JP3533916B2 - Ion beam irradiation equipment - Google Patents
Ion beam irradiation equipmentInfo
- Publication number
- JP3533916B2 JP3533916B2 JP34208297A JP34208297A JP3533916B2 JP 3533916 B2 JP3533916 B2 JP 3533916B2 JP 34208297 A JP34208297 A JP 34208297A JP 34208297 A JP34208297 A JP 34208297A JP 3533916 B2 JP3533916 B2 JP 3533916B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- vacuum
- ion source
- insulating tube
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010884 ion-beam technique Methods 0.000 title claims description 25
- 239000002184 metal Substances 0.000 claims description 35
- 238000009413 insulation Methods 0.000 claims description 6
- 241000287462 Phalacrocorax carbo Species 0.000 claims 1
- 239000007789 gas Substances 0.000 description 91
- 150000002500 ions Chemical class 0.000 description 60
- 238000001514 detection method Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Electron Sources, Ion Sources (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、例えばイオン注
入装置、イオンドーピング装置(非質量分離型のイオン
注入装置)、イオン照射と真空蒸着を併用する薄膜形成
装置等であって、イオン源から引き出したイオンビーム
を真空容器内で被照射物に照射するイオンビーム照射装
置に関し、より具体的には、そのイオン源の高電圧が印
加されるプラズマ生成部に、大地電位部に設けたガス源
からイオン源ガスを安全に導入する手段に関する。
【0002】
【従来の技術】図3に、従来のイオンビーム照射装置の
一例を示す。このイオンビーム照射装置は、イオン源2
から引き出したイオンビーム10を、真空容器12内に
おいて、質量分離することなく被照射物(例えば半導体
基板や液晶ディスプレイ用基板等)16に照射して、当
該被照射物16にイオン注入等の処理を施すよう構成さ
れている。真空容器12内は、真空排気装置14によっ
て真空(例えば10-5〜10-6Torr程度)に排気さ
れる。
【0003】イオン源2は、導入されたイオン源ガス2
6を例えば高周波放電、マイクロ波放電、アーク放電等
によって電離させてプラズマ6を生成するプラズマ生成
部4と、このプラズマ生成部4の出口付近に設けられて
いてプラズマ6から電界の作用でイオンビーム10を引
き出す引出し電極系8とを有している。
【0004】引出し電極系8は、この例では4枚の多孔
電極を有しており、その上流側から数えて一番目の電極
およびプラズマ生成部4(より具体的にはそれを構成す
るプラズマ生成容器5)には、イオンビーム10を引き
出しかつ加速するための正の高電圧(例えば10kV〜
200kV程度)が直流電源20から印加される。二番
目および三番目の電極にも、直流電源21および22か
らそれぞれ図示のように直流電圧が印加される。四番目
の電極と真空容器12は接地されている。なお、これと
同様のイオン源を備えるイオン注入装置が、例えば特開
平9−92199号公報に開示されている。
【0005】イオン源ガス26は、それを真空容器12
内へ導入して引出し電極系8を通してプラズマ生成部4
へ供給するという考えもあるけれども、この例では、プ
ラズマ生成部4へイオン源ガス26を直接導入するよう
にしている。その方が、プラズマ生成部4内でのイオン
源ガス26のガス圧を高めて濃いプラズマ6を生成する
ことができる点で好ましいからである。
【0006】その場合、プラズマ生成部4には上記のよ
うに高電圧が印加されるので、従来は、大地電位部から
絶縁碍子によって支持されていてプラズマ生成部4と同
等の電位の高電圧架台(図示省略)にガス源(例えばガ
スボンベ)24等を設置して、同じ電位間でイオン源ガ
ス26の供給を行っている。即ち、イオン源ガス26を
供給するガス源24とプラズマ生成部4とを金属配管2
7で接続し、その途中に減圧弁28および流量調節器3
0を設け、これらを全て上記高電圧架台に設けている。
【0007】イオン源ガス26は、例えば、半導体デバ
イス製造用(具体的には半導体への不純物注入用)の場
合は、PH3 (ホスフィン)、B2H6 (ジボラン)、
AsH3 (アルシン)等のガス、またはそれらを水素等
で希釈したガスである。
【0008】
【発明が解決しようとする課題】上記ガス源24は、そ
の交換頻度を少なくして当該イオンビーム照射装置のス
ループット低下を防止する必要上、かなり大型になる。
プラズマ生成部4へのイオン源ガス26の供給量を多く
して多量のイオンビーム10を引き出す場合は一層大型
になる。
【0009】そのために、上記のように高電圧架台にガ
ス源24を設置する場合は、高電圧架台が大きくなり、
ひいては当該高電圧架台を取り囲む絶縁空間も大きくな
り、装置が大型化する。
【0010】また、絶縁碍子上に設けた高電圧架台は、
床面(大地電位部)から比較的高い位置にあり、このよ
うな高い位置での大型のガス源24の交換は、安全上好
ましくない。
【0011】上記従来例とは違って、大地電位部にガス
源24を設置し、金属配管27の途中に絶縁配管を設け
てこの絶縁配管でプラズマ生成部4に印加される高電圧
を絶縁するという考えもある。このように大地電位部に
ガス源24を設置することは、装置の小型化の点、およ
びガス源24の取り扱い上の安全の点で好ましいけれど
も、単に絶縁配管で高電圧を絶縁したのでは、絶縁配管
部分からのイオン源ガス26の漏れに関して安全上好ま
しくない。これは、イオン源ガス26としては、例えば
半導体デバイス製造用等の場合は、毒性を含むガス(例
えば前述したPH3 、B2H6 、AsH3 等)を用いる場
