JP2004242125A - 画像処理装置 - Google Patents

画像処理装置 Download PDF

Info

Publication number
JP2004242125A
JP2004242125A JP2003030316A JP2003030316A JP2004242125A JP 2004242125 A JP2004242125 A JP 2004242125A JP 2003030316 A JP2003030316 A JP 2003030316A JP 2003030316 A JP2003030316 A JP 2003030316A JP 2004242125 A JP2004242125 A JP 2004242125A
Authority
JP
Japan
Prior art keywords
correction
image
distortion
aperture
optical distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003030316A
Other languages
English (en)
Inventor
Kenji Ito
研治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003030316A priority Critical patent/JP2004242125A/ja
Publication of JP2004242125A publication Critical patent/JP2004242125A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

【課題】光学歪みの補正に起因する画質の劣化を抑制することのできる画像処理装置を得る。
【解決手段】レンズ12を介した撮影により得られたデジタル画像データに含まれる光学歪みをディストーション補正部28によって補正し、当該光学歪みの補正量が大きくなるほど補正量が大きくなるように補正係数(ゲイン)をCPU21によって設定し、アパーチャ補正部29により、光学歪みが補正されたデジタル画像データに対し、CPU21によって設定された補正係数を用いてアパーチャ補正を行う。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、画像処理装置に係り、特に、光学レンズを介した撮影により得られた画像情報に含まれる光学歪みを補正すると共に、当該画像情報に対してアパーチャ補正を行う画像処理装置に関する。
【0002】
【従来の技術】
銀塩カメラやデジタルカメラなどの光学レンズを通して被写体像を撮像して、被写体像を表す画像を取得する撮像装置では、光学レンズの屈折により取得した画像の周辺に歪みが生じてしまう。この歪みは、一般に光学歪み(ディストーション)と称され、撮像装置に用いられるレンズは、この光学歪みを打ち消すように構成されるが、ズームレンズの場合、同一のレンズ構成でテレ端及びワイド端を共に補正することは難しく、大きな光学歪みが発生し易い。また、単焦点のレンズにおいても、補正するために高価な素材レンズ或いはレンズ構成を増やすことが必要とされ、薄くて安価なレンズ構成とするのは難しく、やはり光学歪みが残ってしまう。このように、撮像装置に用いられるレンズの歪み特性はコストや大きさの制限から0%にすることは難しく、1%前後が視覚上妥当であると考えられている。
【0003】
銀塩カメラのように取得された画像がフイルムに記録される場合は、記録後の画像の補正は不可能であり、レンズ性能によって光学歪みが決まってしまう。一方、デジタルカメラのようにデジタルデータで画像が取得されて記録メディアに記録される場合は、記録後でも演算処理によって画像を補正することが可能である。このため、デジタルカメラの分野では、従来より、光学歪み補正に関する技術が提案されている。
【0004】
ここで、光学歪みは、図9(A)に示すように、画像の角部が外側に伸びる「糸巻き型」と、図9(B)に示すように、逆に角部が縮む「たる型」の2種類に分けられ、何れも光学中心からの距離によって歪み量(変位量)が決まることが一般に知られている。すなわち、変位量が線形であれば、単に縮小或いは拡大されるだけであるが、実際には、図9(C)に示すように非線形であり、正の変位量の場合は、各画素は本来の位置から中心より遠ざかる位置にずれるので「糸巻き型」となり、負の変位量の場合は、各画素は本来の位置から中心へ近づく位置になるので「たる型」となる。
【0005】
従来、このような光学歪みを補正するための技術として、光学歪みを補正するにあたり、所定数のピクセルを含むブロックに分割し、ブロック毎にその領域の平均の歪み量を予め算出した第1の歪み補正テーブルと、ブロックに含まれるピクセルに応じて微調整をするための歪み量を予め算出した第2の歪み補正テーブルとを設け、第1の歪み補正テーブルを索引して割り出される補正量と、第2の歪み補正テーブルを索引して得られる補正量とを乗算して補正する技術があった(例えば、特許文献1参照。)。
【0006】
この技術によれば、歪み補正テーブルを2段階に設けているので、歪み補正に関するメモリ占有容量を削減することができる。
【0007】
また、光学歪みを補正するための技術として、レンズの収差に関する情報を取得し、当該情報に基づいて、上記レンズを介して得られた、被写体像を輝度データ及び色差データで表す画像データに対し、該画像データが表す被写体像の上記レンズの収差に起因する画質の低下を補正する技術もあった(例えば、特許文献2参照。)。
【0008】
【特許文献1】
特開平11−196313号公報
【特許文献2】
特開2000−3437公報
【0009】
【発明が解決しようとする課題】
しかしながら、光学歪みは光学レンズの中心部から周辺部に向かうに従って大きくなるため、これらの技術を含め、光学歪みを補正する殆どの技術では、当該レンズを介して得られた画像情報により示される画像の中心部から周辺部に向かうに従って移動量が大きくなる座標変換を行っており、この結果として補正後の画像情報によって示される画像が中心部から周辺部に向かうに従って解像感が低下して画質が劣化する、という問題点があった。
