JP2004241224A - 酸素還元用電極および電池 - Google Patents

酸素還元用電極および電池 Download PDF

Info

Publication number
JP2004241224A
JP2004241224A JP2003028041A JP2003028041A JP2004241224A JP 2004241224 A JP2004241224 A JP 2004241224A JP 2003028041 A JP2003028041 A JP 2003028041A JP 2003028041 A JP2003028041 A JP 2003028041A JP 2004241224 A JP2004241224 A JP 2004241224A
Authority
JP
Japan
Prior art keywords
electrode
oxygen
reduction
electrolyte
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2003028041A
Other languages
English (en)
Inventor
Tadashi Tonomura
正 外邨
Takeo Osaka
武男 大坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003028041A priority Critical patent/JP2004241224A/ja
Publication of JP2004241224A publication Critical patent/JP2004241224A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】酸素の電気化学還元に対して、見かけ上、4電子還元反応を100%に近い選択率で与える安定性にも優れた酸素還元用電極およびそれを用いた電池を提供する。
【解決手段】本発明の酸素還元用電極は、有効成分として白炭を含んでいる。白炭は、O+HO+2e→OH+HO で表される酸素の2電子還元反応を触媒し、過酸化水素(または過酸化水素イオン)を生成する。さらに白炭は、生成した過酸化水素イオンを、2HO →O+2OHで表される分解反応(2)を触媒し、酸素を再生する。再生した酸素は、再度、2電子還元を受け、過酸化水素イオンを生成する。これを繰り返すことにより、見かけ上、O+2HO+4e→4OHの反応が起こる。これにより、酸素の4電子還元を100%に近い効率で行うことができる。
【選択図】 なし