合があるのに対して、絶縁配管は、一般的に、金属配管
に比べて機械的強度が弱く、ガス漏れが生じやすいから
である。例えば、絶縁配管の材質は、通常は、フッ素樹
脂等の樹脂またはアルミナ等のセラミックスである。樹
脂の場合は、変形しやすいのでその締め付け具合によっ
てガス漏れが生じやすい。また、高電圧を印加して沿面
放電が生じた場合に炭化してガス漏れを起こす可能性が
あり、場合によっては穴があく。セラミックスの場合
は、脆いので、外部からの力によって亀裂や割れが生じ
やすく、それによってガス漏れを起こす可能性がある。
【0012】そこでこの発明は、イオン源の高電圧が印
加されるプラズマ生成部に、大地電位部に設けたガス源
からイオン源ガスを安全に導入することを主たる目的と
する。
【0013】
【課題を解決するための手段】この発明のイオンビーム
照射装置は、大地電位部に設けられていて前記イオン源
ガスを供給するガス源と、内側絶縁管およびそれを囲む
外側絶縁管を有する二重絶縁管と、この二重絶縁管の内
側絶縁管の一端側を遠隔操作式の操作弁を介して前記ガ
ス源に接続し他端側を前記イオン源のプラズマ生成部に
接続する金属配管と、大地電位部に設けられていて前記
二重絶縁管の内側絶縁管と外側絶縁管との間を真空排気
するものであって前記第1の真空排気装置とは別の第2
の真空排気装置と、前記二重絶縁管の内側絶縁管と外側
絶縁管との間の真空度を計測する真空計と、この真空計
で計測した真空度に基づいて当該真空度が所定値よりも
悪化したときに前記操作弁を閉じる制御を行う制御装置
とを備えることを特徴としている。
【0014】上記構成によれば、ガス源から供給される
イオン源ガスを、二重絶縁管の内側絶縁管およびその両
端側に接続された金属配管内を通して、イオン源のプラ
ズマ生成部に導入することができる。また、イオン源の
プラズマ生成部と大地電位部に設置されたガス源との間
の電気絶縁は二重絶縁管によって行うことができる。万
一、内側絶縁管の部分からイオン源ガスの漏れが生じて
も、内側絶縁管と外側絶縁管との間は真空排気装置によ
って真空排気されるので、漏れ出たイオン源ガスを、当
該イオンビーム照射装置の周りに拡散させずに、所定の
安全な場所へ排出することができる。従って、イオン源
の高電圧が印加されるプラズマ生成部に、大地電位部に
設けたガス源からイオン源ガスを安全に導入することが
できる。
【0015】
【発明の実施の形態】図1は、この発明に係るイオンビ
ーム照射装置の一例を示す図である。図2は、図1中の
二重絶縁管の詳細例を拡大して示す断面図である。図3
の従来例と同一または相当する部分には同一符号を付
し、以下においては当該従来例との相違点を主に説明す
る。
【0016】このイオンビーム照射装置は、内側絶縁管
42と、当該内側絶縁管42の外側をそれとの間に空間
をあけて取り囲む外側絶縁管44とを有する二重絶縁管
40を備えている。両絶縁管42および44は、例え
ば、アルミナ等のセラミックスから成り、その両端に印
加される高電圧、即ちイオン源2のプラズマ生成部4に
直流電源20から印加される前述したような高電圧に耐
える絶縁耐圧を有している。
【0017】内側絶縁管42および外側絶縁管44の両
端部には、この例では図2に示すように、金属フランジ
46および48がそれぞれ設けられており、両金属フラ
ンジ46、48と両絶縁管42、44との接続部は、O
リング等のパッキン52〜55でシール(密封)されて
いる。両金属フランジ46および48には、内側絶縁管
42に連通する穴47および49がそれぞれ設けられて
いる。金属フランジ46には、内側絶縁管42と外側絶
縁管44との間を真空排気するための排気口50が設け
られている。この排気口50は、図1に示すように一つ
でも良いけれども、図2に示すように複数の方が、コン
ダクタンスが良くなるので好ましい。
【0018】前述したイオン源ガス26を供給するガス
源24は、大地電位部に設置している。
【0019】そして、二重絶縁管40の内側絶縁管42
の一端側を金属配管32によってガス源24に接続し、
同内側絶縁管42の他端側を金属配管34によってイオ
ン源2のプラズマ生成部4(より具体的にはそれを構成
するプラズマ生成容器5)に接続している。両金属配管
32および34は、この例では図2に示すように、上記
金属フランジ46および48に、上記穴47および49
にそれぞれ連通するように接続されており、その接続部
はOリング等のパッキン56および57でそれぞれシー
ルされている。この二重絶縁管40の一方の金属フラン
ジ46は、金属配管32および後述する排気配管60を
介してガス源24および後述する真空排気装置64に接
続されているのでそれらと同電位、即ち大地電位にな
り、他方の金属フランジ48は、金属配管34を介して
プラズマ生成部4に接続されているのでそれと同電位、
即ち高電位になる。
【0020】金属配管32の途中には、この例では、イ
オン源ガス26の供給ガス圧を調節する前述した減圧弁
28、イオン源ガス26の断続を遠隔操作によって行う
操作弁36および二重絶縁管40側へ供給するイオン源
ガス26の圧力を計測する圧力計38が設けられてい
る。イオン源ガス26の金属配管32内の圧力は、例え
ば、特殊ガスを扱う場合の関係法規(高圧ガス取締法)
に従って1kg/mm2G未満に保持する。操作弁36
の操作方法は、例えば空圧式であるが、それ以外に電磁
式、電動式等でも良い。
【0021】金属配管34の途中には、この例では、プ
ラズマ生成部4へ導入するイオン源ガス26の流量調節
を行う前述した流量調節器30が設けられている。
【0022】更にこのイオンビーム照射装置は、大地電
位部に設けられていて二重絶縁管40の内側絶縁管42
と外側絶縁管44との間を例えば10-4〜10-6Tor
r程度に真空排気する真空排気装置64を備えている。
この真空排気装置64は、この例では金属製の排気配管
60によって二重絶縁管40に接続されている。排気配
管60は、この例では図2に示すように、金属フランジ
46に、前記排気口50に連通するように接続されてお
り、その接続部はOリング等のパッキン58によって真
空シールされている。排気配管60の途中には、二重絶
縁管40の近傍に、内側絶縁管42と外側絶縁管44と
の間の真空度を計測する真空計62が設けられている。
この真空排気装置64からの排気ガスは所定の安全な場
所へ排出される。その場合、当該排気ガス中に含まれる
可能性があるイオン源ガス26の成分を捕獲・吸着して
無害化するトラップ器(図示省略)を経由して排出する
のが好ましい。
【0023】このイオンビーム照射装置においては、ガ
ス源24から供給されるイオン源ガス26を、二重絶縁
管40の内側絶縁管42およびその両端側に接続された
金属配管32および34内を通して、イオン源2のプラ
ズマ生成部4に直接(即ち、真空容器12側から引出し