【0010】
例えば、上記座標変換を行うに際して画素補間を伴う場合には、図10に示すように、画素補間によって得られた画素GHの光学歪みに応じた移動量は画像の中心部から周辺部に向かうほど移動量が大きくなる。この問題は、光学歪みが糸巻き型であっても、たる型であっても生じる。
【0011】
本発明は上記問題点を解決するためになされたものであり、光学歪みの補正に起因する画質の劣化を抑制することのできる画像処理装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の画像処理装置は、光学レンズを介した撮影により得られた画像情報に含まれる光学歪みを補正する歪み補正手段と、前記歪み補正手段による光学歪みの補正量が大きくなるほど補正量が大きくなるように補正係数を設定する設定手段と、前記歪み補正手段により光学歪みが補正された前記画像情報に対して前記設定手段により設定された前記補正係数を用いてアパーチャ補正を行うアパーチャ補正手段と、が備えられている。
【0013】
請求項1に記載の画像処理装置によれば、光学レンズを介した撮影により得られた画像情報に含まれる光学歪みが歪み補正手段によって補正される。なお、当該補正の手法としては、前述したような歪み補正テーブルを用いる手法、当該テーブルを設けることなく当該テーブルによって示される情報を高次の関数等を用いた演算により導出して適用する手法等、光学歪みを補正するあらゆる手法を適用することができる。
【0014】
ここで、本発明では、歪み補正手段による光学歪みの補正量が大きくなるほど補正量が大きくなるように設定手段により補正係数が設定され、アパーチャ補正手段によって、歪み補正手段により光学歪みが補正された画像情報に対して上記設定手段により設定された補正係数が用いられてアパーチャ補正が行われる。
【0015】
なお、アパーチャ補正は、被写体の輪郭強調等によりエッジ補正を施して開口歪み等を補償する処理であり、画像処理の分野において以前より広く行われてきた処理である。
【0016】
そこで本発明では、このようなアパーチャ補正を利用して、光学歪みの補正量が大きくなるほど補正量が大きくなるように補正係数を設定し、当該補正係数を用いて、光学歪みが補正された画像情報に対してアパーチャ補正を行うようにしており、これによって光学歪みの補正に起因する解像感の低下を的確に補うようにしている。
【0017】
このように、請求項1に記載の画像処理装置によれば、光学レンズを介した撮影により得られた画像情報に含まれる光学歪みを補正し、当該光学歪みの補正量が大きくなるほど補正量が大きくなるように補正係数を設定し、光学歪みが補正された画像情報に対して、上記設定した補正係数を用いてアパーチャ補正を行っているので、光学歪みの補正に起因する解像感の低下を的確に補うことができ、この結果として画質の劣化を的確に抑制することができる。
【0018】
ところで、光学歪みは光学レンズの中心部から周辺部に向かうに従って大きくなることは前述した通りである。
【0019】
この点に着目し、請求項2記載の画像処理装置は、請求項1に記載の発明において、前記設定手段は、前記画像情報によって示される画像の中心から遠くなるほど補正量が大きくなるように前記補正係数を設定するものである。
【0020】
請求項2に記載の画像処理装置によれば、本発明の設定手段により、画像情報によって示される画像の中心から遠くなるほど補正量が大きくなるように本発明の補正係数が設定される。
【0021】
このように、請求項2に記載の画像処理装置によれば、画像情報によって示される画像の中心から遠くなるほど補正量が大きくなるようにアパーチャ補正による補正量を示す補正係数を設定しているので、直接光学歪みの補正量に応じて設定する場合に比較して、より容易に補正係数を設定することができる。
【0022】
なお、アパーチャ補正は、通常、ユーザによって指定された度合いに応じて行われるものであり、本発明の設定手段は、請求項3記載の発明のように、予め指定されたアパーチャ補正の度合いを示す指定係数が反映された状態で前記補正係数を設定することが好ましい。これによって、指定された度合いも加味してアパーチャ補正が行われるので、より要求に応じた状態で光学歪みの補正に起因する画質の劣化を抑制することができる。
【0023】
また、本発明の設定手段は、必ずしも前記補正係数を連続的に設定する必要はなく、請求項4に記載の発明のように、段階的に設定するものとすることもできる。
【0024】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、ここでは、本発明の画像処理装置をデジタルカメラに適用した場合について説明する。
【0025】
まず、図1を参照して、本実施の形態に係るデジタルカメラ10の構成を説明する。同図に示されるように、このデジタルカメラ10には、被写体像を結像させるためのレンズ12と、レンズ12の光軸後方に配設された電荷結合素子(以下、「CCD」という。)14と、入力されたアナログ信号に対してCDS(相関2重サンプリング処理)等の各種のアナログ信号処理を行った後にデジタルデータに変換する前処理部16と、撮影を実行する際に押圧操作されるシャッター(所謂レリーズボタン)18と、デジタルカメラ10の全体的な動作を司る主制御部20と、CCD14に対する垂直同期信号を生成する垂直ドライバ31と、が備えられている。
【0026】
一方、主制御部20には、設定手段としてのCPU(中央演算処理装置)21と、入力されたデジタルデータに対して各種デジタル信号処理を行う信号処理部22と、入力された未圧縮のデジタルデータに対して予め定められた圧縮形式(本実施の形態では、JPEG形式)で圧縮処理を施す一方、入力された圧縮済みのデジタルデータに対して圧縮形式に応じた伸張形式で伸張処理を施す圧縮・伸張部23と、主制御部20の外部に配置された各部との間の情報の授受を司る入出力制御部(以下、「I/O」という。)24と、が備えられている。
