JP2004241086A - 光磁気記録媒体 - Google Patents

光磁気記録媒体 Download PDF

Info

Publication number
JP2004241086A
JP2004241086A JP2003031583A JP2003031583A JP2004241086A JP 2004241086 A JP2004241086 A JP 2004241086A JP 2003031583 A JP2003031583 A JP 2003031583A JP 2003031583 A JP2003031583 A JP 2003031583A JP 2004241086 A JP2004241086 A JP 2004241086A
Authority
JP
Japan
Prior art keywords
magneto
signal
reproduction
optical
dwdd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003031583A
Other languages
English (en)
Inventor
Yoshiyuki Teraoka
善之 寺岡
Masaki Kagawa
正毅 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003031583A priority Critical patent/JP2004241086A/ja
Publication of JP2004241086A publication Critical patent/JP2004241086A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】DWDDの再生特性を損なうことなく、通常再生モードで見えるノイズ成分を軽減することが可能となり、特に狭トラックピッチ化が可能となる光磁気記録媒体を提供する。
【解決手段】グルーブGの光学的な深さd*ηが、λ/4に近づくほど、対物レンズ上の回折パターンの線方向の強度Aは落ちてくる。その結果、線方向の再生のMTFが劣化する。しかし、ディスク盤面上のスポットの強度分布はディスク形状には影響されないので、DWDD信号の品質は落ちることはない。つまりDWDD信号そのものはそのままで、「通常再生モード」でのクロストークなどのノイズ成分を低減することができる。
【選択図】 図6

