JP2004240060A - 光素子制御装置 - Google Patents

光素子制御装置 Download PDF

Info

Publication number
JP2004240060A
JP2004240060A JP2003027479A JP2003027479A JP2004240060A JP 2004240060 A JP2004240060 A JP 2004240060A JP 2003027479 A JP2003027479 A JP 2003027479A JP 2003027479 A JP2003027479 A JP 2003027479A JP 2004240060 A JP2004240060 A JP 2004240060A
Authority
JP
Japan
Prior art keywords
path switching
light
optical path
optical
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003027479A
Other languages
English (en)
Inventor
Wataru Katsuhara
亘 勝原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003027479A priority Critical patent/JP2004240060A/ja
Publication of JP2004240060A publication Critical patent/JP2004240060A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】光路切換素子における前記ミラー角度センサ部の光源の耐用期間を長期化させ、装置の信頼性を高める。
【解決手段】ステップS1で制御部220は統括制御部10から通信結合状態を変更する命令を受信すると、ステップS2で待機状態から動作状態になる光通信用ミラー51aの存在有無を確認し、存在すると判断された場合にはステップS3で動作状態になるセンサーミラー51bのセンサー光源である発光素子212を通常発光状態にする。ステップS4では、動作状態から待機状態になる光通信用ミラー51aの存在有無を確認し、存在すると判断された場合にはステップS5で待機状態になるセンサーミラー51bのセンサー光源である発光素子212を低パワー状態にする。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
本発明は、光通信等に用いられ、光路切換素子により光通信光の光路を切り換え可能にした光素子制御装置に関する。
【0002】
【従来の技術】
従来のこの種の光素子制御装置としては、1または複数の入力用光ファイバと、1または複数の出力用光ファイバと、光路切換駆動制御信号に基づいて前記入力用ファイバから出射する光通信光の光路を切り換えて出力用光ファイバに入射させる光路切換手段と、前記光路切換手段の偏向量を検出し当該検出偏向量を基に前記光路切換手段を駆動制御する前記光路切換駆動制御信号を形成する光路切換駆動手段とからなるものとして知られている。
【0003】
図7は、従来の光素子制御装置を示す図である。この図7において、従来の光素子制御装置は、平行状態に置かれた複数の入力用光ファイバ131〜137と、前記複数の入力用光ファイバ131〜137に対して平行に配置されかつこれらから所定の距離離れた位置に配置された出力用光ファイバ141〜147と、前記入力用光ファイバ131〜137の端面に配置され前記光ファイバ131〜137の出射光を平行光にする入力光用コリメータレンズ171〜177と、入力光用コリメータレンズ171〜177からの平行光を所望の方向に反射させる入力用光路切換手段151〜157と、入力用光路切換手段151〜157で反射された平行光を出力用光ファイバ141〜147に入射させる出力用光路切換手段161〜167と、前記出力用光路切換手段161〜167からの光を集光して前記出力用光ファイバ141〜147に導光する出力光用コリメータレンズ181〜187と、前記光路切換手段151〜157,161〜167の偏向量を検出し当該検出偏向量を基に前記光路切換手段151〜157,161〜167を駆動制御する光路切換駆動制御信号を形成する光路切換駆動手段121〜127,191〜197とを備えたものである。
【0004】
図8は、特開2001−264663号公報に示される従来の光素子制御装置で使用される入力用光路切換手段及び光路切換駆動手段からなる光路切換素子の構成を示すブロック図である。なお、図7において、入力用光路切換手段151〜157及び出力用光路切換手段161〜167は同一構成であるので、図8では入力用光路切換手段151を代表させて説明し、他のものの構成の説明を省略する。また、図7において、前記光路切換駆動手段121〜127,191〜197は同一構成であるので、図8では光路切換駆動手段121を代表させて説明し、他のものの構成の説明を省略する。