電極系8を経由してプラズマ生成部4内に供給するので
はなくプラズマ生成部4に直接)導入することができ
る。
【0024】また、イオン源2のプラズマ生成部4と大
地電位部に設置されたガス源24との間の電気絶縁は、
二重絶縁管40によって行うことができる。即ち、プラ
ズマ生成部4に直流電源20から印加される前述した高
電圧に対する耐電圧を、この二重絶縁管40によって保
持することができる。
【0025】万一、二重絶縁管40の内側絶縁管42自
体やそれと金属フランジ46および48との接続部(即
ち図2中のパッキン52および54の周り)の劣化によ
って、そこからイオン源ガス26の漏れが生じても、内
側絶縁管42と外側絶縁管44との間は真空排気装置6
4によって真空排気されるので、漏れ出たイオン源ガス
26を、当該イオンビーム照射装置の周りに拡散させず
に、所定の安全な場所に排出することができる。従っ
て、イオン源2の高電圧が印加されるプラズマ生成部4
に、大地電位部に設けたガス源24からイオン源ガス2
6を安全に導入することができる。その結果、図3に示
した従来例のようにガス源24を高電圧架台に設置する
場合と違って、当該イオンビーム照射装置の大型化を防
止することができると共に、ガス源24の交換を安全に
行うことができる。
【0026】なお、二重絶縁管40の内側絶縁管42と
ガス源24およびプラズマ生成部4との間の配管には金
属配管32および34を用いているので、当該配管にお
けるガス漏れの可能性は通常の金属配管の場合と同様に
極めて小さく、前述した絶縁配管の場合のようなガス漏
れの心配はない。金属配管32および34と二重絶縁管
40との接続も、この例では図2に示したように金属フ
ランジ46および48の部分で金属同士で行っているの
で、当該接続部分におけるガス漏れの可能性は通常の金
属配管の接続の場合と同様に極めて小さい。
【0027】ところで、上記のように二重絶縁管40の
内側絶縁管42の部分からイオン源ガス26の漏れが生
じると内側絶縁管42と外側絶縁管44との間の真空度
が悪化(即ちガス圧が上昇)するので、この実施例のよ
うに真空計62を設けて当該真空度を計測するのが好ま
しく、そのようにすれば、内側絶縁管42の部分からの
イオン源ガス26の漏れを真空計62によって速やかに
検出することができる。更に、この真空計62によるイ
オン源ガス漏れの検出に応じて、イオン源ガス26の大
地電位側の供給ラインに設けた前記操作弁36を閉じ
て、イオン源ガス26を二重絶縁管40の上流側で遮断
するのが好ましく、そのようにすれば、イオン源ガス2
6の漏れを速やかに停止させることができる。この真空
計62による真空度悪化の検出に応じて操作弁36を閉
じる動作は、この実施例のようにシーケンサ等から成る
制御装置66を設けてそれに行わせるのが好ましく、そ
のようにすれば保護動作の自動化を図ることができる。
【0028】また、この実施例のように圧力計38を設
けて金属配管32内のガス圧を計測するのが好ましく、
そのようにすれば、減圧弁28の異常でガス圧が異常に
上昇した場合の内側絶縁管42の破損や、ガス圧の異常
低下に伴う内側絶縁管42内部での放電の開始を速やか
に検出することができる。更に、この圧力計38による
ガス圧異常の検出に応じて、上記操作弁36を閉じてイ
オン源ガス26を二重絶縁管40の上流側で遮断するの
が好ましく、そのようにすれば、内側絶縁管42の破損
等を速やかに防止することができる。この圧力計38に
よるガス圧異常の検出に応じて操作弁36を閉じる動作
も、この実施例のように制御装置66に行わせるのが好
ましく、そのようにすれば保護動作の自動化を図ること
ができる。
【0029】また、プラズマ生成部4へ複数種類のイオ
ン源ガス26を供給する等の場合は、必要に応じて、二
重絶縁管40の内側絶縁管42内に複数の穴を設け、か
つガス源24から金属配管32まで、および金属配管3
4から流量調節器30までをそれぞれ複数ライン設け、
内側絶縁管42の各穴に各金属配管32および34をそ
れぞれ接続しても良い。
【0030】
【発明の効果】以上のようにこの発明によれば、イオン
源のプラズマ生成部と大地電位部に設置されたガス源と
の間の電気絶縁を二重絶縁管によって行うことができ
る。また万一、二重絶縁管の内側絶縁管の部分からイオ
ン源ガスの漏れが生じても、内側絶縁管と外側絶縁管と
の間は第2の真空排気装置によって真空排気されるの
で、漏れ出たイオン源ガスを、当該イオンビーム照射装
置の周りに拡散させずに、所定の安全な場所へ排出する
ことができる。従って、イオン源の高電圧が印加される
プラズマ生成部に、大地電位部に設けたガス源からイオ
ン源ガスを安全に導入することができる。その結果、従
来例のようにガス源を高電圧架台に設置する場合と違っ
て、当該イオンビーム照射装置の大型化を防止すること
ができると共に、ガス源の交換を安全に行うことができ
る。更に、二重絶縁管の内側絶縁管の部分からのイオン
源ガスの漏れを、二重絶縁管の内側絶縁管と外側絶縁管
との間の真空度を計測する真空計によって速やかに検出
し、かつ当該漏れを操作弁を閉じて速やかに停止させる
ことができ、しかも当該操作弁を閉じる動作を制御装置
によって行うので保護動作を自動化することができる。 Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, an ion implantation apparatus, an ion doping apparatus (non-mass separation type ion implantation apparatus), and a thin film formation using both ion irradiation and vacuum deposition. An ion beam irradiation apparatus that irradiates an object to be irradiated with an ion beam extracted from an ion source in a vacuum vessel, and more specifically, to a plasma generation unit to which a high voltage of the ion source is applied. And a means for safely introducing an ion source gas from a gas source provided in a ground potential portion. 2. Description of the Related Art FIG. 3 shows an example of a conventional ion beam irradiation apparatus. This ion beam irradiation apparatus includes an ion source 2
