JP2004235376A - Ceramic electronic component - Google Patents

Ceramic electronic component Download PDF

Info

Publication number
JP2004235376A
JP2004235376A JP2003021210A JP2003021210A JP2004235376A JP 2004235376 A JP2004235376 A JP 2004235376A JP 2003021210 A JP2003021210 A JP 2003021210A JP 2003021210 A JP2003021210 A JP 2003021210A JP 2004235376 A JP2004235376 A JP 2004235376A
Authority
JP
Japan
Prior art keywords
external electrodes
ceramic electronic
electronic component
component
multiple capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003021210A
Other languages
Japanese (ja)
Other versions
JP4051298B2 (en
Inventor
Masatoshi Satou
匡敏 佐藤
Masahiro Sadakane
昌宏 貞金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003021210A priority Critical patent/JP4051298B2/en
Publication of JP2004235376A publication Critical patent/JP2004235376A/en
Application granted granted Critical
Publication of JP4051298B2 publication Critical patent/JP4051298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/252Terminals the terminals being coated on the capacitive element

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic electronic component whose impact resistivity is excellent. <P>SOLUTION: This ceramic electronic component 10 is constituted of a component body 1 with ceramics as main components, and a plurality of external electrodes 5 and 6 formed from the edge faces of the component body 1 to the adjacent mounting faces. In this case, an air gap 7 is formed from the edge faces of the component body 1 to the mounting faces, and covered with the external electrodes 5 and 6 between the external electrodes 5 and 6 and the component body 1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック電子部品に関し、特に外部電極の構造に関するものである。
【0002】
【従来の技術】
代表的なセラミック電子部品として、多連型コンデンサを例にとって説明する。
【0003】
図3は、従来の多連型コンデンサを示す図であり、(a)外観斜視図、(b)X−X線断面図である。
【0004】
図において、30は多連型コンデンサ、31は積層体であり、32は積層体31を構成する誘電体層、33、34は積層体31内に形成した内部電極であり、35、36は外部電極である。図に示すように、多連型コンデンサ30の積層体31は、誘電体層32を複数積層して形成されている。
【0005】
また、積層体31の各誘電体層32間に、例えば複数の第1及び第2の内部電極33、34が対向形成され、第1の内部電極33は積層体31の一端面に、第2の内部電極34は積層体31の他端面に延出している。
【0006】
さらに、複数の外部電極35、36は、積層体31の端面に被着し、且つ第1及び第2の内部電極33、34と接続している。また、外部電極35、36の表面には、必要に応じて、表面メッキ層(図示せず)が形成されている。
【0007】
このような多連型コンデンサ30は、一方の主面(実装面)を下にして配線基板上の配線パターンに半田や導電性接着剤などの接合材により表面実装される。
【0008】
【特許文献1】
特開2002−57059号公報 (2頁、図1)
【0009】
【発明が解決しようとする課題】
近年、多連型コンデンサ30は、携帯型電話機や携帯型コンピュータなどの携帯型電子機器への需要が増えてきている。
【0010】
しかしながら、携帯型電子機器は、使用時や携帯時において、落下などによる衝撃が機器内部の配線基板上に表面実装されている多連型コンデンサ30に加わり、図3に示すように、多連型コンデンサ30にクラック38が発生するという問題点があった。
【0011】
本発明は上述の問題点に鑑みて案出されたものであり、その目的は、耐衝撃性に優れたセラミック電子部品を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、内部導体が形成されたセラミックス部材からなる直方体の部品本体と、前記内部導体に接続し、且つ該部品本体の端面と主面とに跨がるように形成された外部電極とを備えてなるセラミック電子部品において、前記部品本体の端面と主面が接する稜線部に外部電極に覆われた空隙が形成されている。
【0013】
【作用】
本発明によれば、部品本体の端面と実装面が接する稜線上及び稜線付近である稜線部に、外部電極に覆われた空隙が形成されてなるため、セラミック電子部品を接合材により配線基板上に表面実装した状態において、落下などによる衝撃がセラミック電子部品に加わっても、クラックの発生を低減できる。
【0014】
すなわち、落下などによる衝撃により、セラミック電子部品にねじり方向の応力が加わる場合が多い。そしてこのとき、部品本体の稜線部と外部電極と接合材が接している部分を起点としてクラックが発生し、部品本体の側面に進行すると考えられるが、この空隙の存在により外部電極が適度に変形するため、ねじり方向の応力が上記起点に伝わることを防ぐことができることから、クラックの発生を低減できると考えられる。
【0015】
また、空隙は外部電極に覆われているため、空隙にメッキ液が侵入することにより、信頼性が低下することがない。
【0016】
【発明の実施の形態】
以下、本発明のセラミック電子部品を図面に基づいて説明する。
【0017】
本発明のセラミック電子部品として、多連型コンデンサを例にとって説明する。
【0018】
図1は、本発明の多連型コンデンサを示す図であり、(a)は外観斜視図、(b)はX−X線断面図である。図2は、図1の多連型コンデンサを配線基板上に表面実装した状態を示す断面図である。
【0019】
図において、10は多連型コンデンサ(多連型セラミック電子部品)、1は誘電体セラミックからなる積層体(部品本体)、2は誘電体層、3、4は内部電極、5、6は外部電極である。
【0020】
図に示すように、多連型コンデンサ10の積層体(部品本体)1は、誘電体層2を複数積層して形成されている。
【0021】
誘電体層2は、チタン酸バリウム(BaTiO)を主成分とする非還元性誘電体材料、及びガラス成分を含む誘電体材料からなり、その形状は、2.0mm×1.2mmなどであり、その厚みは高容量化のために1〜5μmとしている。この誘電体層2が図上、上方向に積層して積層体1が構成される。なお、誘電体層2の形状、厚み、積層数は容量値によって任意に変更することができる。
【0022】
積層体1の各誘電体層2間に、例えば複数の内部電極3、4が対向形成され、それぞれ積層体1の両端面に延出している。内部電極3、4は、例えばNiを主成分とする材料から構成され、その厚みは1〜2μmとしている。
【0023】
外部電極5、6は、積層体1の一対の長辺側端面に被着形成され、且つ内部電極3、4にそれぞれ接続されている。外部電極5、6は、例えばCu、Ni、あるいはこれらの合金などの金属成分及びガラス成分からなり、長辺側の端面及びそれに隣接する2つの主面(一方は実装面となる)の3面にわたって形成される。さらに、外部電極5、6の表面には、表面メッキ層(図示せず)が形成されている。表面メッキ層は、例えばNiメッキ、Snメッキ、半田メッキなどが例示できる。
【0024】
本発明の特徴的なことは、積層体1の端面と主面が接する稜線部に、外部電極5、6に覆われた空隙7が形成されていることである。
【0025】
以下、本発明の多連型コンデンサの製造方法について説明する。なお、各符号は焼成の前後で区別しないものとする。
【0026】
まず、誘電体層となるセラミックグリーンシート2上に、導電ペーストをスクリーン印刷で形成し、内部電極となる導体膜3、4を形成する。
【0027】
そして、このようなセラミックグリーンシート2を、導体膜3、4が互いに対向し、且つ導体膜3、4が互いに異なる端面に延出するように所定の積層枚数重ねた後、切断して各コンデンサユニットNを含む未焼成状態の積層体1とし、所定の雰囲気、温度、時間を加えて焼成する。これにより、積層体1の一対の端面には、各コンデンサユニットN毎に内部電極3、4が露出している。
【0028】
その後、各コンデンサユニットNを外部と電気的に接続するために、外部電極となる導体膜5、6を積層体1の端面及びそれに隣接する主面に、スクリーン印刷法、ローラからの転写法などにより塗布する。このとき、あらかじめ積層体1の稜線付近に、空隙7となるカーボンペーストを塗布しておく。
【0029】
そして、導電膜5、6は、250℃〜400℃の大気中でバインダ成分を除いた後、800〜900℃で中性または還元性雰囲気で焼き付けによって、外部電極5、6が形成される。またこのとき、カーボンペーストが燃焼分解することにより、空隙7が形成される。
【0030】
その後、外部電極5、6は、電解メッキや無電解メッキによって表面メッキ層(図示せず)が形成される。
【0031】
このようにして、本発明の多連型コンデンサ10が得られる。
【0032】
かくして本発明によれば、積層体1の端面と主面が接する稜線部に、外部電極5、6に覆われた空隙7が形成されてなるため、多連型コンデンサ10を半田13により配線基板11上の配線パターン12に表面実装した状態において、落下などによる衝撃が多連型コンデンサ10に加わっても、クラック38の発生を低減できる。
【0033】
すなわち、落下などによる衝撃により、多連型コンデンサ10にねじり方向の応力が加わる場合が多い。そしてこのとき、積層体1の稜線と外部電極5、6と半田12が接している部分を起点としてクラック38が発生し、積層体1の側面に進行すると考えられるが、空隙7の存在により外部電極5、6が適度に変形するため、ねじり方向の応力が上記起点に伝わることを防ぐことができることから、クラック38の発生を低減できると考えられる。
【0034】
また、空隙7は外部電極5、6に覆われているため、空隙7にメッキ液が侵入することにより、信頼性が低下することがない。
【0035】
さらに、空隙7は外部電極5、6と内部電極3、4が夫々接合する部分に存在しないため、これらの電気的接続が良好になる。
【0036】
ここで、図1(b)に示すように、積層体1のトップマージンをmt、空隙7のT方向の寸法をmaとした場合、0<ma/mt<1、好ましくは0.2≦ma/mt≦0.8の範囲にあることが望ましい。すなわち、ma/mt比が1以上である場合、内部電極3、4と外部電極5、6の電気的接続が低下する。また、積層体1端面から外部電極5、6が積層体1の主面に乗り上げた部分との間の距離をnt、空隙7のW方向の寸法をnaとした場合、0<na/nt<0.9、好ましくは0.2≦na/nt≦0.7の範囲にあることが望ましい。すなわち、na/nt比が0.9以上である場合、外部電極5、6と積層体1主面が接触する面積が小さくなるため、積層体1に対する外部電極5、6の固着力が弱くなる。
【0037】
なお、本発明は上記の実施の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内での種々の変更や改良などは何ら差し支えない。
【0038】
例えば、上記実施の形態では多連型セラミック電子部品として多連型コンデンサを用いて説明したが、積層セラミックコンデンサやの回路基板、ノイズフィルタ部品などセラミック電子部品にも広く適用できる。
【0039】
【実施例】
本発明者は、上記方法により、積層体1の稜線部に、外部電極5、6に覆われた空隙7が形成された多連型コンデンサ10を作製した。このとき、カーボンペーストの塗布量などを変化させることにより、ma/mt比、na/nt比を変化させた(試料番号3〜7、9〜12)。また、ma、mt、na、ntは、試料10の破断面のSEM像から確認した。
【0040】
比較例として、空隙7を形成しなかった多連型コンデンサ10(試料番号1)、積層体1の主面のみに空隙7を形成した多連型コンデンサ10(試料番号2)、積層体の端面のみに空隙7を形成した多連型コンデンサ10(試料番号8)も作製した。
【0041】
得られた試料について、落下試験、外部電極固着力(せん断強度)試験、等価直列抵抗(ESR)の測定を行った。
【0042】
落下試験方法は、図2に示すように、試料100個を1.6mm厚のガラスエポキシ基板(配線基板)11上の配線パターン12に、半田13付けにより表面実装した。そして、基板11を樹脂ケースの中にセットし、2mの高さよりコンクリート板上に落下させ、金属顕微鏡によりクラック38の発生率を求めた。
【0043】
外部電極固着力(せん断強度)試験は、図2に示すように、試料22個を1.6mm厚のガラスエポキシ基板(配線基板)11上の配線パターン12に、半田13付けにより表面実装し、固着ピンで強度を加え、試料がガラスエポキシ基板11から剥離したときの強度を求めた。
【0044】
等価直列抵抗(ESR)は、試料5個について測定し、最も大きい値とした。
【0045】
判定基準として、落下試験におけるクラック38の発生率が5%以下である場合を良品として丸印とした。また良品の内、クラック38の発生率が0%であるとともに、外部電極固着力が1.5kg以上であり、且つ等価直列抵抗(ESR)が300mΩ以下である場合を二重丸印とした。一方、クラック38の発生率が5%を超える場合を不良品としてバツ印とした。
【0046】
結果を表1に示す。
【0047】
【表1】

Figure 2004235376
【0048】
表に示すように、積層体1の稜線上及び稜線付近に、外部電極5、6に覆われた空隙7が形成された本実施例(試料番号3〜7、9〜12)は、2mの高さよりコンクリート板上に落下させた場合もクラック38の発生率が5%以下となった。特に、0.2≦ma/mt≦0.8且つ0.2≦na/nt≦0.7の範囲にある場合(試料番号4〜6、10〜11)、クラック38の発生率が0%、外部電極固着力が1.5kg以上、等価直列抵抗(ESR)が300mΩ以下となった。
【0049】
これに対し、空隙7を形成しなかった比較例(試料番号1)、積層体の主面のみに空隙7を形成した比較例(試料番号2)、積層体の端面のみに空隙7を形成した比較例(試料番号7)は、2mの高さよりコンクリート板上に落下させた場合、クラック38の発生率が5%より大きくなった。
【0050】
これらの結果から、本発明の多連型コンデンサ10は、積層体1の端面と主面が接する稜線上及び稜線付近に、外部電極5、6に覆われた空隙7が形成されてなるため、多連型コンデンサ10を半田13により配線基板11上の配線パターン12に表面実装した状態において、落下などによる衝撃が多連型コンデンサ10に加わっても、クラック38の発生を低減できることがわかった。
【0051】
【発明の効果】
本発明のセラミック電子部品によれば、部品本体の端面と実装面が接する稜線部に、外部電極に覆われた空隙が形成されてなるため、耐衝撃性に優れている。
【0052】
また、空隙は外部電極に覆われているため、空隙にメッキ液が侵入することにより、信頼性が低下することがない。
【図面の簡単な説明】
【図1】本発明の多連型コンデンサを示す図であり、(a)は外観斜視図、(b)はX−X線断面図である。
【図2】本発明の多連型コンデンサを配線基板上に表面実装した状態を示す断面図である。
【図3】従来の多連型コンデンサを示す図であり、(a)は一部透視状態の外観斜視図、(b)はX−X線断面図である。
【符号の説明】
10 多連型コンデンサ(セラミック電子部品)
1 積層体(部品本体)
2 誘電体層
3、4 誘電体層
5、6 外部電極
7 空隙[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic electronic component, and more particularly, to a structure of an external electrode.
[0002]
[Prior art]
A description will be given of a multiple capacitor as an example of a typical ceramic electronic component.
[0003]
FIG. 3 is a diagram showing a conventional multiple capacitor, in which (a) is an external perspective view and (b) is a cross-sectional view taken along line XX.
[0004]
In the figure, 30 is a multiple capacitor, 31 is a laminated body, 32 is a dielectric layer constituting the laminated body 31, 33 and 34 are internal electrodes formed in the laminated body 31, and 35 and 36 are external electrodes. Electrodes. As shown in the figure, the multilayer body 31 of the multiple capacitor 30 is formed by stacking a plurality of dielectric layers 32.
[0005]
Further, for example, a plurality of first and second internal electrodes 33 and 34 are formed between the dielectric layers 32 of the multilayer body 31 so as to face each other. The internal electrode 34 extends to the other end surface of the multilayer body 31.
[0006]
Further, the plurality of external electrodes 35 and 36 are attached to the end surface of the multilayer body 31 and are connected to the first and second internal electrodes 33 and 34. A surface plating layer (not shown) is formed on the surfaces of the external electrodes 35 and 36 as necessary.
[0007]
Such a multiple capacitor 30 is surface-mounted on a wiring pattern on a wiring board with one main surface (mounting surface) down using a bonding material such as solder or a conductive adhesive.
[0008]
[Patent Document 1]
JP-A-2002-57059 (page 2, FIG. 1)
[0009]
[Problems to be solved by the invention]
In recent years, the demand for the multiple capacitors 30 for portable electronic devices such as portable telephones and portable computers has been increasing.
[0010]
However, in a portable electronic device, when used or carried, an impact due to a drop or the like is applied to a multiple capacitor 30 surface-mounted on a wiring board inside the device, and as shown in FIG. There is a problem that cracks 38 occur in the capacitor 30.
[0011]
The present invention has been devised in view of the above problems, and an object of the present invention is to provide a ceramic electronic component having excellent impact resistance.
[0012]
[Means for Solving the Problems]
The present invention provides a rectangular parallelepiped component body made of a ceramic member having an internal conductor formed thereon, and an external electrode connected to the internal conductor and formed so as to straddle an end surface and a main surface of the component body. In the ceramic electronic component provided, a gap covered with an external electrode is formed at a ridge portion where an end surface of the component main body is in contact with a main surface.
[0013]
[Action]
According to the present invention, a gap covered with the external electrode is formed on the ridge line where the end surface of the component body and the mounting surface are in contact with each other and on the ridge line near the ridge line. In a state where the ceramic electronic component is dropped on the surface of the electronic component, cracks can be reduced.
[0014]
That is, in many cases, a stress in the torsional direction is applied to the ceramic electronic component due to an impact due to a drop or the like. At this time, cracks are thought to occur starting from the part where the ridge line of the component body and the external electrode are in contact with the bonding material, and proceed to the side surface of the component body, but due to the presence of this void, the external electrode is appropriately deformed Therefore, it is possible to prevent the stress in the torsional direction from being transmitted to the starting point, and it is considered that the occurrence of cracks can be reduced.
[0015]
Further, since the gap is covered by the external electrode, the reliability does not decrease due to the plating solution entering the gap.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a ceramic electronic component of the present invention will be described with reference to the drawings.
[0017]
The ceramic electronic component of the present invention will be described using a multiple capacitor as an example.
[0018]
1A and 1B are views showing a multiple capacitor of the present invention, wherein FIG. 1A is an external perspective view, and FIG. 1B is a sectional view taken along line XX. FIG. 2 is a sectional view showing a state in which the multiple capacitor of FIG. 1 is surface-mounted on a wiring board.
[0019]
In the drawing, 10 is a multiple capacitor (multiple ceramic electronic component), 1 is a laminated body (component body) made of dielectric ceramic, 2 is a dielectric layer, 3, 4 is an internal electrode, and 5 and 6 are external. Electrodes.
[0020]
As shown in the figure, the multilayer body (component body) 1 of the multiple capacitor 10 is formed by laminating a plurality of dielectric layers 2.
[0021]
The dielectric layer 2 is made of a non-reducing dielectric material containing barium titanate (BaTiO 3 ) as a main component and a dielectric material containing a glass component, and has a shape of 2.0 mm × 1.2 mm or the like. The thickness is set to 1 to 5 μm to increase the capacity. The dielectric layer 2 is stacked in the upward direction in the drawing to form the laminate 1. The shape, thickness, and number of layers of the dielectric layer 2 can be arbitrarily changed according to the capacitance value.
[0022]
For example, a plurality of internal electrodes 3, 4 are formed facing each other between the dielectric layers 2 of the multilayer body 1, and extend to both end surfaces of the multilayer body 1, respectively. The internal electrodes 3 and 4 are made of, for example, a material mainly containing Ni, and have a thickness of 1 to 2 μm.
[0023]
The external electrodes 5 and 6 are attached to the pair of long side end surfaces of the multilayer body 1 and are connected to the internal electrodes 3 and 4, respectively. The external electrodes 5 and 6 are made of, for example, a metal component such as Cu, Ni, or an alloy thereof, and a glass component, and have three surfaces including an end surface on the long side and two main surfaces adjacent to the end surface (one is a mounting surface). Formed over Further, a surface plating layer (not shown) is formed on the surfaces of the external electrodes 5 and 6. Examples of the surface plating layer include Ni plating, Sn plating, and solder plating.
[0024]
A characteristic of the present invention is that a void 7 covered with the external electrodes 5 and 6 is formed at a ridge portion where the end surface of the laminate 1 is in contact with the main surface.
[0025]
Hereinafter, a method for manufacturing the multiple capacitor of the present invention will be described. Each code is not distinguished before and after firing.
[0026]
First, a conductive paste is formed on a ceramic green sheet 2 serving as a dielectric layer by screen printing, and conductive films 3 and 4 serving as internal electrodes are formed.
[0027]
Then, after stacking a predetermined number of such ceramic green sheets 2 so that the conductor films 3 and 4 face each other and the conductor films 3 and 4 extend to different end faces, the ceramic green sheets 2 are cut and each capacitor is cut. The unfired laminate 1 including the unit N is fired under a predetermined atmosphere, temperature and time. Thus, the internal electrodes 3 and 4 are exposed on the pair of end surfaces of the multilayer body 1 for each capacitor unit N.
[0028]
Thereafter, in order to electrically connect each capacitor unit N to the outside, the conductor films 5 and 6 serving as external electrodes are formed on the end surface of the laminate 1 and the main surface adjacent thereto by a screen printing method, a transfer method from a roller, or the like. To apply. At this time, a carbon paste for forming the voids 7 is applied to the vicinity of the ridge line of the laminate 1 in advance.
[0029]
After removing the binder component from the conductive films 5 and 6 in the air at 250 ° C. to 400 ° C., the external electrodes 5 and 6 are formed by baking at 800 to 900 ° C. in a neutral or reducing atmosphere. At this time, the void 7 is formed by burning and decomposing the carbon paste.
[0030]
Thereafter, surface plating layers (not shown) are formed on the external electrodes 5 and 6 by electrolytic plating or electroless plating.
[0031]
Thus, the multiple capacitor 10 of the present invention is obtained.
[0032]
Thus, according to the present invention, the gap 7 covered with the external electrodes 5 and 6 is formed at the ridge portion where the end face and the main face of the multilayer body 1 are in contact with each other. In a state where the wiring pattern 12 is surface-mounted on the wiring pattern 11, even if an impact due to a drop or the like is applied to the multiple capacitor 10, the occurrence of cracks 38 can be reduced.
[0033]
That is, in many cases, a stress in the torsional direction is applied to the multiple capacitor 10 by an impact due to a drop or the like. At this time, it is considered that a crack 38 occurs starting from a portion where the ridgeline of the laminate 1 is in contact with the external electrodes 5 and 6 and the solder 12, and proceeds to the side surface of the laminate 1. Since the electrodes 5, 6 are appropriately deformed, it is possible to prevent the stress in the torsional direction from being transmitted to the starting point, and it is considered that the occurrence of cracks 38 can be reduced.
[0034]
In addition, since the gap 7 is covered with the external electrodes 5 and 6, the reliability does not decrease due to the plating solution entering the gap 7.
[0035]
Further, since the gap 7 does not exist at a portion where the external electrodes 5 and 6 and the internal electrodes 3 and 4 are respectively joined, the electrical connection therebetween is improved.
[0036]
Here, as shown in FIG. 1B, when the top margin of the laminate 1 is mt and the dimension of the void 7 in the T direction is ma, 0 <ma / mt <1, preferably 0.2 ≦ ma. /Mt≦0.8 is desirable. That is, when the ma / mt ratio is 1 or more, the electrical connection between the internal electrodes 3 and 4 and the external electrodes 5 and 6 decreases. When the distance between the end surface of the multilayer body 1 and the portion where the external electrodes 5 and 6 ride on the main surface of the multilayer body 1 is nt, and the dimension of the gap 7 in the W direction is na, 0 <na / nt < 0.9, preferably 0.2 ≦ na / nt ≦ 0.7. That is, when the na / nt ratio is 0.9 or more, the contact area between the external electrodes 5 and 6 and the main surface of the multilayer body 1 is reduced, so that the fixing force of the external electrodes 5 and 6 to the multilayer body 1 is weakened. .
[0037]
It should be noted that the present invention is not limited to the above embodiments, and various changes and improvements may be made without departing from the spirit of the present invention.
[0038]
For example, in the above embodiment, the description has been made using the multiple capacitors as the multiple ceramic electronic components. However, the present invention can be widely applied to ceramic electronic components such as multilayer ceramic capacitors, circuit boards, and noise filter components.
[0039]
【Example】
The inventor manufactured the multiple capacitor 10 in which the gap 7 covered with the external electrodes 5 and 6 was formed at the ridge of the laminate 1 by the above method. At this time, the ma / mt ratio and the na / nt ratio were changed by changing the application amount of the carbon paste (sample numbers 3 to 7, 9 to 12). Further, ma, mt, na, and nt were confirmed from the SEM image of the fracture surface of the sample 10.