【0005】
この図8に示す従来の光路切換素子は、入力用光路切換手段151と、光路切換駆動手段121とから構成されている。
【0006】
これらの詳細についてさらに説明すると、前記入力用光路切換手段151は、光通信用ミラー151aと、前記光通信用ミラー151aの反対側に設けたセンサーミラー151bとを備え、これらがX軸の回りに回動可能に構成されている。前記光通信用ミラー151aが光通信用の光ビームの反射に、前記センサーミラー151bが角度制御に、それぞれ用いられるようになっている。
【0007】
また、光路切換駆動手段121は、レーザーダイオード122と、このレーザーダイオード122を駆動するLD駆動回路123と、レーザーダイオード122から照射された光ビームの光量を制御する濃度フィルタ124と、この濃度フィルタ124を通り前記センサーミラー151bで反射された光ビームを受光する2次元検出平面125aを有する光検出器125と、前記光検出器125からの検出信号を基に前記入力用光路切換手段151の角度を制御する駆動系に制御駆動電流を供給する光位置検出処理回路126とから構成されている。
【0008】
なお、前記入力用光路切換手段152〜157及び前記出力用光路切換手段161〜167は、前記入力用光路切換手段151と同様に構成され、かつ、前記光路切換手段152〜157及び前記光路切換手段161〜167を前記光路切換駆動手段121〜127,191〜197で制御するようにすることにより、前記入力用光路切換手段151〜157及び前記出力用光路切換手段161〜167の角度調整を行うことができる。
【0009】
このような構成をした従来装置の動作を以下に説明する。入力用光ファイバ131〜137から出力された出力光は、入力光用コリメータレンズ171〜177で平行光とされた後、入力用光路切換手段151〜157により出力用光路切換手段161〜167側に偏向される。
【0010】
前記出力用光路切換手段161〜167で反射された出力光は、出力光用コリメータレンズ181〜187で集光されて、出力光用コリメータレンズ181〜187の焦点位置に端面が配置された出力用光ファイバ141〜147に導光される。
【0011】
これら複数の光路切換手段は、図8に示すような光検出器等より構成されるミラー角度センサ部において、上述したように、レーザーダイオード(以下LDと記す)を使用している。従って、LDの耐用期間を考慮すれば前記待機中の光路切換手段に対しては効率よく制御する方法が考えられるが、前記特開2001−264663号公報の明細書には特に記載がない。
【0012】
一方、図9に示すように、例えば特開2000−68943号公報等の従来技術における光送信部は、データ変換回路330とコントロール信号変換回路331、コントローラ332、それにマルチプレクサ333で構成される符号変換部と、レーザ駆動回路340とAPC(オートパワーコントローラ)回路341、それにスイッチ駆動回路342で構成される駆動回路と、半導体レーザチップ350と光検出器351で構成される光源、及び光スイッチ素子360で構成されている。
【0013】
ツイストペア線P1、P2からは、デジタル形式によるデータ信号と、伝送路管理用のコントロール信号が時分割多重され、符号変換部に入力される。
【0014】
まず、データ信号は、データ変換回路330に入力され、光伝送に適した変調方式に変換される。一方、コントロール信号は、コントロール信号変換回路331に入力される。
【0015】
データ信号とコントロール信号は、コントローラ332により制御されるマルチプレクサ333に入力され、時分割多重されてから、半導体レーザ駆動回路340に入力される。そこで、この半導体レーザ駆動回路340は、マルチプレクサ333から供給された信号に基いて半導体レーザチップ350を駆動し、光信号を発生させる。
【0016】
このとき、半導体レーザチップ350から出力される光信号の一部は光検出器351に入射して電気信号に変換され、APC回路341に供給され、これにより、APC回路341は、半導体レーザ駆動回路340を制御し、半導体レーザチップ350からの光出力が一定になるように制御される。半導体レーザチップ350から発生された光信号は、光スイッチ素子360に入力される。
【0017】
この光スイッチ素子360は、1個の光入射端Aと2個の光出射端B、Cとを備え、光スイッチ駆動回路342から入力される制御信号に応じて、光入射端Aから入力された光を一方の光出射端Bにそのまま伝播させるか、一部の光は他方の光出射端Cにも伝播させるかを任意に切換える働きをする。
【0018】
そして、光入射端Aには、半導体レーザチップ350の光出力側が結合され、一方の光出射端Bには光ファイバL1が結合され、他方の光出射端Cには光反射膜361が設けてある。
