JP2004239453A - 超臨界冷媒を用いたヒートポンプサイクル - Google Patents

超臨界冷媒を用いたヒートポンプサイクル Download PDF

Info

Publication number
JP2004239453A
JP2004239453A JP2003026041A JP2003026041A JP2004239453A JP 2004239453 A JP2004239453 A JP 2004239453A JP 2003026041 A JP2003026041 A JP 2003026041A JP 2003026041 A JP2003026041 A JP 2003026041A JP 2004239453 A JP2004239453 A JP 2004239453A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
radiator
heat pump
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003026041A
Other languages
English (en)
Inventor
Yasuhito Ogawara
靖仁 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2003026041A priority Critical patent/JP2004239453A/ja
Publication of JP2004239453A publication Critical patent/JP2004239453A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】低外気温時に室外放熱器に熱量を与えることにより、高圧側の仕事エンタルピを増加させてサイクル成績係数を向上するようにした超臨界冷媒を用いたヒートポンプサイクルを提供する。
【解決手段】コンプレッサー2で加圧した超臨界冷媒を室内放熱器3に供給して熱交換した後、この室内放熱器3を通過した超臨界冷媒を外気冷却式の室外熱交換器4で冷却して前記コンプレッサー2に戻す際に、室外熱交換器4に取り込む冷却用外気の上流側に加熱源10を配置することにより、室外熱交換器4は前面温度が上昇して蒸発圧力が上昇し、これによって出口側の超臨界冷媒の比体積が減少してコンプレッサー2の吸入側の超臨界冷媒の密度が増加するため、低外気温時にコンプレッサー仕事エンタルピ差が小さくなってサイクル成績係数を向上することができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、超臨界冷媒を用いて暖・冷房を行うヒートポンプサイクルに関する。
【0002】
【従来の技術】
炭酸ガス等の超臨界冷媒を用いたヒートポンプサイクルでは、これを車両用の空調装置に用いた場合、外気汲み上げ式の暖房サイクル(ヒートポンプ)運転をした場合に、特に低外気温状態では室外熱交換器内の蒸発温度は外気よりも下がるため出口冷媒密度が小さくなり、冷媒循環量を十分に得ることが難しくなり、ひいては、放熱性能の不足が生じることになる。
【0003】
このため、室外熱交換器を大型化してその性能を向上させたり、コンプレッサーを大型化してその吐出容量を増大する必要があった。
【0004】
また、車両室温の上昇または水温の上昇等によって放熱器の負荷が下がると、高圧側冷媒の放熱エンタルピが減少するため、室外熱交換器で仕事可能なエンタルピ差が減少し、ひいては、ヒートポンプの成績係数が減少してしまう。
【0005】
そこで、これらの不具合を解消するために、圧縮機から吐出した高圧冷媒を導入して暖房サイクルの熱源とする室内放熱器と、この室内放熱器を通過した高圧冷媒を導入して余剰熱量を外気放熱する室外放熱器とを設けるようになったものがある(例えば、特許文献1参照。)。
【0006】
この場合、室内放熱器で放熱できる熱量と、室外放熱器で放熱できる熱量との和となるので、ヒートポンプから取り出すことができる熱量(エンタルピ)が減少してヒートポンプの成績係数(COP)が悪化するのを抑制できる。
【0007】
【特許文献1】
特開2002−98430号公報(第2頁、第1図)
【0008】
【発明が解決しようとする課題】
しかしながら、かかる従来のヒートポンプサイクルでは、低外気温時は室外放熱器出口の冷媒密度が従来のヒートポンプサイクルと同様に低下するので、外気が下がるほどに冷媒の循環流量が低下して暖房性能も低下してしまい、更には、低密度の冷媒をコンプレッサーが吸入すると、モリエル線図の等エントロピ線図からも明らかなようにコンプレッサーの仕事エンタルピが増加し、サイクル成績係数が悪化してしまう。
【0009】
そこで、本発明はかかる従来の課題に鑑みて、低外気温時に室外放熱器に熱量を与えることにより、高圧側の仕事エンタルピを増加させてサイクル成績係数を向上するようにした超臨界冷媒を用いたヒートポンプサイクルを提供することを目的とする。
【0010】
【課題を解決するための手段】
かかる目的を達成するために本発明の超臨界冷媒を用いたヒートポンプサイクルにあっては、コンプレッサーで加圧した超臨界冷媒を室内放熱器に供給して熱交換した後、この室内放熱器を通過した超臨界冷媒を外気冷却式の室外熱交換器で冷却して前記コンプレッサーに戻すようにした超臨界冷媒を用いたヒートポンプサイクルにおいて、前記室外熱交換器に取り込む冷却用外気の上流側に加熱源を配置したことを特徴としている。
【0011】
【発明の効果】
かかる構成になる本発明によれば、室外熱交換器に取り込む冷却用外気の上流側に加熱源を配置したことにより、室外熱交換器の前面温度が上昇するため、室外熱交換器の蒸発温度、つまり蒸発圧力が上昇することになり、室外熱交換器の出口側の超臨界冷媒の比体積が減少し、ひいてはコンプレッサーの吸入側の超臨界冷媒の密度が増加することになる。
【0012】
このように、吸入冷媒密度が増加すると、システムの循環流量が増加して暖房性能が向上するとともに、吸入比体積が小さくなる程にモリエル線図上の等エントロピ線が垂直に近くなるので、低外気温時にコンプレッサー仕事エンタルピ差が小さくなってサイクル成績係数を向上することができ、また、室外熱交換器を小型化することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0014】
(第1実施形態)
図1〜図2は本発明にかかる超臨界冷媒を用いたヒートポンプサイクルの第1実施形態を示し、図1は空気放熱式の室内放熱器を備えたヒートポンプサイクルの模式図、図2は(a)に本実施形態のヒートポンプ暖房時モリエル線図と(b)に従来のヒートポンプ暖房時モリエル線図とをそれぞれ示す説明図である。
【0015】
この実施形態のヒートポンプサイクル1は、超臨界流体、つまり、気液臨界温度・圧力以上に保持された流体を冷媒として用い、この超臨界冷媒として例えば炭酸ガス(CO)を用いるようになっている。
【0016】
即ち、前記ヒートポンプサイクル1は、図1に示すようにコンプレッサー2で加圧した超臨界冷媒を、通路P1を介して室内放熱器3に供給するとともに、この室内放熱器3を通過した後の超臨界冷媒を、通路P2を介して室外熱交換器としての吸熱器4に導入するようになっている。
【0017】
このとき、前記吸熱器4は、これの上流側に第1膨張弁5を設けて構成し、第1膨張弁5で断熱膨張させた超臨界冷媒を吸熱器4で気液混合状態とすることにより冷却し、また、吸熱器4の前面4a側の前方(図中上方)にファン6を設けて、このファン6によって送給される冷却用外気としての空気流Airを吸熱器4の放熱フィン間に通過させて外気との間で熱交換するようになっている。従って、低外気温時には前記吸熱器4が過冷却状態となり、これが課題の原因となっている。
【0018】
そして、吸熱器4を通過した超臨界冷媒は通路P3を介してアキュムレータ7に送られて超臨界冷媒を気液分離し、分離した気相冷媒を前記コンプレッサー2に供給するようになっている。
【0019】
前記室内放熱器3は空気放熱式であり、この室内放熱器3を空調装置を構成する空調ダクト8内の空調ファン9の送風下流側に設置して、空調風との間で熱交換するようになっている。
【0020】
ここで、本実施形態では前記室内放熱器3と前記吸熱器4との間の通路P2に、室内放熱器3で放熱しきれなかった余剰熱量を外方に放熱する室外放熱器10を設け、この室外放熱器10を加熱源として前記吸熱器4に取り込む冷却用の空気流Airの上流側で、この吸熱器4の前面4aに対向させて配置ある。
【0021】
以上の構成によりこの第1実施形態のヒートポンプサイクル1にあっては、室内放熱器3と吸熱器4との間に室外放熱器10を設けたことにより、この室外放熱器10によって室内放熱器3が放熱しきれなかった熱量を効率良く放熱できるため、高圧側、つまり第1膨張弁5よりも上流側の仕事エンタルピが増加し、このことは図2(a)に示すように吸熱器4の吸熱エンタルピの増加として置き換えることができ、これにより吸熱器4の仕事エンタルピΔievapも増加してサイクル成績係数が向上する。
【0022】
そして、本実施形態では室外放熱器10を吸熱器4の前面4aに対向させて配置したことにより、室外放熱器10で放熱した熱量を空気流Airを介して吸熱器4の前面4aに作用させることができるため、低外気温時に吸熱器4の前面4a温度が上昇して吸熱器4の蒸発圧力Peは、図2(a)に示すように、従来の室外放熱器10を設けていない図2(b)の場合に比較して上昇(上昇分ΔPe)する。
【0023】
このように蒸発圧力Peが上昇すると、吸熱器4の出口における超臨界冷媒の比体積が減少してコンプレッサー2の吸入冷媒密度が増加するため、結果的に暖房サイクル4の循環流量が増加して暖房性能を向上することができる。
【0024】
また、このようにコンプレッサー2の吸入冷媒の比体積が小さくなる程、図2(a)に示すモリエル線図上の等エントロピ線が垂直に近くなるので、コンプレッサー2の仕事エンタルピ差が小さくなってサイクル成績係数が向上する。
【0025】
更に、室外放熱器10で放熱した熱量を吸熱器4の前面4aに作用させたことにより、吸熱器4に導入する空気流Airの見かけ上の外気温度が上昇することになり、この吸熱器4を従来のものに比較して小型化することができる。
【0026】
ところで、この実施形態では空気流Airに対して吸熱器4の上流側に外部放熱器10を配置した場合を示したことにより、全体のヒートポンプサイクル1のコンパクト化を達成することができるが、吸熱器4の上流側に配置する加熱源としては外部放熱器10に限ることなく、例えばヒータ等の加熱手段を用いることができる。
【0027】
また、吸熱器4と外部放熱器10とを分離して別体として設けたが、それぞれの冷媒チューブを別経路にして熱交換フィンを一体に構成するようにして、吸熱器4の前面4a側に外部放熱器10を一体に結合してもよく、これによって外部放熱器10から吸熱器4への熱伝達効率を増大することができる。
【0028】
(第2実施形態)
図3は本発明の第2実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。
【0029】
図3は水・冷媒熱交換式の室内放熱器を備えたヒートポンプサイクルの模式図で、この第2実施形態のヒートポンプサイクル1aでは室内放熱器としての水・冷媒熱交換器21を設けて、これを通過する超臨界冷媒と、空調装置の暖房熱源となる熱伝達媒体として水を用いた水循環サイクル20と、の間で熱交換するようになっている。
【0030】
水循環サイクル20は、ポンプ22から吐出した水は空調ダクト8内に配置したヒータコア23に導入した後、エンジン(または燃料電池のFCスタック)の冷却通路24を経由して前記水・冷媒熱交換器21に供給され、その後前記ポンプ22に吸入されるようになっており、水・冷媒熱交換器21では、ヒートポンプサイクル1aのコンプレッサー2で加圧した超臨界冷媒と水循環サイクル20を循環する水との間で熱交換して、この水を加熱するようになっている。
【0031】
勿論、この第2実施形態にあってもヒートポンプサイクル1aの吸熱器4の前面4a側に室外放熱器10を配置してあり、前記第1実施形態と同様の作用・効果を奏することができる。
【0032】
更に、この第2実施形態の水循環サイクル20では閉ループであるため、時間経過に伴って水循環サイクル20の水温度が上昇することになり、暖房時に水・冷媒熱交換器21の高圧側と低圧側の冷媒温度差が小さくなるので、コンプレッサー2での吸入冷媒の加熱度が減少することになり、コンプレッサー2の破損防止、更には吸入冷媒密度の上昇による冷媒循環量の増加を達成して、暖房性能を向上することができる。
【0033】
(第3実施形態)
図4は本発明の第3実施形態を示し、前記第1,第2実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。
【0034】
図4は冷房サイクルを組み込んだヒートポンプサイクルの模式図で、この第3実施形態のヒートポンプサイクル1bでは、前記第2実施形態と同様に室内放熱器3を水・冷媒熱交換器21として、コンプレッサー2で加圧した超臨界冷媒によって水循環サイクル20を循環する水を加熱し、ヒータコア23によって空調風と熱交換するようになっている。
【0035】
尚、図4では水・冷媒熱交換器21とヒータコア23とを便宜上分離して示したが、実際には水・冷媒熱交換器21の通路破断箇所A′,B′は、ヒータコア23のそれぞれ同符号で対応する通路破断箇所A,Bに繋がるようになっている。
【0036】
水・冷媒熱交換器21の下流側に、この水・冷媒熱交換器21を通過した超臨界冷媒を第1〜第3ポート25a,25b,25cに選択切換えする切換弁25を設け、この切換弁25の第1ポート25aは第1逆止弁26を通過した後に通路P4,P5に分配されて、一方の通路P4は室外放熱器10に通ずるとともに、他方の通路P5は第2膨張弁31および空調ダクト8内に配置したエバポレータ32を備えた冷房サイクル30に導入される。
【0037】
そして、前記室外放熱器10を通過した超臨界冷媒は、第1膨張弁5を介して吸熱器4に導入された後に切換弁25の第3ポート25cに導入されるとともに、この第1膨張弁5に設けたバイパス通路P6に室外放熱器10から吸熱器4方向への通過を遮断する第2逆止弁27を設けてある。
【0038】
切換弁25の第2ポート25bは第3逆止弁28を設けたヒートポンプ回収ラインP7に通じ、この回収ラインP7は前記エバポレータ32を通過した超臨界冷媒と合流した後、アキュムレータ7を経由してコンプレッサー2に吸引される。
【0039】
このとき、第2膨張弁31の上流側とアキュムレータ7の下流側との間に、双方の間で熱交換させる内部熱交換器29を設けてある。
【0040】
従って、この第3実施形態のヒートポンプサイクル1bにあっては、第1実施形態と同様に吸熱器4の前面4a側に室外放熱器10を配置してあり、同様の作用・効果を奏することができる。
【0041】
また、第2実施形態と同様に水・冷媒熱交換器21によってヒータコア23を加熱して空調暖房を行うとともに、冷房サイクル30によって空調冷房を行い、かつ、両者によって除湿暖房を行うようになっている。
【0042】
勿論、ヒータコア23には空調風の経路を切換える図外の切換ドアを設けて、この切換ドアの切換えにより暖房時および除湿時にはヒータコア23に空調風を通すとともに、冷房時にはヒータコア23を迂回させて空調風を通過させるようになっている。
【0043】
また、この第3実施形態では、ヒートポンプサイクル1bの除湿暖房運転時に、室外のファン6の速度をコントロールすることにより、高圧側の水・冷媒熱交換器21に導入される冷媒温度をコントロールできるので、この水・冷媒熱交換器21の熱交換性能、ひいては、コンプレッサー2の吸入冷媒の加熱度をコントロールできるようになり、システムの性能向上およびコンプレッサー2の破損を防止することができる。
【0044】
(第4実施形態)
図5は本発明の第4実施形態を示し、前記第3実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。
【0045】
図5は冷房サイクルを組み込んだヒートポンプサイクルの模式図で、この第4実施形態のヒートポンプサイクル1cでは、切換弁25の第1ポート25aから第1逆止弁26を通過した超臨界冷媒は、通路P8を介して専ら室外放熱器10に供給するようになっている。
【0046】
そして、室外放熱器10を通過した超臨界冷媒を、第1膨張弁5を介して吸熱器4に供給する一方、通路P9を介して冷房サイクル30に供給するようにしてある。
【0047】
従って、この第4実施形態のヒートポンプサイクル1cにあっても、第3実施形態と同様にヒータコア23と冷凍サイクル30とによって、暖房、冷房および除湿暖房が可能となっており、前記第3実施形態と同様の作用・効果を奏することができる。
【0048】
(第5実施形態)
図6は本発明の第5実施形態を示し、前記第3実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。
【0049】
図6は冷房サイクルおよびガスクーラを組み込んだヒートポンプサイクルの模式図で、この第5実施形態のヒートポンプサイクル1dでは、前記第3実施形態のヒートポンプサイクル1bに対して、水・冷媒熱交換器21のバイパス通路P10設けて、このバイパス通路P10に室内放熱器としてのサブガスクーラ36を設けるとともに、バイパス通路P10には切換弁33を設けてある。
【0050】
サブガスクーラ36は空調ダクト8内に収納して、空調風との間で熱交換することにより暖房の熱源として用いてあり、勿論、このサブガスクーラ36にあっても切換ドア32aを設けて、暖・冷房時の空調風の通過経路を切換えるようになっている。
【0051】
また、水・冷媒熱交換器21と第1逆止弁26との間には電磁弁34を設けるとともに、吸熱器4を通過した超臨界冷媒は三方弁35を介してヒートポンプ回収ラインP7または図中破線で示すように水・冷媒熱交換器21の下流側に供給するようになっている。
【0052】
尚、この実施形態では図示省略したが、第2実施形態と同様に水・冷媒熱交換器21に水循環サイクル20を設けてある。
【0053】
従って、この第5実施形態のヒートポンプサイクル1dにあっても、第3実施形態と同様に暖房、冷房および除湿暖房が可能であり、特に、切換弁33の切換えによりコンプレッサー2で加圧した超臨界冷媒をサブガスクーラ36に送給して、空調風を直接に暖房することができる。
【0054】
勿論、この実施形態にあっても吸熱器4の前面4a側に室外放熱器10を配置してあり、前記第1実施形態と同様の作用・効果を奏することができる。
【0055】
(第6実施形態)
図7は本発明の第6実施形態を示し、前記第4,第5実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。
【0056】
図7は冷房サイクルおよびガスクーラを組み込んだヒートポンプサイクルの模式図で、この第6実施形態のヒートポンプサイクル1eでは、前記第4実施形態のヒートポンプサイクル1cに対して、第5実施形態に示したように水・冷媒熱交換器21のバイパス通路P10および切換弁33を設けて、このバイパス通路P10にサブガスクーラ36を設けるとともに、このサブガスクーラ36を空調ダクト8内に収納して空調暖房を行うようになっている。
【0057】
また、第5実施形態と同様に水・冷媒熱交換器21と第1逆止弁26との間に電磁弁34を設けるとともに、吸熱器4を通過した超臨界冷媒は三方弁35を介してヒートポンプ回収ラインP7または図中破線で示すように水・冷媒熱交換器21の下流側に供給するようになっている。
【0058】
従って、この第5実施形態のヒートポンプサイクル1eにあっても、吸熱器4の前面4a側に室外放熱器10を配置してあり、前記第1実施形態と同様の作用・効果を奏することができるとともに、第4実施形態と同様に暖房、冷房および除湿暖房が可能であり、また、第5実施形態と同様に切換弁33の切換えによりコンプレッサー2で加圧した超臨界冷媒をサブガスクーラ36に送給して、空調風を直接に暖房することができる。
【0059】
ところで、本発明の超臨界冷媒を用いたヒートポンプサイクルは前記第1〜第6実施形態に例をとって説明したが、これら実施形態に限ることなく本発明の要旨を逸脱しない範囲で他の実施形態を各種採ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す空気放熱式の室内放熱器を備えたヒートポンプサイクルの模式図。
【図2】本発明の第1実施形態のヒートポンプ暖房時モリエル線図を(a)に、従来のヒートポンプ暖房時モリエル線図を(b)にそれぞれ示す説明図である。
【図3】本発明の第2実施形態を示す水・冷媒熱交換式の室内放熱器を備えたヒートポンプサイクルの模式図。
【図4】本発明の第3実施形態を示す冷房サイクルを組み込んだヒートポンプサイクルの模式図。
【図5】本発明の第4実施形態を示す冷房サイクルを組み込んだヒートポンプサイクルの模式図。
【図6】本発明の第5実施形態を示す冷房サイクルおよびガスクーラを組み込んだヒートポンプサイクルの模式図。
【図7】本発明の第6実施形態を示す冷房サイクルおよびガスクーラを組み込んだヒートポンプサイクルの模式図。
【符号の説明】
1,1a,1b,1c,1d,1e ヒートポンプサイクル
2 コンプレッサー
3 室内放熱器
4 吸熱器(室外熱交換器)
10 室外放熱器
20 水循環サイクル
21 水・冷媒熱交換器(室内放熱器)
30 冷房サイクル
32 サブガスクーラ(室内放熱器)
33 切換弁
P10 バイパス通路

Claims (5)

  1. コンプレッサー(2)で加圧した超臨界冷媒を室内放熱器(3,21,33)に供給して熱交換した後、この室内放熱器(3,21,33)を通過した超臨界冷媒を外気冷却式の室外熱交換器(4)で冷却して前記コンプレッサー(2)に戻すようにした超臨界冷媒を用いたヒートポンプサイクル(1,1a,1b,1c,1d,1e)において、
    前記室外熱交換器(4)に取り込む冷却用外気の上流側に加熱源(10)を配置したことを特徴とする超臨界冷媒を用いたヒートポンプサイクル。
  2. 加熱源は、室内放熱器(3,21,33)を通過した後の超臨界冷媒を導入して、この室内放熱器(3,21,33)で放熱しきれなかった余剰熱量を外方に放熱する室外放熱器(10)であることを特徴とする請求項1に記載の超臨界冷媒を用いたヒートポンプサイクル。
  3. 室内放熱器は、これを通過する超臨界冷媒と、空調装置の暖房熱源となる熱伝達媒体として水を用いた水循環サイクル(20)と、の間で熱交換する水・冷媒熱交換器(21)であることを特徴とする請求項1または2に記載の超臨界冷媒を用いたヒートポンプサイクル。
  4. 室内放熱器(21)に導入した超臨界冷媒は空調装置の暖房熱源として熱交換するとともに、この室内放熱器(21)を通過した超臨界冷媒を前記室外熱交換器(4)に供給する一方、膨張弁(31)およびエバポレータ(32)を備えた空調装置の冷房サイクル(30)に供給することを特徴とする請求項1〜3のいずれかに記載の超臨界冷媒を用いたヒートポンプサイクル。
  5. 室内放熱器(21)をバイパスしてガスクーラ(32)を設け、そのバイパス通路(P10)に切換弁(33)を設けたことを特徴とする請求項1〜4のいずれかに記載の超臨界冷媒を用いたヒートポンプサイクル。
JP2003026041A 2003-02-03 2003-02-03 超臨界冷媒を用いたヒートポンプサイクル Pending JP2004239453A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026041A JP2004239453A (ja) 2003-02-03 2003-02-03 超臨界冷媒を用いたヒートポンプサイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026041A JP2004239453A (ja) 2003-02-03 2003-02-03 超臨界冷媒を用いたヒートポンプサイクル

Publications (1)

Publication Number Publication Date
JP2004239453A true JP2004239453A (ja) 2004-08-26

Family

ID=32954167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026041A Pending JP2004239453A (ja) 2003-02-03 2003-02-03 超臨界冷媒を用いたヒートポンプサイクル

Country Status (1)

Country Link
JP (1) JP2004239453A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324935A (ja) * 2003-04-22 2004-11-18 Denso Corp 冷凍サイクルおよび熱交換器
WO2006112540A1 (en) * 2005-04-20 2006-10-26 Showa Denko K.K. Heat exchanger
US7461517B2 (en) 2005-02-28 2008-12-09 Sanyo Electric Co., Ltd. Refrigerant cycle unit
CN105805971A (zh) * 2016-03-25 2016-07-27 海信(山东)空调有限公司 除湿机、除湿机控制器和除湿方法
CN110539609A (zh) * 2018-05-29 2019-12-06 通用汽车环球科技运作有限责任公司 响应于二氧化碳估算控制车辆通风的方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324935A (ja) * 2003-04-22 2004-11-18 Denso Corp 冷凍サイクルおよび熱交換器
US7461517B2 (en) 2005-02-28 2008-12-09 Sanyo Electric Co., Ltd. Refrigerant cycle unit
WO2006112540A1 (en) * 2005-04-20 2006-10-26 Showa Denko K.K. Heat exchanger
CN105805971A (zh) * 2016-03-25 2016-07-27 海信(山东)空调有限公司 除湿机、除湿机控制器和除湿方法
CN110539609A (zh) * 2018-05-29 2019-12-06 通用汽车环球科技运作有限责任公司 响应于二氧化碳估算控制车辆通风的方法和装置

Similar Documents

Publication Publication Date Title
US11458798B2 (en) Thermal management system for vehicle
JP4505510B2 (ja) 車両用空調システム
US20080302113A1 (en) Refrigeration system having heat pump and multiple modes of operation
JP5775661B2 (ja) 自動車用加熱、換気、および/または空調装置
US20090193830A1 (en) Air conditioning system for vehicle
JP2003097857A (ja) 冷房サイクル
JPWO2016059791A1 (ja) 車両用空調装置
JP7349246B2 (ja) 車両用空気調和装置
KR20180112681A (ko) 자동차 공기 조화 시스템의 냉각제 분배 장치
JP4182494B2 (ja) 大温度差空調システム
JP2010012949A (ja) 車両用空気調和システム
US10612798B2 (en) Air conditioning and heat pump tower with energy efficient arrangement
JP4023320B2 (ja) 空調装置用加熱器
JP2009192155A (ja) 車両用空気調和システム
JP2004239453A (ja) 超臨界冷媒を用いたヒートポンプサイクル
JP6537928B2 (ja) 熱交換器及びヒートポンプシステム
WO2017163563A1 (ja) 熱交換ユニットおよび車両用空調装置
JP2019515238A (ja) エネルギ効率が良いセントラル空調及びヒートポンプシステム
JP3275415B2 (ja) 車両用空気調和装置
CN111845244B (zh) 热综合管理系统
KR100613502B1 (ko) 히트 펌프식 공기조화기
JP7361178B1 (ja) 車両用温調システム
JP7097345B2 (ja) 車両用空調装置
CN216139775U (zh) 电动车及其热泵系统
JP3908830B2 (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050531

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325