Description

【0001】
【発明の属する技術分野】
本発明は、磁壁移動により記録磁区が拡大されて信号の再生が行われる光磁気記録媒体に関する。
【0002】
【従来の技術】
近年、少なくともディスプレイスメント層、スイッチ層及びメモり層の3層の磁性層からなる磁性多層膜を記録層として用い、信号の再生時に、膜温度がスイッチ層のキュリー温度以上となった領域でのディスプレイメント層の磁壁移動を利用することにより、実効的に記録磁区の大きさを拡大して再生信号を大きくする光磁気再生方式が提案されている。
【0003】
DWDD(Domain Wall Displacement Detection)と呼ばれるこの方式では、再生時に、再生光スポットの走行方向前方において再生光照射側の磁性層(すなわちディスプレイスメント層)の磁壁がスポット中心方向に移動して記録磁区が拡大される。したがって、DWDD方式を採用することにより、再生光の光学的な限界分解能以下の周期の微小記録磁区からも非常に大きな信号を再生することが可能となり、再生光の波長や対物レンズの開口数等を変更することなく、更なる高密度化を図ることが可能となる。
【0004】
しかしながら、DWDD方式を採用した光磁気記録媒体を含め、ランドとグルーブとの双方に記録がなされるいわゆるランドグルーブ記録の光記録媒体の場合、ランドとグルーブに十分な段差が設けられていないと、隣接するトラックからの熱クロストークの影響が大きくなってしまう、という課題があった。
【0005】
このため、本件出願人は、特開2001−184727号公報にて、段差を80nm以上165nm以下にするとか、100nm以上にするという物理的な絶対値を特定している。
【0006】
【特許文献1】
特開2001−184727号
【0007】
【発明が解決しようとする課題】
ところで、前記DWDD方式の光磁気記録媒体は、盤面上のスポットの熱勾配によってマークを拡大することにより、見かけ上、光学ピックアップのMTFが無限大まで伸びたような信号波形が得られる。しかし、スポット内のDWDD動作している以外の部分からは、通常のMO再生と同様にMTF内のノイズ成分がそのまま見え、特に高密度化のために狭トラックピッチ化した場合には隣接トラックからのクロストーク成分が顕著に見えてしまい、その結果、信号のS/Nを劣化させることになり、面密度を詰める際に障害となる。
【0008】
なお、ここで問題となっているのは、通常の再生モードで隣接トラックから見えてしまうクロストーク成分のようなノイズ成分であり、前記特許文献1で課題としている、ランドグルーブ記録における隣接トラック間の熱伝搬特性の改善ではない。
【0009】
本発明は、前記実情に鑑みてなされたものであり、DWDDの再生特性を損なうことなく、通常再生モードで見えるノイズ成分を軽減することが可能となり、特に狭トラックピッチ化が可能となる光磁気記録媒体の提供を目的としている。また、記録媒体形状だけを換えることになり、再生装置の光学系、電気系には手を加えず、システムとして考慮した場合には、非常に安価かつ簡単に実現ができることになる。
【0010】
【課題を解決するための手段】
本発明に係る光磁気記録媒体は、前記課題を解決するために、少なくとも3層の磁性層からなる磁性多層膜を記録層として備え、再生時に光学ピックアップ装置から照射された再生レーザ光による再生光スポットの走行方向前方における再生光照射側の磁性層の磁壁がスポット中心方向に移動して記録磁区が拡大されるようになされた光磁気記録媒体において、基板の屈折率をηとし、nを整数とすると、ランドに対するグルーブの深さdを前記再生レーザ光の波長λに対して、d*η=(λ/4)+(n*λ/2)の式を満たして設定する。グルーブの深さdを前記式を満たして設定することにより、前記線方向のMTFを劣化させる。
【0011】
【発明の実施の形態】
以下、本発明に係る光磁気記録媒体について図面を参照しながら説明する。
【0012】
この実施の形態は、高密度記録されたデータを、磁壁移動検出(Domain Wall Displacement Detection:DWDD)によって読み出すた光磁気ディスク(MOディスク)である。
【0013】
磁壁移動検出は、情報信号の書き換えが可能な記録媒体である光磁気(MO)ディスクにおける高密度記録再生を実現するために、データが高密度記録された光磁気ディスクにおけるデータの再生を可能とするものである。この磁壁移動検出は、再生時の光スポットよりも小さなマークを、光スポットで誘起された熱分布により、磁区拡大して読み取る技術である。磁壁移動検出は、マークのエッジをきれいに検出できるので、いわゆる「マークエッジ記録」を採用した光磁気ディスクを再生する場合に適している。
【0014】
この磁壁移動検出を行うための光磁気ディスク1は、図1に示すように、拡大層1aと記録層1bとを有して構成されており、これら拡大層1aと記録層1bとの間には、スイッチング層1cを有している。磁壁移動検出による再生原理は、孤立マークを用いて説明すると、図1に示すように、拡大層1aの磁壁が、レーザで誘起されたキュリー温度以上の等温領域前端に差し掛かった時、最高温度部分へすばやく移動することを利用して、マークがあることを検出するものである。
【0015】
前記DWDD方式の光磁気記録媒体は、盤面上のスポットの熱勾配によってマークを拡大することにより、見かけ上、光学ピックアップのMTFが無限大まで伸びたような信号波形が得られる。しかし、スポット内のDWDD動作している以外の部分からは、通常のMO再生と同様にMTF内のノイズ成分がそのまま見えてしまう。
【0016】