【0027】
また、主制御部20には、装着された記録媒体に対するアクセスの制御を行うメディアインタフェース(以下、「メディアI/F」という。)25と、被写体像やメニュー画面等を不図示の液晶ディスプレイに表示させるための信号を生成して当該液晶ディスプレイに供給する表示制御部26と、外部装置との間のUSB(Universal Serial Bus)規格による相互通信を司るUSBインタフェース(以下、「USBI/F」という。)27と、内部メモリに対するアクセスの制御を行うメモリ制御部30と、が備えられている。
【0028】
更に、主制御部20には、レンズ12を介した撮影により得られたデジタル画像データに含まれる光学歪みを補正する歪み補正手段としてのディストーション補正部28と、ディストーション補正部28により光学歪みが補正されたデジタル画像データに対してアパーチャ補正を行うアパーチャ補正手段としてのアパーチャ補正部29と、が備えられている。
【0029】
CPU21、信号処理部22、圧縮・伸張部23、I/O24、メディアI/F25、表示制御部26、USBI/F27、ディストーション補正部28、アパーチャ補正部29、及びメモリ制御部30は、バスB1を介して相互に接続されている。
【0030】
従って、CPU21は、信号処理部22、圧縮・伸張部23、ディストーション補正部28、アパーチャ補正部29の作動の制御、I/O24を介した各部との間の情報の授受、装着された記録媒体へのメディアI/F25を介したアクセス、不図示の液晶ディスプレイへの表示制御部26を介した各種情報の表示、外部装置との間のUSBI/F27を介したUSB規格による相互通信、及び内部メモリへのメモリ制御部30を介したアクセス、を各々行うことができる。
【0031】
一方、シャッター18はCPU21に接続されており、CPU21は、シャッター18に対する押圧操作の状態を常時把握することができる。
【0032】
また、信号処理部22の入力端は前処理部16を介してCCD14の出力端に接続されており、I/O24の出力端は垂直ドライバ31を介してCCD14の入力端に接続されている。従って、被写体に対する撮像によってCCD14から出力された被写体像を示すアナログ信号は前処理部16において各種アナログ信号処理が施された後にデジタル画像データに変換されて信号処理部22に入力され、各種デジタル信号処理が施された後にメモリ制御部30を介して内部メモリ(詳細には、後述するSDRAM32)に一旦記憶される。また、このときのCCD14による撮像動作は、CPU21によるI/O24を介した制御によって垂直ドライバ31により生成された垂直同期信号に同期して行われる。
【0033】
なお、信号処理部22で行われる各種デジタル信号処理には、ホワイトバランス調整処理や、ガンマ処理等の他、入力されたデジタル画像データ(R(赤)、G(緑)、B(青)の各色毎の画像データ)を用いて輝度信号Yとクロマ信号Cr、Cbを生成するYC信号処理も含まれており、信号処理部22は、YC信号処理後の輝度信号Y及びクロマ信号Cr、Cbを内部メモリに記憶する。
【0034】
一方、デジタルカメラ10には、上記内部メモリとしてSDRAM(Synchronous DRAM)32及びROM34が備えられており、これらのメモリはバスB2を介してメモリ制御部30に接続されている。従って、CPU21は、メモリ制御部30及びバスB2を介してSDRAM32及びROM34にアクセスすることができる。
【0035】
また、デジタルカメラ10には、記録媒体36A及び記録媒体36Bの2枚の記録媒体が装着可能とされており、これらの記録媒体は装着された状態でバスB3を介してメディアI/F25に接続される。従って、CPU21は、メディアI/F25及びバスB3を介して記録媒体36A及び記録媒体36Bにアクセスすることができる。なお、本実施の形態のデジタルカメラ10では、記録媒体36Aとしてスマート・メディアが、記録媒体36Bとしてコンパクト・フラッシュが、各々適用されている。
【0036】
次に、図2及び図3を参照して、本実施の形態に係るディストーション補正部28による光学歪みの補正の手法について説明する。
【0037】
図9で示したように、光学歪みによる変位量を示す光学ディストーションカーブは、画像中心からの距離の多次元関数で近似表現することができ、以下では、一例として、次式(1)で示す4次関数で表わす。
【0038】
F(d)=α×d+β×d+γ ・・・(1)
ただし、d:光学中心からの距離、α、β、γ:係数、である。
【0039】
なお、上記式(1)において奇数次の項を省略したのは、光学歪みが無い状態、すなわち補正後の画像における画素の座標を(x、y)とした場合に(x、yは整数)、これに対応する補正前の画像の座標(X,Y)は、以下の式(2)で表される。
【0040】
(X,Y)=(x×F(d)、y×F(d))、d=(x+y1/2・・・(2)
式(2)からも分かるように、奇数次の項が含まれると光学中心からの距離dの演算に平方根の計算が必要となり、ハード構成が複雑になるためである。すなわち、奇数次の項を省略して偶数次の項のみの関数でこのように光学歪みを表わすことで、平方根の計算を回避し、回路構成の簡素化を図ることができる。
【0041】
一方、光学歪みを補正するための補正曲線は、光学ディストーションカーブと逆のカーブを描けばよく、大きく分けて3つのパターンが考えられる。例えば、糸巻き型の光学歪みの補正曲線は、光学ディストーションカーブとは逆に、必ず右下がりになるような(微分値が常に負)カーブを描き、図2に示す如く3種類の補正パターンが考えられる。
【0042】
すなわち、図2(A)に示されているように、光学中心を固定し、周辺部を中心方向に引き寄せるように補正する補正パターン(補正パターン1)と、図2(B)、(C)に示されているように、例えば周辺部近傍などの中心と周辺部の中間部、或いは周辺部を固定し、中心部を移動させるように補正する補正パターン(補正パターン2、3)とがある。