The object 16 (for example, a semiconductor substrate or a substrate for a liquid crystal display) is irradiated with the ion beam 10 extracted from the substrate 16 in the vacuum vessel 12 without mass separation, and a process such as ion implantation is performed on the object 16. Is configured to be performed. The inside of the vacuum vessel 12 is evacuated to a vacuum (for example, about 10 −5 to 10 −6 Torr) by the vacuum exhaust device 14. [0003] The ion source gas 2
A plasma generator 4 for generating a plasma 6 by ionizing the plasma 6 by, for example, high-frequency discharge, microwave discharge, arc discharge, etc., and an ion beam provided by the action of an electric field from the plasma 6 provided near an outlet of the plasma generator 4. And an extraction electrode system 8 for extracting the reference numeral 10. The extraction electrode system 8 has four porous electrodes in this example, and the first electrode counted from the upstream side and the plasma generation section 4 (more specifically, the plasma generation section constituting the electrode). The container 5) has a positive high voltage (for example, 10 kV to 10 kV) for extracting and accelerating the ion beam 10.
(About 200 kV) is applied from the DC power supply 20. DC voltages are applied to the second and third electrodes from DC power supplies 21 and 22, respectively, as shown in the figure. The fourth electrode and the vacuum vessel 12 are grounded. Incidentally, an ion implantation apparatus provided with a similar ion source is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-92199. [0005] The ion source gas 26 is supplied to the vacuum vessel 12.
Plasma generating unit 4
In this example, the ion source gas 26 is directly introduced into the plasma generation unit 4, although there is a thought that the ion source gas 26 is supplied to the plasma generation unit 4. This is preferable because the gas pressure of the ion source gas 26 in the plasma generation unit 4 can be increased to generate the dense plasma 6. In this case, since a high voltage is applied to the plasma generation unit 4 as described above, conventionally, a high-voltage mount having a potential equivalent to that of the plasma generation unit 4 is supported by an insulator from the ground potential portion. A gas source (for example, a gas cylinder) 24 and the like are installed in (not shown), and the ion source gas 26 is supplied at the same potential. That is, the gas source 24 for supplying the ion source gas 26 and the plasma generation unit 4 are connected to the metal pipe 2.
7 and the pressure reducing valve 28 and the flow controller 3
0, and all of them are provided on the high-voltage mount. The ion source gas 26 is, for example, PH 3 (phosphine), B 2 H 6 (diborane), or the like in the case of manufacturing a semiconductor device (specifically, injecting impurities into a semiconductor).