Description

【0001】
【発明の属する技術分野】
本発明は、酸素を電極反応物質とする酸素還元用電極に関する。
【0002】
本発明の酸素還元複合電極は、酸素の還元反応を正極反応として用いる亜鉛―空気電池、アルミニウム―空気電池、砂糖―空気電池などの空気電池や、酸素水素燃料電池、メタノール燃料電池などの燃料電池、酵素センサー、酸素センサーなどの電気化学センサーなど電気化学デバイスの酸素極あるいは空気極などに用いられる。
【0003】
【従来の技術】
従来より酸素(O)を電解還元すると、1電子還元ではスーパーオキシドの生成や、2電子還元では過酸化水素の生成、4電子還元では水が生成することが知られている。(非特許文献1を参照)
酸素の還元反応を電池の正極反応として用い、大容量で、高電圧でしかも高主力電流の電池などの電気化学デバイスを得るには、できるだけ多くの電子移動を伴う酸素の電気化学還元反応を、できるだけ貴な(プラスの)電位で、しかも過電圧をできるだけ小さくして進行させることが必要である。すなわち、4電子還元反応を高電位でしかも過電圧を小さく起こすことのできる触媒が好ましい。白金(Pt)は、4電子還元反応を高電位でしかも過電圧(反応抵抗)を小さく起こすことの出来る触媒として知られている。白金は、(1)高価な貴金属であること、(2)酸素の還元のみならずエタノール、水素などの燃料物質の酸化反応にも活性を示し反応の選択性に乏しく実際の利用にあたって酸化反応、還元反応が行われる場所をセパレータなどで分ける必要があること、さらには、(3)白金の表面は一酸化炭素や水酸基により不活性化されやすく高い触媒活性を保つのが困難なことがあり、白金に代わる触媒を得るためにこれまでいくつかの取り組みが報告されている。
【0004】
特許文献1、特許文献2には、酸素ガス還元能を有する鉄フタロシアニン、コバルトポルフィリンなどの金属キレート化合物を担持した導電性粉末とフッ素樹脂の多孔質成形体よりなる触媒が提案されている。金属キレート化合物の2量体(二核錯体)を使うとより高い酸素還元能(4電子還元能)が期待でき、大きな出力の空気電池が期待できると述べられている。コバルトポルフィリン二核錯体などCr,Mn,Fe,Coなどの遷移金属を中心金属とする大環状錯体を用いる酸素還元触媒の技術は、非特許文献2に述べられている。
【0005】
特許文献3には、酸素還元用マンガン錯体触媒が提案されている。この錯体は酸素の4電子還元反応を高い選択率で触媒する。マンガン原子は、2価から7価の価数をとりマイナス0.5Vからプラス2Vの電位範囲で酸素還元反応を触媒すると述べられている。
【0006】
【特許文献1】
特開平2−30141号公報
【特許文献2】
特開平2−30142号公報
【特許文献3】
特開平11−253811号公報
【非特許文献1】
JACEK KIPKOWSKI, PHILIP N. ROSS編集、 ELECTROCATALYSIS、 WILEY−VCH 出版、1998年、204−205頁
【非特許文献2】
JACEK KIPKOWSKI, PHILIP N. ROSS編集、 ELECTROCATALYSIS、 WILEY−VCH 出版、1998年、232−234頁
【0007】
【発明が解決しようとする課題】
しかしながら、これまで開示されている技術によれば、高い電位を得ようとすれば、価数の大きな中心金属原子を持つ金属錯体が必要で、このような金属錯体は、反応性が高く不安定で、実際の使用にあたって、このような金属錯体と一緒に用いられる電池やセンサーの他の構成要素、例えば、電解液、電極リード、集電体、電池ケース、セパレータ、ガス選択透過膜などと反応して劣化し易いという難点がある。
【0008】
本発明は、このような問題を解決し、価数の大きな中心金属を持つ金属錯体などの反応性の高い不安定な触媒成分を用いることなく、酸素の電気化学還元に対して、4電子還元反応を100%に近い選択率で与える安定性にも優れた酸素還元用電極を提供するものである。さらに、糖類あるいはアルコール類などの電解質に可溶の燃料物質に対してほとんど酸化活性を示さない酸素還元反応に対して高い選択性を有する酸素還元用電極を提供する。
【0009】
【課題を解決するための手段】
本発明は、酸素を電極反応物質とする酸素還元用電極を提供する。本発明の酸素還元用電極は、有効成分として白炭を含んでいる。
【0010】
白炭は、O+HO+2e → OH + HO (アルカリ液中)で表される酸素の2電子還元反応(1)を触媒し、過酸化水素(H、アルカリ液中ではHO で表される過酸化水素イオン)を生成する。さらに白炭は、生成した過酸化水素イオンを、2HO → O + 2OH で表される分解反応(2)を触媒し、酸素を再生する。再生された酸素は、再度、2電子還元を受け、過酸化水素イオンを生成する。酸素1分子が、2電子還元反応(1)により過酸化水素イオン1分子を生成し、生成した過酸化水素イオン1分子は分解反応(2)により1/2分子の酸素を再生する。1/2分子の酸素分子は、2電子還元反応(1)により1/2分子の過酸化水素イオンを生成し、生成した1/2分子の過酸化イオンは分解反応(2)により1/4分子の酸素を再生する。1/4分子の酸素分子は、2電子還元反応(1)により1/4分子の過酸化水素イオンを生成し、生成した1/4分子の過酸化イオンは分解反応(2)により1/8分子の酸素を再生する。2電子還元反応(1)と分解反応が(2)繰り返し起こり続ける。すなわち、酸素1分子の還元に対して、2電子、1電子、1/2電子、1/4電子、1/8電子、・・・・、(1/2)電子(n→無限大)の合計4電子が用いられ、酸素1分子が2電子還元反応の電位で4電子還元反応を受けたのと同じとなり、すなわち、見かけ上、O+2HO+4e → 4OHの反応が起こったことと同じ結果となる。
【0011】
本発明の酸素還元用電極は、このような酸素の還元経路を与える白炭を含有しているので、酸素の4電子還元を100%に近い効率で行うことができる。
【0012】
また、本発明の酸素還元用電極は、電解質に可溶の燃料である糖類あるいはアルコール類に対してほとんど酸化活性を示さないので、本発明の酸素還元用電極をプラス極(正極)として用い、糖類あるいはアルコール類を溶解した電解質と、糖類あるいはアルコール類を酸化するためのマイナス極(負極)とで、発電セルを構成することができる。この際、正極側と負極側とをセパレータで隔離しなくても、正極に電解質に溶解した燃料である糖類あるいはアルコール類が直接接触しても発電セルの電圧が低下することはない。
【0013】
【発明の実施の形態】
以下、本発明を詳しく説明する。
【0014】
本発明に係わる白炭とは、紀州備長炭に代表される硬質の炭であり、通常の黒炭(軟質の炭)とは、(1)製造時の温度が1000℃以上と高いこと、(2)木質硬度が10度以上、(3)炭素含有率(固定炭素)が80重量%以上、(4)電気伝導度が1S/cm以上と高く、(5)比重が1.4〜1.9と高い、(6)揮発分が10%以下と低いことで区別される。
【0015】
本発明に係わる白炭の原料としては特に限定されるものではなく、針葉樹、広葉樹、雑木、竹でも良く、上述した白炭としての機能を備えるものであれば木材以外の炭素源であっても差し支えない。一般に、樫類やナラ類などの硬質広葉樹が原料として好ましい。ヒノキを原料にして製造される比表面積が100m/g以上、電気伝導度が10S/cm以上、酸素の含有量が10重量%以上の白炭は、pHが6〜9の中性水溶液電解質中で高い酸素還元活性を有しており、特に好ましい。