【0043】
このような補正パターンの種類については、前述した式(1)における係数γの値により定まり、すなわち、前述した式(1)における係数α、βは、実際の光学歪みに基づいて設定されるが、γについては、採用した補正パターンに応じて設定される。補正パターン1はγ=0、補正パターン2、3は、γ>0の場合である。
【0044】
光学歪みの補正は、補正後の画像の座標(x、y)に対応する補正前の画像の座標(X、Y)を求めたら、該補正前の画像における座標(X、Y)にある画素データPを補正後の画像の座標(x、y)に移動することで行うことができるが、通常、上記式(2)により求めた補正前の画像の座標(X、Y)は整数値にならず、補正前の画像には対応する画素データが存在しない。
【0045】
このため、求めた補正前の画像の座標(X、Y)に対応する画素データPを、当該補正前の画像の座標(X、Y)近傍の実在する画素データから内挿によって求めて補間する必要がある。
【0046】
この場合の補間方法(内挿方法)としては、最近傍補間法(nearest neighbor interpolation)、線形補間法(bi−linear interpolation)を挙げることができる。
【0047】
線形補間法とは、図3に示すように、補正前の画像の座標(X、Y)に対応する画素データPを、当該補正前の画像において、座標(X、Y)の周囲にある近傍の4画素のデータD、D、D、Dにより内挿するものであり、当該補正前の画像の座標からの距離に応じて重みを決定して、この近傍の4画素の画素データD、D、D、Dの重み付け平均を求める。
【0048】
すなわち、前述の式(2)により求められる、補正後の画像の座標(x、y)に対応する補正前の画像の座標(X、Y)の整数部を(intX、intY)とし、小数部を(Δx、Δy)とすると、当該補正前の画像の座標の周囲にある近傍の4画素のデータD、D、D、Dの座標は、(intX、intY)、(intX、intY+1)、(intX+1、intY)、(intX+1、intY+1)となり、それぞれの画素データD、D、D、Dに対する重みは、(1−Δx)×(1−Δy)、(1−Δx)×Δy、Δx×(1−Δy)、Δx×Δyとなる。求める画素データPは、補正前の画像における近傍4画素の画素データの値をD、D、D、Dとして、次の式(3)のようになる。
Figure 2004242125
また、最近傍補間法とは、補正後の画像の座標の画素データPを、当該補正前の画像の座標に最も近い位置にある画素のデータにより内挿するものである。
【0049】
すなわち、前述の式(2)により、補正後の画像の座標(x、y)に対応する補正前の画像の座標(X,Y)=(x×F(d)、y×F(d))を求め、この補正前の画像の座標(X、Y)の小数部を四捨五入して整数値の座標にし、この整数値の座標の位置にある補正前の画像の画素データを、補正前の画像の座標(X,Y)の画素データPとする。
【0050】
また、高速演算処理可能であれば、演算がより複雑になるがその分より高画質の画像を得ることができる3次たたみ込み補間法(cubic convolution interpolation)により補間するようにしてもよい。
【0051】
何れの補間方法であっても、補正後の画像における座標(x、y)に対応する補正前の画像の座標(X,Y)を演算により求め、該求めた座標(X,Y)近傍の補正前の画像の画素データを用いて、当該補間方法に従って、画素データPを求める。そして、この求めた画素データPを補正後の画像における座標(x、y)の画素データとすることで、光学歪みを補正することができる。
【0052】
なお、本実施の形態に係るディストーション補正部28では、補間方法として線形補間法を適用している。
【0053】
次に、図4を参照して、本実施の形態に係るアパーチャ補正部29の構成を詳細に説明する。同図に示すように、アパーチャ補正部29は、予め定められた高周波数帯域を通過させるバンド・パス・フィルタ(以下、「BPF」という。)29Aと、乗算器29Bと、加算器29Cと、ルック・アップ・テーブル(以下、「LUT」という。)29Dと、乗算器29Eと、を含んで構成されている。
【0054】
BPF29Aは、SDRAM32に記憶された輝度信号Yが入力されるものであり、当該輝度信号Yから所定高周波帯域の成分を抽出して乗算器29Bに出力する。例えば、入力された輝度信号Yが図5(A)に示すような状態である場合、BPF29Aから乗算器29Bには、図5(B)に示すような輝度信号Yのエッジの位置に対応するパルス(以下、「エッジ・パルス」という。)が出力される。すなわち、BPF29Aは、輝度信号Yにより示される被写体像の輪郭部を抽出する役割を有している。
【0055】
乗算器29Bでは、BPF29Aから入力されたエッジ・パルスに対して乗算器29Eから入力されたゲインを乗算し、一方の入力端に上記輝度信号Yが入力される加算器29Cの他方の入力端に出力する。
【0056】
従って、加算器29Cでは、入力された輝度信号Yに対して、乗算器29Bにより上記ゲインに応じて増幅されたエッジ・パルスが加算され、一例として図5(C)に示すような、被写体像の輪郭が強調された状態の輝度信号Y’が生成されて出力される。
【0057】
一方、本実施の形態に係るデジタルカメラ10は、ユーザによってアパーチャ補正部29によるアパーチャ補正の度合いを指定することができるように構成されており、ユーザによって指定された当該度合いを示すデータ(本発明の「指定係数」に相当し、以下「指定画質調整ゲイン」という。)は不図示のレジスタに記憶される。
【0058】
アパーチャ補正部29における乗算器29Eの一方の入力端には、この指定画質調整ゲインが入力される。
【0059】