A gas such as AsH 3 (arsine) or a gas obtained by diluting them with hydrogen or the like. The gas source 24 is considerably large because it is necessary to reduce the frequency of replacement of the gas source 24 to prevent a decrease in the throughput of the ion beam irradiation apparatus.
When the supply amount of the ion source gas 26 to the plasma generation unit 4 is increased to extract a large amount of the ion beam 10, the size becomes further larger. For this reason, when the gas source 24 is installed on the high-voltage gantry as described above, the high-voltage gantry becomes large,
Eventually, the insulating space surrounding the high-voltage gantry becomes large, and the device becomes large. [0010] The high-voltage mount provided on the insulator is
It is located at a relatively high position from the floor (ground potential portion), and replacing the large gas source 24 at such a high position is not preferable in terms of safety. Unlike the above conventional example, a gas source 24 is installed in the ground potential portion, an insulating pipe is provided in the middle of a metal pipe 27, and this insulating pipe insulates a high voltage applied to the plasma generator 4. There is also the idea. Although it is preferable to install the gas source 24 at the ground potential portion in terms of miniaturization of the apparatus and safety in handling the gas source 24, if the high voltage is simply insulated by the insulating pipe, Leakage of the ion source gas 26 from the insulating piping portion is not preferable for safety. This is because, for example, in the case of semiconductor device manufacturing and the like, a toxic gas (for example, PH 3 , B 2 H 6 , AsH 3, etc. described above) may be used as the ion source gas 26, This is because the insulating pipe generally has a lower mechanical strength than the metal pipe and easily causes gas leakage. For example, the material of the insulating pipe is usually a resin such as a fluororesin or a ceramic such as alumina. In the case of resin, gas leakage is likely to occur due to the degree of tightening because the resin is easily deformed. Further, when a high voltage is applied to cause creeping discharge, carbonization may occur to cause gas leakage, and in some cases, a hole is formed. In the case of ceramics, since they are brittle, cracks and cracks are likely to occur due to external force, which may cause gas leakage. SUMMARY OF THE INVENTION Accordingly, it is a main object of the present invention to safely introduce an ion source gas from a gas source provided at a ground potential portion into a plasma generating section to which a high voltage of an ion source is applied. An ion beam irradiation apparatus according to the present invention comprises a gas source provided at a ground potential portion for supplying the ion source gas, an inner insulating tube and an outer insulating tube surrounding the same. And one end of the inner insulating tube of the double insulating tube is connected to the gas source via a remote control type operation valve, and the other end is connected to the plasma generator of the ion source. A metal pipe, which is provided in a ground potential portion and evacuates a space between an inner insulating pipe and an outer insulating pipe of the double insulating pipe, is provided with a second vacuum pump different from the first vacuum pumping apparatus.
A vacuum exhaust system, the inner insulating tube and the outside of the double insulation tube
A vacuum gauge for measuring the degree of vacuum between the insulating tube and the vacuum gauge
The degree of vacuum is smaller than a predetermined value based on the degree of vacuum measured in
A control device that performs control to close the operation valve when it deteriorates
And characterized in that: According to the above configuration, the ion source gas supplied from the gas source is introduced into the plasma generator of the ion source through the inner insulating tube of the double insulating tube and the metal pipes connected to both ends thereof. be able to. Further, the electrical insulation between the plasma generation part of the ion source and the gas source provided at the ground potential part can be performed by a double insulating tube. Even if the ion source gas leaks from the inner insulating tube part, the space between the inner insulating tube and the outer insulating tube is evacuated by the vacuum exhaust device. It can be discharged to a predetermined safe place without diffusing around the beam irradiation device. Therefore, the ion source gas can be safely introduced from the gas source provided at the ground potential portion into the plasma generating portion to which the high voltage of the ion source is applied. FIG. 1 is a diagram showing an example of an ion beam irradiation apparatus according to the present invention. FIG. 2 is an enlarged sectional view showing a detailed example of the double insulating tube in FIG. FIG.
The same or corresponding parts as those of the conventional example are denoted by the same reference numerals, and differences from the conventional example will be mainly described below. This ion beam irradiation apparatus includes a double insulating tube 40 having an inner insulating tube 42 and an outer insulating tube 44 surrounding the outer side of the inner insulating tube 42 with a space therebetween. The two insulating tubes 42 and 44 are made of, for example, ceramics such as alumina, and have a high voltage applied to both ends thereof, that is, a high voltage as described above applied from the DC power supply 20 to the plasma generation unit 4 of the ion source 2. It has withstand voltage. As shown in FIG. 2, metal flanges 46 and 48 are provided at both ends of the inner insulating tube 42 and the outer insulating tube 44, respectively. The connection with 42 and 44 is O
It is sealed (sealed) by packings 52 to 55 such as rings. The two metal flanges 46 and 48 are provided with holes 47 and 49 communicating with the inner insulating tube 42, respectively. The metal flange 46 is provided with an exhaust port 50 for evacuating the space between the inner insulating tube 42 and the outer insulating tube 44. Although one exhaust port 50 may be provided as shown in FIG. 1, a plurality of exhaust ports 50 are preferably used as shown in FIG. 2 because the conductance is improved. The gas source 24 for supplying the above-mentioned ion source gas 26 is installed at the ground potential portion. The inner insulating tube 42 of the double insulating tube 40
Is connected to the gas source 24 by a metal pipe 32,
The other end of the inner insulating tube 42 is connected to the plasma generating unit 4 of the ion source 2 (more specifically, the plasma generating container 5 constituting the same) by a metal pipe 34. As shown in FIG. 2, both metal pipes 32 and 34 are provided in the metal flanges 46 and 48 with the holes 47 and 49, respectively.