【0019】
【特許文献1】
特開2001−264663号公報
【0020】
【特許文献1】
特開2000−68943号公報
【0021】
【発明が解決しようとする課題】
しかしながら、上記特開2000−68943号公報は、光源の耐用期間が長く、高い信頼性を備えた光伝送装置を目的としているが、前記ミラー角度センサ部を有する光路切換手段においては特に記載がない。
【0022】
すなわち、前記ミラー角度センサ部に用いる発光源としては、種々のものが考えられるが、いずれの発光源も耐用期間が存在する。耐用期間に近づくにつれ、発光パワーが下降したり、同様のパワーを得るのに必要な供給電流が上昇する等特性が劣化し、最終的にLDの素子破壊に至る。
【0023】
また、前記光路切換手段を複数有する光路切換素子の光素子制御装置においては、例えば複数ある前記ミラー角度センサ部の発光源のうち、いずれか一つが壊れた場合にも装置故障となるため、係る発光源が多数使用されるほど装置故障の確率は高くなる。
【0024】
また通常、発光源は発光パワーを低くして使用すれば耐用期間は延びるが、発光パワーを低くするとセンサ信号のS/N劣化を招き、前記光路切換素子のミラー位置決め精度に悪影響を及ぼす場合があるので発光パワーを低くするのも限界がある。
【0025】
LDの寿命は一般に発光パワーの1.9乗に反比例するから、低パワー状態では、単品を装置に使用する場合においては、寿命は十分に長いと考えられるが、光通信チャンネル数の増加に伴い、例えば前記光路切換素子が100個の装置では、いずれか一つのLDが壊れた場合にも装置故障となるから、装置の寿命は、LD単体における寿命に対して100倍のリスクを課せられることになってしまうことになる。
【0026】
本発明は、上記事情に鑑みてなされたものであり、光路切換素子における前記ミラー角度センサ部の光源の耐用期間を長期化させ、装置の信頼性を高めることのできる光素子制御装置を提供することを目的としている。
【0027】
【課題を解決するための手段】
本発明の請求項1に記載の光素子制御装置は、1または複数の入力用光ファイバと、1または複数の出力用光ファイバと、光路切換駆動制御信号に基づいて前記入力用ファイバから出射する通信光の光路を切り換えて出力用光ファイバに入射させる光路切換手段と、前記光路切換手段に光を照射する発光素子と、前記光路切換手段で反射された前記発光素子の光を受光し前記光路切換手段の偏向量信号を検出する偏向量検出傾きセンサと、前記偏向量検出傾きセンサが検出した前記偏向量信号を基に前記光路切換手段を駆動制御する前記光路切換駆動制御信号を形成する光路切換駆動手段と、前記通信光を前記出力用光ファイバに導光する際としない際で前記発光素子の発光量を可変させる発光制御手段とを備えて構成される。
【0028】
本発明の請求項3に記載の光素子制御装置は、1または複数の入力用光ファイバと、1または複数の出力用光ファイバと、光路切換駆動制御信号に基づいて前記入力用ファイバから出射する通信光の光路を切り換えて出力用光ファイバに入射させる光路切換手段と、前記光路切換手段に光を照射する発光素子と、前記光路切換手段で反射された前記発光素子の光を受光し前記光路切換手段の偏向量信号を検出する偏向量検出傾きセンサと、前記偏向量検出傾きセンサが検出した前記偏向量信号を基に前記光路切換手段を駆動制御する前記光路切換駆動制御信号を形成する光路切換駆動手段と、前記通信光を前記出力用光ファイバに導光しない際に前記発光素子を消灯させる発光制御手段とを備えて構成される。
【0029】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について述べる。
【0030】
図1〜図3は本発明の第1の実施の形態に係わり、図1は光路切換制御装置を示すブロック図、図2は図1の光路切換駆動手段の構成を示すブロック図、図3は図2の制御部による発光素子の発光状態の制御の流れを示すフローチャートである。
【0031】
(構成)
まず、図1を参照して本発明の第1の実施の形態に係る光素子制御装置の全体構成について説明する。この図1において、本発明の第1の実施の形態に係る光素子制御装置は、平行状態に置かれた複数の入力用光ファイバ31〜37と、前記複数の入力用光ファイバ31〜37に対して平行に配置されかつこれらから所定の距離離れた位置に配置された出力用光ファイバ41〜47と、前記入力用光ファイバ31〜37の端面に配置され前記光ファイバ31〜37の出射光を平行光にする入力光用コリメータレンズ71〜77と、入力光用コリメータレンズ71〜77からの平行光を所望の方向に反射させる入力用光路切換手段51〜57と、入力用光路切換手段51〜57で反射された平行光を出力用光ファイバ41〜47に入射させる出力用光路切換手段61〜67と、前記光路切換素子61〜67からの光を集光して前記出力用光ファイバ41〜47に導光する出力光用コリメータレンズ81〜87と、前記光路切換手段51〜57,61〜67の偏向量を検出し当該検出偏向量を基に前記光路切換手段51〜57,61〜67を駆動制御する光路切換駆動制御信号を形成する光路切換駆動手段21〜27,91〜97と、前記光路切換駆動手段21〜27,91〜97を統括制御する統括制御部10とを備えている。