【0016】
本発明に係わる白炭は、原料を約300℃から600℃に加熱することで炭化して低温炭を得る炭化工程と、この低温炭を1,000℃以上の高温で加熱する精錬工程を経ることで製造される。炭化工程と精錬工程は、一つの加熱燃焼炉(窯)でバッチ式で通常は製造するが、一つ以上の窯を使って連続的に製造することも可能である。
【0017】
本発明に係わる白炭は、粒状あるいは粉末状(粉粒体)であることが好ましい。白炭の粉粒体は、タイラー篩200メッシュ以上を通過する粒度であることが好ましい。さらに、レーザー式顕微鏡(キーエンス社、マイクロスコープなど)を用いて測定される最大粒径(直径)が1〜20μmであることが特に好ましい。
【0018】
本発明に係わる白炭は、粒状あるいは粉末状として導電性通気性基体に担持して、酸素を含む気体、電解質溶液からなる液体、導電材からなる固体の三相が接触する三相界面位置あるいは場所に配置して用いるのが好ましい。このように白炭の粉粒体をイオンの経路と電子の経路の交差点に配置することで、酸素の電気化学的還元を小さな過電圧(抵抗)でスムーズに起こすことが可能となり、大きな電流値を得ることができる。このような反応位置あるいは場所を提供する導電性通気性基体としては、カーボン繊維を紙すき法で製紙したカーボンペーパー、ステンレス鋼メッシュやニッケルメッシュなどの金属メッシュ、カーボン粉末や金属粉末をフッ素樹脂バインダーなどの合成樹脂バインダーでつなぎ合わせてシート状に加工した導電性の複合材料シートなどを有効に用いることができる。
【0019】
本発明に係わる白炭は、無機化合物を含んでも良い。無機化合物としては酸素を取り込んだり放出したりする酸素交換能力の高いMeOxで表される金属酸化物が好ましい。このような金属酸化物として、MnSOなどの2価のマンガン塩を過酸化水素などで化学酸化し、必要に応じさらに酸素ガスを含む雰囲気中で加熱酸化することで得られるMn,Mn、Mn、γ−MnOOH(MnとMnの混合物)などのマンガン低級酸化物(MnOy)(y=2未満)、白金黒、酸化ルテニウム、Cux−1SrTiO(x=0〜0.5)、LaSr1−xMnO(x=0〜0.5)、SrTiOなどのペロブスカイト酸化物などがある。なかでも、マンガン低級酸化物は過酸化水素の分解活性が高く、劣化が少なく、しかも安価であるので好ましい。マンガン低級酸化物とは、マンガン原子の原子価が4に満たないマンガン酸化物のことで、使用後のマンガン乾電池の二酸化マンガン正極をそのまま、あるいは焼成したものを用いることができるので、資源再利用の観点からも特に好ましい。
【0020】
無機化合物を含む白炭は、所望の無機化合物と機械的な混合により得ることができる。あるいは、所望の無機化合物を混合した原料木材を炭化、精錬することで得ることができる。原料木材を粉末状に砕き、フェノールなどの溶剤を用いて液状とし、これに所望の無機化合物の粉末あるいは無機化合物を溶解した溶液を加えたものを300から600℃で炭化し、さらに1,000℃以上で精錬する。
【0021】
本発明に係わる白炭は、他の材料との親和性や表面の酸性度を調節する目的で賦活または添着などの加工を施すことができる。賦活の方法としては、水蒸気賦活法や塩化アンモニウムを用いる薬品賦活法を用いることが出来る。添着する物質としては、有機、無機、金属、これらの混合物、複合物、何れの材料も用いることができる。白金、コバルト、ルテニウム、パラジウム、ニッケル、金、銀、銅、白金−コバルト合金、白金−ルテニウム合金などの金属材料、黒鉛や活性炭などの炭素材料、酸化銅、酸化ニッケル、酸化コバルト、酸化ルテニウム、酸化タングステン、酸化モリブデン、酸化マンガン、ランタン−マンガン−銅ペロブスカイト酸化物などの金属酸化物、鉄フタロシアニン、コバルトフタロシアニン、銅フタロシアニン、マンガンフタロシアニン、亜鉛フタロシアニンなどのポルフィリン環を有する金属フタロシアニンあるいは金属ポルフィリン、ルテニウムアンミン錯体、コバルトアンミン錯体、コバルトエチレンジアミン錯体などの金属錯体などを用いることができる。
【0022】
金属錯体の中心金属元素としては、白金、ルテニウム、コバルト、マンガン、鉄、銅、銀、亜鉛などが、酸素の還元反応をより小さな過電圧で進行できるので好ましい。また、金属元素の価数は4以下が好ましい。価数を4以下とすることで、触媒の酸化力を抑え、金属錯体と一緒に用いられる電池やセンサーの他の構成要素、例えば、電解液、電極リード、集電体、電池ケース、セパレータ、ガス選択透過膜などの酸化劣化を有効に防止することができる。
【0023】
なお、このような白炭は、ヒノキ由来のものが好ましく、特選備長炭:有限会社ジャック CO、紀州備長炭:有限会社プレマ(ネット注文:http://www.binchoutan.com/)、七ヶ宿の白炭:佐藤光夫(ネット注文:http://ww5.et.tiki.ne.jp/%7Ehakutan7sato/)、または竹炭:竹炭屋@KOKOPELLI(ネット注文:http://chikutan.netfirms.com/)としても入手可能である。
【0024】
本発明の酸素還元用電極と組み合わせて用いる電解液としては、水溶液、有機電解液いづれの電解液でも用いることができる。ヒノキを原料とする白炭を用いる場合、pH6から9の中性の水溶液電解質は高い活性を与えるので特に好ましい。
【0025】
以下、本発明を、実施例によって具体的に説明する。
【0026】
【実施例1】
試験電極1、2、3、4、5、6、7の作製
うばめかしを原木とする白炭―(A)、あらかしを原木とする白炭―(B)、つばきを原木とする白炭―(C)、ヒノキを原木とする白炭―(D)、マングローブを原木とする黒炭―(E)を用いて試験電極1、2、3、4、5を直径6mmのグラッシーカーボン(GC)を用いて作製した。固定炭素(単位:重量%)は、白炭―(A)が94.2、白炭―(B)が93.3、白炭―(C)が94.7、白炭―(D)が91.3、黒炭−(E)が52.7。比表面積(単位:m/g)は、白炭−(A)が6.2、白炭―(B)が3.0、白炭―(C)が52.7、白炭―(D)が264.2、黒炭―(E)が0.8である。
【0027】
グラッシーカーボンは、厚さ5mm、直径6mmのペレットであり、一方の面が電極リード線と接続されており、もう一方の面が露出した状態で直径10mm、長さ80mmのポリイミド樹脂製の鞘に埋め込まれている。さらに、厚さ5mm、直径6mmの白金円板を同様にポリイミド樹脂の鞘に埋め込まれている白金電極を用意した。
【0028】
それぞれの炭を最大直径が10ミクロン以下となるように粉砕して得た炭粉末25μgを、プロトン伝導性のナフィオン(Nafion112、デュポン社商品名)を0.05重量%溶解したエタノール溶液5μlに分散して得られた分散液をGCの全面を覆うように滴下し、温風乾燥してエタノールを蒸発させた。さらに同分散液を再度滴下し、エタノールを蒸発させ白炭−(A)とナフィオンを含む試験電極1、白炭−(B)とナフィオンを含む試験電極2、白炭−(C)とナフィオンを含む試験電極3、白炭−(D)とナフィオンを含む試験電極4、黒炭−(E)とナフィオンを含む試験電極5を作製した。炭粉末を含まないエタノール溶液5μlをGCの全面を覆うように滴下、温風でエタノールを蒸発される工程を二度繰り返して試験電極6を作製した。また、試験電極6と同様に炭素粉末を含まないエタノール溶液を白金電極に滴下、温風でエタノールを蒸発させる工程を二度繰り返すことで試験電極7を作製した。
