JP2004239202A - 近似直線機構を有する可変圧縮比内燃機関 - Google Patents

近似直線機構を有する可変圧縮比内燃機関 Download PDF

Info

Publication number
JP2004239202A
JP2004239202A JP2003030621A JP2003030621A JP2004239202A JP 2004239202 A JP2004239202 A JP 2004239202A JP 2003030621 A JP2003030621 A JP 2003030621A JP 2003030621 A JP2003030621 A JP 2003030621A JP 2004239202 A JP2004239202 A JP 2004239202A
Authority
JP
Japan
Prior art keywords
piston
engagement
internal combustion
combustion engine
eccentric bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003030621A
Other languages
English (en)
Inventor
Hiroshi Yaguchi
寛 矢口
Daisaku Sawada
大作 澤田
Hiroaki Nihei
裕昭 仁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003030621A priority Critical patent/JP2004239202A/ja
Publication of JP2004239202A publication Critical patent/JP2004239202A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】圧縮比変更のために変位する部材の動きを制御する確実性を向上させる技術を提供する。
【解決手段】ピストン20とコネクティングロッド30との連結部にあるピストンピン60には、シリンダの軸方向中心線に沿って連結部を直線運動させるための近似直線機構50が連結されている。ピストンピン60には偏心ベアリング70が併設されており、偏心ベアリング70の偏心位置を調整することで圧縮比が変更される。偏心ベアリング70の偏心位置は、偏心ベアリング70がピストン20に固定される第1の状態と、偏心ベアリング70がコネクティングロッド30に固定される第2の状態とを切り替えることによって変更される。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
この発明は、圧縮比を変更可能な内燃機関に関する。
【0002】
【従来の技術】
従来から、圧縮比を変更可能な内燃機関として、種々のものが提案されている。例えば、特許文献1では、ピストンを支持するピストンピンとコンロッドの間に、ピストンストロークを変更するための偏心スリーブが嵌挿されており、偏心スリーブとコンロッドとの位置関係を変更し、両者をロックピンを用いて固定することによって、圧縮比の変更が行なわれる。
【0003】
【特許文献1】
実開昭63−86351号公報
【特許文献2】
実開平3−13438号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の内燃機関では、圧縮比を変更するために偏心スリーブとコンロッドとの位置関係を変更する動作を、充分に正確に制御することが困難であるという問題があった。すなわち、内燃機関の動作に伴い各部材が速いスピードで動く際に、部材間の係合位置を所望の状態に変更する動作を安定して制御することは困難であった。
【0005】
本発明は、上述した従来の課題を解決するためになされたものであり、圧縮比変更のために変位する部材の動きを制御する確実性を向上させる技術を提供することを目的とする。
【0006】
【課題を解決するための手段およびその作用・効果】
上記目的を達成するために、本発明の内燃機関は、
シリンダと、
前記シリンダ内を往復運動するピストンと、
駆動軸を中心に回転するクランクシャフトと、
前記ピストンと前記クランクシャフトとを連結するコネクティングロッドと、前記ピストンと前記コネクティングロッドとの連結部に連結され、前記ピストンの動きに伴って揺動する揺動部材を備え、前記連結部が前記シリンダの軸方向中心線に沿って近似直線運動するように前記連結部の動きを規制する近似直線機構と、
前記連結部に設けられた偏心ベアリングであって、偏心位置の変更に伴って前記シリンダと前記ピストンのストロークとの相対的な位置関係を変更して圧縮比を変更する偏心ベアリングと、
前記偏心ベアリングが前記ピストンに固定された第1の状態と、前記偏心ベアリングが前記コネクティングロッドまたは前記揺動部材のいずれかに固定された第2の状態と、を切り替えることで、前記偏心ベアリングの偏心位置を変更する調節部と
を備えることを要旨とする。
【0007】
このような内燃機関によれば、近似直線運動を行なう連結部に偏心ベアリングを設けているため、回転運動を行なう部分に設けられている場合に比べて、偏心ベアリングの偏心位置を変更する動作を制御する確実性を向上させることができる。すなわち、圧縮比変更のために変位する部材の動きを制御する確実性を向上させることができる。
【0008】
本発明の内燃機関において、
前記調節部は、
前記第1の状態と第2の状態との切り替えに利用するための油圧機構と、
前記油圧機構に接続された油圧経路と
を有し、
前記油圧経路は、前記コネクティングロッドを通ることなく前記近似直線機構を通るように構成されていることが好ましい。
【0009】
近似直線機構は、一般に、コネクティングロッドに比べて加速度変動が小さい。そのため、近似直線機構に油圧経路を設けるようにすれば、油圧をより安定的に制御し、偏心ベアリングの偏心位置を変更するための動作を制御する確実性をより向上させることができる。
【0010】
このような内燃機関において、
前記調節部は、
前記偏心ベアリングを前記ピストンに固定するための第1の係合機構と、前記偏心ベアリングを前記コネクティングロッドまたは前記揺動部材に固定するための第2の係合機構と、を備え、
前記油圧機構において印可される油圧を変更することによって、前記第1の係合機構が働いて前記偏心ベアリングを前記ピストンに固定する前記第1の状態と、前記第2の係合機構が働いて前記偏心ベアリングを前記コネクティングロッドまたは前記揺動部材に固定する前記第2の状態と、を切り替えることが好ましい。
【0011】
このような構成とすれば、油圧の印加状態の変更という簡単な動作によって第1の状態と第2の状態とを切り替え、偏心ベアリングの偏心位置を変更することができる。