Are connected so as to communicate with each other, and the connection portions are sealed by packings 56 and 57 such as O-rings. The one metal flange 46 of the double insulating pipe 40 is connected to the gas source 24 and a vacuum exhaust device 64 described later via the metal pipe 32 and an exhaust pipe 60 described later, so that it has the same potential, that is, the ground potential. Since the other metal flange 48 is connected to the plasma generation unit 4 via the metal pipe 34,
That is, the potential becomes high. In the present embodiment, in the middle of the metal pipe 32, in this example, the above-described pressure reducing valve 28 for adjusting the supply gas pressure of the ion source gas 26, the operation valve 36 for remotely controlling the on / off of the ion source gas 26, and the double insulation A pressure gauge 38 for measuring the pressure of the ion source gas 26 supplied to the tube 40 is provided. The pressure of the ion source gas 26 in the metal pipe 32 may be determined, for example, by a related regulation when handling a special gas (high pressure gas control law).
Is maintained at less than 1 kg / mm 2 G according to Operation valve 36
The operation method is, for example, pneumatic, but may be electromagnetic, electric, or the like. In the present embodiment, the flow controller 30 for controlling the flow rate of the ion source gas 26 introduced into the plasma generating section 4 is provided in the middle of the metal pipe 34. Further, the ion beam irradiation apparatus is provided at the ground potential portion, and is provided on the inner insulating tube 42 of the double insulating tube 40.
For example, between 10 -4 and 10 -6 Torr.
An evacuation device 64 for evacuating to about r is provided.
The vacuum exhaust device 64 is connected to the double insulating pipe 40 by an exhaust pipe 60 made of metal in this example. As shown in FIG. 2 in this example, the exhaust pipe 60 is connected to the metal flange 46 so as to communicate with the exhaust port 50, and the connection portion is vacuum-sealed by a packing 58 such as an O-ring. . A vacuum gauge 62 that measures the degree of vacuum between the inner insulating tube 42 and the outer insulating tube 44 is provided near the double insulating tube 40 in the middle of the exhaust pipe 60.
The exhaust gas from the vacuum exhaust device 64 is discharged to a predetermined safe place. In this case, it is preferable that the exhaust gas is discharged through a trap device (not shown) that captures and adsorbs a component of the ion source gas 26 that may be contained in the exhaust gas and renders it harmless. In this ion beam irradiation apparatus, the ion source gas 26 supplied from the gas source 24 is passed through the inner insulating tube 42 of the double insulating tube 40 and the metal pipes 32 and 34 connected to both ends thereof. It can be directly introduced into the plasma generation unit 4 of the ion source 2 (ie, not directly into the plasma generation unit 4 but from the vacuum vessel 12 via the extraction electrode system 8 via the extraction electrode system 8). The electrical insulation between the plasma generating section 4 of the ion source 2 and the gas source 24 installed at the ground potential section is as follows.
This can be performed by the double insulating tube 40. That is, the withstand voltage against the above-described high voltage applied from the DC power supply 20 to the plasma generation unit 4 can be maintained by the double insulating tube 40. In the unlikely event that the inner insulating tube 42 itself of the double insulating tube 40 and the connection between the inner insulating tube 42 and the metal flanges 46 and 48 (that is, around the packings 52 and 54 in FIG. 2) deteriorate, the ion source gas is removed therefrom. 26, a vacuum exhaust device 6 is provided between the inner insulating tube 42 and the outer insulating tube 44.
Since the gas is evacuated by the pump 4, the leaked ion source gas 26 can be discharged to a predetermined safe place without diffusing around the ion beam irradiation device. Therefore, the plasma generator 4 to which the high voltage of the ion source 2 is applied
And the ion source gas 2 from the gas source 24 provided in the ground potential portion.
6 can be safely introduced. As a result, unlike the case where the gas source 24 is installed on a high-voltage gantry as in the conventional example shown in FIG. 3, it is possible to prevent the ion beam irradiation apparatus from being enlarged, and to replace the gas source 24. It can be done safely. Since the metal pipes 32 and 34 are used for the pipes between the inner insulating pipe 42 of the double insulating pipe 40 and the gas source 24 and the plasma generating section 4, there is a possibility that gas leaks in the pipes. Is extremely small as in the case of ordinary metal piping, and there is no concern about gas leakage as in the case of the insulating piping described above. In this example, the connection between the metal pipes 32 and 34 and the double insulating pipe 40 is made of metal at the metal flanges 46 and 48 as shown in FIG. The performance is extremely low as in the case of the connection of ordinary metal piping. When the ion source gas 26 leaks from the inner insulating tube 42 of the double insulating tube 40 as described above, the degree of vacuum between the inner insulating tube 42 and the outer insulating tube 44 deteriorates (ie, the degree of vacuum between the inner insulating tube 42 and the outer insulating tube 44 deteriorates). Since the gas pressure rises), it is preferable to measure the degree of vacuum by providing a vacuum gauge 62 as in this embodiment. In this case, leakage of the ion source gas 26 from the inner insulating tube 42 is prevented. Can be quickly detected by the vacuum gauge 62. Further, in response to the detection of the ion source gas leak by the vacuum gauge 62, the operation valve 36 provided on the supply line on the ground potential side of the ion source gas 26 is closed, and the ion source gas 26 is It is preferable to shut off upstream, so that the ion source gas 2
6 can be stopped immediately. The operation of closing the operation valve 36 in response to the detection of the deterioration of the degree of vacuum by the vacuum gauge 62 is preferably performed by providing a control device 66 composed of a sequencer or the like as in this embodiment. The operation can be automated. It is preferable to provide a pressure gauge 38 to measure the gas pressure in the metal pipe 32 as in this embodiment.