【0029】
試験電極の酸素還元特性の評価
作製した試験電極を作用電極、白金を対極、Ag/AgCl(飽和KCl)電極を参照電極とする3極セルを構成して、酸素の還元特性を評価した。電解液として、pH7.4の0.1Mりん酸緩衝溶液を用いた。純酸素ガスを30分間電解液中に通じて溶存酸素を飽和したのち電解を行った。作用電極の電位を、参照電極に対して+0.1Vから−1.2Vに50mV/sの速度で減少し、−1.2Vに達すると、0Vに向かって50mV/sの速度で増加し、この際、作用電極と対極の間を流れる電解電流を、参照電極の電位に対して記録した。
【0030】
図1は、このようにして試験電極1、2、3、4、5、6、7について得られた電流−電位曲線である。図1中、実線は本発明に従う白炭とGCとナフィオンから構成される酸素還元用電極である試験電極1、2、3、4の電流―電位曲線である。点線は比較例の電極である黒炭とGCとナフィオンから構成される試験電極5の電流―電位曲線である。破線は比較例の電極である炭を含まないGCとナフィオンよりなる試験電極6の電流―電位曲線である。一点鎖線は炭を含まないし白金とナフィオンよりなる試験電極7の電流―電位曲線である。酸素の還元反応に対応する還元電流のピーク電位(Ep)は、試験電極1では、−0.30V、試験電極2では、−0.20V、試験電極3では、−0.35V、試験電極4では、−0.10V、試験電極5では、−0.65V、試験電極6では、−0.75V、試験電極7では、−0.05Vである。
【0031】
白炭をGC上に形成することで、酸素の還元電位は、−0.75Vから−0.35〜−0.10Vにプラス側にシフトし、より貴な電位で酸素の還元が行える。特に、ヒノキを原木とする白炭を用いた試験電極4では、試験電極7の白金にきわめて近い電位で酸素の還元が可能である。
【0032】
本発明に従う白炭とGCとナフィオンから構成される試験電極1、2、3、4では、黒炭とGCとナフィオンより構成される試験電極5、炭を含まないGCとナフィオンよりなる試験電極6に較べ、ほぼ2倍の酸素還元ピーク電流値を与える。酸素の4電子還元を行うことが知られている白金より構成される試験電極7とほぼ同じ大きさの酸素還元ピーク電流値を与える。白炭の作用により酸素の2電子還元により生成した過酸化水素が、さらに同じ白炭の作用により分解して酸素を再生し、再生した酸素が同じ白炭により還元される反応サイクルが繰り返し起こり、見かけ上酸素の4電子還元に相当する、ほぼ2倍のピーク電流値が得られる。すなわち、本発明に従う試験電極1、2、3、4では、より貴な電位で見かけ上4電子還元をほぼ100%に近い効率で行うことができる。
【0033】
図2は、試験電極1、2、3、4、5、6、7のそれぞれについて、それぞれのピーク電位(Ep)で定電位電解を連続的に行った際の、電流−時間曲線である。実線は試験電極1、2、3、4、点線は試験電極5、破線は試験電極6、一点鎖線は試験電極7の電流−時間曲線である。いずれの試験電極でも、電解開始後30秒程で電流はほぼ一定の定常電流値(Ist)に達する。定常電流値は、本発明に従う試験電極1、2、3、4では、30μA前後である。比較例の試験電極5および6では、12〜13μAである。試験電極1、2、3、4は、試験電極5あるいは6に較べ約2倍の定常電流値を与え、酸素が見かけ上4電子反応でほぼ100%に近い効率で還元されている。白金とナフィオンで構成される試験電極7は、電解開始時は32μAの電流値を与え、酸素が4電子で還元されている。しかし、電解時間の経過とともに電流値は徐々に低下する。これは、電解の経過とともに触媒活性が低下していることを示している。
試験電極1、2、3、4、5、6、7のそれぞれについて、Ep値、定電位電解200秒後のIst値、120時間後のIst値を、試験電極の特性として表1にまとめて示す。
【0034】
【表1】
Figure 2004241224
【0035】
【実施例2】
空気極 10 の作製
実施例1で用いたヒノキ原木白炭−(D)(平均粒径5ミクロン、比表面積264.2m/g)、実施例1で用いたマングローブ原木黒炭−(E)(平均粒径4ミクロン、比表面積0.8m/g)、市販の椰子殻活性炭−(F)(水蒸気賦活、平均粒径3ミクロン、比表面積1800m/g)をそれぞれ4重量部を、カーボンブラック(CB)1重量部、フッ素樹脂バインダー(PTFE)0.2重量部と混合し、得られた空気極混合物を用いてニッケルめっきステンレス金網(厚み0.15mm、25メッシュ)を芯材とするシートを作製し、次にこのシートの片面にフッ素樹脂多孔質シート(空孔率約50%、厚み0.2mm)を圧着して厚み約3mmの白炭‐(D)を含む空気極8、黒炭−(E)を含む空気極9、活性炭−(F)を含む空気極10を作製した。
【0036】
試験電極の酸素還元特性の評価
作製した空気電極を作用電極、白金を対極、Ag/AgCl(飽和KCl)電極を参照電極とする図3に示す構成の3極セルを構成して、酸素の還元特性を評価した。図3において、1は空気電極、1aは空気極混合物、1bはフッ素樹脂多孔質シート、1cはニッケルめっきステンレス金網から引き出した電極リード、2は対極、3は参照電極、4は電解液、5は空気極を配置するための直径16mmの開口部を有するガラスセルである。空気極1は、ガラスセル5の開口部に図3に示すように、フッ素樹脂多孔質シート1b側の面は大気に曝され、他方の面は電解液4に接するように配置されている。
【0037】
電解液4として、pH8.2の0.1Mりん酸緩衝溶液を用いた。空気電極1の電位を、参照電極3に対して+0.5Vから−0.8Vに5mV/sの速度で減少し、−0.8Vに達すると、+0.5Vに向かって5mV/sの速度で増加し、この際、作用電極と対極の間を流れる電解電流を、参照電極の電位に対して記録した。
【0038】
本発明に従う白炭−(D)を含む空気極8は、+0.2V付近より酸素の還元電流が流れ始め、電位の変化とともに電流値が増加し、−0.8Vでは2.5mAの電流値を与えた。これに対し、黒炭−(E)を含む空気極9では、−0.25V付近から酸素の還元電流が流れ始め、−0.8Vでは1.1mAの小さな電流値しか与えない。活性炭−(F)を含む空気極10では、−0.15V付近から酸素の還元電流が流れ始め、−0.8Vでは1.3mAの電流値を与えた。
【0039】
本発明に従い白炭を含む空気極8では、よりプラス側の電位で酸素の還元を行うことが出来る。この空気極をプラス極として用いることで、より高い電圧の電池の構成が可能である。さらに、黒炭を含む空気極9、活性炭を含む空気極10に較べ、−0.80Vで約2倍の還元電流値を与え、酸素分子が4原子還元反応により高効率で還元可能である。
【0040】
【実施例3】
空気極11、12、13の作製
実施例1で用いたヒノキ原木白炭−(D)(平均粒径5ミクロン、比表面積264.2m/g)、実施例1で用いたマングローブ原木黒炭−(E)(平均粒径4ミクロン、比表面積0.8m/g)、市販の椰子殻活性炭−(F)(水蒸気賦活、平均粒径3ミクロン、比表面積1800m/g)をそれぞれ4重量部を、マンガン低級酸化物(MnとMnとの混合物、平均粒径約10ミクロン)4重量部、カーボンブラック(CB)1重量部、フッ素樹脂バインダー(PTFE)0.2重量部と混合し、得られた空気極混合物を用いてニッケルめっきステンレス金網(厚み0.15mm、25メッシュ)を芯材とするシートを作製し、次にこのシートの片面にフッ素樹脂多孔質シート(空孔率約50%、厚み0.2mm)を圧着して厚み約3mmの白炭‐(4)を含む空気極11、黒炭−(5)を含む空気極12、活性炭−(6)を含む空気極13を作製した。