【0012】
このような内燃機関において、
前記第1の係合機構は、前記ピストンに固定された第1の係合ピンと、前記偏心ベアリングに設けられて前記第1の係合ピンと係合可能に形成された複数の第1の係合受け部と、を備え、
前記第2の係合機構は、前記偏心ベアリングを固定するための前記コネクティングロッドまたは前記揺動部材に固定された第2の係合ピンと、前記偏心ベアリングに設けられて前記第2の係合ピンと係合可能に形成された複数の第2の係合受け部と、を備え、
前記第1の係合ピンと前記第1の係合受け部との係合状態、あるいは、前記第2の係合ピンと前記第2の係合受け部との係合状態のうち、一方が解除されるときには、他方が係合する状態となることが好ましい。
【0013】
このような構成とすれば、油圧の印加状態を変更して係合ピンの係合状態を切り替えるという簡単な動作によって、偏心ベアリングの偏心位置を変更することができる。
【0014】
このような内燃機関において、
前記偏心ベアリングの内周と外周のうちの一方に、前記複数の第1の係合受け部が形成され、他方に前記複数の第2の係合受け部が形成されていることとしても良い。
【0015】
これにより、偏心ベアリングの構成を簡素化することができる。
【0016】
前記複数の第1の係合受け部および前記複数の第2の係合受け部が設けられる間隔は、前記コネクティングロッドが揺動する際の振幅に対応する距離以下であることが好ましい。
【0017】
これにより、偏心ベアリングの偏心位置を変更する動作の確実性を確保することができる。
【0018】
さらに、前記複数の第1の係合受け部および前記複数の第2の係合受け部が設けられる間隔は、前記コネクティングロッドが揺動する際の振幅に対応する距離に等しいこととしても良い。
【0019】
これにより、偏心ベアリングの偏心位置を変更する動作の確実性を、さらに向上させることができる。
【0020】
また、前記複数の第1の係合受け部と前記複数の第2の係合受け部とは、前記偏心ベアリングの内周と外周とのうちの互いに異なる側において、等間隔に設けられていることとしても良い。
【0021】
このような構成によっても、偏心ベアリングの偏心位置を変更する動作の確実性を向上させることができる。
【0022】
また、本発明の内燃機関において、
前記油圧経路はオリフィスを有し、
前記油圧機構は、
前記連結部に設けられて前記ピストンが動くのに伴って回動すると共に、油圧を供給されることで前記第1の係合機構および/または前記第2の係合機構を駆動する油圧印加部と、
前記油圧印加部が回動して所定の位置状態となったときに、前記油圧印加部に供給されている油を排出して前記油圧印加部における油圧を低下させる油圧調節孔と
を有し、
前記油圧印加部が前記所定の位置状態となったときに、前記油圧印加部における油圧を低下させることによって、前記第1の係合機構が働く前記第1の状態と、前記第2の係合機構が働く前記第2の状態と、を切り替えることとしても良い。
【0023】
このような構成とすれば、第1の係合機構が働く状態と第2の係合機構が働く状態とを切り替える際に、油圧印加部に対して油圧を印可する動作を継続していればよい。したがって、油圧の印加状態を細かく制御する必要が無く、油圧を印可し続けるという簡単な構成により、偏心ベアリングの偏心位置を変更する動作を正確に行なうことが可能となる。
【0024】
また、本発明の内燃機関において、
前記第1および第2の係合ピンは、前記油圧機構において印可される油圧によって駆動されると共に、印可された油圧に逆らう方向に係合ピンを付勢する弾性部を備え、
前記内燃機関は、さらに、前記弾性部から油を抜くためのドレイン孔を備えることとしても良い。
【0025】
このような構成とすれば、弾性部からは適宜油抜きがおこなわれるため、油圧機構と弾性体とを用いて第1および第2の係合ピンの係合状態を制御する動作を、良好に継続することができる。
【0026】
前記近似直線機構は、グラスホッパの近似直線機構とすることが好ましい。
【0027】
グラスホッパの近似直線機構は、近似直線上を移動する点が機構の一方の端部近傍に偏っているので、内燃機関のピストン運動を規制するのに特に適しており、また、コンパクトな機構で良好な直線性を得ることが可能である。
【0028】
なお、本発明は、上記以外の種々の形態で実現可能であり、例えば、内燃機関を備える移動体等の態様で実現することが可能である。
【0029】
【発明の実施の形態】
次に、本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A.ピストン・クランク機構の概要:
B.実施例の具体的形状および動作:
C.効果:
D.他の実施例:
E.変形例:
【0030】
A.ピストン・クランク機構の概要:
図1(A),(B)は、従来の内燃機関におけるピストン・クランク機構と本発明の一実施例の内燃機関におけるピストン・クランク機構とを比較して示す説明図である。図1(A)に示すように、従来の機構は、シリンダ110と、ピストン120と、コネクティングロッド130と、クランクシャフト140とを備えている。ピストン120とコネクティングロッド130は、ピストン120の中央部付近においてピストンピン160で互いに連結されている。コネクティングロッド130とクランクシャフト140は、クランクピン162で連結されている。ピストン120が上下に往復運動すると、クランクシャフト140がその軸142(「駆動軸」とも呼ぶ)を中心に回転する。ピストン120の下部にはスカート121が設けられている。このスカート121は、ピストン120の上死点付近において燃料が爆発したときに、ピストン120に掛かる横方向の力(スラスト)を受けるためのものである。
【0031】
図1(B)は、本発明の一実施例としてのピストン・クランク機構の概略構成を示している。この機構は、シリンダ10と、ピストン20と、コネクティングロッド30と、クランクシャフト40とを備えており、さらに、近似直線機構50と偏心ベアリング70も備えている。
【0032】
ピストン20は、略板状のピストンヘッド部22と、ピストンヘッド部22の下方に伸びるピストン支柱部24とを有している。ピストンヘッド部22とピストン支柱部24とは一体として形成されている。ピストン20とコネクティングロッド30は、ピストン支柱部24の下端においてピストンピン60で互いに連結されている。コネクティングロッド30とクランクシャフト40は、クランクピン62で連結されている。ピストン20が上下に往復運動すると、クランクシャフト40がその軸42(「駆動軸」とも呼ぶ)を中心に回転する。なお、後述するように、このピストン20にはスラストがほとんど掛からないので、従来のピストン120に設けられていたスカート121は不要である。
【0033】
ピストンピン60は、ピストン支柱部24の下端に設けられた偏心ベアリング70で保持されている。後で詳述するように、偏心ベアリング70の偏心位置を変更することによって、ピストン20のストロークとシリンダ10との相対関係が変わり、これによって内燃機関の圧縮比が変更される。
【0034】
近似直線機構50は、2つの横方向リンク52,54と、1つの縦方向リンク56とを有している。第1の横方向リンク52は、ピストンピン60の位置においてピストン支柱部24に連結されている。第2の横方向リンク54は、第1の横方向リンク52の中間の所定の位置において第1の横方向リンク52に連結されている。縦方向リンク56は、第1の横方向リンク52のピストンピン60とは反対側の端部において、第1の横方向リンク52と連結されている。
【0035】
図1(A),(B)において、黒丸で表されている連結部(駆動軸42など)は、その軸を中心に回転または回動するが、シリンダ10との相対位置が変化しない連結点(以下「支点」と呼ぶ)である。また、白丸で表されている連結部(ピストンピン60など)は、その軸を中心に回転または回動するとともに、シリンダ10との相対位置が変化する連結点(以下「移動連結点」と呼ぶ)である。ここで、「回転」とは360度以上の範囲で回ることを意味しており、「回動」とは360度未満の範囲で回ることを意味している。
【0036】
なお、本実施例の内燃機関は、通常の内燃機関と同じ種々の構成要素(バルブや吸気管、排気管等)を含んでいるが、図1(A),(B)ではピストン・クランク機構とシリンダ10以外は図示が省略されている。
【0037】
図2(A)〜(C)は、実施例のピストン・クランク機構のリンク構成を示す説明図である。図2(A)は、シリンダ10と、ピストン20と、コネクティングロッド30と、クランクシャフト40のみを示している。また、図2(B)は、近似直線機構50のみを示している。図2(C)は、図1(B)に示した機構と同じものであり、図2(A),(B)の構成を組み合わせたものである。なお、本実施例の近似直線機構50は、グラスホッパの近似直線機構と呼ばれている。
【0038】
図2(A)〜(C)においては、以下のように各種の連結点が表されている。
(1)移動連結点A:ピストンピン60(図1(B))の中心軸。
(2)移動連結点B:第1の横方向リンク52の移動連結点Aと反対側の端部にある連結点。
(3)移動連結点C:コネクティングロッド30の移動連結点Aと反対側の端部にある連結点。
(4)移動連結点M:第1の横方向リンク52の中間点にある連結点。
(5)支点P:クランクシャフト40の中心軸(駆動軸)。
(6)支点Q:第2の横方向リンク54の移動連結点Mと反対側の端部にある連結点。
(7)支点R:縦方向リンク56の移動連結点Bと反対側の端部にある連結点。
【0039】
移動連結点Aはピストンピン60の中心軸であり、ピストン20の往復運動に伴って上下方向Z(図2(B))に沿って移動する。本明細書において、上下方向Zとは、シリンダ10の軸方向中心線(「軸中心」とも呼ぶ)に沿った方向を意味する。移動連結点A,Bは、第1の横方向リンク52の両端の連結点である。移動連結点Bは、縦方向リンク56が支点Rを中心に回動するのに従って、円弧状の軌跡上を移動する。また、この移動連結点Bは、第2の横方向リンク54の支点Qの上下方向位置Xとほぼ同じ上下方向位置を取るように設定されている。
【0040】
なお、仮想的に縦方向リンク56の長さを無限大に設定し、移動連結点Bが、支点Qと同一の上下方向位置X上を直線的に移動するようにすれば、移動連結点Aは上下方向Zに沿って略直線運動を行う。現実には、縦方向リンク56の長さは有限なので、移動連結点Aは直線運動からわずかにずれた軌跡上を移動する(これについては後述する)。完全な直線運動機構は、縦方向リンク56の代わりに、移動連結点Bを直線的に案内するガイド部を採用し、且つ、AM=BM=MQ(図2参照)とすれば実現可能であるが、このガイド部と移動連結点Bとの摩擦が増大する。従って、摩擦の低減の観点からは、本実施例の近似直線機構50の方が完全な直線運動機構よりも好ましい。
【0041】
第1の横方向リンク52の中間にある移動連結点Mの位置は、以下の関係を満足するように設定されている。
AM×QM=BM
【0042】
ここで、AMは連結点A,M間の距離を意味し、QMは連結点Q,M間の距離、BMは連結点B,M間の距離をそれぞれ意味している。
【0043】
図3(A)〜(D)は、ピストン20の移動に伴うピストン・クランク機構の形状変化を示している。近似直線機構50の3つの移動連結点A,B,Mのうちで、移動連結点A,Mはピストン20の移動に伴ってかなり大きく移動するが、縦方向リンク56の上端の移動連結点Bはあまり移動しないことが解る。図3(A)には、近似直線機構50の形状変化の程度を表す指標として利用できる2つの角度θ、φが示されている。第1の角度θは、横方向Xから測った第2の横方向リンク54の角度∠MQXである。また、第2の角度φは、上下方向Zからの縦方向リンク56の傾き角で∠BRZである。
【0044】
図4(A),(B)は、実施例におけるピストン・クランク機構の具体的な寸法の一例と、移動連結点Aの軌跡とを示す説明図である。図4(A)に示されている寸法は、上述した関係(AM×QM=BM)を満足していることが解る。図4(B)に示されているように、移動連結点Aの軌跡は、近似的な直線部分を含んでおり、この近似的な直線部分がピストン20のストロークの範囲として利用される。このとき、ピストン20のストロークの範囲は、上死点における直線からのズレ量が、下死点における直線からのズレ量よりも小さくなるように設定されることが好ましい。ここで、「直線からのズレ量」の「直線」とは、シリンダ10の軸方向中心線を意味している。図4(B)の例では、上死点におけるズレ量は約5μmであり、下死点におけるズレ量は約20μmである。なお、この数値は常温で測定したものである。
【0045】
上死点における移動連結点Aの直線からのズレ量が、下死点におけるズレ量よりも小さくなるように設定する理由は、上死点近傍では燃料の爆発力がピストン20に掛かるためである。すなわち、上死点におけるズレ量が小さければ、爆発力によってピストン20に掛かるスラスト(横方向の力)が小さくなるので、ピストン20とシリンダ10との摩擦を低減することができる。一方、下死点では爆発力が掛からないので、多少のズレがあっても上死点に比べて摩擦への影響は小さい。なお、移動連結点Aの軌跡における近似的直線部分は、各リンク52,54,56の長さを大きくすることによって大きくすることが可能であるが、リンクを長くすると近似直線機構50のサイズが大きくなるという問題がある。換言すれば、上死点や下死点における直線からのズレ量と、近似直線機構50のサイズとは、トレードオフの関係にある。これらの点を考慮すると、ピストン20の上死点における移動連結点Aの直線からのズレ量は、常温で測定して約10μm以下になるように近似直線機構50を構成することが好ましい。また、下死点におけるズレ量は、約20μm以下になるようすることが好ましい。
【0046】
図4(B)に示すようにピストン20のストロークの範囲を設定した場合には、第2の横方向リンク54の角度θは、8.8°〜−17.9°の範囲の値を取る(図4(A))。角度θの最大値(8.8°)はピストン20が上死点にある場合(図3(A))に相当し、最小値(−17.9°)はピストン20が下死点にある場合(図3(C))に相当する。縦方向リンク56の角度φは、0°〜2.2°の範囲の値を取る。角度φの最小値(0°)は、連結点Q,A,M,Bがほぼ一直線上に並ぶ場合に相当し、最大値(2.2°)は、角度θの絶対値が最も大きくなる場合(この例では下死点)に相当する。なお、これらの角度θ、φの値の範囲は、近似直線機構50の各リンクの寸法と、ピストン20のストローク範囲の設定に依存する。
【0047】
B.実施例の具体的形状および動作:
図5は、第1実施例におけるピストン・クランク機構の具体的な形状の一例を示す要部縦断面図であり、図6は、その要部横断面図である。また、図7,図8は、偏心位置の変更に関わる構成を拡大して示す要部縦断面図である。
【0048】
図5に示されているように、ピストンヘッド部22は全体として皿状の形状を有しており、凹状の上面を有する略板状の上面部22aと、この上面部22aの周囲に一体として設けられたリング取り付け部22bとを有している。よく知られているように、ピストン20の頂面の形状は、単純な凹状以外の種々の形状が採用可能である。リング取り付け部22bは、略円環状の形状を有しており、その外周面にはピストンリング(図示せず)用の溝23が形成されている。このリング取り付け部22bには、従来のスカートは設けられていない。この理由は、上死点付近においてスラストがほとんど掛からないので、スラストを受けるためのスカートが無くても良いからである。
【0049】
このリング取り付け部22bは、その横断面が常温でほぼ真円となるように形成されている。本明細書において、ある物が「ほぼ真円となるように形成されている」という文言は、その物の製造誤差を含む設計値が真円を含んでいることを意味している。リング取り付け部22bの横断面をほぼ真円にできる理由は、上述したようにピストン20に掛かるスラストが小さいためである。また、ピストンピン60は、ピストン20の頂部からかなり離れた位置(ピストン支柱部24の下端)に設けられているので、ピストン20の頂部近傍が従来のピストンに比べて単純な形状を有している。従来は、ピストンが複雑な形状を有していたため、高温時の膨張に伴う複雑な変形を考慮して、常温ではピストンの横断面を楕円形状にするのが普通である。一方、本実施例のピストン20は、その頂部近傍が従来のピストンに比べて単純な形状を有しているので、温度上昇に伴う複雑な変形を考慮する必要がなく、常温においてもリング取り付け部22bの横断面をほぼ真円に設定することが可能である。リング取り付け部22bの横断面をほぼ真円にすれば、シール性が向上するので、ピストンリングの張力を従来よりも弱くすることができる。この結果、ピストンリングによる摩擦も低減することが可能である。また、リング取り付け部22bの横断面をほぼ真円にすれば、ピストン20の製造がより容易になるという利点もある。
【0050】
ピストン支柱部24の上端近傍には、ピストン支柱部24から外側に向けてサポート部26が伸びている。図6に示すように、本実施例では、4本のサポート部26がシリンダ10の内壁面近傍まで伸びている。実際にはサポート部26とシリンダ内壁との間には隙間が形成されているが、図6では隙間が省略されて描かれている。これらのサポート部26は、ピストン20が直立姿勢を保ちながらシリンダ内壁面に沿って滑らかに移動するのを案内するためのものである。但し、近似直線機構50によって、ピストンピン60(移動連結点A)の軌跡が充分直線に近いものに規制されている場合には、サポート部26を省略できる場合もある。しかしながら、サポート部26を設けた方が、ピストン20をより円滑に移動させることができる。
【0051】
ピストン支柱部24の長さは、ピストン20の上端からピストンピン60までの長さが、ピストン20のストロークの約1/2倍以上で1倍未満の範囲の値になるように設定されていることが好ましい。この理由は、ピストン支柱部24の長さが過度に短いと、上死点において近似直線機構50がシリンダ10に衝突する可能性があるためである。また、ピストン支柱部24の長さが過度に長いと、ピストン20の重量が増加してエネルギ損失が増すためである。
【0052】
図5に示すように、シリンダ10の下部には、サポート用タブ12が設けられている。このサポート用タブ12は、ピストン20が下死点に到達したときにサポート部26に対向する位置にあるシリンダ内壁面部分である。また、サポート用タブ12以外のシリンダ内壁面部分は、不要なので切除されている。このように、本実施例の機構では、不要なシリンダの内壁面部分を切除することができるので、軽量化が可能である。このようにシリンダ10の内壁面の一部を削除しなくても良いが、軽量化の観点からは、シリンダ10の内壁面の下端部においてサポート部26に対向しない内壁面の少なくとも一部が削除されていることが好ましい。
【0053】
図6に示すように、ピストン支柱部24と、コネクティングロッド30と、横方向リンク52,54とは、ピストン20が上下動したときにも互いに干渉しないように構成されている。具体的には、図6の例では、ピストン支柱部24はシリンダ10の軸方向中心に設けられており、ピストン支柱部24の両側が、第1の横方向リンク52の2枚の板状部材で挟まれている。第1の横方向リンク52の外側には、コネクティングロッド30の2枚の板状部材が配置されている。これらの3種類の部材24,52,30は、ピストンピン60で連結されている。また、コネクティングロッド30の更に外側には、第2の横方向リンク54の2枚の板状部材が設置されている。すなわち、この例では、コネクティングロッド30と2つの横方向リンク52,54の端部は、それぞれ2つの板状部材に分かれており、中央のピストン支柱部24を両側から挟むような位置にそれぞれ配置されている。なお、これらの部材24,30,52,54の位置関係は、単なる一例であり、他の位置関係を取ることも可能である。
【0054】
図5に示すように、偏心ベアリング70は、環状の部材であって、ピストン支柱部24の端部近傍においてピストンピン60を挿入するために設けた穴と、ピストンピン60との間に配設されている。本実施例では、ピストンピン60はコネクティングロッド30に圧入されており、ピストンピン60とコネクティングロッド30とは一体となって動く。また、偏心ベアリング70は、ピストン支柱部24とピストンピン60との間に、摺動可能にはめ込まれており、後述する係合部の係合状態に応じて、ピストン支柱部24あるいはピストンピン60のいずれか一方に対して固定される。
【0055】
偏心ベアリング70の外周には、複数(本実施例では8つ)の第1の係合受け部72が等間隔に形成されている。また、偏心ベアリング70の内周には、複数(本実施例では8つ)の第2の係合受け部74が等間隔に形成されている。ピストン支柱部24には、上記第1の係合受け部72と係合可能な第1の係合ピン76が設けられており、ピストンピン60内には、上記第2の係合受け部74と係合可能な第2の係合ピン78が設けられている。
【0056】
上記複数の第1の係合受け部72と第1の係合ピン76とは、第1の係合機構を形成している。この第1の係合機構において、複数の係合受け部72のうちのいずれかに第1の係合ピン76が係合しているときには、偏心ベアリング70は、ピストン支柱部24に対して、すなわちピストン20に対して固定された状態となる。したがって、第1の係合機構が係合状態となっているときには、偏心位置の変更は行なわれない。なお、図7,8に示すように、第1の係合ピン76は、バネ77によって、第1の係合受け部72側に付勢されており、このバネ77の力によって、第1の係合受け部72との係合状態を保つことが可能となっている。
【0057】
また、上記複数の第2の係合受け部74と第2の係合ピン78とは、第2の係合機構を形成している。この第2の係合機構において、複数の係合受け部74のうちのいずれかに第2の係合ピン78が係合しているときには、偏心ベアリング70は、ピストンピン60に対して、すなわちコネクティングロッド30に対して固定された状態となる。したがって、第2の係合機構が係合状態となっているときには、偏心ベアリング70はコネクティングロッド30が揺動するのに伴って回動し、偏心位置の変更が行なわれる。なお、後述するように本実施例では、内燃機関が運転されているときには、第1の係合機構と第2の係合機構とのうちの一方のみが、係合状態となることが可能となっている。
【0058】
ピストンピン60には、T字型の油圧印加部80(図7)が形成されている。この油圧印加部80に対しては、縦方向リンク56と第1の横方向リンク52にそれぞれ設けられた油圧経路56a,52aを介して、図示しない油圧ポンプから油圧を印加することが可能となっている。油圧印加部80において、T字型の3つの端部のうちの一つの端部の近傍に、上記した第2の係合ピン78が配設されている。油圧印加部80に対して油圧が印可されると、第2の係合ピン78は外側に向けて押しつけられて、複数の第2の係合受け部74のうちの1つに挿入可能となる。また、第2の係合ピン78は、バネ79によって油圧と反対方向に付勢されており、油圧を印可しない場合には、第2の係合ピン78は、バネ79によって第2の係合受け部74を外れた位置に戻る。なお、油圧印加部80において、3つの端部のうち、第2の係合ピン78が配設される端部とは反対側の第2の端部80bと、残りの第3の端部80cとは、ピストンピン60の外周において開口している。
【0059】
既述したように、複数の第1の係合受け部72は偏心ベアリング70の外周に等間隔に設けられており、複数の第2の係合受け部74は偏心ベアリング70の内周に等間隔に設けられている。ここで、第1の係合受け部72と第2の係合受け部74とは、それぞれ同じ数ずつ形成されると共に、1つずつが対を成しており、対を成す係合受け部72と係合受け部74とは、互いに近接して設けられている。図7,図8に示すように、これら対を成す係合受け部72と係合受け部74との間には、両者を連通させる連通路73が設けられている。また、偏心ベアリング70が嵌め込まれているピストン支柱部24端部には、偏心ベアリング70と接する摺動面と、ピストン支柱部24の外周面とを連通させる油圧調節孔75が形成されている。
【0060】
さらに、ピストン支柱部24の端部には、第1の係合ピン76を付勢するバネ77が設けられる空間と、ピストン支柱部24の外周面とを連通させる第1のドレイン孔84が形成されている。また、ピストンピン60内には、第2の係合ピン78を付勢するバネ79が設けられる空間と、ピストンピン60の外周面とを連通させる第2のドレイン孔86が形成されている。これらのドレイン孔84,86は、バネ77,79が設けられる空間から油抜きをするための構造である。第2のドレイン孔86は、図7のように、第2のドレイン孔86と油圧調節孔75とが連通するする状態となる所定のタイミングにおいて、油ぬきを行なうことができる。なお、バネ79が設けられる空間に溜まる油は、偏心ベアリング70との間の摺動面からも漏れ出すことができるため、このように漏れ出すことで充分に油ぬきが可能であれば第2のドレイン孔86を設けないこととしても良い。
【0061】
偏心ベアリング70の偏心位置は、以下のようにして調整される。偏心位置が固定されているときには、図8に示すように、バネ77によって付勢される第1の係合ピン76が、第1の係合受け部72のいずれかと係合している。一方、第2の係合ピン78は、バネ79に付勢されて係合状態が解除されている。このように、偏心ベアリング70がピストン20に対して固定されることで、偏心ベアリング70の偏心位置は固定された状態となっている。
【0062】
偏心ベアリング70の偏心位置を変更する際には、まず、油圧印加部80に対して油圧が印可される。このとき、コネクティングロッド30が揺動するのに伴ってピストンピン60が回動すると、ピストン20が所定の第1の位置(例えば上死点)に来たときに、図7に示すように、第2の係合ピン78がいずれかの第2の係合受け部74に対向して位置するようになる。このとき、第2の係合ピン78は、油圧で押されて移動して(図7中の矢印A方向)、上記対向する第2の係合受け部74に係合する。また、それと同時に、油圧印加部80は、第2の端部80bにおいて、上記第2の係合ピン78が係合する第2の係合受け部74に対して180°の位置にある第2の係合受け部74と連通するようになる。これによって、この新たに連通するようになった第2の係合受け部74と対を成す第1の係合受け部72に係合している第1の係合ピン76は、第2の係合受け部74および連通路73を介して油圧印加部80から油圧を印可され、係合状態が解除される。その結果、偏心ベアリング70は、コネクティングロッド30と一体化して回動可能な状態となる。
【0063】
この状態でピストン20が上下に運動すると、偏心ベアリング70はピストン支柱部24に対して相対的に回動し(図7中の矢印B方向)、これに伴って偏心ベアリング70の偏心位置が変化する。そして、ピストン20が所定の第2の位置(例えば下死点)に来ると、図8に示すように、油圧印加部80の第3の端部80cは、所定の第2の係合受け部74とこれと対を成す第1の係合受け部72とを介して、油圧調節孔75と連通するようになる。これによって、油圧印加部80からは油圧調節孔75を介して油が排出される。ここで、第1の横方向リンク52に設けられた油圧経路52aにはオリフィス82が設けられているため、油圧印加部80から油が排出されることによって、油圧印加部80内の油圧が低下する。これによって、第2の係合ピン78は、バネ79に付勢されて移動し(図8中の矢印A方向)、係合状態を解除する。また、このとき、第1の係合ピン76は、先ほどまで係合していた第1の係合受け部72と隣り合う第1の係合受け部72と対向して位置する状態となり、バネ77に付勢されてこの対向する第1の係合受け部72に新たに係合するようになる。これによって、偏心ベアリング70は、再びピストン支柱部24に固定された状態となる。こうして偏心ベアリング70の偏心位置が変化すると、ピストンピン60の中心からピストン20の上端までの距離が変化し、これに応じて圧縮比が変化する。
【0064】
このように、偏心ベアリング70がピストン支柱部24に再び固定された状態となった後は、ピストン20が再び所定の第1の位置に来るのに伴い、コネクティングロッド30およびピストンピン60は偏心ベアリング70に対して摺動して(図8の矢印B方向)、図7の状態に戻る。さらに偏心位置を変化させる場合には、油圧印加部80に対して油圧の印加を続けることで、上記動作を繰り返すことができる。偏心位置を所望の状態に変更した後には、油圧経路52a,56aから油を抜いて、油圧印加部80に対する油圧の印加を停止することで、偏心位置を所望の状態に保つことができる。
【0065】
図9は、偏心ベアリング70近傍の構成を示す要部縦断面図であり、図9(A)は圧縮比が小さい場合、図9(B)は圧縮比が大きい場合に相当する。図9(A)の状態では、ピストンピン60の中心が偏心ベアリング70の中心よりも高いところにあり、図9(B)の状態では、ピストンピン60の中心が偏心ベアリング70の中心よりも低いところにある。図9(B)の場合は、上死点において、ピストン20の頂部が燃焼室の上端により近いところに達する。従って、図9(B)では上死点における燃焼室の容積が図9(A)よりも小さくなり、圧縮比がより大きくなる。本実施例では、複数の第1の係合受け部72と複数の第2の係合受け部74とを、それぞれ8つずつ等間隔に形成しているため、5段階の圧縮比を選択することが可能となっている。
【0066】
C.効果:
このように、本実施例では、ピストンピン60をシリンダの軸方向中心線に沿って近似直線運動させる近似直線機構を設け、ピストンピン60近傍に設けた偏心ベアリング70において、ピストン20と係合する状態とコネクティングロッド30と係合する状態とを切り替えることによって偏心位置の変更を行なうため、圧縮比変更のために変位する部材の動きを制御する確実性を向上させることができる。特に、本実施例では、油圧経路をコネクティングロッド30を通らずに、近似直線機構50を通るようにしたので、油圧経路に過度に大きな加速度が掛かることが無く、偏心位置を安定して制御できるという利点がある。
【0067】
また、本実施例によれば、油圧経路52aにオリフィス82を設け、ピストン支柱部24に油圧調節孔75を設けることにより、圧縮比変更の動作をより容易に行なうことが可能となっている。油圧を利用して係合ピンの係合状態を制御する場合には、油圧制御弁によってエンジンの動作に合わせたタイミングで油圧制御する構成も考えられるが、エンジンの速い動作に合わせて制御を行なうのは困難であり、実際的ではない。本実施例のように、オリフィスと油圧調節孔を設けることによって、油圧制御弁では油圧を印可した状態を保ちつつ、所望の圧縮比となるまで偏心ベアリングを変位させる動作を容易に繰り返すことができる。
【0068】
なお、偏心ベアリング70において、第1の係合受け部72と第2の係合受け部74との対(以下、「係合受け部ペア」と呼ぶ)の配置の間隔は、コネクティングロッド30が揺動する際の振幅(揺動角度)に対応する距離以下とすればよい。このような間隔に形成することで、油圧経路52a,56aに油圧を印可するときには、コネクティングロッド30が揺動するのに伴い第1の係合機構と第2の係合機構との係合状態の切り替えを支障無く行なうことができ、圧縮比を変更できる。特に、係合受け部ペアの間隔を、上記揺動角度に対応する距離と略等しくする、あるいは揺動角度に対応する距離よりもわずかに小さくなるように設定することが好ましい。このようにすれば、第1の係合機構と第2の係合機構とにおける係合状態の切り替えの動作を、より正確に行なうことが可能となる。
【0069】
また、本実施例では、偏心ベアリング70の周に沿った係合受け部ペアの間隔を等間隔としたが、必ずしも等間隔である必要はない。
【0070】
D.他の実施例:
上記第1実施例では、偏心ベアリング70がピストン20に固定される第1の状態と、偏心ベアリング70がコネクティングロッド30に固定される第2の状態とを切り替えることによって、偏心ベアリングの偏心位置を変更した。これに対して、偏心ベアリング70がピストン20に固定される第1の状態と、偏心ベアリング70が第1の横方向リンク52に固定される第2の状態とを切り替えることによって、偏心ベアリングの偏心位置を変更することとしても良い。このような構成を第2実施例として説明する。第2実施例では、図5に示した第1実施例と同様の構成において、ピストンピン60を、コネクティングロッド30に代えて第1の横方向リンク52に固定する。また、係合受け部ペア72,74の間隔は、第1の横方向リンク52が揺動する際の振幅(揺動角度)に対応する距離以下とすればよい。そして、第1および第2の状態を切り替える制御を第1実施例と同様に行なうことで、第1実施例と同様の効果を得ることができる。
【0071】
このように、第2の状態において偏心ベアリングが固定される部材としては、コネクティングロッド以外の部材を用いることとしても良い。近似直線機構を備えるピストン・クランク機構は種々の変形が可能であるが、ピストンとコンロッドとの連結部においてこれらに連結され、ピストンの動きに伴って揺動すると共に近似直線機構を構成する揺動部材であれば、同様に用いることができる。
【0072】
また、上記第1および第2実施例では、ピストンピン60は、コネクティングロッド30あるいは揺動部材と一体で動くこととしたが、ピストンピン60とピストン20とが一体で動くように構成することも可能である。このような場合であっても、偏心ベアリングがピストンに固定される第1の状態と、偏心ベアリングがコネクティングロッドあるいは揺動部材に固定される第2の状態とを同様に切り替えることによって、偏心ベアリングの偏心位置を変更することができる。
【0073】
E.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
【0074】
E1.変形例1:
本発明は、グラスホッパの近似直線機構に限らず、他の任意の近似直線機構を採用することが可能であり、例えばワットの近似直線機構を採用することも可能である。この場合にも、上死点におけるシリンダ中心軸からのズレ量が下死点におけるズレ量よりも小さくなるように近似直線機構の構成が設定されることが好ましい。ここで、既述した第2の状態において、偏心ベアリングが揺動部材に固定される構成とする場合には、近似直線機構に備えられる部材を上記揺動部材とすればよい。なお、上記実施例で説明したグラスホッパの近似直線機構は、近似直線上を移動する点(移動連結点A)が機構の一方の端部近傍に偏っているので、内燃機関のピストンの運動を規制するのに特に適しており、また、コンパクトな機構で良好な直線性を得ることが可能である。
【0075】
E2.変形例2:
上記実施例では、ピストンヘッド部22とピストン支柱部24とを有するピストン20を利用するものとしていたが、従来のピストン120(図1(A))と同様な構成のピストンを用いることも可能である。但し、ピストンヘッド部22とピストン支柱部24とを有するピストン20を利用すれば、近似直線機構50とシリンダ10との干渉を防止し易いので、近似直線機構50をよりコンパクトにできるという利点がある。
【0076】
E3.変形例3:
本発明のピストン・クランク機構は、ガソリンエンジンやディーゼルエンジンなどの種々の内燃機関や、スターリングエンジンなどの外燃機関を含む任意のピストン機関に利用可能である。また、本発明は、このようなピストン機関を備える車両や移動体としても実現可能である。
【図面の簡単な説明】
【図1】従来のピストン・クランク機構と本発明の一実施例のピストン・クランク機構とを比較して示す説明図である。
【図2】実施例のピストン・クランク機構のリンク構成を示す説明図である。
【図3】ピストン20の移動に伴うピストン・クランク機構の形状変化を示す説明図である。
【図4】実施例におけるピストン・クランク機構の具体的な寸法の一例と移動連結点Aの軌跡とを示す説明図である。
【図5】実施例におけるピストン・クランク機構の具体的な形状の一例を示す要部縦断面図である。
【図6】実施例におけるピストン・クランク機構の具体的な形状の一例を示す要部横断面図である。
【図7】偏心位置の変更に関わる構成を拡大して示す要部縦断面図である。
【図8】偏心位置の変更に関わる構成を拡大して示す要部縦断面図である。
【図9】偏心ベアリング70近傍の構成を示す要部縦断面図である。
【符号の説明】
10…シリンダ
12…サポート用タブ
20…ピストン
22…ピストンヘッド部
22a…上面部
22b…リング取り付け部
23…溝
24…ピストン支柱部
26…サポート部
30…コネクティングロッド
40…クランクシャフト
42…駆動軸
50…近似直線機構
52…第1の横方向リンク
52a,56a…油圧経路
54…第2の横方向リンク
56…縦方向リンク
60…ピストンピン
62…クランクピン
70…偏心ベアリング
72…第1の係合受け部
73…連通路
74…第2の係合受け部
75…油圧調節孔
76…第1の係合ピン
77,79…バネ
78…第2の係合ピン
80…油圧印加部
80b…第2の端部
80c…第3の端部
82…オリフィス
84…第1のドレイン孔
86…第2のドレイン孔
110…シリンダ
120…ピストン
121…スカート
130…コネクティングロッド
140…クランクシャフト
142…駆動軸
160…ピストンピン
162…クランクピン

Claims (11)

  1. 内燃機関であって、
    シリンダと、
    前記シリンダ内を往復運動するピストンと、
    駆動軸を中心に回転するクランクシャフトと、
    前記ピストンと前記クランクシャフトとを連結するコネクティングロッドと、前記ピストンと前記コネクティングロッドとの連結部に連結され、前記ピストンの動きに伴って揺動する揺動部材を備え、前記連結部が前記シリンダの軸方向中心線に沿って近似直線運動するように前記連結部の動きを規制する近似直線機構と、
    前記連結部に設けられた偏心ベアリングであって、偏心位置の変更に伴って前記シリンダと前記ピストンのストロークとの相対的な位置関係を変更して圧縮比を変更する偏心ベアリングと、
    前記偏心ベアリングが前記ピストンに固定された第1の状態と、前記偏心ベアリングが前記コネクティングロッドまたは前記揺動部材のいずれかに固定された第2の状態と、を切り替えることで、前記偏心ベアリングの偏心位置を変更する調節部と
    を備える内燃機関。
  2. 請求項1記載の内燃機関であって、
    前記調節部は、
    前記第1の状態と第2の状態との切り替えに利用するための油圧機構と、
    前記油圧機構に接続された油圧経路と
    を有し、
    前記油圧経路は、前記コネクティングロッドを通ることなく前記近似直線機構を通るように構成されている
    内燃機関。
  3. 請求項2記載の内燃機関であって、
    前記調節部は、
    前記偏心ベアリングを前記ピストンに固定するための第1の係合機構と、前記偏心ベアリングを前記コネクティングロッドまたは前記揺動部材に固定するための第2の係合機構と、を備え、
    前記油圧機構において印可される油圧を変更することによって、前記第1の係合機構が働いて前記偏心ベアリングを前記ピストンに固定する前記第1の状態と、前記第2の係合機構が働いて前記偏心ベアリングを前記コネクティングロッドまたは前記揺動部材に固定する前記第2の状態と、を切り替える
    内燃機関。
  4. 請求項3記載の内燃機関であって、
    前記第1の係合機構は、前記ピストンに固定された第1の係合ピンと、前記偏心ベアリングに設けられて前記第1の係合ピンと係合可能に形成された複数の第1の係合受け部と、を備え、
    前記第2の係合機構は、前記偏心ベアリングを固定するための前記コネクティングロッドまたは前記揺動部材に固定された第2の係合ピンと、前記偏心ベアリングに設けられて前記第2の係合ピンと係合可能に形成された複数の第2の係合受け部と、を備え、
    前記第1の係合ピンと前記第1の係合受け部との係合状態、あるいは、前記第2の係合ピンと前記第2の係合受け部との係合状態のうち、一方が解除されるときには、他方が係合する状態となる
    内燃機関。
  5. 請求項4記載の内燃機関であって、
    前記偏心ベアリングの内周と外周のうちの一方に、前記複数の第1の係合受け部が形成され、他方に前記複数の第2の係合受け部が形成されている
    内燃機関。
  6. 請求項5記載の内燃機関であって、
    前記複数の第1の係合受け部および前記複数の第2の係合受け部が設けられる間隔は、前記コネクティングロッドが揺動する際の振幅に対応する距離以下である
    内燃機関。
  7. 請求項6記載の内燃機関であって、
    前記複数の第1の係合受け部および前記複数の第2の係合受け部が設けられる間隔は、前記コネクティングロッドが揺動する際の振幅に対応する距離に等しい
    内燃機関。
  8. 請求項6または7記載の内燃機関であって、
    前記複数の第1の係合受け部と前記複数の第2の係合受け部とは、前記偏心ベアリングの内周と外周とのうちの互いに異なる側において、等間隔に設けられている
    内燃機関。
  9. 請求項3ないし8いずれか記載の内燃機関であって、
    前記油圧経路はオリフィスを有し、
    前記油圧機構は、
    前記連結部に設けられて前記ピストンが動くのに伴って回動すると共に、油圧を供給されることで前記第1の係合機構および/または前記第2の係合機構を駆動する油圧印加部と、
    前記油圧印加部が回動して所定の位置状態となったときに、前記油圧印加部に供給されている油を排出して前記油圧印加部における油圧を低下させる油圧調節孔と
    を有し、
    前記油圧印加部が前記所定の位置状態となったときに、前記油圧印加部における油圧を低下させることによって、前記第1の係合機構が働く前記第1の状態と、前記第2の係合機構が働く前記第2の状態と、を切り替える
    内燃機関。
  10. 請求項4ないし8いずれか記載の内燃機関であって、
    前記第1および第2の係合ピンは、前記油圧機構において印可される油圧によって駆動されると共に、印可された油圧に逆らう方向に係合ピンを付勢する弾性部を備え、
    前記内燃機関は、さらに、前記弾性部から油を抜くためのドレイン孔を備える内燃機関。
  11. 請求項1ないし10いずれか記載の内燃機関であって、
    前記近似直線機構は、グラスホッパの近似直線機構である
    内燃機関。
JP2003030621A 2003-02-07 2003-02-07 近似直線機構を有する可変圧縮比内燃機関 Pending JP2004239202A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030621A JP2004239202A (ja) 2003-02-07 2003-02-07 近似直線機構を有する可変圧縮比内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030621A JP2004239202A (ja) 2003-02-07 2003-02-07 近似直線機構を有する可変圧縮比内燃機関

Publications (1)

Publication Number Publication Date
JP2004239202A true JP2004239202A (ja) 2004-08-26

Family

ID=32957455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030621A Pending JP2004239202A (ja) 2003-02-07 2003-02-07 近似直線機構を有する可変圧縮比内燃機関

Country Status (1)

Country Link
JP (1) JP2004239202A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040607A (ja) * 2011-08-18 2013-02-28 Hyundai Motor Co Ltd デュアル偏心リンクが備えられた可変圧縮比装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040607A (ja) * 2011-08-18 2013-02-28 Hyundai Motor Co Ltd デュアル偏心リンクが備えられた可変圧縮比装置

Similar Documents

Publication Publication Date Title
KR101864864B1 (ko) 크로스 헤드형 엔진
KR100661120B1 (ko) 캠 작동시스템
US7021254B2 (en) Engine with variably adjustable compression ratio, and methods of using same
US8387573B2 (en) Variable compression ratio device
WO2015108182A1 (ja) エンジン
US6321693B1 (en) Reciprocating rotary piston system and pressure pump and internal combustion engine using the same
KR101518881B1 (ko) 내연 기관 엔진의 가변 압축비 장치 및 압축비를 변경하는 방법
JP2007085354A (ja) 複式圧縮及び複式膨張内燃エンジン
EP1533495B1 (en) Internal combustion engine
EP3296539B1 (en) Oil pressure generating device and crosshead engine
JP2009036128A (ja) 複リンク式可変圧縮比エンジン
US7213563B2 (en) Piston engine having approximate straight-line mechanism
US20020139324A1 (en) Piston control mechanism of reciprocating internal combustion engine of variable compression ratio type
EP0495129A1 (en) Reciprocating engine
JP2019214947A (ja) 圧縮比可変機構
JP2004239202A (ja) 近似直線機構を有する可変圧縮比内燃機関
JP3627522B2 (ja) 可変圧縮比機構を有する内燃機関
JP4628225B2 (ja) 圧縮比可変往復動シリンダ装置
EP3477072B1 (en) Exhaust gas bypass device and supercharger
JPH08232850A (ja) ベローズ式ポンプ
JP2004124848A (ja) 近似直線機構を有する可変圧縮比内燃機関
JPH04347352A (ja) エンジン
JP2011501032A (ja) ピストン機械
JP2927039B2 (ja) エンジン
KR20040080866A (ko) 축방향 4행정 왕복 엔진