JP2004234987A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2004234987A
JP2004234987A JP2003021408A JP2003021408A JP2004234987A JP 2004234987 A JP2004234987 A JP 2004234987A JP 2003021408 A JP2003021408 A JP 2003021408A JP 2003021408 A JP2003021408 A JP 2003021408A JP 2004234987 A JP2004234987 A JP 2004234987A
Authority
JP
Japan
Prior art keywords
body case
main body
battery core
battery pack
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003021408A
Other languages
Japanese (ja)
Inventor
Seiji Yoshioka
省二 吉岡
Seiji Ioka
誠二 井岡
Takuya Oga
琢也 大賀
Atsushi Arakane
淳 荒金
Hiroichi Ishida
博一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003021408A priority Critical patent/JP2004234987A/en
Publication of JP2004234987A publication Critical patent/JP2004234987A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack with a high energy density structure reduced in size in the direction of thickness by disusing a laminate film of which the function of covering a battery core in a sack shape is replaced by surface treatment applied to a main body case. <P>SOLUTION: The battery core is stored in the deep bottom-shaped main body case with an opening to which waterproof treatment is applied, and a flexible cap covering a terminal is airtightly joined to the opening. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、携帯電子機器等に内蔵される電池に関するもので、特に電池コアをパックした電池パックに係るものである。
【0002】
【従来の技術】
携帯電話機、ノートパソコン、PDA等の携帯電子機器の普及につれて、それらに用いられる電池パックの需要も増加している。これら電子機器の高性能化、小型化に伴い電池パックの高エネルギ密度化の要求も高まってきている。このような状況下において、電池パック構成要素の電池コアや端子の高エネルギ密度化の技術開発に並行して、端子を含む電池コアのパッキング技術の開発も鋭意に行われている。
従来のパッキング技術として、電池コア全体をラミネートフィルムで覆い、ケース内に挿入することが示され、このとき前記ラミネートフィルムは電池を包袋状に覆い、電池コアとその周囲に位置する電解液と、正負極端子の一部とを取り囲んで封止することが示されている(例えば特許文献1参照)。
【0003】
【特許文献1】
特開2002−184372号公報(第4頁、図5)
【0004】
【発明が解決しようとする課題】
しかしながら、前記特許文献1に示された従来技術では、電池コアがラミネートフィルムによって包袋状に覆って防水構造とした後、ケースに挿入するという二重構造となっている。すなわち電池コアが二重の容器に入れられている。このような従来の構造では、電池パックの組み立て工程における精度を考慮すると、電池コアとラミネートフィルム容器とのクリアランスおよび前記電池コアを覆うラミネートフィルム容器とケース間とのクリアランスと、双方のクリアランスを配慮した電池パックであるのでケースに対するスペースファクタが低下し、外形寸法で規定される電池体積に対する電池コア体積で表されるコア容積率が低くなり、電池の高エネルギ密度化にとって問題となってきた。
【0005】
この発明は前記のような課題を解決するためになされたもので、電池コアを包袋状に覆うラミネートフィルムの機能を、本体ケースに施した表面処理で代替えすることによって前記ラミネートフィルムを不要として厚さ方向寸法を減少し、高エネルギ密度化の構造の電池パックを提供するものである。
【0006】
【課題を解決するための手段】
電池コアと、前記電池コアを収納する本体ケースと、電池コアの端子部と、本体ケースに接合された端子部の保護ケースとを備えた電池パックであって、
前記本体ケースは開口部を有する深底型であるとともに防水処理が施されて電池コアを収納し、本体ケースの開口部には、気密に接合された端子部を覆うフレキシブルキャップが設けられているとともに、フレキシブルキャップが端子部に設けられた電池コアの集電端子の一部を取り囲んで気密に封止しているものである。
【0007】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1は電池パック100の斜視図、図2は断面透視図である。図において、電池パック100は、本体ケース1、フレキシブルキャップ2と、端子部110を構成する端子基板3、前記端子部110の保護ケース4、PTC素子5、負極集電端子6a、正極集電端子6bと、前記端子部110の保護ケース4および図2に示した電池コア7より構成されている。
電池コア7は図には示していないが、正極活物質、導電材、バインダーからなる正極活物質層を集電箔上に塗工した正極板、負極活物質、導電材、バインダーからなる負極活物質層を集電箔上に塗工した負極板、正極板から電力を取り出すための正極集電端子6b、負極板から電力を取り出すための負極集電端子6a、正極と負極を電子的に分離するセパレーター、正極板、負極板、セパレーターの多孔部に含浸された電解液またはゲル状の固体電解質を有している。
リチウム二次電池コアの場合の製造方法について以下に述べる。まず、正極板であるが、微粒子状の正極活物質(例えばコバルト酸リチウムやニッケル酸リチウム)とカーボン導電材(例えばアセチレンブラックやケッチェンブラック)とバインダー(例えばポリフッ化ビニリデン)を91対3対6の重量比でNMP溶媒に均一に分散させたペーストをロールコーターでアルミニウム箔上に均一に塗工し、乾燥炉で溶媒を蒸発させる。乾燥後の正極板をロールプレス機で多孔度30%程度まで圧縮する。正極板の活物質層未塗工部を間欠塗工によって予め設けておき、その部分にアルミニウム製の集電端子6bを超音波溶着して取り付ける。また、負極板は、負極活物質(例えば黒鉛)とバインダー(例えばポリフッ化ビニリデン)を95:5の重量比でNMP溶媒に均一に分散させたペーストをロールコーターで銅箔上に均一に塗工し、乾燥炉で溶媒を蒸発させる。乾燥後の負極板をロールプレス機で多孔度30%程度まで圧縮する。負極板の活物質層未塗工部を間欠塗工によって予め設けておき、正極集電端子6b同様、ニッケル製の集電端子6aを超音波溶着して取り付ける。このようにして作製した正極板、負極板をポリエチレン等のポリオレフィン系の微多孔膜であるセパレーターとともに長円状に巻いて電池コアを作製する。
【0008】
正極板、負極板、セパレーターを巻くときに正極板とセパレーターまたは負極板とセパレーターを酸化アルミニウム等の微粒子とポリフッ化ビニリデンを含む多孔質接着層で接着して一体化された電池コアを作製してもよい。
電池コアをエチレンカーボネートとジエチルカーボネートの混合溶媒に1Lあたり1モルの濃度のLiPF6塩を解かした電解液に浸漬させて、減圧下で電池コアの多孔内に電解液を含浸させる。負極活物質によっては、電解液含浸後の電池コアに電池容量の3分の1時間率で充電して、副反応によるガスを発生させておくこともある。さらに、電解液を含浸させた後に、厚さ20μm厚のポリエチレンシートを袋状に成型したもののなかに、電池コア部に密着させた状態で封入してもよい。
【0009】
以上のようにして作製された電池コア7を本体ケース1に挿入する場合の詳細について以下説明する。本体ケース1は例えば樹脂製とし、例えばポリカーボネート材を用い、300℃で射出成型にて厚さ0.3mm、深さ50mmの開口部1aを有する深底型のケース1に成型した。本体ケース1の外表には、真空蒸着法にて、図示省略したニッケルまたはアルミニウム等の金属薄膜を蒸着してコーティングを施している。また、金属薄膜に替りテフロン(登録商標)等の撥水性を有するフッ素系樹脂のエマルジョンを噴霧してコーティングしてもよい。これらの処理により、防水性が向上し外部から本体ケース1への水分浸入を防止することができ、電池の信頼性が向上する。なお前記金属薄膜またはフッ素系樹脂のコーティングは、ケース1の全面もしくは深底型の内表面に施してもよい。さらにまた、本体ケース1の材料はポリプロピレン、ポリエチレン、テフロン(登録商標)、その他フッ素系樹脂等の樹脂製、またはアルミニウムやステンレスのような金属製でもよい。
以上のような本体ケース1に防水用のコーティング処理を施す理由は、本体ケース1の防水性を向上させることによって、従来技術で示したラミネートフィルムで電池コア7を覆わない構成として、厚さ方向の寸法を減少させ、高エネルギ密度化を達成させたものである。すなわち近年、携帯電話に代表される携帯電子機器の技術進歩はめざましく、バージョン更新も著しい。このような情勢のもとでユーザによる利用のされ方、バージョン交替を含めた寿命も考慮して、本体ケース1への防水処理としてのコーティング法を採用し、後述するフレキシブルキャップを含めた新規な気密構造を有した高エネルギ密度の電池パックを創出したものである。
【0010】
従ってこのような本体ケース1に電池コア7を直接収納した構造の電池パック100は、従来技術と比較して大幅な薄型化がはかられている。すなわち電池コアを覆っていたほぼ100μm厚のラミネートフィルムを設けていないので、電池パック100の厚さ寸法を少なくとも200μmは低減されている。さらにラミネートフィルムと電池コアとの組み立て時のクリアランスも不要となり、これらを合算すると電池パック100の10%程度の厚さ方向寸法を低減させることができ、電池パック100の薄型化ひいては高エネルギ密度化に大きく寄与している。なお、深底型本体ケースとしたことで後述する端子部110の組立作業が容易となりまた、保護ケース4との接合部の長さが短く、気密保持の信頼性が向上する。
【0011】
次にフレキシブルキャップ2の構成、機能について図2、図3に基づいて説明する。図2に示すように、本体ケース1に電池コア7を収納後、フレキシブルキャップ2は、電池コア7に接続された正、負集電端子6a、6bの一部分である電池コア7につながる部分6cを気密に封止するとともに、本体ケース1の開口部1aの内側で熱溶着法または超音波溶着法にて気密に封止係合される。このように、正、負集電端子6a、6bの一部分である電池コア7につながる側の接続部分6cおよび電池コア7の本体ケース1の開口部1aに面する電池コア部7aをフレキシブルキャップ2で覆う防水性構造を採用するとともに、開口部1aの内側で封止係合されているので、防水性を有する、薄型の電池パック100を構成している。なお前記フレキシブルキャップ2は斜視図図3に示すように胴巻き状に取り付けられ、その側面を内側に折り込み幅方向の広がりを防止している。
また、フレキシブルキャップ2はアルミニウム箔の両面にポリエチレンまたはポリプロピレンの樹脂層を成型したラミネートフィルムで形成されている。
【0012】
フレキシブルキャップ2を取り付け後、次に集電端子6a、6bのいずれか一方にPTC素子5を取り付け、その上部に端子板3を設けPTC素子5との結線を行う。端子板3には正、負極端子、温度検知用端子が配置され、図1に示した矢印の方向に端子部110の保護ケース4を設置する。本体ケース1と保護ケース4とはその接合部8にて接着剤または超音波溶接で封止する。ここで4a〜4cは保護ケース4に設けた端子窓である。また前記フレキシブルキャップ2は本体ケース1の開口部1aの内側で気密に封止係合された構造を示したが、これにかぎらず、開口部1aの外側で気密に封止係合してもよい。この場合、保護ケース4はフレキシブルキャップ2と接着剤にて接合する。
【0013】
【発明の効果】
この発明は以上述べたような構成の電池パックであるので、以下のような効果がある。
電池コアと、前記電池コアを収納する本体ケースと、前記電池コアの端子部と、前記本体ケースに接合された前記端子部の保護ケースとを備え、本体ケースは開口部を有する深底型であるとともに防水処理が施されて電池コアを収納し、本体ケースの開口部には、気密に接合された端子部を覆うフレキシブルキャップが設けられているとともに、フレキシブルキャップが端子部に設けられた電池コアの集電端子の一部を取り囲んで気密に封止している電池パックであるので、気密構造の電池パックであるとともに、厚さ方向寸法を小さくし薄型の高エネルギ密度化した電池パックを提供できるという優れた効果を奏する。
またさらに、電池コアが深底型本体ケースに直接収納される構造であるので、組立工程が単純化され工期の短縮、コスト低減につながる。またさらに、従来使用していた電池コアを覆う高価なラミネートフィルムを不要とした構成であるので、さらなるコスト低減がはかれるという効果も奏する。
【図面の簡単な説明】
【図1】この発明の実施の形態1による電池パックの斜視図である。
【図2】この発明の実施の形態1による電池パックの断面透視図である。
【図3】この発明の実施の形態1による本体ケース、フレキシブルキャップの斜視図である。
【符号の説明】
1 本体ケース、1a 開口部、2 フレキシブルキャップ、3 端子基板、
4 保護ケース、4a〜4c 端子窓、5 PTC素子、6a 負極端子、
6b 正極端子、6c 接続部分、7 電池コア、
7a 開口部に面する電池コア部、8 本体ケースと保護ケースの接合部、
100 電池パック、110 端子部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery incorporated in a portable electronic device or the like, and more particularly to a battery pack having a battery core packed therein.
[0002]
[Prior art]
With the spread of portable electronic devices such as mobile phones, notebook computers, PDAs, and the like, the demand for battery packs used for them has been increasing. Demands for higher energy density of battery packs have been increasing along with higher performance and smaller size of these electronic devices. Under such circumstances, in parallel with the development of the technology for increasing the energy density of the battery core and the terminals of the battery pack components, the development of the packing technology of the battery core including the terminals is also being vigorously performed.
As a conventional packing technique, it has been shown that the entire battery core is covered with a laminate film and inserted into a case.At this time, the laminate film covers the battery in a wrapper shape, and includes a battery core and an electrolyte solution located around the battery core. And a part of the positive and negative electrode terminals are sealed (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-184372 (page 4, FIG. 5)
[0004]
[Problems to be solved by the invention]
However, in the conventional technique disclosed in Patent Document 1, the battery core has a double structure in which the battery core is covered with a laminate film in a wrapping shape to form a waterproof structure, and then inserted into a case. That is, the battery core is contained in a double container. In such a conventional structure, considering the accuracy in the battery pack assembling process, the clearance between the battery core and the laminate film container and the clearance between the laminate film container covering the battery core and the case, and both clearances are considered. Since the battery pack is a battery pack, the space factor with respect to the case is reduced, and the core volume ratio represented by the battery core volume with respect to the battery volume defined by the outer dimensions is reduced, which has been a problem for increasing the energy density of the battery.
[0005]
The present invention has been made to solve the above-described problems, and eliminates the need for the laminate film by substituting the function of the laminate film for covering the battery core in a wrapper shape with a surface treatment applied to the main body case. An object of the present invention is to provide a battery pack having a structure in which the thickness in the thickness direction is reduced and the energy density is increased.
[0006]
[Means for Solving the Problems]
A battery pack including a battery core, a main body case for housing the battery core, a terminal portion of the battery core, and a protective case for a terminal portion joined to the main body case,
The main body case is a deep-bottom type having an opening, and is subjected to a waterproof treatment to house the battery core. The opening of the main body case is provided with a flexible cap that covers the terminal portion that is airtightly joined. In addition, the flexible cap surrounds a part of the current collecting terminal of the battery core provided in the terminal portion and hermetically seals it.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of the battery pack 100, and FIG. 2 is a sectional perspective view. In the figure, a battery pack 100 includes a main body case 1, a flexible cap 2, a terminal board 3 constituting a terminal portion 110, a protective case 4 for the terminal portion 110, a PTC element 5, a negative current collecting terminal 6 a, and a positive current collecting terminal. 6b, the protective case 4 for the terminal section 110, and the battery core 7 shown in FIG.
Although not shown in the figure, the battery core 7 has a positive electrode plate in which a positive electrode active material layer made of a positive electrode active material, a conductive material, and a binder is coated on a current collector foil, a negative electrode active material, a negative electrode active material made of a conductive material, and a binder. A negative electrode plate coated with a material layer on a current collector foil, a positive electrode current collecting terminal 6b for extracting electric power from the positive electrode plate, a negative electrode current collecting terminal 6a for extracting electric power from the negative electrode plate, and electronically separating the positive electrode and the negative electrode And a solid electrolyte in the form of a gel or electrolyte impregnated in the porous portion of the separator, the positive electrode plate, the negative electrode plate, and the separator.
A method for manufacturing a lithium secondary battery core will be described below. First, regarding the positive electrode plate, a fine particle-shaped positive electrode active material (for example, lithium cobalt oxide or lithium nickel oxide), a carbon conductive material (for example, acetylene black or Ketjen black) and a binder (for example, polyvinylidene fluoride) are used in a ratio of 91: 3. A paste uniformly dispersed in an NMP solvent at a weight ratio of 6 is uniformly applied on an aluminum foil by a roll coater, and the solvent is evaporated in a drying oven. The dried positive electrode plate is compressed to a porosity of about 30% by a roll press. An uncoated portion of the active material layer of the positive electrode plate is provided in advance by intermittent coating, and a current collecting terminal 6b made of aluminum is attached to the portion by ultrasonic welding. The negative electrode plate is formed by uniformly coating a paste in which a negative electrode active material (for example, graphite) and a binder (for example, polyvinylidene fluoride) are uniformly dispersed in an NMP solvent at a weight ratio of 95: 5 on a copper foil with a roll coater. And evaporate the solvent in a drying oven. The dried negative electrode plate is compressed to a porosity of about 30% using a roll press. An uncoated portion of the active material layer of the negative electrode plate is provided in advance by intermittent coating, and a nickel current collecting terminal 6a is attached by ultrasonic welding similarly to the positive electrode current collecting terminal 6b. The positive electrode plate and the negative electrode plate thus produced are wound in an elliptical shape together with a separator, which is a microporous film of a polyolefin such as polyethylene, to produce a battery core.
[0008]
When winding the positive electrode plate, the negative electrode plate, and the separator, the positive electrode plate and the separator or the negative electrode plate and the separator are bonded with a porous adhesive layer containing fine particles such as aluminum oxide and polyvinylidene fluoride to form an integrated battery core. Is also good.
The battery core is immersed in a mixed solvent of ethylene carbonate and diethyl carbonate in an electrolyte obtained by dissolving a LiPF6 salt at a concentration of 1 mol per liter, and the electrolyte is impregnated into the pores of the battery core under reduced pressure. Depending on the negative electrode active material, the battery core impregnated with the electrolyte may be charged at a rate of 1/3 of the battery capacity to generate gas by a side reaction. Furthermore, after impregnation with the electrolytic solution, a polyethylene sheet having a thickness of 20 μm may be molded into a bag shape and sealed in a state in which the sheet is in close contact with the battery core.
[0009]
Details when the battery core 7 manufactured as described above is inserted into the main body case 1 will be described below. The main body case 1 was made of, for example, a resin, and was molded into a deep-bottom case 1 having an opening 1a having a thickness of 0.3 mm and a depth of 50 mm at 300 ° C. by injection molding at 300 ° C., for example. The outer surface of the main body case 1 is coated with a metal thin film such as nickel or aluminum (not shown) by vapor deposition using a vacuum vapor deposition method. Further, instead of the metal thin film, a coating may be applied by spraying a water-repellent fluororesin emulsion such as Teflon (registered trademark). By these treatments, the waterproofness is improved, moisture can be prevented from entering the main body case 1 from the outside, and the reliability of the battery is improved. The coating of the metal thin film or the fluorine-based resin may be applied to the entire surface of the case 1 or the inner surface of the deep bottom type. Furthermore, the material of the main body case 1 may be made of a resin such as polypropylene, polyethylene, Teflon (registered trademark), other fluorine-based resins, or a metal such as aluminum or stainless steel.
The reason for applying the waterproof coating treatment to the main body case 1 as described above is that the waterproof property of the main body case 1 is improved so that the battery core 7 is not covered with the laminated film shown in the prior art. Are reduced in size to achieve high energy density. That is, in recent years, the technical progress of mobile electronic devices represented by mobile phones has been remarkable, and version updates have been remarkable. Under such circumstances, a coating method as a waterproofing treatment for the main body case 1 is adopted in consideration of the way of use by the user and the life including the version change, and a new method including a flexible cap to be described later. A high energy density battery pack having an airtight structure is created.
[0010]
Therefore, the battery pack 100 having such a structure in which the battery core 7 is directly housed in the main body case 1 is greatly reduced in thickness as compared with the related art. That is, the thickness dimension of the battery pack 100 is reduced to at least 200 μm because the laminate film having a thickness of about 100 μm that covers the battery core is not provided. Furthermore, the clearance at the time of assembling the laminate film and the battery core is not required, and when these are added together, the dimension in the thickness direction of the battery pack 100 can be reduced by about 10%, and the battery pack 100 can be made thinner and thus have a higher energy density. Has greatly contributed to The use of the deep bottom type main body case facilitates the work of assembling the terminal portion 110 described later, shortens the length of the joint portion with the protective case 4, and improves the reliability of airtightness.
[0011]
Next, the configuration and function of the flexible cap 2 will be described with reference to FIGS. As shown in FIG. 2, after the battery core 7 is stored in the main body case 1, the flexible cap 2 is connected to the battery core 7 which is a part of the positive and negative current collecting terminals 6 a and 6 b connected to the battery core 7. And hermetically sealed and engaged inside the opening 1a of the main body case 1 by a thermal welding method or an ultrasonic welding method. As described above, the connection portion 6c on the side connected to the battery core 7 which is a part of the positive and negative current collecting terminals 6a and 6b and the battery core portion 7a facing the opening 1a of the main body case 1 of the battery core 7 are fixed to the flexible cap 2 And a sealing structure inside the opening 1a, so that a thin battery pack 100 having waterproofness is formed. The flexible cap 2 is attached in the shape of a bobbin as shown in a perspective view of FIG. 3, and its side is folded inward to prevent it from spreading in the width direction.
The flexible cap 2 is formed of a laminated film in which a polyethylene or polypropylene resin layer is formed on both sides of an aluminum foil.
[0012]
After the flexible cap 2 is attached, the PTC element 5 is attached to one of the current collecting terminals 6a and 6b, and the terminal plate 3 is provided on the upper part of the PTC element 5, and the connection with the PTC element 5 is performed. A positive terminal, a negative terminal, and a terminal for temperature detection are arranged on the terminal plate 3, and the protective case 4 of the terminal portion 110 is installed in the direction of the arrow shown in FIG. The main body case 1 and the protection case 4 are sealed at the joint 8 by an adhesive or ultrasonic welding. Here, 4a to 4c are terminal windows provided on the protective case 4. The flexible cap 2 has a structure in which the flexible cap 2 is hermetically sealed inside the opening 1a of the main body case 1. However, the present invention is not limited to this, and the flexible cap 2 may be hermetically sealed and engaged outside the opening 1a. Good. In this case, the protective case 4 is bonded to the flexible cap 2 with an adhesive.
[0013]
【The invention's effect】
Since the present invention is a battery pack having the above-described configuration, the following effects can be obtained.
A battery core, a body case for housing the battery core, a terminal portion of the battery core, and a protection case for the terminal portion joined to the body case, wherein the body case is a deep bottom type having an opening. There is a battery that is waterproof and accommodates the battery core, and has a flexible cap covering the airtightly joined terminal at the opening of the main body case, and a flexible cap provided at the terminal. Since it is a battery pack that surrounds a part of the current collecting terminals of the core and is hermetically sealed, it is a battery pack with an airtight structure and a thin, high-energy density battery pack with a reduced size in the thickness direction. It has an excellent effect that it can be provided.
Furthermore, since the battery core has a structure in which the battery core is directly housed in the deep-bottomed main body case, the assembling process is simplified, leading to a reduction in the construction period and cost. Furthermore, since the configuration does not require an expensive laminate film covering the battery core, which has been conventionally used, an effect that the cost can be further reduced is also achieved.
[Brief description of the drawings]
FIG. 1 is a perspective view of a battery pack according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional perspective view of the battery pack according to Embodiment 1 of the present invention.
FIG. 3 is a perspective view of a main body case and a flexible cap according to the first embodiment of the present invention.
[Explanation of symbols]
1 body case, 1a opening, 2 flexible cap, 3 terminal board,
4 protective case, 4a-4c terminal window, 5 PTC element, 6a negative electrode terminal,
6b positive electrode terminal, 6c connection part, 7 battery core,
7a battery core facing the opening, 8 junction of body case and protective case,
100 battery pack, 110 terminals.

Claims (6)

電池コアと、前記電池コアを収納する本体ケースと、前記電池コアの端子部と、前記本体ケースに接合された前記端子部の保護ケースとを備えた電池パックであって、
前記本体ケースは開口部を有する深底型であるとともに防水処理が施されて前記電池コアを収納し、前記本体ケースの開口部には、気密に接合された前記端子部を覆うフレキシブルキャップが設けられているとともに、前記フレキシブルキャップが前記端子部に設けられた前記電池コアの集電端子の一部を取り囲んで気密に封止していることを特徴とする電池パック。
A battery pack comprising: a battery core, a main body case for housing the battery core, a terminal portion of the battery core, and a protective case for the terminal portion joined to the main body case,
The main body case is a deep-bottom type having an opening and is waterproofed to house the battery core, and the opening of the main body case is provided with a flexible cap that covers the terminal portion that is air-tightly joined. A battery pack, wherein the flexible cap surrounds a part of a current collecting terminal of the battery core provided in the terminal portion and is hermetically sealed.
前記フレキシブルキャップが、アルミニウム箔の両側に樹脂層を成型したラミネートフィルムで形成されていることを特徴とする請求項1に記載の電池パック。2. The battery pack according to claim 1, wherein the flexible cap is formed of a laminate film formed by molding a resin layer on both sides of an aluminum foil. 3. 前記本体ケースの防水処理は本体ケースの全面あるいは外表面または深底型の内表面に金属薄膜がコーティングされていることを特徴とする請求項1に記載の電池パック。2. The battery pack according to claim 1, wherein the waterproofing of the main body case is performed by coating a metal thin film on the entire surface, the outer surface, or the inner surface of the deep bottom type. 3. 前記本体ケースの防水処理は本体ケースの全面あるいは外表面または深底型の内表面にフッ素系樹脂膜がコーティングされていることを特徴とする請求項1に記載の電池パック。2. The battery pack according to claim 1, wherein the waterproofing of the main body case is performed by coating the entire surface of the main body case, the outer surface, or the inner surface of the deep bottom type with a fluororesin film. 3. 前記本体ケースが樹脂製であることを特徴とする請求項1に記載の電池パック。The battery pack according to claim 1, wherein the body case is made of resin. 前記本体ケースが金属製であることを特徴とする請求項1に記載の電池パック。The battery pack according to claim 1, wherein the main body case is made of metal.
JP2003021408A 2003-01-30 2003-01-30 Battery pack Pending JP2004234987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021408A JP2004234987A (en) 2003-01-30 2003-01-30 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021408A JP2004234987A (en) 2003-01-30 2003-01-30 Battery pack

Publications (1)

Publication Number Publication Date
JP2004234987A true JP2004234987A (en) 2004-08-19

Family

ID=32950748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021408A Pending JP2004234987A (en) 2003-01-30 2003-01-30 Battery pack

Country Status (1)

Country Link
JP (1) JP2004234987A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526228A (en) * 2008-06-27 2011-10-06 プロテラ インコーポレイテッド Vehicle battery system and method
CN106471641A (en) * 2014-07-07 2017-03-01 三洋电机株式会社 Set of cells and its manufacture method
WO2018066195A1 (en) 2016-10-03 2018-04-12 株式会社村田製作所 Battery pack, electronic apparatus, electric vehicle, electric tool, and power storage system
JP2019080317A (en) * 2013-04-19 2019-05-23 株式会社半導体エネルギー研究所 Portable telephone
CN111261804A (en) * 2018-12-03 2020-06-09 丰能科技股份有限公司 Method and structure for packaging battery
CN115011157A (en) * 2021-03-05 2022-09-06 Agc株式会社 Coating agent for external package of battery pack

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505164B2 (en) 2008-06-27 2019-12-10 Proterra Inc. Low-floor electric vehicle
US9252417B2 (en) 2008-06-27 2016-02-02 Proterra Inc. Low-floor electric bus
US11285795B2 (en) 2008-06-27 2022-03-29 Proterra Inc. Electric bus
US9680139B2 (en) 2008-06-27 2017-06-13 Proterra Inc. Low-floor electric vehicle
JP2011526228A (en) * 2008-06-27 2011-10-06 プロテラ インコーポレイテッド Vehicle battery system and method
US11005123B2 (en) 2013-04-19 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
JP2019080317A (en) * 2013-04-19 2019-05-23 株式会社半導体エネルギー研究所 Portable telephone
US11594752B2 (en) 2013-04-19 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11923499B2 (en) 2013-04-19 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
CN106471641B (en) * 2014-07-07 2019-07-02 三洋电机株式会社 Battery pack and its manufacturing method
CN106471641A (en) * 2014-07-07 2017-03-01 三洋电机株式会社 Set of cells and its manufacture method
WO2018066195A1 (en) 2016-10-03 2018-04-12 株式会社村田製作所 Battery pack, electronic apparatus, electric vehicle, electric tool, and power storage system
CN111261804A (en) * 2018-12-03 2020-06-09 丰能科技股份有限公司 Method and structure for packaging battery
CN115011157A (en) * 2021-03-05 2022-09-06 Agc株式会社 Coating agent for external package of battery pack

Similar Documents

Publication Publication Date Title
JP4293501B2 (en) Electrochemical devices
JP3822445B2 (en) Electrochemical devices
JP3825593B2 (en) Manufacturing method of package
US9450217B2 (en) Pouch battery and manufacturing method thereof
JP2019021805A (en) Electrode body and electric storage device
JP2011086760A (en) Energy storage element
JP2018510474A (en) Reinforced battery package with sealed anode chamber
JP5327020B2 (en) All solid battery
JP6179169B2 (en) Power storage device
CN111989794B (en) Secondary battery
JP4021592B2 (en) Electrochemical devices
CN109075413B (en) Negative electrode composite structure of lithium air battery
WO2015141553A1 (en) Non-aqueous electrolyte secondary battery
JP2004234987A (en) Battery pack
JP4138172B2 (en) Electrochemical device and manufacturing method thereof
JP5609829B2 (en) Air battery
CN112956075B (en) Fastening structure
JP4899244B2 (en) Battery pack
US11251483B2 (en) Method of preparing an electrochemical cell
JP2004319098A (en) Electrochemical cell and its manufacturing method
JP6601342B2 (en) Lithium air battery
JP3601283B2 (en) Non-aqueous electrolyte battery
JP2002260601A (en) Electrochemical device and manufacturing method therefor
KR20070025687A (en) Lithium rechargeable battery
KR101211668B1 (en) Super capacitor of surface mount type