By doing so, it is possible to quickly detect the breakage of the inner insulating tube 42 when the gas pressure rises abnormally due to the abnormality of the pressure reducing valve 28, and the start of the discharge inside the inner insulating tube 42 due to the abnormal decrease in the gas pressure. can do. Further, in response to the detection of the gas pressure abnormality by the pressure gauge 38, it is preferable that the operation valve 36 be closed to shut off the ion source gas 26 on the upstream side of the double insulating tube 40. Breakage of the insulating tube 42 can be promptly prevented. The operation of closing the operation valve 36 in response to the detection of the gas pressure abnormality by the pressure gauge 38 is also preferably performed by the control device 66 as in this embodiment, so that the protection operation can be automated. it can. In the case of supplying a plurality of types of ion source gases 26 to the plasma generating section 4, a plurality of holes are provided in the inner insulating tube 42 of the double insulating tube 40 as necessary, From source 24 to metal tubing 32 and metal tubing 3
A plurality of lines are provided from 4 to the flow controller 30, respectively.
Each metal pipe 32 and 34 may be connected to each hole of the inner insulating pipe 42, respectively. As described above, according to the present invention, the electrical insulation between the plasma generating portion of the ion source and the gas source provided at the ground potential portion can be performed by the double insulating tube. . Also, even if the ion source gas leaks from the inner insulating tube portion of the double insulating tube, the space between the inner insulating tube and the outer insulating tube is evacuated by the second vacuum exhaust device. The discharged ion source gas can be discharged to a predetermined safe place without diffusing around the ion beam irradiation device. Therefore, the ion source gas can be safely introduced from the gas source provided at the ground potential portion into the plasma generating portion to which the high voltage of the ion source is applied. As a result, unlike the case where the gas source is installed on the high-voltage gantry as in the conventional example, it is possible to prevent the ion beam irradiation apparatus from being enlarged, and to safely exchange the gas source. In addition, ions from the inner insulating tube part of the double insulating tube
Leakage of source gas, inner insulation tube and outer insulation tube of double insulation tube
Quickly detected by a vacuum gauge that measures the degree of vacuum between
And shut off the leakage immediately by closing the operation valve.
The operation of closing the operation valve can be controlled by the control device.
Therefore, the protection operation can be automated.
【図面の簡単な説明】
【図1】この発明に係るイオンビーム照射装置の一例を
示す図である。
【図2】図1中の二重絶縁管の詳細例を拡大して示す断
面図である。
【図3】従来のイオンビーム照射装置の一例を示す図で
ある。
【符号の説明】
2 イオン源
4 プラズマ生成部
10 イオンビーム
12 真空容器
16 被照射物
24 ガス源
26 イオン源ガス
32、34 金属配管
40 二重絶縁管
42 内側絶縁管
44 外側絶縁管
64 真空排気装置BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of an ion beam irradiation device according to the present invention. FIG. 2 is an enlarged sectional view showing a detailed example of a double insulating tube in FIG. 1; FIG. 3 is a diagram illustrating an example of a conventional ion beam irradiation apparatus. [Description of Signs] 2 Ion source 4 Plasma generator 10 Ion beam 12 Vacuum container 16 Irradiated object 24 Gas source 26 Ion source gas 32, 34 Metal pipe 40 Double insulating pipe 42 Inner insulating pipe 44 Outer insulating pipe 64 Vacuum exhaust apparatus
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C23C 16/00 - 16/56 H01J 37/00 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 14/00-14/58 C23C 16/00-16/56 H01J 37/00
Claims (1)
生成部にイオン源ガスを導入し、このイオン源から引き
出したイオンビームを、第1の真空排気装置によって真
空排気される真空容器内で被照射物に照射する構成のイ
オンビーム照射装置において、 大地電位部に設けられていて前記イオン源ガスを供給す
るガス源と、 内側絶縁管およびそれを囲む外側絶縁管を有する二重絶
縁管と、 この二重絶縁管の内側絶縁管の一端側を遠隔操作式の操
作弁を介して前記ガス源に接続し他端側を前記イオン源
のプラズマ生成部に接続する金属配管と、 大地電位部に設けられていて前記二重絶縁管の内側絶縁
管と外側絶縁管との間を真空排気するものであって前記
第1の真空排気装置とは別の第2の真空排気装置と、 前記二重絶縁管の内側絶縁管と外側絶縁管との間の真空
度を計測する真空計と、 この真空計で計測した真空度に基づいて当該真空度が所
定値よりも悪化したときに前記操作弁を閉じる制御を行
う制御装置と を備えることを特徴とするイオンビーム照
射装置。(1) Claims 1. An ion source gas is introduced into a plasma generation unit to which a high voltage of an ion source is applied, and an ion beam extracted from the ion source is supplied to a first evacuation device. True by
An ion beam irradiation apparatus configured to irradiate an object to be irradiated in a vacuum container to be evacuated, comprising: a gas source provided at a ground potential portion for supplying the ion source gas; an inner insulating tube and an outer insulating tube surrounding the same; A double insulated pipe having a pipe, and one end of an inner insulating pipe of the double insulated pipe is remotely operated.