図2には、ディスク盤面上のスポット2を模式的に示す。図中の斜線部5は、スポット2によって熱せられてDWDD動作をしている部分を示す。白抜きの部分4はDWDD動作するほど熱せられていないため、通常膜と同様に光学的なMTFに制限された信号が見える。ここで前者を「DWDD再生モード」で見えている部分5、後者を「通常再生モード」で見えている部分4とする。また、スポット2内には、「DWDD再生モード」でノイズ部分3も見える。
【0017】
例えば、光学ピックアップ装置における、光学系の仕様の概要を、対物レンズの開口数NA=0.45、再生レーザ光の波長λ=780nm、復路ビーム径φ=2.7mmとする。また、光磁気ディスク1の仕様を、トラックピッチ=1.25μm、線密度=0.16/ビットとし、信号の変調方式を1−7変調とする。
【0018】
ここで、「DWDD再生モード」の信号品質は、主に盤面上でのスポットの熱分布(熱勾配)で決まるため、「熱勾配が急峻」=「スポットが小さい(高NA、短波長)」の方が有利である。それに対し、「通常再生モード」の信号は再生系のMTFに依存している。
【0019】
図3には前記光磁気ディスク1での2T繰り返しパターンのスペクトラムを示す。低域に斜めにみえるノイズ成分が「通常再生モード」で見えるノイズ成分(主に隣接するランドからのクロストーク)である。この低域ノイズが大きいと、信号のS/Nが劣化する。特に狭トラックピック化することにより、クロストークが増大し、この低域ノイズが増加するために、面密度を上げる障害となる。
【0020】
そこで、光磁気ディスク1は、基板の屈折率をηとすると、図4に示すランドLに対するグルーブGの深さdを再生レーザ光の波長λに対して、
d*η=(λ/4)+(n*λ/2)
の式を満たして設定する。nは整数であり、ここではN=0とし、
d*η=λ/4
d=λ/(4*η)
となる。
【0021】
グルーブGの深さdを前記式を満たして設定することにより、ディスク線方向の光学ピックアップ装置のMTFを劣化させる。
【0022】
次に、図5には、図4に示したような光磁気ディスク1から記録信号を読み出す光学ピックアップ装置10の構成を示す。
【0023】
この光学ピックアップ装置10は、DWDD方式によって光磁気ディスク1からの信号を読みだす。レーザ光を出射する半導体レーザ11と、この半導体レーザ11から出射されたレーザ光を光磁気ディスク1に集光する対物レンズ15と、光磁気ディスク1からの反射光の光路を半導体レーザ11からの出射レーザ光の光路と分離するビームスプリッタ14と、ビームスプリッタ14によって分離された反射光の光量を検出するフォトディテクタ20とを備える。
【0024】
また、この光学ピックアップ装置10は、半導体レーザLD11から出射されたレーザ光を平行光にするコリメータレンズ12と、このレーザ光をメインビーム、先行サブビーム、後行サブビームの3本に分離する回折格子13と、FAPC(Front Auto Power Control)用のフォトディテクタ21と、ウォラストン・プリズム17と、収光レンズ18と、マルチレンズ19とをさらに備える。
【0025】
半導体レーザLD11から出射された波長λ=780nmのレーザ光は、コリメータレンズ12で平行光とされ、回折格子13によって0次光、±1次光に分離される。これら3本に分離されたレーザ光は、メインビーム、先行サブビーム、後行サブビームであり、ビームスプリッタ14を透過し、NAが0.45の対物レンズ15で集光されて光磁気ディスク1の前記拡大層1aに照射される。
【0026】
光磁気ディスク1の拡大層1aから反射された反射光は、対物レンズ15を通してビームスプリッタ14に達する。ビームスプリッタ14は、光磁気ディスク1からの反射光の光路(復路)を半導体レーザ11からの出射レーザ光の光路(往路)と分離し、ウォラストン・プリズム17に導く。ウォラストン・プリズム17は反射光をカー効果に適するように調整し、収光レンズ18、マルチレンズ19を介してフォトディテクタ20上の各受光面に集光する。フォトディテクタ20は、反射光の光量を検出する。
【0027】
FAPC用PD21は、往路においてビームスプリッタ14により反射された一部のレーザ光光量を検出する。この検出出力は、半導体レーザ11の再生光出力パワーのコントロール信号の生成に用いられ、レーザ駆動回路に供給される。
【0028】
光磁気ディスク1は、基板の屈折率をηとすると、ランドLに対するグルーブGの深さdを再生レーザ光の波長780nmに対して、d×η=λ/4の式を満たして設定する。
【0029】
図6に示すように、グルーブGの光学的な深さd*ηが、λ/4に近づくほど、対物レンズ15上の回折パターンの線方向の強度Aは落ちてくる。その結果、線方向の再生のMTFが劣化する。
【0030】
図7には、グルーブGの光学的な深さd×ηとMTFとの関係を示す。いま、光磁気ディスク1の屈折率ηを1.57258、波長λを780nmとすると、
d=780/(4*1.57258)=124nm
が得られる。グルーブGの深さdを124nmとしたときのMTFの変化に対する検出信号の振幅(amplitude)特性を(1)として図7に示す。MTFを900[line/mm]としたときには振幅は0となる。比較のために、dを93nmとしたときの特性(2)、78nmとしたときの特性(3)、62nmとしたときの特性(4)も示す。これらは、d=3*λ/(16*η)、波長の1/10、d=λ/(8*η)の条件で得た値である。また、図7には、2NA/λで表されるカットオフ周波数も破線で示しているが、特性(1)は、他の3つの特性(2)、(3)、(4)がカットオフ周波数(=1150[line/mm])に達しているのにもかかわらず、900[line/mm]という値となっている。つまり、前述したように、グルーブGの光学的な深さd*ηが、λ/4に近づくほど、対物レンズ15上の回折パターンの線方向の強度は落ちてくる。このように、線方向の再生のMTFの劣化が確認できる。
【0031】
なお、前記式において、nを1としたとき、dは、

