化銅の針状結晶をジメチルアミンボラン水溶液に浸漬して還元するなど公知の製造方法を用いることができる。
FIG. 1A is a cross-sectional view of a circuit board used for manufacturing a multilayer wiring board according to the present invention, and a first circuit 1 (inner layer wiring) is formed on an insulating substrate 2.
As the inner layer substrate, known laminates used in ordinary wiring boards, for example, glass cloth-epoxy resin, paper-phenol resin, paper-epoxy resin, glass cloth / glass paper-epoxy resin, etc. can be used. There is no. Further, a BT substrate impregnated with a bismaleimide-triazine resin, a polyimide film substrate using a polyimide film as a base material, and the like can also be used.
The method for forming the first circuit 1 is not particularly limited, and uses a copper-clad laminate in which a copper foil and the insulating substrate are bonded to each other. A known method for manufacturing a wiring board, such as an additive method for forming a circuit by electroless plating at a necessary portion of a substrate, can be used.
Although FIG. 1A shows an example in which the first circuit 1 is formed on one side of the insulating substrate 2, the circuit 1 can also be formed on both sides of the insulating substrate 2 using a double-sided copper-clad laminate. .
The first circuit 1 performs a surface treatment on the surface of the circuit 1 in a state suitable for adhesiveness as necessary. This technique is not particularly limited. For example, a copper oxide needle crystal is formed on the surface of the first circuit 1 with an alkaline aqueous solution of sodium hypochlorite, and the formed copper oxide needle crystal is converted to dimethylamine borane. A known production method such as immersion in an aqueous solution for reduction can be used.

(1)配線板用絶縁樹脂材料を積層する工程(イ)
先ず、第一の回路1を有する回路板の片面若しくは両面に、本発明の配線板用絶縁樹脂材料を積層して接着補助層3付きの絶縁樹脂層4を形成する[図1(b)参照]。図1(b)では、第一の回路1は回路板の片面に形成されているが、両面に形成されていても良く、この場合は絶縁樹脂層4を回路板の両面に形成できる。この形成方法に特に制限はなく、例えば、前記のアディティブ用絶縁樹脂フィルムを回路板に積層して形成する方法が挙げられる。
(1) Step of laminating insulating resin material for wiring board (a)
First, an insulating resin layer 4 with an adhesion auxiliary layer 3 is formed by laminating the insulating resin material for a wiring board of the present invention on one or both sides of a circuit board having the first circuit 1 [see FIG. ]. In FIG. 1B, the first circuit 1 is formed on one side of the circuit board, but may be formed on both sides. In this case, the insulating resin layer 4 can be formed on both sides of the circuit board. There is no restriction | limiting in particular in this formation method, For example, the method of laminating | stacking and forming the said insulating resin film for additive on a circuit board is mentioned.

支持体付き接着補助層を有するアディティブ用絶縁樹脂フィルムを用いる場合、ワニスが塗布される支持体としては、PET等のプラスチックフィルム等が挙げられ、ワニス硬化後に支持体を剥離除去する場合は離型性のプラスチックフィルム等が好ましい。支持体付き接着補助層を有するアディティブ用絶縁樹脂フィルムは、絶縁樹脂層(A)を回路板の回路層と接する面側に向け、ラミネート法やプレス装置を用いて回路板に積層される。   In the case of using an additive insulating resin film having an adhesion auxiliary layer with a support, examples of the support on which the varnish is applied include a plastic film such as PET, and a mold release when the support is peeled off after the varnish is cured. A plastic film or the like is preferable. The additive insulating resin film having the support auxiliary adhesion layer is laminated on the circuit board by using a laminating method or a pressing device with the insulating resin layer (A) facing the surface of the circuit board in contact with the circuit layer.

(2)前記配線板用絶縁樹脂材料を硬化させて絶縁層を得る工程(ロ)
次に、積層した配線板用絶縁樹脂材料を加熱硬化させて第一の接着補助層3と絶縁樹脂層4からなる絶縁層とする[図1(b)参照]。
硬化温度は後のめっき処理や銅のアニール処理などを考慮した温度や時間で行う必要がある。すなわち、あまり硬化を進めると後のめっき処理時に銅との接着性が低下し、反面硬化が足りないとめっき処理時のアルカリ処理液に浸食されめっき液に溶解するような現象が生じたりする。これらを考慮すると、150〜190℃で30〜90分間の熱処理を与えて硬化するのが望ましい。前記の支持体付き接着補助層を有するアディティブ用絶縁樹脂フィルムを使用した場合は、加圧積層工程と加熱硬化工程とは同時でも別でもよい。加圧積層条件は、半硬化状態の配線板用絶縁樹脂材料に第一の回路1の凹凸が埋め込まれれば良く、通常0.5〜20MPaが好ましい。
なお、内層回路である第一の回路1と外層回路を層間接続するために第一の接着補助層3、絶縁材料樹脂層4にビアホールを形成することもできる[図1(b)参照]。このビアホールの形成手法として特に制限はなく、レーザ法やサンドブラスト法などを用いることができる。
(2) Step of curing the insulating resin material for wiring boards to obtain an insulating layer (b)
Next, the laminated insulating resin material for wiring boards is heated and cured to form an insulating layer composed of the first adhesion auxiliary layer 3 and the insulating resin layer 4 (see FIG. 1B).
It is necessary to perform the curing temperature at a temperature and time considering the subsequent plating process and copper annealing process. That is, if the curing is advanced too much, the adhesiveness with copper is lowered during the subsequent plating process, and if the curing is not sufficient, a phenomenon may occur in which it is eroded by the alkaline treatment solution during the plating treatment and dissolved in the plating solution. Considering these, it is desirable to cure by applying a heat treatment at 150 to 190 ° C. for 30 to 90 minutes. When the additive insulating resin film having the support auxiliary layer with the support is used, the pressure lamination step and the heat curing step may be performed simultaneously or separately. The pressurization lamination conditions may be as long as the unevenness of the first circuit 1 is embedded in the insulating resin material for a wiring board in a semi-cured state, and usually 0.5 to 20 MPa is preferable.
Note that via holes may be formed in the first adhesion auxiliary layer 3 and the insulating material resin layer 4 in order to connect the first circuit 1 which is the inner layer circuit and the outer layer circuit to each other [see FIG. 1B]. There is no restriction | limiting in particular as a formation method of this via hole, A laser method, a sandblasting method, etc. can be used.