A metal pipe connected to the gas source via a valve operation and the other end connected to a plasma generation unit of the ion source; an inner insulating pipe and an outer insulating pipe of the double insulating pipe provided in a ground potential part; the be those for evacuating the space between the
A further second vacuum exhaust system and the first vacuum exhaust system, the vacuum between the inner insulating tube and the outer insulating tube of the double insulation tube
A vacuum gauge for measuring the degree, the degree of vacuum Tokoro based on the degree of vacuum measured by the vacuum gauge
Control to close the operation valve when it becomes worse than the fixed value
Cormorant controller and the ion beam irradiation apparatus comprising: a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34208297A JP3533916B2 (en) | 1997-11-26 | 1997-11-26 | Ion beam irradiation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34208297A JP3533916B2 (en) | 1997-11-26 | 1997-11-26 | Ion beam irradiation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11158627A JPH11158627A (en) | 1999-06-15 |
JP3533916B2 true JP3533916B2 (en) | 2004-06-07 |
Family
ID=18351025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34208297A Expired - Lifetime JP3533916B2 (en) | 1997-11-26 | 1997-11-26 | Ion beam irradiation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3533916B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6515290B1 (en) * | 2000-09-05 | 2003-02-04 | Axcelis Technologies, Inc. | Bulk gas delivery system for ion implanters |
KR100735668B1 (en) | 2004-12-06 | 2007-07-06 | 성균관대학교산학협력단 | Improved ion beam source and ion beam extracting method |
JP4695911B2 (en) | 2005-03-31 | 2011-06-08 | 株式会社Sen | Insulating piping member, gas supply device, and ion beam device |
JP4269342B2 (en) * | 2006-03-30 | 2009-05-27 | 株式会社Ihi | Ion implanter |
DE102007030106A1 (en) * | 2007-06-28 | 2009-01-02 | Intega Gmbh | Method and apparatus for treating a semiconductor substrate |
EP2341525B1 (en) * | 2009-12-30 | 2013-10-23 | FEI Company | Plasma source for charged particle beam system |
US9212785B2 (en) * | 2012-10-11 | 2015-12-15 | Varian Semiconductor Equipment Associates, Inc. | Passive isolation assembly and gas transport system |
CN105556641A (en) * | 2013-07-23 | 2016-05-04 | 恩特格里斯公司 | Remote delivery of chemical reagents |
TWI693656B (en) * | 2019-04-25 | 2020-05-11 | 晨碩國際有限公司 | Gas supply system for an ion implanter |
JP6801763B1 (en) * | 2019-10-23 | 2020-12-16 | 株式会社三井E&Sマシナリー | Electrical insulation equipment for gas supply and plasma processing equipment |
TWI729801B (en) * | 2020-05-08 | 2021-06-01 | 晨碩國際有限公司 | Gas transmission adapting device of remote doping gas supply system |
-
1997
- 1997-11-26 JP JP34208297A patent/JP3533916B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11158627A (en) | 1999-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3533916B2 (en) | Ion beam irradiation equipment | |
KR100263405B1 (en) | Treatment apparatus control method | |
EP1316104B1 (en) | Bulk gas delivery system for ion implanters | |
US20080220596A1 (en) | Delivery of Low Pressure Dopant Gas to a High Voltage Ion Source | |
US20090255324A1 (en) | Sealing structure of plasma processing apparatus, sealing method, and plasma processing apparatus including the sealing structure | |
JP5096893B2 (en) | Microwave ion source equipment | |
JPH10275695A (en) | Gas supplying method to plasma device, plasma processing device, and ion beam device | |
JP3518320B2 (en) | Ion source and filament replacement method | |
JP3405161B2 (en) | Ion beam irradiation equipment | |
JPH10269930A (en) | Field emission type cold cathode, and manufacture of loading device for the cold cathode | |
CN114018493B (en) | Leak detection method | |
JP4269342B2 (en) | Ion implanter | |
JP2008270493A (en) | Plasma treatment equipment | |
TWI785406B (en) | Ion implanter toxic gas delivery system and delivering methods thereof | |
JP3596757B2 (en) | Decompression method of vacuum chamber | |
JP3807057B2 (en) | Ion source gas supply method and apparatus | |
JP2008115445A (en) | Target holder, film deposition system, and film deposition method | |
JP6801763B1 (en) | Electrical insulation equipment for gas supply and plasma processing equipment | |
JP2007324095A (en) | Plasma treatment device, and its treatment method | |
US12112922B2 (en) | Plasma treatment apparatus | |
JPH10199471A (en) | Exhaust pipe stain detecting device | |
JPH05325872A (en) | Ion implanter | |
JP3112675B1 (en) | Gas immobilization treatment equipment | |
JP2004119595A (en) | Method and apparatus for reducing pressure in vacuum chamber | |
JP2004239770A (en) | Piping structure for attaching ionization vacuum gage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040301 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090319 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100319 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110319 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110319 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |