JP2004239770A - Piping structure for attaching ionization vacuum gage - Google Patents

Piping structure for attaching ionization vacuum gage Download PDF

Info

Publication number
JP2004239770A
JP2004239770A JP2003029863A JP2003029863A JP2004239770A JP 2004239770 A JP2004239770 A JP 2004239770A JP 2003029863 A JP2003029863 A JP 2003029863A JP 2003029863 A JP2003029863 A JP 2003029863A JP 2004239770 A JP2004239770 A JP 2004239770A
Authority
JP
Japan
Prior art keywords
vacuum
gauge
valve
cold cathode
cathode ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003029863A
Other languages
Japanese (ja)
Inventor
Yoshihiro Katayama
善裕 片山
Mutsumi Mizutani
睦 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHV Corp
Original Assignee
NHV Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHV Corp filed Critical NHV Corp
Priority to JP2003029863A priority Critical patent/JP2004239770A/en
Publication of JP2004239770A publication Critical patent/JP2004239770A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide attaching structure for a cold cathode ionization vacuum gage capable of measuring the vacuum in a vacuum vessel under a high-vacuum condition upon restoration of a service power interruption, and capable of replacing the cold cathode ionization vacuum gage while keeping the vacuum vessel at a high vacuum, when the vacuum gage is failed. <P>SOLUTION: In this attaching structure for the cold cathode ionization vacuum gage 21 for measuring the vacuum in the vacuum vessel 11 of a vacuum device, a valve 32 is provided in a midway of piping 31 for connecting the cold cathode ionization vacuum gage 21 to the vacuum vessel 11, and piping 33 for introducing gas via a leak valve 34 is provided between the valve 32 and the cold cathode ionization vacuum gage 21. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は高真空で物品を処理する電子線照射装置、イオン注入装置、真空熱処理装置等の真空装置における真空槽の真空度を測定する真空計の取付け配管構造に関する。
【0002】
【従来の技術】
真空装置は、各種産業分野で数多く使用されており、例えば、上述した各種装置等に使用されている。これら真空装置における一例を、図2を参照して説明する。この真空装置は、真空槽1とこの真空槽1内を排気口4を通して真空排気する図示しない排気系にて概略構成されている。
【0003】
さらに、真空槽1には、その側壁部に直接、真空槽1内の真空状態を制御測定するための熱陰極電離真空計あるいはペニング真空計等の真空計5が取り付けられている。(特許文献1参照)
【0004】
【特許文献1】
特開平11−50238号公報(段落番号 0003、図3)
【0005】
そして、真空槽1での処理は、まず真空槽1を大気化開放した状態で内部に所定の処理のために必要な部品、被処理物等を配置する。続いて、真空槽1内を排気系によって減圧し、所定の真空度にした後、目的に応じた真空処理を行う。
【0006】
しかしながら、上述したように、真空計5が真空槽1の側壁に直接設けてある従来の真空装置において、真空槽が高真空に保持された状態で、停電が発生した場合、真空槽1および真空計5内は高真空に保持されたまま、真空計5の真空計測が停止し、停電復帰後、再度真空計5で真空槽1内の真空度を計測しようとしても、冷陰極電離真空計のような真空計では、真空槽1および真空計5内が高真空であるので、真空計5内で気体の電離が生じず、真空槽1内の真空度の計測が行えない不具合があった。
【0007】
また、何らかの原因で、真空計5が故障した場合、交換するのに、真空槽1内を大気圧に戻した後交換しなければならず、交換作業に大きな時間を費やし、したがって、真空装置の稼働率の低下をもたらすという問題もあった。
【0008】
【発明が解決しようとする課題】
本発明は上述した真空装置の真空計測における問題点を解決することを課題とする。即ち、本発明は真空槽に取り付けられた真空計が停電復帰後の真空槽および真空計内の高真空時にも作動し、真空計測が行えること、および真空計の破損時に交換作業を容易にし、真空装置の稼働率を向上させることを課題とする。
【0009】
【課題を解決するための手段】
本発明は上述した課題を解決するためになされたものであり、真空装置における真空槽の真空度を測定する電離真空計の取付け配管構造であって、前記真空槽と冷陰極電離真空計を接続する配管の途中にバルブを設け該バルブと前記電離真空計との間にリークバルブを介してガスを導入する配管を設けたことを特徴とするものである。
本発明によれば、真空槽に取り付けられた真空計が停電復帰後の真空槽および真空計内の高真空時にも作動し、真空計測が行えること、および真空計の破損時に交換作業を容易にし、真空装置の稼働率を向上させることができる。
【0010】
【発明の実施の形態】
本発明の具体的な電離真空計の取付け配管構造について図1の真空装置を参照して説明する。この真空装置は真空槽11と真空槽11内を真空にする排気系12にて概略構成されている。この排気系12には、低真空ポンプ例えばロータリーポンプ13と高真空ポンプ、例えばターボ分子ポンプ14とが設けられている。
【0011】
ロータリーポンプ13は真空槽11に接続された排気管17から分岐した排気管15に接続されていて、途中にバルブ16が設けられている。
ターボ分子ポンプ14は真空槽11に排気管17により接続され、該排気管17の途中にバルブ18が設けられている。さらに、排気管19によってロータリーポンプ13に接続されていて、その途中にバルブ20が設けられている。
真空槽11の側壁に冷陰極電離真空計21を接続する配管31を設け、配管31の途中にバルブ32を設け、バルブ32と冷陰極電離真空計21との間に配管33を設け、配管33にはリークバルブ34が取り付けられている。配管33はリークバルブ34を開くことによって、空気、窒素ガスあるいはAr等の不活性ガスを配管31のバルブ32と冷陰極電離真空計21間に導入できるようになっている。
【0012】
次に、真空装置1の操作について説明する。まずバルブ16、18、20、32およびリークバルブ34を閉じてロータリーポンプ13を動作させ、バルブ20を開いてターボ分子ポンプ14内を排気する。ターボ分子ポンプ14内を十分排気した後、ターボ分子ポンプ14を動作させ、ターボ分子ポンプ14による排気動作が始まる時点でバルブ20を閉じる。その後、バルブ32を開いて冷陰極電離真空計21を動作させながら、バルブ16を開いて、真空槽11内を排気する。真空槽11内の真空度が0.1Pa程度に排気された後、バルブ16を閉じ、バルブ20、18をこの順に開いて真空槽11内を高真空(0.0001Pa程度以下)に排気する。
【0013】