(3)絶縁層表面に外層回路層を形成する工程(ハ)
その後、以下のような回路加工を施すことにより第二の回路5を形成し、さらに第一の回路1と第二の回路との層間接続を形成する[図1(c)参照]。
まず、外層回路である第二の回路5を接着補助層3上にめっき法で形成する場合は、接着補助層3を粗化処理するのが好ましい。粗化液としては、クロム/硫酸粗化液、アルカリ過マンガン酸粗化液、フッ化ナトリウム/クロム/硫酸粗化液、ホウフッ酸粗化液などの酸化性粗化液を用いることができる。粗化処理としては、例えば、先ず膨潤液として、ジエチレングリコールモノブチルエーテルとNaOHとの水溶液を70℃に加温して接着補助層3を5分間浸漬処理する。次に、粗化液として、KMnO4とNaOHとの水溶液を80℃に加温して10分間浸漬処理する。引き続き、中和液、例えば塩化第一錫(SnCl2)の塩酸水溶液に室温で5分間浸漬処理して中和する。
これにより粗化処理した後の接着補助層(B)の表面粗さ(Ra)は0.3μm以下で非常に微細で緻密な粗化形状が得られる。
(3) Step of forming an outer circuit layer on the surface of the insulating layer (c)
Thereafter, the second circuit 5 is formed by performing the following circuit processing, and further, an interlayer connection between the first circuit 1 and the second circuit is formed [see FIG. 1C].
First, when forming the 2nd circuit 5 which is an outer layer circuit on the adhesion auxiliary layer 3 by a plating method, it is preferable to roughen the adhesion auxiliary layer 3. As the roughening liquid, an oxidizing roughening liquid such as a chromium / sulfuric acid roughening liquid, an alkaline permanganic acid roughening liquid, a sodium fluoride / chromium / sulfuric acid roughening liquid, or a borofluoric acid roughening liquid can be used. As the roughening treatment, for example, first, an aqueous solution of diethylene glycol monobutyl ether and NaOH is heated to 70 ° C. as a swelling solution, and the adhesion auxiliary layer 3 is immersed for 5 minutes. Next, as a roughening liquid, an aqueous solution of KMnO 4 and NaOH is heated to 80 ° C. and immersed for 10 minutes. Subsequently, it is neutralized by immersing it in a neutralizing solution, for example, an aqueous hydrochloric acid solution of stannous chloride (SnCl 2 ) at room temperature for 5 minutes.
Thereby, the surface roughness (Ra) of the adhesion auxiliary layer (B) after the roughening treatment is 0.3 μm or less, and a very fine and dense roughened shape is obtained.

粗化処理後、パラジウムを付着させるめっき触媒付与処理を行う。めっき触媒処理は、
塩化パラジウム系のめっき触媒液に浸漬して行われる。次に、無電解めっき液に浸漬して接着補助層3の表面全面(ビアホールを形成した場合はビアホール内面を含む)に厚さが0.3〜1.5μmの無電解めっき層(導体層)を析出させる。必要により、更に電気めっきを行って必要な厚さとする。
無電解めっきに使用する無電解めっき液は、公知の無電解めっき液を使用することができ、特に制限はない。また、電気めっきについても公知の方法によることができ特に制限はない。これらのメッキは銅メッキであることが好ましい。さらに不要な箇所をエッチング除去して第二の回路5と第一の回路1及び第二の回路5の層間接続とを形成することができる。
After the roughening treatment, a plating catalyst applying treatment for attaching palladium is performed. Plating catalyst treatment
It is performed by immersing in a palladium chloride plating catalyst solution. Next, an electroless plating layer (conductor layer) having a thickness of 0.3 to 1.5 μm is formed on the entire surface of the auxiliary adhesion layer 3 by immersion in an electroless plating solution (including the inner surface of the via hole when a via hole is formed). To precipitate. If necessary, further electroplating is performed to obtain a necessary thickness.
As the electroless plating solution used for electroless plating, a known electroless plating solution can be used, and there is no particular limitation. Also, electroplating can be performed by a known method and is not particularly limited. These platings are preferably copper platings. Furthermore, unnecessary portions can be removed by etching to form the second circuit 5 and the interlayer connection between the first circuit 1 and the second circuit 5.

以上の工程(イ)、工程(ロ)及び工程(ハ)を経ることにより、第一の回路1及び第二の回路5を有する配線板が製造されるが、さらに、第一の回路1の表面処理と同様にして第二の回路5の表面処理を行い、前記接着補助層3、絶縁樹脂層4の形成と同様にして接着補助層6、絶縁樹脂層7を形成する[図1(d)参照]。
即ち、積層した配線板用絶縁樹脂材料を硬化させて第二の接着補助層6、絶縁樹脂層7とし、また、ビアホールを形成する[図1(d)参照]。さらに、同様にして第三の回路層8を形成する[図1(e)参照]。
以下、更に同様の工程を繰り返して層数の多い多層配線板を製造できる。
A wiring board having the first circuit 1 and the second circuit 5 is manufactured through the above steps (A), (B), and (C). The surface treatment of the second circuit 5 is performed in the same manner as the surface treatment, and the adhesion assisting layer 6 and the insulating resin layer 7 are formed in the same manner as the formation of the adhesion assisting layer 3 and the insulating resin layer 4 [FIG. )reference].
That is, the laminated insulating resin material for wiring boards is cured to form the second adhesion auxiliary layer 6 and the insulating resin layer 7, and a via hole is formed [see FIG. 1 (d)]. Further, the third circuit layer 8 is formed in the same manner [see FIG. 1 (e)].
Thereafter, a multilayer wiring board having a large number of layers can be produced by repeating the same process.