【0041】
試験電極の酸素還元特性の評価
作製した空気電極を作用電極、白金を対極、Ag/AgCl(飽和KCl)電極を参照電極とする図3に示す構成の3極セルを構成して、酸素の還元特性を評価した。図3において、1は空気電極、1aは空気極混合物、1bはフッ素樹脂多孔質シート、1cはニッケルめっきステンレス金網から引き出した電極リード、2は対極、3は参照電極、4は電解液、5は空気極を配置するための直径16mmの開口部を有するガラスセルである。空気極1は、ガラスセル5の開口部に図3に示すように、フッ素樹脂多孔質シート1b側の面は大気に曝され、他方の面は電解液4に接するように配置されている。
【0042】
電解液4として、0.1NのKOH水溶液を用いた。空気電極1の電位を、参照電極に対して+0.2Vから−1.0Vに5mV/sの速度で減少し、−1.0Vに達すると、+0.2Vに向かって5mV/sの速度で増加し、この際、作用電極と対極の間を流れる電解電流を、参照電極の電位に対して記録した。
【0043】
本発明に従う白炭−(D)を含む空気極11は、−0.10V付近より酸素の還元電流が流れ始め、電位の変化とともに電流値が増加し、−1.0Vでは2.8mAの電流値を与えた。これに対し、黒炭−(E)を含む空気極12では、−0.35V付近から酸素の還元電流が流れ始め、−1.0Vでは2.5mAの電流値を与えた。活性炭−(F)を含む空気極13では、−0.25V付近から酸素の還元電流が流れ始め、−1.0Vでは2.8mAの電流値を与えた。
【0044】
各空気極に含まれるマンガン低級酸化物(MnとMnとの混合物)は、酸素分子の2電子還元反応で生成した過酸化水素を分解する作用があるので、いずれの空気極も、−1.0Vでは見かけ上4電子還元を示す還元電流値を与える。一方、酸素の還元電位は、本発明に従い白炭を含む空気極11がもっともプラス側にあり、空気極11をプラス極とすることにより、より高い電圧を有する電池の構成が可能である。
【0045】
試験電極の発電セル特性の評価
白炭−(D)を含む空気極11をプラス極(正極)、対極の白金をマイナス極(負極)とし、グルコースを100mM溶解した0.1NKOH水溶液を電解液として発電セル11aを構成した。発電セル11aと同じ正極、負極を用いて、メタノールを3重量%溶解した0.1NKOH水溶液を電解液とする発電セル11bを構成した。
【0046】
空気極11に換えて白金板Pt(大きさ1×2cm)を正極とする以外はそれぞれ発電セル11a、発電セル11bと同様の構成の発電セルPta、Ptbを構成した。
【0047】
それぞれの発電セルの開路電圧と、発電セルを1mAの一定電流値で10時間放電した際の電圧を表2に示す。
【0048】
【表2】
Figure 2004241224
【0049】
本発明にしたがう白炭を有効成分として含む空気極11をプラス極として用い、電解質に可溶な燃料物質としてグルコースあるいはメタノールを用いた発電セル11a、11bでは、白金板をプラス極に用いた発電セルPta、Ptbにくらべ0.2〜0.4V高い電圧を得ることができる。本発明に従う白炭を有効成分として含む空気極11よりなるプラス極は、グルコースあるいはメタノールと直接接触しても酸化反応を起こさず、プラス極は、酸素の還元反応で決定される電位を与えるので発電セルは高い電圧を与える。これに対し、白金板よりなるプラス極は、グルコースあるいはメタノールと直接接触すると酸化反応を起こし、プラス極は、グルコースあるいはメタノールの酸化反応と酸素の還元反応で決定される低い電位を与えるので発電セルは低い電圧しか与えない。
【0050】
なお、電解質に可溶な燃料物質としてグルコースあるいはメタノールを用いたが、グルコースの以外の糖類、たとえばフルクトース、マンノース、スターチ、セルロールなど、あるいはメタノール以外の他のアルコール類、たとえばエタノール、プロパノール、ブタノール、グリセロールなどを用いても同様な結果を得ることができる。アルコール類としては、高級アルコール(炭素数7以上)であっても低級アルコール(炭素数6以下)であてもよく、1級アルコール、2級アルコール、3級アルコールであってもよい。
【0051】
また、電解質として0.1NKOH水溶液に換えて、pH6.8の0.1Mりん酸緩衝液やNaClを3重量%溶解した塩水を用いても同様な結果を得ることができる。
【0052】
【実施例4】
試験電極14、15、16、17の作製
ヒノキ原木を、80メッシュパス100%の木粉に粉砕した。この木粉にフェノールを重量比で1:1に加え木粉を液状化した。液状化した木粉1重量部に対し、りん酸水素2ナトリウム粉末0.01重量部、塩化マグネシウム粉末0.005重量部、塩化カルシウム粉末0.003重量部を加え、よく混合した。混合物を、マッフル炉で300℃で約1時間加熱して炭化物(黒炭−(E1))を得た。炭化物を1000℃で約30分加熱して白炭−(D1)を得た。このようにして得られた白炭−(D1)には、燐が1.3重量%、マグネシウムが0.7重量%、カルシウムが0.70重量%含まれていた。
【0053】
固定炭素(単位:重量%)は、白炭―(D1)が84.2、白炭―(D)が91.3、黒炭−(E1)が49.2である。比表面積(単位:m/g)は、白炭−(D1)が246.3、白炭―(D)が264.2、黒炭―(E1)が2.3である。
【0054】
こうして得られた白炭−(D1)および黒炭−(E1)、さらに実施例1から3で用いた白炭−(D)炭を、最大直径が10ミクロン以下となるように粉砕して得た炭粉末を25μgを、プロトン伝導性のナフィオン(Nafion112、デュポン社商品名)を0.05重量%溶解したエタノール溶液5μlに分散した分散液をGCの全面を覆うように滴下し、温風乾燥してエタノールを蒸発させ、さらに同分散液を再度滴下し、エタノールを蒸発させ白炭−(D1)とナフィオンを含む試験電極14、白炭−(D)とナフィオンを含む試験電極15、黒炭−(E1)とナフィオンを含む試験電極16を作製した。また、炭粉末を含まないエタノール溶液5μlをGCの全面を覆うように滴下、温風でエタノールを蒸発される工程を二度繰り返して試験電極17を作製した。
【0055】
試験電極の酸素還元特性の評価
作製した試験電極を作用電極、白金を対極、Ag/AgCl(飽和KCl)電極を参照電極とする3極セルを構成して、酸素の還元特性を評価した。電解液として、pH7.0の0.1Mりん酸緩衝溶液を用いた。純酸素ガスを30分間電解液中に通じて溶存酸素を飽和したのち電解を行った。作用電極の電位を、参照電極に対して+0.1Vから−1.2Vに50mV/sの速度で減少し、−1.2Vに達すると、0Vに向かって50mV/sの速度で増加し、この際、作用電極と対極の間を流れる電解電流を、参照電極の電位に対して記録した。
【0056】
酸素の還元反応に対応する還元電流のピーク電位(Ep)は、試験電極14では、−0.10V、試験電極15では、−0.15V、試験電極16では、−0.70V、試験電極17では−0.80Vである。
白炭−(D)あるいは白炭−(D1)をGC上に形成することで、酸素の還元電位は、−0.80V〜−0.70Vから−0.10〜−0.15Vにプラス側にシフトし、より貴な電位(−0.65V〜−0.60程度)で酸素の還元が行える。
【0057】
本発明に従う白炭−(D)あるいは白炭−(D1)とGCとナフィオンから構成される試験電極14あるいは15では、黒炭とGCとナフィオンより構成される試験電極16、炭を含まないGCとナフィオンよりなる試験電極17に較べ、ほぼ2倍の酸素還元ピーク電流値を与える。白炭の作用により酸素の2電子還元により生成した過酸化水素が、さらに同じ白炭の作用により分解して酸素を再生し、再生した酸素が同じ白炭により還元される反応サイクルが繰り返し起こり、見かけ上酸素の4電子還元に相当する、ほぼ2倍のピーク電流値が得られる。すなわち、本発明に従う試験電極14、15では、より貴な電位で見かけ上4電子還元をほぼ100%に近い効率で行うことができる。
【0058】
【実施例5】
(発電セルの組み立て)
図4に示す構成の発電セルAおよび発電セルBを組み立てた。
【0059】
図4において正極として作用する空気極(11)は、発電セルAでは、実施例5で用いた白炭−(D1)1重量部およびポリテトラフルオロエチレン(PTFE)バインダー0.1重量部からなる混合物を厚さ0.36mmのカーボンペーパー(TGPH−120、東レ(株))に保持させて作製した。
【0060】
図4において、15は負極リード、16は正極リード、17は透明のシリコンラバーよりなる封止材である。
【0061】
図4において負極として作用する光触媒電極は、ガラス基板(6)、ITO薄膜(7)、TiO微粒子膜(8)、および色素分子Dより成っている。厚さ1mmのガラス基板(6)上に表面抵抗が10オーム/cmのインジウム・錫酸化物(ITO)薄膜(7)が形成された光透過性導電性基板を用意し、平均粒径が10nmのTiO粒子を11重量%分散したポリエチレングリコールを30重量%含むアセトニトリル溶液を、浸漬法によりITO薄膜上に塗布し、80℃で乾燥したのち、空気中で400℃で1時間焼成することで厚さ約10μmのTiO微粒子膜(8)を形成した。次に、TiO微粒子膜を、化1に構造を示したルテニウム金属錯体色素分子Dを10mM溶解したエタノール中に浸漬することで、色素分子DをTiO微粒子膜に添着した。さらに、4−tert−ブチルピリジンに浸漬したのち、アセトニトリルで洗浄したのち乾燥することで光触媒電極を作製した。
【0062】
【化1】
Figure 2004241224
【0063】
ここで、図4に記載されている発電セルの構造について説明する。この発電セルの負極側は、主としてガラス基板6からなり、このガラス基板6の表面にはITO薄膜7が積層されている。ITO薄膜7には負極リード15が設けられている。発電セルの正極側は、主として板状の空気極11からなり、空気極11の表面には酸素透過性撥水膜12が咳そうされている。空気極11の内部からは正極リード16が伸び出している。このようなガラス基板6の表面および板状の空気極11の裏面とを向かい合わせにし、これらの間に封止材17を介してガラス基板6と空気極11とを貼り合わせることにより発電セルが形成されている。
【0064】
ガラス基板6と空気極11との間には、空気極11側に電解液(または燃料液)10が、ガラス基板6側に酸化チタンからなる微粒子が分散された微粒子薄膜8が位置している。そして、電解液(または燃料液)10と微粒子薄膜8との間には、色素分離層9が挟まれている。
【0065】
また、封止材17には、封止材17を貫通する電解液・燃料液注入口13aおよび電解液・燃料液排出口13bが設けられ、これらの電解液・燃料液注入口13aおよび電解液・燃料液排出口13bには液バルブ14a・14bがそれぞれ設けられている。これらの電解液・燃料液注入口13aおよび電解液・燃料液排出口13bを介して、ガラス基板6と空気極11との間に電解液(または燃料液)10を外部から注入および外部に排出することができるようになっている。
【0066】
電解液・燃料液10としてpH7.0の0.1Mりん酸緩衝溶液に燃料のメタノール5重量%、NADHを5mM、アルコールデヒドロゲナーゼ(ADH)を16.0U/ml、アルデヒドデヒドロゲナーゼ(AlDH)を1.0U/ml、ホルメートデヒドロゲナーゼ(FDH)を0.3U/ml溶解したものを用いた。電解液・燃料液10は、電解液・燃料液注入口13aより注入され、発電後、排出口13bより排出される。空気は、酸素透過性撥水膜(12)を通して外部より発電セル内部に供給される。
【0067】
発電セルBは、Mn粉末1重量部、椰子殻活性炭粉末1重量部、アセチレンブラック粉末0.3重量部、ポリテトラフルオロエチレン(PTFE)バインダー0.2重量部からなる混合物を厚さ0.36mmのカーボンペーパー(TGPH−120、東レ(株))に保持させて作製した空気極を使用した以外は、発電セルAと同じ構成となるように作製した。
(発電セルの動作特性)
発電セルを電解液・燃料液で満たしたのち、ガラス基板6側より太陽光シュミレータ(AM1.5、100mW/cm)からの光を照射して、発電セルの起電力(OCV)および、100μAの一定電流で発電セルを20分間放電した際の発電セルの電圧を測定した。OCVは、発電セルAでは、0.80V、発電セルBでは、0.65Vである。
【0068】
また、20分間放電後の発電セルの電圧は、発電セルAでは、0.75V、発電セルBでは、0.55Vである。
【0069】
本発明に従う酸素還元複合電極を有する発電セルAでは、発電セルBに較べ、高い起電力が得られるとともに、放電に際しても、高い電圧を維持することができる。
【0070】
なお、本実施例では、発電セルの負極として光触媒電極を用い、メタノールを燃料とする電池を示したが、負極として、亜鉛、マグネシウム、アルミニウムなどの金属を用いても、本発明に従う酸素還元用電極と組み合わせることで、起電力ならびに放電時の電池電圧が高い電池を得ることができる。
【0071】
【発明の効果】
本発明によれば、酸素の還元反応を正極反応として用いる亜鉛―空気電池、アルミニウム―空気電池、砂糖―空気電池などの空気電池や、酸素水素燃料電池、メタノール燃料電池などの燃料電池、酵素センサー、酸素センサーなどの電気化学センサーなど電気化学デバイスの酸素極あるいは空気極などに用いられる、酸素の電気化学還元に対して、見かけ上、4電子還元反応を100%に近い選択率で与える安定性にも優れた酸素還元用電極を提供することができる。
【図面の簡単な説明】
【図1】試験電極の酸素還元反応に対する電流−電圧応答特性を示す図
実線・・・ 試験電極1、2、3、4の電流−電圧曲線を示す図
点線・・・試験電極5の電流−電圧曲線を示す図
破線・・・試験電極6の電流−電圧曲線を示す図
一点鎖線・・・試験電極7の電流−電圧曲線を示す図
【図2】試験電極の酸素還元電位での定電位電解時の電流−時間応答を示す図
実線・・・試験電極1、2、3、4の電流−時間曲線を示す図
点線・・・試験電極5の電流−時間曲線を示す図
破線・・・試験電極6の電流−時間曲線を示す図
一点鎖線・・・試験電極7の電流−時間曲線を示す図
【図3】本発明の一実施例の発電セルの断面図
【図4】本発明の一実施例の発電セルの断面図
【符号の説明】
1 空気電極、
1a 空気極混合物
1b フッ素樹脂多孔質シート
2 対極
3 参照電極
4 電解液
5 ガラスセル
6 ガラス基板
7 ITO薄膜
8 TiO2微粒子薄膜
9 色素分子層
10 電解液・燃料液
11 空気極
12 酸素透過性撥水膜
13a 電解液・燃料液注入口
13b 電解液・燃料液排出口
14a、14b 液バルブ
15 負極リード
16 正極リード
17 封止材

Claims (9)

  1. 白炭を含む酸素還元用電極。
  2. 白炭が無機化合物を含む請求項1記載の酸素還元用電極。
  3. 無機化合物がMnOyで表されるマンガン低級酸化物である請求項2記載の酸素還元用電極(ここで、yはマンガン(Mn)の価数で決まる酸素の原子数である)。
  4. 粒子状の白炭が導電性通気性基材に担持されている請求項1から3記載の酸素還元用電極。
  5. 中性水溶液電解質中で分子状酸素を電気化学的に還元する請求項1から4記載の酸素還元用電極。
  6. 空気中の酸素の還元反応を正極反応とする正極と、負極と、電解質とで構成される電池において、該正極が、少なくとも白炭を含む酸素還元用電極である電池。
  7. 電解質が、中性水溶液電解質である請求項6記載の電池。
  8. 負極の反応が、電解質に可溶の燃料から電気化学的に電子を取り出す酸化反応である請求項6記載の電池。
  9. 電解質に可溶の燃料が、糖類あるいはアルコール類である請求項8記載の電池。
JP2003028041A 2003-02-05 2003-02-05 酸素還元用電極および電池 Ceased JP2004241224A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028041A JP2004241224A (ja) 2003-02-05 2003-02-05 酸素還元用電極および電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028041A JP2004241224A (ja) 2003-02-05 2003-02-05 酸素還元用電極および電池

Publications (1)

Publication Number Publication Date
JP2004241224A true JP2004241224A (ja) 2004-08-26

Family

ID=32955607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028041A Ceased JP2004241224A (ja) 2003-02-05 2003-02-05 酸素還元用電極および電池

Country Status (1)

Country Link
JP (1) JP2004241224A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112174A1 (ja) * 2003-06-11 2004-12-23 Matsushita Electric Industrial Co., Ltd. 酸素還元用電極の製造方法ならびに酸素還元用電極及びそれを用いた電気化学素子
JP2006114375A (ja) * 2004-10-15 2006-04-27 Mie Tlo Co Ltd 汚泥処理用微生物電池およびそれを用いた汚泥浄化装置
JP2009032628A (ja) * 2007-07-31 2009-02-12 National Institute Of Advanced Industrial & Technology 燃料電池
JP2014165099A (ja) * 2013-02-27 2014-09-08 Sumitomo Chemical Co Ltd 空気二次電池
WO2023188306A1 (ja) * 2022-03-31 2023-10-05 国立大学法人東北大学 微生物燃料電池、排水処理システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112174A1 (ja) * 2003-06-11 2004-12-23 Matsushita Electric Industrial Co., Ltd. 酸素還元用電極の製造方法ならびに酸素還元用電極及びそれを用いた電気化学素子
JP2006114375A (ja) * 2004-10-15 2006-04-27 Mie Tlo Co Ltd 汚泥処理用微生物電池およびそれを用いた汚泥浄化装置
JP2009032628A (ja) * 2007-07-31 2009-02-12 National Institute Of Advanced Industrial & Technology 燃料電池
JP2014165099A (ja) * 2013-02-27 2014-09-08 Sumitomo Chemical Co Ltd 空気二次電池
WO2023188306A1 (ja) * 2022-03-31 2023-10-05 国立大学法人東北大学 微生物燃料電池、排水処理システム

Similar Documents

Publication Publication Date Title
JP4025150B2 (ja) 発電セルの駆動方法
JP3740578B2 (ja) 酸素還元用電極の製造方法ならびに酸素還元用電極及びそれを用いた電気化学素子
KR100572638B1 (ko) 연료 전지용 전극 촉매, 이것을 이용한 연료 전지 및 전극
US7622216B2 (en) Supports for fuel cell catalysts
US20060257719A1 (en) Catalyst for fuel cell electrode
JP2009518795A (ja) 2機能性空気電極
CN113493917B (zh) 二氧化碳电解池用电极催化剂层、及具备其的电解池和二氧化碳电解用电解装置
JP2007509480A (ja) 電極、その製造方法、金属/空気燃料セルおよび金属水素化物セル
EP1773488A2 (en) Catalyst support for an electrochemical fuel cell
JP2003502827A (ja) ガス拡散基材および電極
Bidault et al. An improved cathode for alkaline fuel cells
JP4428774B2 (ja) 燃料電池電極の製造方法
Maheswari et al. Pd‐RuSe/C as ORR Specific Catalyst in Alkaline Solution Containing Methanol
JP2004241224A (ja) 酸素還元用電極および電池
US20040248005A1 (en) Negative electrodes including highly active, high surface area hydrogen storage material for use in electrochemical cells
JP3723902B2 (ja) 酸素還元用電極およびそれを用いた電気化学素子
US20050153198A1 (en) Oxygen reduction electrode and electrochemical element using same
US20110076598A1 (en) Corrin compound fuel cell catalysts
JP2003249230A (ja) 酸素還元用電極およびそれを用いた電池
CN105375038B (zh) 一种无离子膜的紧凑型醇‑空气燃料电池及其制造方法
Abrashev et al. ELECTROCHEMICAL PROPERTIES OF AN OPTIMIZED GAS-DIFFUSION ELECTRODE (GDE) FOR RECHARGEABLE Zn-AIR BATTERIES
US9966609B2 (en) Gas diffusion electrode and process for making same
KR102517254B1 (ko) 산소환원반응 촉매체, 이를 포함하는 양성자 교환막 연료전지, 및 금속공기전지
US20230411638A1 (en) Electrochemical cell with bilayer electrocatalyst structure
JP2005174573A (ja) 酸素還元用電極及びその製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20061128