この真空槽11内が高真空状態にある時、停電が発生すると、冷陰極電離真空計21は作動しなくなるが、停電が復帰すると、冷陰極電離真空計21内は高真空のままであるので、気体の電離が生ぜず、真空槽11の真空度を測定することができない。冷陰極電離真空計21が気体を電離し作動するのは真空度が0.01Pa程度であるからである。
そこで、本発明の冷陰極電離真空計21の取付け構造によると、バルブ32を閉じ、リークバルブ34を開いて、空気、窒素ガスあるいはAr等の不活性ガスを配管33を通して冷陰極電離真空計21に導入し、0.01Pa以上に真空度を低くし、リークバルブ34を閉じて冷陰極電離真空計21を作動させた後、バルブ32を開くことによって、真空槽11内の真空度を測定することができるようになる。
【0014】
さらに、真空槽11が高真空状態にある時、何らかの原因で冷陰極電離真空計21が故障した場合は同様に、バルブ32を閉じ、リークバルブ34を開いて、空気、窒素ガスあるいはAr等の不活性ガスを配管33を通して冷陰極電離真空計21に導入し、大気圧にした後、冷陰極電離真空計21を交換するとよい。
なお、本発明で用いる冷陰極電離真空計21はペニング真空計、マグネトロン真空計、逆マグネトロン真空計等いずれであってもよい。
【0015】
また、上述した実施形態において、真空槽11の内容量が電離真空計の取付け配管構造のそれに比べて著しく大きい場合には問題視されないが、真空槽11の内容量が小さい場合は、冷陰極電離真空計21が0.01Pa〜大気圧の状態で、バルブ32を開くと真空槽11内の真空度が極端に低くなり、高真空に復帰するのに時間を要する。その場合、バルブ32、冷陰極電離真空計21、リークバルブ34間を排気するようにロータリーポンプ13に接続する排気管を設けてもよい。これにより、バルブ32、冷陰極電離真空計21、リークバルブ34間はある程度排気されるので、バルブ32を開いても、真空槽11の真空度が極端に低くなることを防止することができる。
【0016】
さらに、上述の実施形態では、冷陰極電離真空計21の取付け配管は真空槽11の側壁に設けた例を示したが、これに限らず図1の真空槽11の排気管17の途中に設けられたバルブ18より真空槽側の排気管17に設けてもよいことはもちろんである。
【0017】
【発明の効果】
以上のように、この発明によれば、真空槽に取り付けられた真空計が停電復帰後の真空槽の高真空時にも作動し、真空計測が行えること、および真空計の破損時に交換作業を容易にし、真空装置の稼働率を向上させることができる。
【図面の簡単な説明】
【図1】この発明に係る電離真空計の取付け配管構造の一例を示す真空装置の概略図である。
【図2】従来の電離真空計の取付け構造の一例を示す真空装置の概略図である。
【符号の説明】
1 真空槽
2 被成膜基材
3 蒸発源
4 排気口
5 真空計
6 真空計(低真空測定用)
7.8 信号線
11 真空槽
12 排気系
13 ロータリーポンプ
14 ターボ分子ポンプ
15.17.19 排気管
16.18.20 バルブ
21 冷陰極電離真空計
31.33 配管
32 バルブ
34 リークバルブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piping arrangement for a vacuum gauge for measuring the degree of vacuum in a vacuum chamber in a vacuum apparatus such as an electron beam irradiation apparatus, an ion implantation apparatus, and a vacuum heat treatment apparatus for processing an article under high vacuum.
[0002]
[Prior art]
Vacuum devices are widely used in various industrial fields, and are used, for example, in the various devices described above. Examples of these vacuum devices will be described with reference to FIG. This vacuum device is schematically constituted by a vacuum chamber 1 and an exhaust system (not shown) for evacuating the vacuum chamber 1 through an exhaust port 4.
[0003]
Further, a vacuum gauge 5 such as a hot cathode ionization vacuum gauge or a Penning vacuum gauge for controlling and measuring the vacuum state in the vacuum chamber 1 is attached directly to the side wall of the vacuum chamber 1. (See Patent Document 1)
[0004]
[Patent Document 1]
JP-A-11-50238 (paragraph number 0003, FIG. 3)
[0005]
In the processing in the vacuum chamber 1, first, components and objects to be processed required for predetermined processing are arranged inside the vacuum chamber 1 in a state where the chamber is opened to the atmosphere. Subsequently, the inside of the vacuum chamber 1 is depressurized by an exhaust system to a predetermined degree of vacuum, and then a vacuum process according to the purpose is performed.
[0006]
However, as described above, in the conventional vacuum device in which the vacuum gauge 5 is provided directly on the side wall of the vacuum chamber 1, if a power failure occurs while the vacuum chamber is maintained at a high vacuum, the vacuum chamber 1 and the vacuum The vacuum measurement of the vacuum gauge 5 is stopped while the vacuum in the total 5 is maintained at a high vacuum, and after the power failure is recovered, even if the vacuum degree in the vacuum chamber 1 is measured again by the vacuum gauge 5, the cold cathode ionization vacuum gauge In such a vacuum gauge, since the inside of the vacuum chamber 1 and the vacuum gauge 5 is in a high vacuum, there is a problem that the ionization of gas does not occur in the vacuum gauge 5 and the degree of vacuum in the vacuum chamber 1 cannot be measured.
[0007]