【0032】
なお、統括制御部10は、大別すると、制御演算部11と、記憶手段12とから構成れさている。
【0033】
ここに、前記制御演算部11は、前記各光路切換駆動手段21,22,…,27の制御部及び前記各光路切換駆動手段91,92,…,97の制御部に接続されていて前記各光路切換駆動手段21,22,…,27の制御部及び前記各光路切換駆動手段91,92,…,97の制御部の駆動制御を統括的に行ったり、各種の演算処理を実行する。
【0034】
また、前記記憶手段12は、本発明の第1の実施の形態に係る光路切換制御装置を動作させるプログラムや、各種データを格納している。
【0035】
次に、図2を使用して本発明の第1の実施の形態に係る光素子制御装置に用いられる光路切換手段及び光路切換駆動手段を示すブロック図について説明する。なお、図1において、入力用光路切換手段51〜57及び出力用光路切換手段61〜67は同一構成であるので、図2では入力用光路切換手段51を代表させて説明し、他のものの構成の説明を省略する。また、図1において、前記光路切換駆動手段21〜27,91〜97は同一構成であるので、図2では光路切換駆動手段21を代表させて説明し、他のものの構成の説明を省略する。
【0036】
この図2において、前記入力用光路切換手段51は、光通信用ミラー51aと、センサーミラー51bと、コイル51c,51dと、可動ホルダ51eと、固定磁石51f,51gとを備え、次のように構成されている。光通信光を反射する光通信用ミラー51aと、前記光通信用ミラー51aの裏面側に設けたセンサーミラー51bと、コイル51c,51dとが、可動ホルダ51eに具備されている。この可動ホルダ51eは、所定の回転軸(図示せず)の回りに回動可能に構成されている。
【0037】
前記可動ホルダ51eのコイル51c,51dは、図2に示すように、固定磁石51f,51gと対峙した状態に配置されている。前記コイル51c,51dは、当該コイル51c,51dに供給される駆動制御信号によって発生する電磁力と固定磁石51f,51gから供給される磁界により、可動ホルダ51eを所定の角度に回動制御できるように構成されている。
【0038】
前記光路切換駆動手段21は、発光素子駆動回路211と、発光素子212と、偏向量検出傾きセンサとしての分割PD213と、電流/電圧アンプ214と、差動アンプ215と、A/Dコンバータ216と、D/Aコンバータ217と、ミラー駆動回路218と、受光量検出部219と、制御部220と、メモリ221とを備え、次のように構成されている。
【0039】
前記発光素子駆動回路211は前記制御部220の制御端子に接続されていて、前記制御部220により制御されるようになっている。発光素子駆動回路211は、発光素子212に電気的に接続されていて、発光素子212の発光量が発光素子駆動回路211からの駆動信号により制御されるようになっている。発光素子212を出射したセンサー光は、入力用光路切換手段51のセンサーミラー51bを反射して偏向量検出傾きセンサとしての分割PD213に入射するようになっている。
【0040】
偏向量検出傾きセンサとしての分割PD213は、センサーミラー51bの偏向量(角度)を検出できるようになっている。偏向量検出傾きセンサとしての分割PD213の出力端子は、電流/電圧アンプ214のプラス入力端子とマイナス入力端子とに接続されていて、当該分割PD213の検出信号に応じた出力信号を抵抗R3を介して差動アンプ215のマイナス入力端子に供給するとともに、A/Dコンバータ216の入力端子に供給できるようになっている。前記A/Dコンバータ216の出力端子は、制御部220に接続されていて、A/Dコンバータ216で検出したセンサー出力を制御部220に与えられるようになっている。
【0041】
前記電流/電圧アンプ214は、出力端子とマイナス入力端子の間に抵抗R2が接続されるとともに、プラス入力端子と所定の電源との間に抵抗R1が接続された構成をしており、電流信号を電圧信号に変換できるようになっている。
【0042】
前記差動アンプ215は、マイナス入力端子と出力端子との間に抵抗R4が接続されており、かつ、プラス入力端子にD/Aコンバータ217の出力端子が接続されている。この差動アンプ215は、一種の比較器の役割を果たし、D/Aコンバータ217から供給される制御電圧と、センサー出力信号との差の偏差信号を形成し、その偏差信号をミラー駆動回路218に供給できるようになっている。
【0043】
前記D/Aコンバータ217は、制御部220からの駆動信号により動作して所定のアナログ電圧を差動アンプ215に供給できるようになっている。なお、A/Dコンバータ216及びD/Aコンバータ217には、基準電圧源250から基準電圧Vrefが供給されるようになっている。
【0044】
制御部220には、出力用光ファイバ41〜47夫々の光量モニタである受光量検出部219からの検出信号が入力されるようになっており、この受光量検出部219からの検出信号を基に前記出力用光ファイバ41〜47が待機状態にあるか光通信状態にあるかを判断することができるようになっている。
【0045】
前記制御部220にはメモリ221が接続されており、前記メモリ221に格納されている動作プログラムにより制御部220が所定の動作を実行できる。前記制御部220は、前記メモリ221の動作プログラムを実行することにより、指示電圧値(傾き制御信号)を差動アンプ215に供給し、差動アンプ215は、分割PD213・電流/電圧アンプ214から与えられる検出信号と前記傾き制御信号とを比較し、その比較した結果の偏差信号をミラー駆動回路218に供給するようになっている。
【0046】
前記ミラー駆動回路218は、前記差動アンプ215からの偏差信号あるいは制御部220からの制御信号に基づき、コイル51c,51dに駆動制御信号を供給できるようになっている。
【0047】
なお、前記制御部220は、前記統括制御部10からの統括指令に基づき動作するようになっている。
【0048】
(作用)
まず、制御部220は、統括制御部10から入力用光ファイバ31〜37と出力用光ファイバ41〜47との光結合指示を受けると、必要とされるミラー角度に対する角度制御データを記憶手段12から読み出し、当該読み出した角度制御データをD/Aコンバータ217に与える。D/Aコンバータ217は、制御すべき角度に対する指示電圧値(傾き制御信号)を差動アンプ215に与える。差動アンプ215は、分割PD213及び電流/電圧アンプ214からの出力電圧が、前記指示電圧値(傾き制御信号)に一致するような偏差信号を形成し、ミラー駆動回路218に与える。ミラー駆動回路218は、前記偏差信号から形成した駆動制御信号を入力用光路切換手段51のコイル51c,51dに与えて、入力用光路切換手段51の光通信用ミラー51aを光結合させる角度に維持するようにサーボ制御する。
【0049】
このようなサーボ制御をしている際に、光結合精度向上のため、前記出力用光ファイバ41〜47の夫々の光量を受光量検出部219で検出し、当該受光量検出部219で最大の光量が得られるように、制御部220は前記指示電圧値(傾き制御信号)の微調整を実施する。
【0050】
図3に、光路切換手段が待機状態の際に、低パワー状態に設定されるフロー図を示す。図3に示すように、ステップS1で制御部220は統括制御部10から通信結合状態を変更する命令を受信すると、ステップS2で待機状態から動作状態になる光通信用ミラー51aの存在有無を確認し、存在すると判断された場合にはステップS3で動作状態になるセンサーミラー51bのセンサー光源である発光素子212を通常発光状態にしてステップS4に進み、待機状態から動作状態にする光通信用ミラー51aが存在しないと判断された場合にはそのままステップS4に進む。
【0051】
ステップS4では、動作状態から待機状態になる光通信用ミラー51aの存在有無を確認し、存在すると判断された場合にはステップS5で待機状態になるセンサーミラー51bのセンサー光源である発光素子212を低パワー状態にしてステップS6に進み、動作状態から待機状態になる光通信用ミラー51aが存在しないと判断された場合にはそのままステップS6に進む。
【0052】
ステップS6では、指示された方向に偏向されていない光通信用ミラー51aを指示された方向に偏向して処理を終了する。
【0053】
上記の処理により、ある光路切換手段を用いての通信状態が終了したら、該光路切換手段の発光素子212のパワーを低下させる。前記光路切換手段を再び光通信に使用する命令が発令されたら、該光路切換手段の発光素子212のパワーを通常使用状態に戻し、その後命令に従って該光路切換手段の光通信用ミラーを目的の方向に偏向させる。また、待機状態の前記光路切換手段は、発光素子212のパワーを低パワー制御することによりおおよそのミラー位置制御は可能であるから、ミラー位置決めサーボ機能を用いて前記光路切換手段の光通信用ミラーを所望の角度で保持することが可能となる。
【0054】
(効果)
このように本実施の形態では、光路切換手段の、発光素子212のパワーを、光通信時は通常パワーに、待機状態時は低パワー状態、あるいは消灯状態にすることにより、前記発光素子212の消耗を少なくでき、光素子制御装置の耐用期間を長期化することができる。
【0055】
図4は本発明の第2の実施の形態に係る制御部による発光素子の発光状態の制御の流れを示すフローチャートである。
【0056】
第2の実施の形態は、第1の実施の形態と構成は同じであり、制御部220における作用が異なる。
【0057】
(作用)
図4に、待機状態において低パワー状態にする場合の本実施の形態のフロー図を示す。
【0058】
本実施の形態では、図4に示すように、第1の実施の形態のステップS3及びS5の処理の代わりにステップS13及びS15の処理がなされる。
【0059】
すなわち、ステップS3の処理に代わるステップS13においては、待機状態から動作状態になる光通信用ミラー51aが存在すると判断された場合に動作状態になるセンサーミラー51bのセンサー光源である発光素子212を通常発光状態にすると同時に、電流/電圧アンプ214のゲインを、発光素子212の通常パワーによるセンサーゲインの増加を補償するように下げ、ステップS4に進む。
【0060】
また、ステップS5の処理に代わるステップS15においては、動作状態から待機状態になる光通信用ミラー51aが存在すると判断された場合に待機状態になるセンサーミラー51bのセンサー光源である発光素子212を低パワー状態にすると同時に、電流/電圧アンプ214のゲインを、発光素子212の低パワーによるセンサーゲインの減少を補償するように上昇させステップS6に進む。
【0061】
本実施の形態では、ある光路切換手段を用いての通信状態が終了したら、光路切換手段の発光素子212の光量を低下させると同時に電流/電圧アンプ214のゲインを、発光素子212の低パワーによるセンサーゲインの減少を補償するように上昇させる。前記光路切換手段を再び光通信に使用する命令が発令されたら、該光路切換手段の発光素子212のパワーを通常使用に戻すと同時に、電流/電圧アンプ214のゲインも元に戻し、その後命令に従って該光路切換手段の光通信用ミラーを目的の方向に偏向させる。
【0062】
(効果)
このように本実施の形態のおいては、前記発光素子212のパワーを低下させると、分割PD213の出力も低下して、サーボゲインが低下する。そのため、前記発光源のパワーを低下し過ぎるとサーボの位相余裕やゲイン余裕が無くなって発振してしまう恐れがある。そこで本実施の形態では、電流/電圧アンプ214のゲインを前記発光素子212の発光パワーに合わせて変更することにより、サーボ制御の発振を回避している。
【0063】
図5及び図6は本発明の第3の実施の形態に係わり、図5は制御部による発光素子の発光状態の制御の流れを示すフローチャート、図6は図5の処理で制御される発光素子を構成するLDの発光特性を示す図である。
【0064】
第3の実施の形態は、第1の実施の形態と構成は同じであり、制御部220における作用が異なる。
【0065】
(作用)
図5に、待機状態において低パワー状態にする場合の本実施の形態のフロー図を示す。
【0066】
本実施の形態では、図5に示すように、第1の実施の形態のステップS5の処理の代わりにステップS25の処理がなされる。
【0067】
すなわち、ステップS5の処理に代わるステップS25においては、動作状態から待機状態になる光通信用ミラー51aが発生する場合に待機状態になるセンサーミラー51bのセンサー光源である発光素子212を消灯状態にしてステップS6に進む。
【0068】
本実施の形態では、ある光路切換手段を用いての通信状態が終了したら、該光路切換手段の発光素子212を消灯し、前記光路切換手段を再び光通信に使用する命令が発令されたら、該光路切換え素子の前記発光素子212のパワーを通常使用状態に戻し、その後命令に従って該光路切換手段の光通信用を目的の方向に偏向させる。
【0069】
(効果)
このように本実施の形態のおいては、待機状態では発光素子212を消灯することで、上記第1及び第2の実施の形態に比べ、より発光素子212の耐用年数を長くすることがきる。
【0070】
また、発光素子212は発熱源でもあるから、消灯することで発熱量も変化する。該発熱量の変化は、該光路切換手段およびその周辺部位の温度分布状態を変化させ、微妙に該光路切換手段の構造体の変形を発生する恐れがある。
【0071】
該光路切換手段のミラー傾きが1mrad(1ミリラジアン)とごく微小な角度変化に対しても、出力ファイバに入射する通信光量は数dBも変化する場合も想定されるので、該光光路切換手段およびその周辺部位の温度分布状態の変化は、少ない方が好ましい。
【0072】
発光素子212を構成するレーザーダイオード(LD)は、電流と発光パワーの関係が図6に示すようになっており、LDに流す電流をゼロにしなくとも、該電流が閥値以下に設定されれば消灯する。そこで、図5に示すように消灯させる際は、発光素子212の電流値を図6の閥値かそれより若干小さい値に設定すれば、消灯時から発光時に移行した際の前記LD発熱量変化は微小となるので、該光路切換手段およびその周辺部位の温度分布状態変化が抑制される。従って、該光路切換手段の構造体の変形を抑止できる。
【0073】
つまり、LDのように供給される電流が閥値を超えた時点で発光を開始する発光素子212を使用している場合は、消灯時に供給される電流を閥値かそれをわずかに下回る値にすることにより、消灯時と発光時との発熱量の差は微小となる。従って、前記LD発光時と消灯時での温度分布状態変化が、該光路切換手段の構造体を変形させる不具合を抑止し、光通信時の該光路切換手段のミラー傾きエラーを抑止することができる。
【0074】
また、前記閥値近傍でのLD制御は、LDの出力安定時間の短縮、波長安定時間の短縮にも効果があり、前記光路切換手段を短時間で安定させることができる。
【0075】
ただし、LDは一般に使用環境温度の変化によって閾値ポイントが移動するから、本実施の形態では該閾値ポイントの移動を考慮して、待機状態の駆動電流を設定していることは言うまでもない。
【0076】
本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。
【0077】
【発明の効果】
以上説明したように本発明によれば、光路切換素子における前記ミラー角度センサ部の光源の耐用期間を長期化させ、装置の信頼性を高めることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る光路切換制御装置を示すブロック図
【図2】図1の光路切換駆動手段の構成を示すブロック図
【図3】本発明の第1の実施の形態に係る図2の制御部による発光素子の発光状態の制御の流れを示すフローチャート
【図4】本発明の第2の実施の形態に係る制御部による発光素子の発光状態の制御の流れを示すフローチャート
【図5】本発明の第3の実施の形態に係る制御部による発光素子の発光状態の制御の流れを示すフローチャート
【図6】図5の処理で制御される発光素子を構成するLDの発光特性を示す図
【図7】従来の光素子制御装置を示す図
【図8】従来の光素子制御装置で使用される入力用光路切換手段及び光路切換駆動手段の構成を示すブロック図
【図9】従来の光送信部の構成を示すブロック図
【符号の説明】
10…統括制御部
11…制御演算部
12…記憶手段
21〜27,91〜97…光路切換駆動手段
31〜37…入力用光ファイバ
41〜47…出力用光ファイバ
51〜57…入力用光路切換手段
61〜67…出力用光路切換手段
71〜77…入力光用コリメータレンズ
81〜87…出力光用コリメータレンズ
211…発光素子駆動回路
212…発光素子
213…分割PD
214…電流/電圧アンプ
215…差動アンプ
216…A/Dコンバータ
217…D/Aコンバータ
218…ミラー駆動回路
219…受光量検出部
220…制御部
221…メモリ

Claims (3)

  1. 1または複数の入力用光ファイバと、
    1または複数の出力用光ファイバと、
    光路切換駆動制御信号に基づいて前記入力用ファイバから出射する通信光の光路を切り換えて出力用光ファイバに入射させる光路切換手段と、
    前記光路切換手段に光を照射する発光素子と、
    前記光路切換手段で反射された前記発光素子の光を受光し前記光路切換手段の偏向量信号を検出する偏向量検出傾きセンサと、
    前記偏向量検出傾きセンサが検出した前記偏向量信号を基に前記光路切換手段を駆動制御する前記光路切換駆動制御信号を形成する光路切換駆動手段と、
    前記通信光を前記出力用光ファイバに導光する際としない際で前記発光素子の発光量を可変させる発光制御手段と
    を備えたことを特徴とする光素子制御装置。
  2. 光路切換駆動手段は、前記発光制御手段による前記発光素子の発光量の制御状態に応じて前記偏向量信号のゲインを制御する
    ことを特徴とする請求項1に記載の光素子制御装置。
  3. 1または複数の入力用光ファイバと、
    1または複数の出力用光ファイバと、
    光路切換駆動制御信号に基づいて前記入力用ファイバから出射する通信光の光路を切り換えて出力用光ファイバに入射させる光路切換手段と、
    前記光路切換手段に光を照射する発光素子と、
    前記光路切換手段で反射された前記発光素子の光を受光し前記光路切換手段の偏向量信号を検出する偏向量検出傾きセンサと、
    前記偏向量検出傾きセンサが検出した前記偏向量信号を基に前記光路切換手段を駆動制御する前記光路切換駆動制御信号を形成する光路切換駆動手段と、
    前記通信光を前記出力用光ファイバに導光しない際に前記発光素子を消灯させる発光制御手段と
    を備えたことを特徴とする光素子制御装置。
JP2003027479A 2003-02-04 2003-02-04 光素子制御装置 Withdrawn JP2004240060A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027479A JP2004240060A (ja) 2003-02-04 2003-02-04 光素子制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027479A JP2004240060A (ja) 2003-02-04 2003-02-04 光素子制御装置

Publications (1)

Publication Number Publication Date
JP2004240060A true JP2004240060A (ja) 2004-08-26

Family

ID=32955199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027479A Withdrawn JP2004240060A (ja) 2003-02-04 2003-02-04 光素子制御装置

Country Status (1)

Country Link
JP (1) JP2004240060A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139477A (ja) * 2006-11-30 2008-06-19 Fujitsu Ltd 光スイッチ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139477A (ja) * 2006-11-30 2008-06-19 Fujitsu Ltd 光スイッチ

Similar Documents

Publication Publication Date Title
EP0786839A1 (en) Light output apparatus and optical pickup apparatus employing the same
US7692678B2 (en) Laser light control device for image forming apparatus, and image forming apparatus
WO2009096431A1 (ja) 波長可変光源、光モジュールおよび波長可変光源の製造方法
WO2000076040A1 (en) Monitoring and control assembly for wavelength stabilized optical system
JP5022587B2 (ja) 半導体レーザの駆動方法および装置、並びに補正パターンの導出方法および装置
US7043118B2 (en) Optical communication apparatus
US20020126724A1 (en) Laser-diode-pumped solid-state laser apparatus and status diagnostic method of the same
US9316531B2 (en) Signs-of-deterioration detector for semiconductor laser
WO2006082917A1 (ja) レーザ装置、レーザ装置の制御装置、レーザ装置の制御方法、レーザ装置の波長切換方法およびレーザ装置の制御データ
JP4773146B2 (ja) 半導体レーザの駆動方法および装置、並びに半導体レーザ駆動電流パターンの導出方法および装置
JP2009004525A (ja) 光源モジュール
KR100871779B1 (ko) 광 신호 교환기의 제어 장치 및 제어 방법
JP2004240060A (ja) 光素子制御装置
JPH10162412A (ja) 光ピックアップ
JP2008085038A (ja) 発光素子駆動方法および装置
JP2006012888A (ja) 合波レーザ光照射方法および装置
JP2007220851A (ja) 光源モジュール及び光通信装置
US8593495B2 (en) Image forming apparatus that forms image by scanning photosensitive member with multiple beams
JP2013037025A (ja) 光源装置、光走査装置及び画像形成装置
JP2008129295A (ja) 光通信装置
JPH05343809A (ja) 半導体レーザ装置システム
JP2007158092A (ja) レーザ発光装置およびレーザ駆動方法
JP2004212660A (ja) 光路切換制御装置
JP5252832B2 (ja) 露光装置及び画像形成装置
US20030016420A1 (en) Method and apparatus for aligning a light beam onto an optical fiber core

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404