={(λ/4)+(nλ/2)}*1/η
={(780/4)+(780/2)}*1/η
=372nm
となる。
【0032】
また、前記式において、nを2としたとき、dは、

={(λ/4)+(nλ/2)}*1/η
={(780/4)+(2*780/2)}*1/η
=620nm
となる。
【0033】
これらdの値は、図7における、(1)特性と同じになる。このようにdを、d*η=(λ/4)+(n*λ/2)を満たして設定すると、線方向の再生のMTFが劣化するが、ディスク盤面上のスポットの強度分布はディスク形状には影響されないので、DWDD信号の品質は落ちることはない。つまりDWDD信号そのものはそのままで、「通常再生モード」でのクロストークなどのノイズ成分を低減することができる。これにより、図8に示すように、光学系のMTFのカットオフ周波数が低域側にシフトし、全体的にノイズ成分が減少しているのがわかる。
【0034】
線方向のMTFを劣化させた場合に、ノイズを低減する効果について図9を参照しながら説明する。DWDD方式の場合、光学ピックアップ装置10のMTFを超えた信号を再生することができるが、これはディスク盤面上の微少なマークがスポットによって温められることにより伸びることによって実現される。つまり、「伸びた」マークはスポットに対して十分長いマークとなり、MTF内の信号のように見える。これは図9を用いて説明すると、空間周波数βのDWDD信号が伸びることにより、光学ピックアップ装置10にとっては空間周波数αの信号であるかのように見えるということである。
【0035】
次に、MTFを実線で示す特性から、破線で示す特性まで劣化させた場合を考える。ここでは、グルーブGの光学的な深さd*ηをλ/4とするので、ディスク盤面上での熱分布は変わらない。よって、DWDDの動きそのものには影響しない。カットオフ周波数が低くなることにより、空間周波数αの振幅もΔだけ減少することにより、空間周波数βのDWDD信号もΔだけ減少する。しかしながら主に信号のS/Nを決めるノイズ分はMTF内に存在し、それらは斜線部に示した差分だけ小さくなる。これにより信号振幅が減少するにもかかわらず、信号のS/Nは向上する。
【0036】
次に、図10を参照し、本発明の光磁気ディスク1を記録再生の対象とする光磁気ディスク記録再生装置50について説明する。先ず、光磁気ディスク記録再生装置50が光磁気ディスク1を回転する構成、この光磁気ディスク1に対して光学ピックアップ装置10を移動させる構成について説明する。光磁気ディスク1は、スピンドルモータ51によって所定の回転数で回転操作される。スピンドルモータ51は、ドライバ52によって駆動される。ドライバ52は、後述するデジタルサーボプロセッサ(DSSP)72により制御されて、スピンドルモータ51を回転する。
【0037】
スピンドルモータ51によって回転されている光磁気ディスク1に対しては、光ピックアップ装置10からレーザ光が照射される。光磁気ディスク1上におけるデータの読み取りは、光ピックアップ装置10を光磁気ディスク1の半径方向に移動することによって行われる。光ピックアップ装置10は、スレッドモータ54を備えたスレッド機構に支持されることにより、光磁気ディスク1の半径方向に移動可能となされている。読み取り位置の大きな移動は、このスレッド機構によって行われる。また、光ピックアップ装置10の対物レンズ15が2軸駆動回路により支持され、ドライバ52によって光磁気ディスク1の半径方向にトラッキングサーボ動作によって移動されることにより、読み取り位置の小さな移動が行われる。また、対物レンズ15が2軸駆動回路により光磁気ディスク1に接離する方向にフォーカスサーボ動作によって移動されることにより、光磁気ディスク1の信号記録面上におけるレーザ光のフォーカス制御が行われる。
【0038】
次に、再生部の構成について説明する。光ピックアップ装置10は、RF信号を生成し、RFアンプ55に供給する。RFアンプ55で所定のゲインで増幅された信号は、信号処理部を形成する、A/D変換部56、オートゲインコントロール(AGC)回路57、イコライザ(EQ)&ディジタルPLL部58、デコーダ59、復調部60に、順番に供給される。復調部60は、内部バス61を介して、メモリ部62、誤り訂正部63、スクランブルエンコーダ66、デスクランブルデコーダ64に接続している。
【0039】
そして、この再生部は、以下のように動作する。すなわち、光ピックアップ装置10により光磁気ディスク1からフォトディテクタの一部の領域のみを用いて検出されたMO信号は、光ピックアップ措置10内で光電変換され、RF(MO)信号として出力される。このRF(MO)信号は、RFアンプ55に入力され、所定のゲインで増幅されてから、信号処理部を構成するA/D変換部56に供給される。A/D変換部56に供給された、前記RF(MO)信号は、量子化される。その後、AGC処理部57でゲインがコントロールされてからイコライザ(EQ)&ディジタルPLL部58により波形整形と抜き取りクロックが生成され、デコーダ59を経て、復調部60で復調される。なお、ここでは、A/D変換後のRF信号を用いてAGC、イコライズ、DPLLを掛けているが、A/D変換前にアナログのAGC、イコライズ、PLLをかけてもよい。復調部60で復調されたデータストリームは、メモリ62上に展開され、誤り訂正ブロック単位に誤り訂正部63で誤り訂正される。誤り訂正されたデータは、デスクランブル&デコーダ64によりデスクランブル処理とデコード処理が施され、DAT信号として、クロック発生部65からの転送クロックSCLKと共に出力される。このRF(MO)信号は、光磁気ディスク1のグルーブGの光学的な深さがλ/4とされており、等価的に光学ピックアップ装置の線方向のMTFを劣化させて、クロストーク等のノイズを低減する。
【0040】
次に、記録部の構成について説明する。入力された信号DATは、スクランブラ&エンコーダ66で処理されたから、内部バス61を介して、メモリ部62、誤り訂正部63、変調部60に順番に供給される。変調部60は、変調データを磁気ヘッド駆動部68に供給する。磁気ヘッド駆動部68は、磁気ヘッド69を駆動する。また、変調部67は、レーザAPC回路及びドライバ70にクロック信号を供給する。
【0041】
そして、この記録部は、以下のように動作する。すなわち、転送クロックSCLKに同期して入力された信号DATは、スクランブラ&エンコーダ66によりスクランブル処理とエンコード処理が施されてから、メモリ部62に書き込まれる。メモリ部62に書き込まれたデータには、誤り訂正部63で、エラー訂正パリティが追加され、内部バス61を介して変調部60に供給される。変調部60で変調されたデータは、磁気ヘッド駆動部68を経て磁気ヘッド69に供給される。一方、レーザAPC回路及びドライバ70には、変調部67からレーザストローブ変調クロックが与えられる。
【0042】
次に、サーボ系の構成について説明する。このサーボ系は、光ピックアップ装置10が生成した信号からサーボエラー信号や後述するウォブル信号を抽出するマトリックスアンプ71と、サーボエラー信号を基にドライバ52を介して前記スレッド機構、光ピックアップ装置10のアクチュエータに所定のサーボ処理を施すと共に、スピンドルモータ51に後述するCLV制御信号に応じたスピンドルサーボ処理を施すDSSP72と、DSSP72を制御するシステムコントローラ76とを備える。また、このサーボ系は、マトリックスアンプ71が抽出したウォブル信号から、ADIP(Address In Pre−groove)信号を検出するBPF73と、前記ADIP信号をデコードするADIPデコーダ74と、DSSP72にCLV制御信号を供給するCLV制御部75とを備える。
【0043】
次に、サーボ系の動作について説明する。マトリックスアンプ71で光ピックアップ装置10からの信号から抽出されたサーボエラー信号にはDSSP72にて位相補償、ゲイン・目標値設定処理が施され、ドライバ52を経て光ピックアップ装置10内のアクチュエータ及びスレッドモータ54へ供給される。トラッキングエラー信号は、光磁気ディスクのランド部とグルーブ部では極性が逆になるためどちらを記録再生するかによってシステムコントローラ76が極性を切り換える。また、特にランド/グルーブディスクにおける、フォーカス検出では非点収差法を用いた場合、ランド部とグルーブ部でオフセットがでることが知られている。これによる影響を取り去るためにシステムコントローラ76がランド部とグルーブ部で別々にフォーカスオフセットを設定してやる。
【0044】
一方、マトリックスアンプ71から出力されたウォブル信号はバンドパスフィルタ(BPF)73でその成分が抽出され、ADIPデコーダ74で復号されたアドレス情報がシステムコントローラ76に転送される。また、BPF73の出力とADIPデコーダ74内のPLL位相誤差の積分及びシステムコントローラ76からの制御信号はCLV制御部75へ供給され、DSSP72、ドライバ52を経てスピンドルモータ51に供給される。
【0045】
【発明の効果】
本発明に係る光磁気ディスクは、基板の屈折率をηとし、nを整数とすると、ランドに対するグルーブの深さdを前記再生レーザ光の波長λに対して、d*η=(λ/4)+(n*λ/2)の式を満たして設定するのでDWDDの再生特性を損なうことなく、通常再生モードで見えるノイズ成分を軽減することが可能となり、特に狭トラックピッチ化が可能となる。
【図面の簡単な説明】
【図1】DWDDの原理を説明するための図である。
【図2】DWDDによる盤面上のスポットを示す図である。
【図3】DWDD信号のスペクトラムを示す図である。
【図4】光磁気ディスクのグルーブGの深さについて示す図である。
【図5】光学ピックアップ装置の光学系の概略図である。
【図6】グルーブ深さに対する対物レンズ上の回折光強度特性を示す図である。
【図7】グルーブ深さと再生のMTFの関係を示す特性図である。
【図8】光学系のスペクトラムを示す図である。
【図9】MTFを劣化させた場合のノイズ低減効果を説明するための特性図である。
【図10】光磁気ディスク記録再生装置の構成を示すブロック図である。
【符号の説明】
1 光磁気ディスク、1a 拡大層、1b 記録層、1c スイッチング層、10 光学ピックアップ装置、11 半導体レーザ、13 回折格子、14 ビームスプリッタ、15 対物レンズ、17 ウォラストンプリズム、20 フォトディテクタ

Claims (2)

  1. 少なくとも3層の磁性層からなる磁性多層膜を記録層として備え、再生時に光学ピックアップ装置から照射された再生レーザ光による再生光スポットの走行方向前方における再生光照射側の磁性層の磁壁がスポット中心方向に移動して記録磁区が拡大されるようになされた光磁気記録媒体において、
    基板の屈折率をηとし、nを整数とすると、ランドに対するグルーブの深さdを前記再生レーザ光の波長λに対して、
    d*η=(λ/4)+(n*λ/2)
    の式を満たして設定することを特徴とする光磁気記録媒体。
  2. 前記グルーブの深さdを前記式を満たして設定することにより、前記線方向のMTFを劣化させることを特徴とする請求項1記載の光磁気記録媒体。
JP2003031583A 2003-02-07 2003-02-07 光磁気記録媒体 Withdrawn JP2004241086A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031583A JP2004241086A (ja) 2003-02-07 2003-02-07 光磁気記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031583A JP2004241086A (ja) 2003-02-07 2003-02-07 光磁気記録媒体

Publications (1)

Publication Number Publication Date
JP2004241086A true JP2004241086A (ja) 2004-08-26

Family

ID=32958123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031583A Withdrawn JP2004241086A (ja) 2003-02-07 2003-02-07 光磁気記録媒体

Country Status (1)

Country Link
JP (1) JP2004241086A (ja)

Similar Documents

Publication Publication Date Title
JP4023012B2 (ja) 光ディスク傾き検出方法、光学ピックアップ装置および光ディスク装置
KR100756299B1 (ko) 광기록재생장치, 광헤드장치, 광디스크드라이브장치 및그것에 있어서의 트래킹제어방법, 및 광디스크
KR19980024858A (ko) 광기록 매체상의 랜드/그루브 트랙으로 데이터를 기록하기 위한 방법 및 장치
KR100570927B1 (ko) 기억 장치
WO2003060889A1 (fr) Support d'enregistrement d'information optique
JPH11120560A (ja) 光ディスクの記録方法及びアクセス方法、光ディスク、光ディスク記録装置及び光ディスク装置
US20030147330A1 (en) Light spot shaping device and method,light pickup device, and optical disk apparatus
JP4105165B2 (ja) 光磁気記録媒体及び光磁気記憶装置
JPH06259799A (ja) 光ディスクの再生方法及び再生装置
JP2004241086A (ja) 光磁気記録媒体
US5666339A (en) Optical information reproducing apparatus using transversal filter
US8339909B2 (en) Optical disc device
US7301855B2 (en) Apparatus and method for storing ROM and RAM data into magneto-optical recording medium
JP3216418B2 (ja) 円盤状記録媒体用の記録再生装置
JP2005011385A (ja) 磁区拡大型光磁気再生方法及び装置
JP4419041B2 (ja) 光信号記録装置及び光信号記録方法
JP2004241085A (ja) 光学ピックアップ装置及び再生方法
US5802030A (en) Information reproducing apparatus and method for reproducing information by using a multibeam spot
JP4171490B2 (ja) 光情報処理装置
KR100515672B1 (ko) 광자기기록매체상의데이타재생방법
JP2006073094A (ja) 光学ピックアップ装置及び再生方法
KR100598307B1 (ko) 광 기록/재생 장치
JPH10241194A (ja) 再生装置
JP2004288251A (ja) 光ディスク記録再生装置
JP2001325743A (ja) 光記録再生装置及び光ヘッド装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509