If the vacuum gauge 5 breaks down for some reason, it must be replaced after returning the vacuum chamber 1 to the atmospheric pressure, and a long time is required for the replacement work. There was also a problem of lowering the operation rate.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems in vacuum measurement of a vacuum device. That is, the present invention operates even when the vacuum gauge attached to the vacuum chamber is in a high vacuum in the vacuum chamber and the vacuum gauge after the recovery from the power failure, enables the vacuum measurement to be performed, and facilitates replacement work when the vacuum gauge is damaged, It is an object to improve the operation rate of a vacuum device.
[0009]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problem, and is an installation piping structure of an ionization gauge for measuring the degree of vacuum of a vacuum tank in a vacuum device, wherein the vacuum tank and a cold cathode ionization gauge are connected. A valve is provided in the middle of a pipe to be provided, and a pipe for introducing gas through a leak valve is provided between the valve and the ionization gauge.
ADVANTAGE OF THE INVENTION According to this invention, the vacuum gauge attached to the vacuum tank also operates at the time of high vacuum in the vacuum tank and the vacuum gauge after power failure recovery, and can perform vacuum measurement, and facilitates replacement work when the vacuum gauge is damaged. In addition, the operation rate of the vacuum device can be improved.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
A specific installation piping structure of the ionization vacuum gauge of the present invention will be described with reference to the vacuum apparatus of FIG. This vacuum device is schematically constituted by a vacuum chamber 11 and an exhaust system 12 for evacuating the vacuum chamber 11. The exhaust system 12 is provided with a low vacuum pump such as a rotary pump 13 and a high vacuum pump such as a turbo molecular pump 14.
[0011]
The rotary pump 13 is connected to an exhaust pipe 15 branched from an exhaust pipe 17 connected to the vacuum chamber 11, and a valve 16 is provided on the way.
The turbo molecular pump 14 is connected to the vacuum chamber 11 by an exhaust pipe 17, and a valve 18 is provided in the exhaust pipe 17. Further, it is connected to the rotary pump 13 by an exhaust pipe 19, and a valve 20 is provided in the middle thereof.
A pipe 31 for connecting the cold cathode ionization gauge 21 is provided on the side wall of the vacuum chamber 11, a valve 32 is provided in the middle of the pipe 31, a pipe 33 is provided between the valve 32 and the cold cathode ionization gauge 21, and a pipe 33 is provided. Is provided with a leak valve 34. By opening a leak valve 34 in the pipe 33, an inert gas such as air, nitrogen gas or Ar can be introduced between the valve 32 of the pipe 31 and the cold cathode ionization vacuum gauge 21.
[0012]
Next, the operation of the vacuum device 1 will be described. First, the valves 16, 18, 20, 32 and the leak valve 34 are closed to operate the rotary pump 13, and the valve 20 is opened to evacuate the turbo molecular pump 14. After the inside of the turbo-molecular pump 14 is sufficiently evacuated, the turbo-molecular pump 14 is operated, and the valve 20 is closed when the evacuation operation by the turbo-molecular pump 14 starts. Thereafter, the valve 16 is opened and the inside of the vacuum chamber 11 is evacuated while operating the cold cathode ionization vacuum gauge 21 by opening the valve 32. After the degree of vacuum in the vacuum chamber 11 is evacuated to about 0.1 Pa, the valve 16 is closed, the valves 20 and 18 are opened in this order, and the inside of the vacuum chamber 11 is evacuated to a high vacuum (about 0.0001 Pa or less).
[0013]
When a power failure occurs when the vacuum chamber 11 is in a high vacuum state, the cold cathode ionization gauge 21 stops operating, but when the power failure is restored, the inside of the cold cathode ionization gauge 21 remains in a high vacuum. In addition, gas ionization does not occur, and the degree of vacuum in the vacuum chamber 11 cannot be measured. The reason why the cold cathode ionization vacuum gauge 21 operates by ionizing gas is that the degree of vacuum is about 0.01 Pa.