一方、アパーチャ補正部29のLUT29Dは、アパーチャ補正の処理対象とする画素の位置を示すアドレス(本実施の形態では、処理対象とするデジタル画像データにより示される被写体像の左上端部に位置する画素のアドレスを起点とした水平方向及び垂直方向の画素単位のアドレス)が入力され、当該アドレスにより示される当該画素の被写体像上の位置に対応する補正係数を、当該画素に対するディストーション補正部28による光学歪みの補正量が大きくなるほどアパーチャ補正の補正量(乗算器29Bに入力される上記ゲイン)を増加させるものとして乗算器29Eの他方の入力端に出力する。
【0060】
ここで、本実施の形態に係るLUT29Dでは、一例として図6に示すように、被写体像を当該被写体像の中心を中心軸とした同心円状に複数(同図では4つ)の領域に分割し、各分割領域に対して、上記中心軸から遠くなるほど大きな値となるように補正係数が割り振られており、入力されたアドレスによって示される処理対象とする画素の被写体像上の位置に対応する補正係数が出力される構成とされている。
【0061】
従って乗算器29Eでは、指定画質調整ゲインと、処理対象とする画素の位置が被写体像の中心から遠くなるに従って大きな値となる補正係数と、が乗算され、この乗算によって得られた値が乗算器29Bにゲインとして入力されることになる。
【0062】
この結果、アパーチャ補正部29から出力される輝度信号Y’は、処理対象とする画素の位置が被写体像の中心から遠くなるほど補正量が大きくされたアパーチャ補正が行われたものとなる。
【0063】
このように、本実施の形態に係るアパーチャ補正部29は、レンズ12の光学歪みが当該レンズ12の中心部から周辺部に向かうに従って大きくなることを利用して、デジタル画像データによって示される被写体像の中心から遠くなるほど補正量が大きくなるように上記ゲインを設定することにより、ディストーション補正部28による光学歪みの補正量が大きくなるほど補正量が大きくなるように当該ゲインを設定するものとされており、直接光学歪みの補正量に応じて設定する場合に比較して、より容易に当該ゲインを設定することができるようにしている。
【0064】
また、本実施の形態に係るアパーチャ補正部29では、ユーザによって予め指定されたアパーチャ補正の度合いを示す指定画質調整ゲインが反映された状態で上記ゲインを設定しており、指定された度合いも加味してアパーチャ補正が行われるので、より要求に応じた状態で光学歪みの補正に起因する画質の劣化を抑制することができる。
【0065】
なお、本実施の形態では、図6に示すように、被写体像の中心が含まれる分割領域に補正係数として‘1.0’が割り振られており、周辺部に向かうに従って‘1.0’より大きな値が割り振られているが、これらの値は、各分割領域に対応するレンズ12の入射光の通過領域における光学歪みの平均的な大きさ、すなわち、各分割領域に対するディストーション補正部28による平均的な補正量に応じて割り振られたものである。
【0066】
次に、本実施の形態に係るデジタルカメラ10の作用を説明する。まず、CCD14は、レンズ12を介して被写体の撮像を行い、被写体像を示すR(赤)、G(緑)、B(青)毎のアナログ信号を前処理部16に順次出力する。前処理部16は、CCD14から入力されたアナログ信号に対してCDS等の各種のアナログ信号処理を行った後にデジタル画像データに変換して信号処理部22に順次出力する。
【0067】
信号処理部22は、前処理部16から入力されたデジタル画像データに対してホワイトバランス調整処理、ガンマ処理等の各種デジタル信号処理を行った後にYC信号処理を行って輝度信号Yとクロマ信号Cr、Cbを生成し、これらの信号をデジタル画像データとしてメモリ制御部30を介してSDRAM32の所定領域に格納する。
【0068】
SDRAM32の所定領域に格納されたデジタル画像データは、CPU21による制御に応じてディストーション補正部28によって読み出され、前述した手法による光学歪みの補正が行われた後に再度SDRAM32の所定領域に格納される。
【0069】
その後、以上によって光学歪みの補正が行われ、SDRAM32に格納されたデジタル画像データに対し、CPU21による制御の下でアパーチャ補正部29によりアパーチャ補正が行われる。
【0070】
以下、図7を参照して、アパーチャ補正部29によりアパーチャ補正を行う際にCPU21において実行される処理について説明する。なお、ここでは、ユーザによって指定された指定画質調整ゲインが上記不図示のレジスタに予め設定されている場合について説明する。
【0071】
同図のステップ100では、上記不図示のレジスタから指定画質調整ゲインを読取り、次のステップ102では、当該指定画質調整ゲインのアパーチャ補正部29における乗算器29Eへの出力を開始する。
【0072】
次のステップ104では、アパーチャ補正の対象とするデジタル画像データの何れかの画素(以下、「処理対象画素」という。)に対応する輝度信号YをSDRAM32から読取り、次のステップ106では、処理対象画素の被写体像上の位置を示す前述したアドレスのアパーチャ補正部29におけるLUT29Dへの出力を開始する。これによって、処理対象画素の位置に対応する補正係数のLUT29Dから乗算器29Eへの出力が開始され、乗算器29Eから乗算器29Bに対するゲインの出力が開始される。
【0073】
次のステップ108では、上記ステップ104において読取った輝度信号Yの値をアパーチャ補正部29におけるBPF29A及び加算器29Cに出力する。
【0074】
以上の処理によって、アパーチャ補正部29の加算器29Cからは、ディストーション補正部28による光学歪みの補正量が大きくなるほど補正量が大きくなるように設定されたゲインを用いてアパーチャ補正が行われた輝度信号Y’が出力されるので、当該輝度信号Y’をステップ110において入力し、ステップ112にてSDRAM32の対応する輝度信号Yの値に上書き記憶する。
【0075】
次のステップ114では、処理対象とするデジタル画像データの全ての画素について上記ステップ104〜ステップ112の処理が終了したか否かを判定し、否定判定の場合は上記ステップ104に戻って再びステップ104〜ステップ114の処理を実行し、肯定判定となった時点で本処理を終了する。なお、上記ステップ104〜ステップ114の処理を繰り返して実行する際には、それまでに処理対象としなかった画素を処理対象画素とする。