[0040]
As comparative examples, the multiple capacitor 10 in which the void 7 was not formed (Sample No. 1), the multiple capacitor 10 in which the void 7 was formed only in the main surface of the multilayer body 1 (Sample No. 2), the end face of the multilayer body A multiple capacitor 10 (Sample No. 8) having only the voids 7 was also manufactured.
[0041]
The obtained sample was subjected to a drop test, an external electrode fixing force (shear strength) test, and a measurement of an equivalent series resistance (ESR).
[0042]
In the drop test method, as shown in FIG. 2, 100 samples were surface-mounted on a wiring pattern 12 on a 1.6 mm thick glass epoxy substrate (wiring board) 11 by soldering. Then, the substrate 11 was set in a resin case, dropped on a concrete plate from a height of 2 m, and the incidence of cracks 38 was determined by a metallographic microscope.
[0043]
As shown in FIG. 2, in the external electrode fixing force (shear strength) test, 22 samples were surface-mounted on a wiring pattern 12 on a 1.6 mm thick glass epoxy board (wiring board) 11 by soldering 13. The strength was applied by a fixing pin, and the strength when the sample was peeled off from the glass epoxy substrate 11 was obtained.
[0044]
The equivalent series resistance (ESR) was measured for five samples, and was set to the largest value.
[0045]
As a criterion, a case where the rate of occurrence of cracks 38 in the drop test was 5% or less was marked as a non-defective product by a circle. Among the non-defective products, the case where the rate of occurrence of the crack 38 is 0%, the external electrode fixing force is 1.5 kg or more, and the equivalent series resistance (ESR) is 300 mΩ or less is indicated by a double circle. On the other hand, the case where the crack 38 occurrence rate exceeds 5% is marked as a cross, as a defective product.
[0046]
Table 1 shows the results.
[0047]
[Table 1]
Figure 2004235376
[0048]
As shown in the table, the present example (sample numbers 3 to 7 and 9 to 12) in which the voids 7 covered with the external electrodes 5 and 6 were formed on and near the ridge line of the laminate 1 was 2 m. When the steel plate was dropped on the concrete plate from the height, the crack 38 generation rate was 5% or less. In particular, when the ratio is in the range of 0.2 ≦ ma / mt ≦ 0.8 and 0.2 ≦ na / nt ≦ 0.7 (sample numbers 4 to 6, 10 to 11), the crack 38 occurrence rate is 0%. The external electrode fixing force was 1.5 kg or more, and the equivalent series resistance (ESR) was 300 mΩ or less.
[0049]
On the other hand, the comparative example in which the void 7 was not formed (Sample No. 1), the comparative example in which the void 7 was formed only on the main surface of the laminate (Sample No. 2), and the void 7 formed only in the end face of the laminate. In the comparative example (Sample No. 7), when dropped on a concrete plate from a height of 2 m, the incidence of cracks 38 was larger than 5%.
[0050]
From these results, in the multiple capacitor 10 of the present invention, the void 7 covered with the external electrodes 5 and 6 is formed on and near the ridge line where the end surface of the multilayer body 1 is in contact with the main surface. It has been found that, in a state where the multiple capacitor 10 is surface-mounted on the wiring pattern 12 on the wiring board 11 with the solder 13, the occurrence of cracks 38 can be reduced even if an impact due to dropping or the like is applied to the multiple capacitor 10.
[0051]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the ceramic electronic component of this invention, since the space | gap covered with the external electrode is formed in the ridgeline part which the end surface of a component main body and a mounting surface contact, it is excellent in impact resistance.
[0052]
Further, since the gap is covered by the external electrode, the reliability does not decrease due to the plating solution entering the gap.
[Brief description of the drawings]
FIG. 1 is a view showing a multiple capacitor of the present invention, wherein (a) is an external perspective view and (b) is a cross-sectional view taken along line XX.
FIG. 2 is a cross-sectional view showing a state where the multiple capacitor of the present invention is surface-mounted on a wiring board.
3A and 3B are diagrams showing a conventional multiple capacitor, in which FIG. 3A is an external perspective view in a partially transparent state, and FIG. 3B is a sectional view taken along line XX.