Therefore, according to the mounting structure of the cold cathode ionization gauge 21 of the present invention, the valve 32 is closed, the leak valve 34 is opened, and an inert gas such as air, nitrogen gas or Ar is supplied through the pipe 33 to the cold cathode ionization gauge 21. The vacuum degree is reduced to 0.01 Pa or more, the leak valve 34 is closed, the cold cathode ionization vacuum gauge 21 is operated, and then the valve 32 is opened to measure the degree of vacuum in the vacuum chamber 11. Will be able to do it.
[0014]
Further, when the cold cathode ionization vacuum gauge 21 fails for some reason when the vacuum chamber 11 is in a high vacuum state, the valve 32 is closed and the leak valve 34 is opened in the same manner to open air, nitrogen gas or Ar gas. It is preferable to introduce the inert gas into the cold cathode ionization gauge 21 through the pipe 33 and bring it to atmospheric pressure, and then replace the cold cathode ionization gauge 21.
The cold cathode ionization vacuum gauge 21 used in the present invention may be any of a Penning vacuum gauge, a magnetron vacuum gauge, an inverted magnetron vacuum gauge, and the like.
[0015]
Further, in the above-described embodiment, if the internal capacity of the vacuum chamber 11 is significantly larger than that of the mounting piping structure of the ionization vacuum gauge, no problem is considered, but if the internal capacity of the vacuum chamber 11 is small, the cold cathode ionization is not performed. When the valve 32 is opened while the vacuum gauge 21 is at a pressure of 0.01 Pa to atmospheric pressure, the degree of vacuum in the vacuum chamber 11 becomes extremely low, and it takes time to return to a high vacuum. In that case, an exhaust pipe connected to the rotary pump 13 may be provided so as to exhaust air between the bulb 32, the cold cathode ionization vacuum gauge 21, and the leak valve 34. As a result, the space between the valve 32, the cold cathode ionization vacuum gauge 21 and the leak valve 34 is evacuated to some extent, so that even if the valve 32 is opened, it is possible to prevent the degree of vacuum in the vacuum chamber 11 from becoming extremely low.
[0016]
Further, in the above-described embodiment, the example in which the mounting pipe of the cold cathode ionization vacuum gauge 21 is provided on the side wall of the vacuum chamber 11 is shown, but the present invention is not limited to this, and is provided in the middle of the exhaust pipe 17 of the vacuum chamber 11 of FIG. Of course, it may be provided in the exhaust pipe 17 on the vacuum tank side from the provided valve 18.
[0017]
【The invention's effect】
As described above, according to the present invention, the vacuum gauge attached to the vacuum chamber operates even when the vacuum chamber is in a high vacuum state after the recovery from the power failure, so that the vacuum measurement can be performed, and the replacement work can be easily performed when the vacuum gauge is damaged. Thus, the operation rate of the vacuum device can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a vacuum apparatus showing an example of a mounting piping structure of an ionization gauge according to the present invention.
FIG. 2 is a schematic view of a vacuum apparatus showing an example of a conventional mounting structure for an ionization gauge.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Deposition base material 3 Evaporation source 4 Exhaust port 5 Vacuum gauge 6 Vacuum gauge (for low vacuum measurement)
7.8 Signal line 11 Vacuum chamber 12 Exhaust system 13 Rotary pump 14 Turbo molecular pump 15.17.19 Exhaust pipe 16.18.20 Valve 21 Cold cathode ionization vacuum gauge 31.33 Piping 32 Valve 34 Leak valve