【0076】
本処理によって、ディストーション補正部28による光学歪み補正後の1被写体像分のデジタル画像データが、アパーチャ補正部29によってアパーチャ補正が施されたものとされる。
【0077】
なお、本実施の形態に係るデジタルカメラ10の不図示の液晶ディスプレイは、CCD14による連続的な撮像によって得られた動画像(スルー画像)を表示してファインダとして使用することができるものとして構成されており、当該液晶ディスプレイをファインダとして使用する場合には、アパーチャ補正部29によりアパーチャ補正が施された輝度信号Y’と、クロマ信号Cr、Cbとを、表示制御部26を介して順次液晶ディスプレイに出力する。これによって液晶ディスプレイにスルー画像が表示されることになる。
【0078】
また、シャッター18がユーザによって半押し状態とされた場合、AE機能が働いて露出状態が設定された後、AF機能が働いて合焦制御され、その後、引き続き全押し状態とされた場合、この時点でSDRAM32に格納されている輝度信号Y’と、クロマ信号Cr、Cbとを、圧縮・伸張部23によって所定の圧縮形式(本実施の形態では、JPEG形式)で圧縮した後にメディアI/F25及びバスB3を介して、ユーザによって予め指定された記録媒体36A又は36Bに記録する。これにより撮影が行われる。
【0079】
以上詳細に説明したように、本実施の形態に係るデジタルカメラ10は、レンズ12を介した撮影により得られたデジタル画像データに含まれる光学歪みを補正し、当該光学歪みの補正量が大きくなるほど補正量が大きくなるように補正係数(ゲイン)を設定し、光学歪みが補正されたデジタル画像データに対して、上記設定した補正係数を用いてアパーチャ補正を行っているので、光学歪みの補正に起因する解像感の低下を的確に補うことができ、この結果として画質の劣化を的確に抑制することができる。
【0080】
また、本実施の形態に係るデジタルカメラ10は、デジタル画像データによって示される画像の中心から遠くなるほど補正量が大きくなるようにアパーチャ補正による補正量を示す補正係数(ゲイン)を設定しているので、直接光学歪みの補正量に応じて設定する場合に比較して、より容易に補正係数を設定することができる。
【0081】
また、本実施の形態に係るデジタルカメラ10は、予めユーザによって指定された指定画質調整ゲインが反映された状態で上記補正係数を設定しているので、指定画質調整ゲインも加味してアパーチャ補正が行われるため、より要求に応じた状態で光学歪みの補正に起因する画質の劣化を抑制することができる。
【0082】
更に、本実施の形態に係るデジタルカメラ10は、上記補正係数を複数の分割領域毎に段階的に設定しているので、連続的に設定する場合に比較して、より簡易にLUT29Dを構成することができる。
【0083】
なお、本実施の形態では、デジタル画像データによって示される被写体像の中心から遠くなるほど補正量が大きくなるようにアパーチャ補正で用いる補正係数(ゲイン)を設定する場合について説明したが、本発明はこれに限定されるものではなく、例えば、直接光学歪みの補正量(補正前の画像における座標(X、Y)にある画素データPの補正後の画像の座標(x、y)への移動量)に応じて設定する形態とすることもできる。
【0084】
図8には、この場合のアパーチャ補正部29’の形態の一例が示されている。なお、同図における図4と同一の構成要素には、図4と同一の符号が付してある。同図に示す例では、CPU21において画素毎の上記移動量をディストーション補正部28から取得し、当該移動量とユーザによって予め指定された指定画質調整ゲインとに基づいて、当該移動量が大きくなるほど大きな値となるようにゲインを導出して乗算器29Bに直接出力する。この場合も、本実施の形態と同様の効果を奏することができる。
【0085】
また、本実施の形態では、SDRAM32に一旦記憶された画像データに対してアパーチャ補正を行う場合について説明したが、本発明はこれに限定されるものではなく、例えば、信号処理部22とバスB1との間にディストーション補正部28及びアパーチャ補正部29を介在させて、CCD14によって取得された画像データに対してリアルタイムでディストーション補正及びアパーチャ補正を行い、その後にSDRAM32に記憶する形態とすることもできる。この場合は、ディストーション補正及びアパーチャ補正を行う際に行っていたSDRAM32へのアクセスを省略することができる。
【0086】
また、本実施の形態では、本発明の補正係数を、LUT29Dを用いて導出する場合について説明したが、本発明はこれに限定されるものではなく、例えば、処理対象画素の被写体像の中心からの距離に応じて演算結果が大きくなる演算式を用いて導出する形態とすることもできる。この場合は、当該演算式による演算のための負荷が増加するものの、LUT29Dを用意する必要がなくなり、本実施の形態に比較して低コスト化及び省スペース化できる。
【0087】
また、本実施の形態では、アパーチャ補正部29によるアパーチャ補正処理にCPU21を関与させた場合について説明したが、本発明はこれに限定されるものではなく、例えば、図7に示される処理を実行するプロセッサをアパーチャ補正部29に設け、当該プロセッサによって当該処理を実行することによりCPU21を関与させない形態とすることもできる。この場合は、CPU21の負荷を低減することができる。
【0088】
また、ディストーション補正部28で行う光学歪みの補正手法は本実施の形態で説明したものに限らず、前述した歪み補正テーブルを用いる手法等、光学歪みを補正する既存のあらゆる手法を適用することができる。
【0089】
また、本実施の形態で図7を参照して説明した処理の流れは一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能であることは言うまでもない。
【0090】
更に、本実施の形態に係るデジタルカメラ10及びアパーチャ補正部29の構成(図1及び図4参照)も一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能であることは言うまでもない。
【0091】
【発明の効果】
以上説明した如く本発明によれば、光学レンズを介した撮影により得られた画像情報に含まれる光学歪みを補正し、当該光学歪みの補正量が大きくなるほど補正量が大きくなるように補正係数を設定し、光学歪みが補正された画像情報に対して、上記設定した補正係数を用いてアパーチャ補正を行っているので、光学歪みの補正に起因する解像感の低下を的確に補うことができ、この結果として画質の劣化を的確に抑制することができる、という効果が得られる。
【図面の簡単な説明】
【図1】実施の形態に係るデジタルカメラの構成を示すブロック図である。
【図2】(A)〜(C)は、補正パターンの種類を示す図である。
【図3】線形補間法を説明するための概念図である。
【図4】実施の形態に係るアパーチャ補正部29の構成を示すブロック図である。
【図5】実施の形態に係るアパーチャ補正部29の動作の説明に供する波形図である。
【図6】実施の形態に係るLUT29Dの説明に供する模式図である。
【図7】実施の形態に係るアパーチャ補正部29によりアパーチャ補正を行う際にCPU21において実行される処理の流れを示すフローチャートである。
【図8】アパーチャ補正部の他の構成例を示すブロック図である。
【図9】(A)は糸巻き型の光学歪みの形状、(B)はたる型の光学歪みの形状を示し、(C)は、糸巻き型及びたる型の各々の光学歪みの変位量(光学ディストーション)を示す図である。
【図10】従来技術の問題点の説明に供する模式図である。
【符号の説明】
10 デジタルカメラ
21 CPU(設定手段)
28 ディストーション補正部(歪み補正手段)
29 アパーチャ補正部(アパーチャ補正手段)

Claims (4)

  1. 光学レンズを介した撮影により得られた画像情報に含まれる光学歪みを補正する歪み補正手段と、
    前記歪み補正手段による光学歪みの補正量が大きくなるほど補正量が大きくなるように補正係数を設定する設定手段と、
    前記歪み補正手段により光学歪みが補正された前記画像情報に対して前記設定手段により設定された前記補正係数を用いてアパーチャ補正を行うアパーチャ補正手段と、
    を備えた画像処理装置。
  2. 前記設定手段は、前記画像情報によって示される画像の中心から遠くなるほど補正量が大きくなるように前記補正係数を設定する
    請求項1記載の画像処理装置。
  3. 前記設定手段は、予め指定されたアパーチャ補正の度合いを示す指定係数が反映された状態で前記補正係数を設定する
    請求項1又は請求項2記載の画像処理装置。
  4. 前記設定手段は、前記補正係数を段階的に設定する
    請求項1乃至請求項3の何れか1項記載の画像処理装置。
JP2003030316A 2003-02-07 2003-02-07 画像処理装置 Pending JP2004242125A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030316A JP2004242125A (ja) 2003-02-07 2003-02-07 画像処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030316A JP2004242125A (ja) 2003-02-07 2003-02-07 画像処理装置

Publications (1)

Publication Number Publication Date
JP2004242125A true JP2004242125A (ja) 2004-08-26

Family

ID=32957238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030316A Pending JP2004242125A (ja) 2003-02-07 2003-02-07 画像処理装置

Country Status (1)

Country Link
JP (1) JP2004242125A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067176A (ja) * 2006-09-08 2008-03-21 Mitsubishi Electric Corp 画像補正装置および画像補正方法
US20080137980A1 (en) * 2006-12-06 2008-06-12 Sony Corporation Image processing method and apparatus
JP2009290863A (ja) * 2008-04-28 2009-12-10 Panasonic Corp 撮像装置およびカメラボディ
JP2010213175A (ja) * 2009-03-12 2010-09-24 Mitsubishi Electric Corp 画像処理装置及び撮像装置
JP2011055133A (ja) * 2009-08-31 2011-03-17 Fujifilm Corp 画像処理システム、画像処理方法およびプログラム
JP2011091525A (ja) * 2009-10-21 2011-05-06 Olympus Imaging Corp 画像処理装置、撮像装置、画像処理方法、および、画像処理プログラム
JP2012016003A (ja) * 2010-06-30 2012-01-19 Ajou Univ Industry Cooperation Foundation 監視カメラを使用する能動的客体追跡装置及び方法
JP2013179435A (ja) * 2012-02-28 2013-09-09 Konica Minolta Inc 画像処理装置、撮像装置
US10255665B2 (en) 2014-12-04 2019-04-09 Mitsubishi Electric Corporation Image processing device and method, image capturing device, program, and record medium
JP2021525032A (ja) * 2018-05-23 2021-09-16 蘇州新光維医療科技有限公司 画像処理方法、装置及び3次元結像システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664259B2 (ja) * 2006-09-08 2011-04-06 三菱電機株式会社 画像補正装置および画像補正方法
JP2008067176A (ja) * 2006-09-08 2008-03-21 Mitsubishi Electric Corp 画像補正装置および画像補正方法
US8320703B2 (en) 2006-12-06 2012-11-27 Sony Corporation Image processing method and apparatus
US20080137980A1 (en) * 2006-12-06 2008-06-12 Sony Corporation Image processing method and apparatus
JP2009290863A (ja) * 2008-04-28 2009-12-10 Panasonic Corp 撮像装置およびカメラボディ
JP2010213175A (ja) * 2009-03-12 2010-09-24 Mitsubishi Electric Corp 画像処理装置及び撮像装置
JP2011055133A (ja) * 2009-08-31 2011-03-17 Fujifilm Corp 画像処理システム、画像処理方法およびプログラム
JP2011091525A (ja) * 2009-10-21 2011-05-06 Olympus Imaging Corp 画像処理装置、撮像装置、画像処理方法、および、画像処理プログラム
US8994856B2 (en) 2009-10-21 2015-03-31 Olympus Imaging Corp. Image processing apparatus, imaging apparatus, and image processing method for providing edge enhancement
JP2012016003A (ja) * 2010-06-30 2012-01-19 Ajou Univ Industry Cooperation Foundation 監視カメラを使用する能動的客体追跡装置及び方法
JP2013179435A (ja) * 2012-02-28 2013-09-09 Konica Minolta Inc 画像処理装置、撮像装置
US10255665B2 (en) 2014-12-04 2019-04-09 Mitsubishi Electric Corporation Image processing device and method, image capturing device, program, and record medium
JP2021525032A (ja) * 2018-05-23 2021-09-16 蘇州新光維医療科技有限公司 画像処理方法、装置及び3次元結像システム

Similar Documents

Publication Publication Date Title
US7944487B2 (en) Image pickup apparatus and image pickup method
US7227574B2 (en) Image capturing apparatus
JP4104571B2 (ja) 歪曲補正装置及びこの歪曲補正装置を備えた撮像装置
JP2001275029A (ja) デジタルカメラ、その画像信号処理方法及び記録媒体
JP2010081002A (ja) 撮像装置
JP4992698B2 (ja) 色収差補正装置、撮像装置、色収差算出方法および色収差算出プログラム
JP4433883B2 (ja) ホワイトバランス補正装置及びホワイトバランス補正方法、プログラム、電子カメラ装置
JP2000069343A (ja) デジタル撮像装置
KR101003681B1 (ko) 화소보간회로, 화소보간방법 및 기록매체
JP2004242125A (ja) 画像処理装置
JPH11250239A (ja) Yuvデータによりディストーション補正を行うディジタル撮像装置
JP2002152541A (ja) 画像処理装置、および画像処理用記録媒体
JP2004246644A (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP5268321B2 (ja) 画像処理装置及び画像処理方法、画像処理プログラム
JP5291788B2 (ja) 撮像装置
JPH11250240A (ja) Yuvデータによりディストーション補正を行うディジタル撮像装置
JP2004287794A (ja) 画像処理装置
JP4023716B2 (ja) 解像度補正装置、解像度補正プログラムおよび解像度補正プログラムを記録したコンピュータ読み取り可能な記録媒体
JP7134666B2 (ja) 画像処理装置、画像処理方法、およびプログラム
JP5278421B2 (ja) 撮像装置
JP5482428B2 (ja) 撮像装置、手ブレ補正方法、プログラム
JP2002209100A (ja) 画像処理装置および画像処理方法
JP4385890B2 (ja) 画像処理方法及び周波数成分補償部、当該周波数成分補償部を含む画像処理装置並びに画像処理プログラム
JP5333163B2 (ja) 撮像装置
JP3975033B2 (ja) 電子カメラ