次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。
なお、以下の実施例で作製した配線板用絶縁樹脂材料および多層配線板について、以下の方法で性能を測定・評価した。
Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.
The performance of the insulating resin material for wiring boards and multilayer wiring boards produced in the following examples was measured and evaluated by the following methods.

(1)外層回路との接着強度
各実施例及び比較例で得た多層配線板の最外層の回路(第三の回路)の一部に銅のエッチング処理によって、幅10mm、長さ100mmの部分を形成し、この一端を回路/樹脂界面で剥がしてつかみ具でつかみ、垂直方向に引張り速度約50mm/分で、室温中で引き剥がした時の荷重を測定した。
(1) Adhesive strength with outer layer circuit A part of the outermost layer circuit (third circuit) of the multilayer wiring board obtained in each example and comparative example is 10 mm wide and 100 mm long by etching copper. This one end was peeled off at the circuit / resin interface and held with a gripper, and the load when peeled off at room temperature at a pulling speed of about 50 mm / min in the vertical direction was measured.

(2)接着補助層の表面粗さ(Ra)
各実施例及び比較例で得た多層配線板の最外層の回路(第三の回路)の一部の銅をエッチング処理し、露出した接着補助層の表面を、菱化システム社製マイクロマップMN5000型を用い、表面粗さRa(μm)を測定した。
(2) Surface roughness (Ra) of the auxiliary adhesion layer
The copper of the outermost layer circuit (third circuit) of the multilayer wiring board obtained in each example and comparative example was etched, and the exposed surface of the adhesion auxiliary layer was micro-map MN5000 manufactured by Ryoka Systems Co., Ltd. Using a mold, the surface roughness Ra (μm) was measured.

(3)熱膨張係数
各実施例及び比較例で得た配線板用絶縁樹脂材料(アディティブ用絶縁樹脂フィルム)を銅箔(YGP−12、商品名、日本電解株式会社製)の粗化面にバッチ式真空加圧ラミネーターMVLP−500(名機株式会社製、商品名)を用いて積層した。次に、PETフィルムを剥がした後、180℃―60分の硬化条件で硬化フィルムを作製し、銅箔を過硫酸アンモニウム溶液でエッチング除去し、その後水洗、80℃−10分間乾燥させ、硬化フィルムを得た。
得られた硬化フィルムをSII株式会社製 熱歪分析装置を用い、幅3mm、チャク間8mmのサンプルを用い、10℃/分で240℃まで昇温させ、−10まで冷却後、10℃/分で300℃まで昇温させた際の膨張量の変化曲線で0〜150℃の熱膨張係数を求めた。
(3) Coefficient of thermal expansion The insulating resin material for a wiring board (additive insulating resin film) obtained in each of the examples and comparative examples was applied to the roughened surface of a copper foil (YGP-12, trade name, manufactured by Nihon Electrolytic Co., Ltd.) Lamination was performed using a batch type vacuum pressure laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). Next, after peeling off the PET film, a cured film is produced under the curing conditions of 180 ° C.-60 minutes, and the copper foil is etched away with an ammonium persulfate solution, then washed with water and dried at 80 ° C. for 10 minutes to obtain a cured film. Obtained.
The obtained cured film was heated to 240 ° C. at 10 ° C./min using a sample with a width of 3 mm and a gap between 8 mm using a thermal strain analyzer manufactured by SII, and cooled to −10 to 10 ° C./min. The coefficient of thermal expansion of 0 to 150 ° C. was determined from the change curve of the amount of expansion when the temperature was raised to 300 ° C.

(4)288℃はんだ耐熱性
各実施例及び比較例で作製した多層配線板を25mm角に切断し、288±2℃に調整したはんだ浴に浮かべ、ふくれが発生するまでの時間を調べた。
(4) 288 ° C. Solder heat resistance The multilayer wiring boards produced in each Example and Comparative Example were cut into 25 mm squares, floated in a solder bath adjusted to 288 ± 2 ° C., and the time until blistering was examined.

(5)レーザー加工性
各実施例及び比較例の(5)多層配線板の作製(2)におけるめっき前の基板を走査電子顕微鏡(SEM)で観察し、樹脂の残存等の異物の有無を評価した。
(5) Laser workability In each example and comparative example, (5) Preparation of multilayer wiring board (2) The substrate before plating in (2) is observed with a scanning electron microscope (SEM), and the presence or absence of foreign matters such as residual resin is evaluated. did.

(6)高度加速寿命試験(HAST試験)
各実施例及び比較例において、ライン/スペース:10/10μmのくし型回路を有する配線板を作製し、不飽和プレシャークッカー槽内で130℃、85%RH、印加電圧5.5Vで、最大200時間の通電試験を行った。
(6) Highly accelerated life test (HAST test)
In each of the examples and comparative examples, a wiring board having a comb-type circuit with a line / space of 10/10 μm was prepared, and a maximum of 200 at 130 ° C., 85% RH, and an applied voltage of 5.5 V in an unsaturated pre-shear cooker tank. A time energization test was conducted.

実施例1
(1)内層回路板の作製
ガラス布基材エポキシ樹脂両面銅張積層板[日立化成工業株式会社製MCL−E−679FG(商品名)、銅箔の厚さ18μm、基板厚み0.4mm、両面粗化箔を両面に有する。]の片面にエッチングを施して片面に回路(以下、第一の回路とする。)を有する回路板を作製した。
Example 1
(1) Production of inner layer circuit board Glass cloth base epoxy resin double-sided copper-clad laminate [MCL-E-679FG (trade name) manufactured by Hitachi Chemical Co., Ltd., copper foil thickness 18 μm, substrate thickness 0.4 mm, double-sided Has roughened foil on both sides. ] Was etched on one side to produce a circuit board having a circuit (hereinafter referred to as a first circuit) on one side.

(2)接着補助層付き支持体の作製
多官能エポキシ樹脂(日本化薬株式会社製、商品名:NC−3000H)100質量部、エポキシ樹脂硬化剤(ジシアンジアミド)1.3質量部、反応促進剤(四国化成株式会社製、2−フェニルイミダゾール)0.2質量部、溶剤(シクロヘキサノン)65質量部をフラスコに配合し、130℃で2時間予備反応させた。反応後のゲルパーミエーション液体クロマトグラフィー(GPC)で測定したポリスチレン換算重量分子量は2330であった。
冷却後、さらに硬化剤(DIC株式会社製、商品名:LA−3018、固形分50質量%)50質量部、架橋有機フィラー(パラロイドEXL2655、商品名、ロームアンドハースジャパン株式会社製)55質量部、ヒュームドシリカ(日本アエロジル株式会社製、商品名:アエロジルR−972)15質量部、硬化促進剤(四国化成工業株式会社製、2−エチル−4−メチルイミダゾール)0.5質量部、溶剤(2−ブタノン)250質量部、シクロヘキサノン200質量部を攪拌棒で混ぜ、分散機(吉田機械興業株式会社製、商品名:ナノマイザー)を用いて均一なワニスを得た。このワニスを離型処理ポリエチレンテレフタレート(PET)フィルム(リンテック株式会社製、商品名:PET−38X)の離型処理面に、乾燥後5μmになるように塗布し、140℃で10分間乾燥させた。
(2) Production of support with adhesion auxiliary layer 100 parts by mass of polyfunctional epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: NC-3000H), 1.3 parts by mass of epoxy resin curing agent (dicyandiamide), reaction accelerator 0.2 parts by mass (manufactured by Shikoku Kasei Co., Ltd., 2-phenylimidazole) and 65 parts by mass of solvent (cyclohexanone) were blended in a flask and pre-reacted at 130 ° C. for 2 hours. The polystyrene-reduced weight molecular weight measured by gel permeation liquid chromatography (GPC) after the reaction was 2,330.
After cooling, 50 parts by weight of a curing agent (manufactured by DIC Corporation, trade name: LA-3018, solid content 50% by weight), 55 parts by weight of a crosslinked organic filler (Paraloid EXL2655, trade name, manufactured by Rohm and Haas Japan Co., Ltd.) , Fumed silica (manufactured by Nippon Aerosil Co., Ltd., trade name: Aerosil R-972) 15 parts by mass, curing accelerator (manufactured by Shikoku Chemicals Co., Ltd., 2-ethyl-4-methylimidazole) 0.5 part by mass, solvent 250 parts by mass of (2-butanone) and 200 parts by mass of cyclohexanone were mixed with a stirring rod, and a uniform varnish was obtained using a disperser (trade name: Nanomizer, manufactured by Yoshida Kikai Kogyo Co., Ltd.). This varnish was applied to a release-treated surface of a release-treated polyethylene terephthalate (PET) film (product name: PET-38X, manufactured by Lintec Corporation) so as to be 5 μm after drying, and dried at 140 ° C. for 10 minutes. .

(3)配線板用絶縁樹脂材料(アディティブ用絶縁樹脂フィルム)の作製
多官能エポキシ樹脂(DIC株式会社製、商品名:N−673−80M、固形分80質量%)125質量部、ビスマレイミド化合物(大和化成株式会社製、商品名:BMI−2300)114質量部とp−アミノフェノール10質量部と2−メトキシエタノール45質量部を混ぜ、125℃で2時間反応させて得られた変性ビスマレイミド化合物(固形分65%)190質量部と、エポキシ樹脂硬化剤(DIC株式会社製、商品名:LA−3018、固形分50質量%)10質量部、リン系難燃剤(HCA−HQ:商品名、三光株式会社製)40質量部、無機フィラー(球状シリカ)(株式会社アドマテックス製、商品名:SO−C2)155質量部、硬化促進剤(2−エチル−4−メチルイミダゾール、四国化成工業株式会社製)0.5質量部、溶剤(2−ブタノン)70質量部を均一に混ぜ、分散機(吉田機械興業株式会社製、商品名:ナノマイザー)を用いて、均一なワニスを得た。
このワニスを前項で得られた接着補助層付き支持体の接着補助層側に、乾燥後35μmになるように塗布し、100℃で5分間乾燥させ、目的とする配線板用絶縁樹脂材料(アディティブ用絶縁樹脂フィルム)を得た。
(3) Production of insulating resin material for wiring board (insulating resin film for additive) 125 parts by mass of a polyfunctional epoxy resin (manufactured by DIC Corporation, trade name: N-673-80M, solid content 80% by mass), bismaleimide compound (Daiwa Kasei Co., Ltd., trade name: BMI-2300) 114 parts by mass, p-aminophenol 10 parts by mass and 2-methoxyethanol 45 parts by mass, modified bismaleimide obtained by reacting at 125 ° C. for 2 hours 190 parts by mass of compound (solid content 65%), epoxy resin curing agent (manufactured by DIC Corporation, trade name: LA-3018, solid content 50% by weight), 10 parts by mass, phosphorus flame retardant (HCA-HQ: trade name) , Sanko Co., Ltd.) 40 parts by mass, inorganic filler (spherical silica) (manufactured by Admatechs, trade name: SO-C2) 155 parts by mass, curing accelerator (2 -Ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) 0.5 parts by mass and 70 parts by mass of solvent (2-butanone) are mixed uniformly, and a disperser (Yoshida Kikai Kogyo Co., Ltd., trade name: Nanomizer) Was used to obtain a uniform varnish.
This varnish was applied to the adhesion assisting layer side of the support with the adhesion assisting layer obtained in the previous section so as to be 35 μm after drying, dried at 100 ° C. for 5 minutes, and the intended insulating resin material for wiring boards (additive) Insulating resin film) was obtained.

(4)多層配線板の作製(1)
前記配線板用絶縁樹脂材料(アディティブ用絶縁樹脂フィルム)と前記内層回路板を、絶縁樹脂層を回路板の第一の回路層と接する面側にしてバッチ式真空加圧ラミネーターMVLP−500(名機株式会社製、商品名)を用いて積層した。次に、PETフィルムを剥がした後、180℃−60分の硬化条件で配線板用絶縁樹脂材料を硬化して接着補助層3および絶縁樹脂層4からなる第一の絶縁層を得た。
この第一の絶縁層に層間接続用のビアホールを日立ビアメカニクス製CO2レーザ加工機(LCO−1B21型)を使用し、ビーム径60μm、周波数500Hzでパルス幅5μsec、ショット数4の条件で加工して作製した。第一の接着補助層3を化学粗化するために、膨潤液としてジエチレングリコールモノブチルエーテル:200ml/L、NaOH:5g/Lの水溶液を作製し、80℃に加温して3分間浸漬処理した。
次に、粗化液として、KMnO4:60g/L、NaOH:40g/Lの水溶液を作製し、80℃に加温して5分間浸漬処理した。引き続き、中和液(SnCl2:30g/L、HCl:300ml/L)の水溶液に室温(25℃)で5分間浸漬処理して中和した。
(4) Fabrication of multilayer wiring board (1)
Batch type vacuum pressurization laminator MVLP-500 (named with the insulating resin material for wiring board (insulating resin film for additive)) and the inner layer circuit board, with the insulating resin layer facing the first circuit layer of the circuit board (Trade name, manufactured by Kikai Co., Ltd.). Next, after peeling off the PET film, the insulating resin material for wiring boards was cured under curing conditions of 180 ° C.-60 minutes to obtain a first insulating layer composed of the adhesion auxiliary layer 3 and the insulating resin layer 4.
A via hole for interlayer connection is processed in this first insulating layer using a Hitachi Via Mechanics CO 2 laser processing machine (LCO-1B21 type) under the conditions of a beam diameter of 60 μm, a frequency of 500 Hz, a pulse width of 5 μsec, and a shot number of 4. And made. In order to chemically roughen the first adhesion assisting layer 3, an aqueous solution of diethylene glycol monobutyl ether: 200 ml / L, NaOH: 5 g / L was prepared as a swelling liquid, heated to 80 ° C. and immersed for 3 minutes.
Next, an aqueous solution of KMnO 4 : 60 g / L and NaOH: 40 g / L was prepared as a roughening solution, heated to 80 ° C. and immersed for 5 minutes. Subsequently, it was neutralized by immersing it in an aqueous solution of a neutralizing solution (SnCl 2 : 30 g / L, HCl: 300 ml / L) at room temperature (25 ° C.) for 5 minutes.

第一の接着補助層3の表面に第二の回路層を形成するために、まず、PdCl2を含む無電解めっき用触媒液(日立化成工業株式会社製、商品名:HS−202B)に、室温(25℃)−10分間浸漬処理し、水洗し、無電解銅めっき用めっき液(日立化成工業株式会社製、商品名:CUST−201)に室温で15分間浸漬して、無電解めっきを施した。
さらに、厚さ15μmのめっきレジスト(日立化成工業株式会社製、商品名:RD−1215)をラミネートし、ネガマスクと405nmの光源を用いて120mJ/cm2の条件で露光し、1%炭酸ナトリウム水溶液を用いて現像し、硫酸銅電解めっきで8μm厚のめっきをした。
その後、3%水酸化ナトリウム水溶液を用いてレジストを剥離し、硫酸−過酸化水素水溶液を用いて不要な給電層(無電解めっき層)のエッチング除去し、上記過マンガン酸粗化液を用いて、不要なパラジウムを除去して、 第一の回路層と接続したバイアホールを含む第二の回路形成を行った。
さらに、多層化するために、第二の回路導体表面を、亜塩素酸ナトリウム:50g/リットル、NaOH:20g/リットル、リン酸三ナトリウム:10g/リットルの水溶液に85℃で20分間浸漬し、水洗して、80℃で20分間乾燥して第二の回路導体表面上に酸化銅の凹凸を形成した。
In order to form the second circuit layer on the surface of the first adhesion assisting layer 3, first, an electroless plating catalyst solution containing PdCl 2 (trade name: HS-202B, manufactured by Hitachi Chemical Co., Ltd.) Immersion treatment at room temperature (25 ° C.)-10 minutes, washed with water, immersed in a plating solution for electroless copper plating (trade name: CUST-201, manufactured by Hitachi Chemical Co., Ltd.) for 15 minutes at room temperature, gave.
Furthermore, a 15 μm thick plating resist (manufactured by Hitachi Chemical Co., Ltd., trade name: RD-1215) is laminated, exposed using a negative mask and a light source of 405 nm under the condition of 120 mJ / cm 2, and a 1% sodium carbonate aqueous solution is used. Development was performed, and plating with a thickness of 8 μm was performed by copper sulfate electrolytic plating.
Thereafter, the resist is stripped using a 3% aqueous sodium hydroxide solution, unnecessary power feeding layer (electroless plating layer) is removed by etching using a sulfuric acid-hydrogen peroxide aqueous solution, and the permanganic acid roughening solution is used. Then, unnecessary palladium was removed, and a second circuit including a via hole connected to the first circuit layer was formed.
Further, in order to make a multilayer, the second circuit conductor surface was immersed in an aqueous solution of sodium chlorite: 50 g / liter, NaOH: 20 g / liter, trisodium phosphate: 10 g / liter at 85 ° C. for 20 minutes, Washed with water and dried at 80 ° C. for 20 minutes to form copper oxide irregularities on the surface of the second circuit conductor.

(5)多層配線板の作製(2)
前記(4)の工程を繰り返して三層の多層配線板を作製した。得られた多層配線板の性能の測定・評価結果を第1表に示す。
(5) Fabrication of multilayer wiring board (2)
The step (4) was repeated to produce a three-layer multilayer wiring board. Table 1 shows the measurement and evaluation results of the performance of the obtained multilayer wiring board.

実施例2
実施例1の(2)接着補助層付き支持体の作製において、架橋有機フィラーのパラロイドEXL2655を35質量部とし、接着補助層の厚みを9μmとした以外、実施例1と同様にした。得られた多層配線板の性能の測定・評価結果を第1表に示す。
Example 2
In preparation of the support body with the adhesion auxiliary layer of Example 1 (2), the same procedure as in Example 1 was performed except that 35 mass parts of the paraloid EXL2655 of the crosslinked organic filler was used and the thickness of the adhesion auxiliary layer was 9 μm. Table 1 shows the measurement and evaluation results of the performance of the obtained multilayer wiring board.

実施例3
実施例1の(2)接着補助層付き支持体の作製において、架橋有機フィラーとして、スタフィロイドAC−3832(ガンツ化成株式会社製、商品名)80質量部とし、接着補助層の厚みを3μmとした以外、実施例1と同様にした。得られた多層配線板の性能の測定・評価結果を第1表に示す。
Example 3
In the production of the support with an adhesion auxiliary layer in Example 1 (2), as the cross-linked organic filler, Staphyloid AC-3832 (manufactured by Ganz Kasei Co., Ltd., trade name) is 80 parts by mass, and the thickness of the adhesion auxiliary layer is 3 μm. The procedure was the same as in Example 1 except that. Table 1 shows the measurement and evaluation results of the performance of the obtained multilayer wiring board.

実施例4
実施例1の(3)配線板用絶縁樹脂材料(アディティブ用絶縁樹脂フィルム)の作製において、リン系難燃剤(三光株式会社製、商品名:HAC−HQ)を60質量部とした以外、実施例1と同様にした。得られた多層配線板の性能の測定・評価結果を第1表に示す。
Example 4
Example 3 (3) In production of insulating resin material for wiring board (insulating resin film for additive), except that phosphorus flame retardant (manufactured by Sanko Co., Ltd., trade name: HAC-HQ) was changed to 60 parts by mass. Same as Example 1. Table 1 shows the measurement and evaluation results of the performance of the obtained multilayer wiring board.

比較例1
実施例1において、接着補助層を形成せずに、絶縁樹脂層を形成した以外、実施例1と同様にした。得られた多層配線板の性能の測定・評価結果を第1表に示す。
Comparative Example 1
In Example 1, it carried out similarly to Example 1 except having formed the insulating resin layer, without forming an adhesion auxiliary layer. Table 1 shows the measurement and evaluation results of the performance of the obtained multilayer wiring board.

比較例2
実施例1の(2)接着補助層付き支持体の作製において、予備反応を行わないで、すべて配合して混合した以外、実施例1と同様にした。得られた多層配線板の性能の測定・評価結果を第1表に示す。
Comparative Example 2
In the production of the support with an adhesion auxiliary layer in Example 1 (2), the same procedure as in Example 1 was carried out except that the preliminary reaction was not carried out and all the ingredients were mixed and mixed. Table 1 shows the measurement and evaluation results of the performance of the obtained multilayer wiring board.

Figure 0005728998
Figure 0005728998

第1表から、本発明の配線板用絶縁樹脂材料を用いた多層配線板は、実施例1〜4から明らかなように、平滑な樹脂表面上において、無電解銅めっきと高接着力を示し、また、低熱膨張率で、レーザ加工性やHAST試験が優れる良好な結果を示す。さらに、288℃はんだ耐熱性にも優れており環境に配慮した多層配線板を製造することが可能である。
一方、本発明の配線板用絶縁樹脂材料を用いない比較例1〜2に示す多層配線板は、表面粗さが大きいか、もしくはレーザ加工性やHAST試験で不具合が発生した。
From Table 1, the multilayer wiring board using the insulating resin material for wiring boards of the present invention shows electroless copper plating and high adhesion on a smooth resin surface, as is apparent from Examples 1-4. Moreover, it shows a good result that the laser workability and the HAST test are excellent with a low coefficient of thermal expansion. Furthermore, it is excellent also in 288 degreeC solder heat resistance, and it is possible to manufacture the multilayer wiring board in consideration of the environment.
On the other hand, the multilayer wiring boards shown in Comparative Examples 1 and 2 that do not use the insulating resin material for wiring boards according to the present invention have large surface roughness, or malfunctions occurred in laser processability and HAST tests.

本発明によれば、ビルドアップ方式の多層配線板において、平滑な樹脂表面でも無電解めっきとの高接着力を示し、低熱膨張率で、加工性及び耐熱性に優れ、微細な回路の形成が可能で、鉛フリー化に対応可能な、信頼性の高い多層配線板を提供でき、高いはんだ耐熱性を有する配線板用絶縁樹脂材料を提供できる。
従って、本発明の配線板用絶縁樹脂材料を使用することにより、高集積化された多層配線板を有利に製造でき、電子機器の小型化、軽量化、多機能化が促進される。
According to the present invention, in a multilayer wiring board of a build-up system, even a smooth resin surface exhibits high adhesion with electroless plating, has a low thermal expansion coefficient, excellent workability and heat resistance, and can form fine circuits. It is possible to provide a highly reliable multilayer wiring board that can be made lead-free and to provide an insulating resin material for wiring boards having high solder heat resistance.
Therefore, by using the insulating resin material for a wiring board of the present invention, a highly integrated multilayer wiring board can be advantageously manufactured, and downsizing, weight reduction, and multifunctionalization of electronic devices are promoted.

1 第一の回路
2 基板(絶縁基板)
3 接着補助層
4 絶縁樹脂層
5 第二の回路
6 接着補助層(二層目)
7 絶縁樹脂層
8 第三の回路
1 First circuit 2 Substrate (insulating substrate)
3 Adhesion auxiliary layer 4 Insulating resin layer 5 Second circuit 6 Adhesion auxiliary layer (second layer)
7 Insulating resin layer 8 Third circuit

Claims (9)

絶縁樹脂層(A)と接着補助層(B)を有し、絶縁樹脂層(A)が、多官能型エポキシ樹脂(a-1)、ビスマレイミド化合物(a-2)、エポキシ樹脂硬化剤(a-3)及び無機フィラー(a-4)を含有する層であり、接着補助層(B)が、多官能型エポキシ樹脂(b-1)エポキシ樹脂硬化剤(b-2)の予備反応生成物及び平均一次粒径1μm以下の架橋有機フィラー(b-3)を混ぜてなるワニスを塗布した後、乾燥させて形成される厚みが1〜10μmの層であることを特徴とする、ガラスクロスを含まない、配線板用絶縁樹脂材料。 It has an insulating resin layer (A) and an adhesion auxiliary layer (B). The insulating resin layer (A) is composed of a polyfunctional epoxy resin (a-1), a bismaleimide compound (a-2), an epoxy resin curing agent ( a-3) and an inorganic filler (a-4) containing layer, the adhesion auxiliary layer (B) is a preliminary reaction between the polyfunctional epoxy resin (b-1) and the epoxy resin curing agent (b-2) A product and a varnish formed by mixing a crosslinked organic filler (b-3) having an average primary particle size of 1 μm or less are coated and then dried to form a layer having a thickness of 1 to 10 μm . Insulating resin material for wiring boards that does not contain glass cloth . 絶縁樹脂層(A)が、さらに、リン系難燃剤(a-5)を含有する請求項1に記載の配線板用絶縁樹脂材料。   The insulating resin material for wiring boards according to claim 1, wherein the insulating resin layer (A) further contains a phosphorus-based flame retardant (a-5). 接着補助層(B)が、さらに、ヒュームドシリカ(b-4)を含有する請求項1又は2に記載の配線板用絶縁樹脂材料。   The insulating resin material for wiring boards according to claim 1 or 2, wherein the adhesion auxiliary layer (B) further contains fumed silica (b-4). 接着補助層(B)に含有する架橋有機フィラー(b-3)がコアシェル構造架橋ゴム粒子である請求項1〜3のいずれかに記載の配線板用絶縁樹脂材料。   The insulating resin material for wiring boards according to any one of claims 1 to 3, wherein the crosslinked organic filler (b-3) contained in the adhesion auxiliary layer (B) is a core-shell structured crosslinked rubber particle. 接着補助層(B)における固形分基準の架橋有機フィラー(b-3)の含有量が20〜40質量%である請求項1〜4のいずれかに記載の配線板用絶縁樹脂材料。   The insulating resin material for wiring boards according to any one of claims 1 to 4, wherein the content of the crosslinked organic filler (b-3) based on solid content in the adhesion auxiliary layer (B) is 20 to 40% by mass. 接着補助層(B)における多官能型エポキシ樹脂(b-1)がビフェニル構造を有するアラルキル型エポキシ樹脂であり、エポキシ樹脂硬化剤(b-2)がトリアジン環含有ノボラック型フェノール樹脂及び/又はジシアンジアミドである請求項1〜5のいずれかに記載の配線板用絶縁樹脂材料。   The multifunctional epoxy resin (b-1) in the adhesion auxiliary layer (B) is an aralkyl epoxy resin having a biphenyl structure, and the epoxy resin curing agent (b-2) is a triazine ring-containing novolac phenol resin and / or dicyandiamide The insulating resin material for wiring boards according to any one of claims 1 to 5. 配線板用絶縁樹脂材料を硬化し、粗化処理した後の接着補助層(B)の表面粗さ(Ra)が0.3μm以下である請求項1〜6のいずれかに記載の配線板用絶縁樹脂材料。   The surface roughness (Ra) of the adhesion auxiliary layer (B) after curing and roughening the insulating resin material for a wiring board is 0.3 μm or less, for a wiring board according to claim 1. Insulating resin material. 内層回路を有する基板の片面または両面に絶縁層及び外層回路層が逐次積層されている多層配線板であって、前記絶縁層が請求項1〜7のいずれかに記載の配線板用絶縁樹脂材料の硬化物であることを特徴とする多層配線板。   An insulating resin material for a wiring board according to any one of claims 1 to 7, wherein the insulating layer and the outer layer circuit layer are sequentially laminated on one or both sides of a substrate having an inner layer circuit, wherein the insulating layer is the insulating resin material for a wiring board according to any one of claims 1 to 7. A multilayer wiring board characterized by being a cured product. 内層回路を有する基板に請求項1〜7のいずれかに記載の配線板用絶縁樹脂材料を積層する工程(イ)、前記配線板用絶縁樹脂材料を硬化させて絶縁層を得る工程(ロ)、前記絶縁層表面に外層回路層を形成する工程(ハ)を含むことを特徴とする多層配線板の製造方法。   A step (a) of laminating the insulating resin material for wiring boards according to any one of claims 1 to 7 on a substrate having an inner layer circuit, and a step (b) of obtaining an insulating layer by curing the insulating resin material for wiring boards. A method for producing a multilayer wiring board comprising the step (c) of forming an outer circuit layer on the surface of the insulating layer.
JP2011031131A 2011-02-16 2011-02-16 Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board Active JP5728998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031131A JP5728998B2 (en) 2011-02-16 2011-02-16 Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031131A JP5728998B2 (en) 2011-02-16 2011-02-16 Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2012166515A JP2012166515A (en) 2012-09-06
JP5728998B2 true JP5728998B2 (en) 2015-06-03

Family

ID=46971141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031131A Active JP5728998B2 (en) 2011-02-16 2011-02-16 Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board

Country Status (1)

Country Link
JP (1) JP5728998B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379697B2 (en) * 2014-06-05 2018-08-29 Dic株式会社 Curable resin composition, cured product and curing agent
KR102570940B1 (en) 2019-02-14 2023-08-28 디아이씨 가부시끼가이샤 Curable resin composition, cured product, acid-modified maleimide resin and curing agent
CN114507176A (en) * 2020-11-16 2022-05-17 广东生益科技股份有限公司 Modified maleimide compound and preparation method and application thereof
JP7451058B2 (en) 2021-03-23 2024-03-18 信越化学工業株式会社 Thermosetting citraconimide resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143756A (en) * 1990-08-27 1992-09-01 International Business Machines Corporation Fiber reinforced epoxy prepreg and fabrication thereof
JP3327039B2 (en) * 1995-03-17 2002-09-24 大日本インキ化学工業株式会社 Epoxy resin composition
JP2009012366A (en) * 2007-07-06 2009-01-22 Kaneka Corp Laminate and printed wiring board
JP5251464B2 (en) * 2008-12-03 2013-07-31 日立化成株式会社 Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board
JP5434240B2 (en) * 2009-05-08 2014-03-05 日立化成株式会社 Interlayer insulating layer adhesive film and multilayer printed wiring board

Also Published As

Publication number Publication date
JP2012166515A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5251464B2 (en) Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board
JP4576794B2 (en) Insulating resin composition and use thereof
US10645804B2 (en) Adhesive film, multilayer printed wiring board using adhesive film, and method for manufacturing multilayer printed wiring board
JP5482083B2 (en) LAMINATED BOARD FOR WIRING BOARD AND ITS MANUFACTURING METHOD, PRIMER LAYER RESIN FILM, MULTILAYER WIRING BOARD AND ITS MANUFACTURING METHOD
JP5434240B2 (en) Interlayer insulating layer adhesive film and multilayer printed wiring board
EP2716793B1 (en) Primer layer for plating process, laminate for circuit board and production method for same, and multilayer circuit board and production method for same
JP5772314B2 (en) Adhesive film for multilayer printed wiring boards
JP5716522B2 (en) Resin composition for adhesion auxiliary layer
WO2017026501A1 (en) Multilayer printed wiring board production method, adhesive layer-equipped metal foil, metal-clad laminate, and multilayer printed wiring board
JP2013040298A (en) Epoxy resin material and multilayer board
JP5728998B2 (en) Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board
JP2009176889A (en) Insulating resin composition for multilayer printed wiring board, insulating film with support, multilayer printed wiring board, and manufacturing method therefor
JP5728997B2 (en) Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board
JP2009188163A (en) Insulating film with multilayer printed wiring board supporter, multilayer printed wiring board, and method of manufacturing same
JP2013035930A (en) Adhesive film, multilayer printed wiring board using the same and method for producing the multilayer printed wiring board
JP4760932B2 (en) Insulating resin film for multilayer wiring board, insulating resin film with copper foil for multilayer wiring board, and multilayer wiring board using these
JP2013045858A (en) Coreless multilayer wiring board and manufacturing method thereof
JP2004014611A (en) Insulation film with supports, multilayer printed circuit board, and its manufacturing method
JP2014185330A (en) Resin composition, primer layer for plating process, primer layer for plating process supported by substrate, cured primer layer for plating process, laminate for wiring board, method of producing laminate for wiring board, multilayer wiring board, and method of producing multilayer wiring board
JP4300890B2 (en) Manufacturing method of multilayer wiring board
JP4019800B2 (en) Insulating resin composition manufacturing method, insulating resin composition, multilayer wiring board and manufacturing method thereof
JP2017035843A (en) Metal foil with adhesive layer, metal clad laminate and multilayer printed board using the same
US20120305291A1 (en) Primer layer for plating process, laminate for wiring board and method for manufacture thereof, multilayer wiring board and method for manufacture thereof
JP6295708B2 (en) Resin composition, primer layer for plating process, primer layer for plating process with support, primer layer for post-curing plating process, laminated board for wiring board, method for producing laminated board for wiring board, multilayer wiring board, and multilayer wiring board Manufacturing method
JP2009272533A (en) Insulating film with support for multilayer printed wiring board, multilayer printed wiring board, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R151 Written notification of patent or utility model registration

Ref document number: 5728998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350