Claims (1)

真空装置における真空槽の真空度を測定する真空計の取付け配管構造であって、前記真空槽と冷陰極電離真空計を接続する配管の途中にバルブを設け、該バルブと前記電離真空計との間に、リークバルブを介してガスを導入する配管を設けたことを特徴とする真空計の取付け配管構造。A mounting pipe structure of a vacuum gauge for measuring the degree of vacuum of a vacuum chamber in a vacuum device, wherein a valve is provided in the middle of a pipe connecting the vacuum chamber and a cold cathode ionization gauge, and the valve and the ionization gauge are connected to each other. A piping structure for mounting a vacuum gauge, wherein a piping for introducing a gas through a leak valve is provided therebetween.
JP2003029863A 2003-02-06 2003-02-06 Piping structure for attaching ionization vacuum gage Pending JP2004239770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029863A JP2004239770A (en) 2003-02-06 2003-02-06 Piping structure for attaching ionization vacuum gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029863A JP2004239770A (en) 2003-02-06 2003-02-06 Piping structure for attaching ionization vacuum gage

Publications (1)

Publication Number Publication Date
JP2004239770A true JP2004239770A (en) 2004-08-26

Family

ID=32956922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029863A Pending JP2004239770A (en) 2003-02-06 2003-02-06 Piping structure for attaching ionization vacuum gage

Country Status (1)

Country Link
JP (1) JP2004239770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362621C (en) * 2005-12-07 2008-01-16 北京北方微电子基地设备工艺研究中心有限责任公司 Device and method for reducing thin-film type capacitance vacuum gauge zero-point drift

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362621C (en) * 2005-12-07 2008-01-16 北京北方微电子基地设备工艺研究中心有限责任公司 Device and method for reducing thin-film type capacitance vacuum gauge zero-point drift

Similar Documents

Publication Publication Date Title
JP5160054B2 (en) Exhaustable magnetron chamber
JP4580943B2 (en) In situ getter pump apparatus and method
TWI452165B (en) Vacuum processing apparatus and vacuum processing method
JP3533916B2 (en) Ion beam irradiation equipment
JP2004239770A (en) Piping structure for attaching ionization vacuum gage
JP2004184207A (en) Leak gas measuring instrument and leak gas measuring method
JP2009158527A (en) Vacuum chamber device having load lock chamber
JP4491795B2 (en) Article exchange mechanism and article exchange method
JP2001332204A (en) Pumping unit for electron microscope
JP3200668B2 (en) Exhaust method in cryopump and micromachining equipment
JP3596757B2 (en) Decompression method of vacuum chamber
JPH09309588A (en) Transportation container for poisonous gas container
JPH0874041A (en) Vacuum film forming method, method thereof and method for exchanging pressure sensor in same device
JP3419414B2 (en) Exhaust mechanism of sputtering equipment
JP3156409B2 (en) Evacuation system
JPH0791368A (en) Control method of cryopump
JPH06224097A (en) Vacuum evaculator
JPH0587298A (en) Gas supplying method and gas supplying device
CN112879806A (en) Ion source gas supply pipeline and installation method thereof
JP2018076194A (en) Vacuum treatment apparatus and rare-gas collection apparatus
JPS60257049A (en) Vacuum exhaustion apparatus for ion source
JPH08111381A (en) Semiconductor processing device
JP2503234B2 (en) High vacuum exhaust control device
Watanabe et al. Entrapment pump: Noble gas pump for use in combination with a getter pump
JP2002118067A (en) Vacuum treatment method and apparatus thereof