[Explanation of symbols]
10 Multiple capacitors (ceramic electronic components)
1 laminated body (part body)
2 Dielectric layer 3, 4 Dielectric layer 5, 6 External electrode 7 Void

Claims (1)

内部導体が形成されたセラミックス部材からなる直方体の部品本体と、前記内部導体に接続し、且つ該部品本体の端面と主面とに跨がるように形成された外部電極とを備えてなるセラミック電子部品において、
前記部品本体の端面と主面との稜線部に、前記外部電極に覆われた空隙が形成されていることを特徴とするセラミック電子部品。
A ceramic comprising: a rectangular parallelepiped component body made of a ceramic member having an internal conductor formed thereon; and external electrodes connected to the internal conductor and formed so as to extend over an end face and a main surface of the component body. In electronic components,
A ceramic electronic component, wherein a void covered by the external electrode is formed at a ridge between an end surface and a main surface of the component body.
JP2003021210A 2003-01-29 2003-01-29 Ceramic electronic components Expired - Fee Related JP4051298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021210A JP4051298B2 (en) 2003-01-29 2003-01-29 Ceramic electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021210A JP4051298B2 (en) 2003-01-29 2003-01-29 Ceramic electronic components

Publications (2)

Publication Number Publication Date
JP2004235376A true JP2004235376A (en) 2004-08-19
JP4051298B2 JP4051298B2 (en) 2008-02-20

Family

ID=32950602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021210A Expired - Fee Related JP4051298B2 (en) 2003-01-29 2003-01-29 Ceramic electronic components

Country Status (1)

Country Link
JP (1) JP4051298B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073780A (en) * 2008-09-17 2010-04-02 Murata Mfg Co Ltd Ceramic electronic component, and method for manufacturing the same
JP2011049351A (en) * 2009-08-27 2011-03-10 Kyocera Corp Laminated ceramic capacitor
JP2016072487A (en) * 2014-09-30 2016-05-09 株式会社村田製作所 Multilayer ceramic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073780A (en) * 2008-09-17 2010-04-02 Murata Mfg Co Ltd Ceramic electronic component, and method for manufacturing the same
JP2011049351A (en) * 2009-08-27 2011-03-10 Kyocera Corp Laminated ceramic capacitor
JP2016072487A (en) * 2014-09-30 2016-05-09 株式会社村田製作所 Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP4051298B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
KR101434108B1 (en) Multi-layered ceramic capacitor, mounting circuit board thereof and manufacturing method the same
JP5931044B2 (en) Multilayer ceramic electronic component for built-in substrate and printed circuit board with built-in multilayer ceramic electronic component
JP5777179B2 (en) Multilayer ceramic electronic component for built-in substrate and printed circuit board with built-in multilayer ceramic electronic component
JP2014130987A (en) Board built-in multilayer ceramic electronic component and multilayer ceramic electronic component built-in printed circuit board
KR20150018650A (en) Multi-layered ceramic electronic part, board for mounting the same and manufacturing method thereof
JP2015023271A (en) Multilayer ceramic electronic component to be embedded in board and printed circuit board having multilayer ceramic electronic component embedded therein
JP2004259991A (en) Laminated ceramic component
JP2017108057A (en) Multilayer ceramic capacitor
JP2015076600A (en) Multilayer ceramic electronic component to be embedded in board and multilayer ceramic electronic component embedded printed circuit board
KR101489815B1 (en) Multi-layered ceramic capacitor
JP2012099786A (en) Multilayer ceramic capacitor and manufacturing method therefor
JP2011135035A (en) Laminated ceramic capacitor and method of manufacturing the same
JP2004296936A (en) Ceramic electronic component
JP2004235377A (en) Ceramic electronic component
JP4463045B2 (en) Ceramic electronic components and capacitors
JP2003282356A (en) Capacitor array
JP2004047536A (en) Stacked ceramic capacitor and method of manufacturing the same
JP2001102243A (en) Coaxial capacitor
KR19980086791A (en) Laminated Ceramic Electronic Components
JP2005159121A (en) Laminated ceramic electronic component
JP2005159056A (en) Laminated ceramic electronic component
JP3918095B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
KR20190116176A (en) Multi-layered ceramic electroic components
KR101496816B1 (en) Multi-layered ceramic electronic part and board for mounting the same
JP4051298B2 (en) Ceramic electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees