JP6179169B2 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP6179169B2
JP6179169B2 JP2013087010A JP2013087010A JP6179169B2 JP 6179169 B2 JP6179169 B2 JP 6179169B2 JP 2013087010 A JP2013087010 A JP 2013087010A JP 2013087010 A JP2013087010 A JP 2013087010A JP 6179169 B2 JP6179169 B2 JP 6179169B2
Authority
JP
Japan
Prior art keywords
film
electricity storage
hole
porous film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013087010A
Other languages
Japanese (ja)
Other versions
JP2014211994A (en
Inventor
年宏 中坊
年宏 中坊
崇弘 丸井
崇弘 丸井
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to JP2013087010A priority Critical patent/JP6179169B2/en
Publication of JP2014211994A publication Critical patent/JP2014211994A/en
Application granted granted Critical
Publication of JP6179169B2 publication Critical patent/JP6179169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、各種電気機器に使用される電気二重層キャパシタやリチウムイオンキャパシタに代表されるハイブリッドキャパシタ、リチウムイオン電池等の蓄電デバイスの中でも特に外装フィルム材で外装されるものに関するものである。   The present invention relates to an electric storage device such as an electric double layer capacitor, a hybrid capacitor typified by a lithium ion capacitor, and a lithium ion battery used for various electric devices, particularly those that are externally covered with an exterior film material.

従来の蓄電デバイスとして、例えば、電気二重層キャパシタは、簡単にいえば正極側の分極性電極と負極側の分極性電極とをその間にセパレータを介在させて積層することにより電極体を構成し、かつ、この電極体に非水電解液を含浸させることにより構成されている。このような電気二重層キャパシタでは、ある電圧で通電を長時間行うとその内部にガスが発生し、発生したガスによって電気二重層キャパシタ内の圧力が上昇する。そして、発生したガスの内部応力によって電極体の変形や、電気二重層キャパシタの静電容量あるいはサイクル寿命の低下を引き起こすことが知られている。   As a conventional power storage device, for example, an electric double layer capacitor is simply configured by laminating a polarizable electrode on the positive electrode side and a polarizable electrode on the negative electrode side with a separator interposed therebetween, And it is comprised by impregnating this electrode body with a non-aqueous electrolyte. In such an electric double layer capacitor, when energization is performed for a long time at a certain voltage, gas is generated therein, and the pressure in the electric double layer capacitor is increased by the generated gas. Then, it is known that the internal stress of the generated gas causes deformation of the electrode body and the capacitance or cycle life of the electric double layer capacitor.

そこで、このような蓄電デバイスでは、ガス放出弁を装着し、蓄電デバイスの内圧が一定以上になると内部のガスを放出することで上記の問題を防止する措置が講じられている(例えば、特許文献1の図3参照)。   Therefore, in such an electricity storage device, measures are taken to prevent the above problem by attaching a gas release valve and releasing the internal gas when the internal pressure of the electricity storage device exceeds a certain level (for example, Patent Documents). 1 (see FIG. 3).

特許文献1では、電気二重層キャパシタの外装フィルム材の内側面に溶着されたガス放出弁の外側を、ガスを透過することが可能な透過フィルムで覆った構成が開示されている。透過フィルムとして多孔質フィルムが用いられることが一般的である。この多孔質フィルムは、電気二重層キャパシタ内の非水電解液を透過しないので、ガス放出弁からガスと共に非水電解液が外部に漏出することを防止する。また、この漏出の結果として起こる、ガス放出弁において非水電解液に含まれる電解質が塩となって析出し、ガス放出弁が正常に動作しなくなるという不具合を防止する。   Patent Document 1 discloses a configuration in which an outer side of a gas release valve welded to an inner surface of an exterior film material of an electric double layer capacitor is covered with a permeable film capable of transmitting gas. In general, a porous film is used as the transmission film. Since this porous film does not permeate the non-aqueous electrolyte in the electric double layer capacitor, the non-aqueous electrolyte is prevented from leaking out together with the gas from the gas release valve. Further, the problem that the electrolyte contained in the non-aqueous electrolyte precipitates as a salt in the gas release valve, which occurs as a result of this leakage, and prevents the gas release valve from operating normally is prevented.

特開2003−37028号公報JP 2003-37028 A

しかしながら、上記の多孔質フィルムは一般に厚みが薄いので、非水電解液を透過することがある。   However, since the above porous film is generally thin, it may permeate the non-aqueous electrolyte.

そこで、本発明は、上記の課題を解決するためになされたものであり、その目的は、蓄電デバイス内部で発生したガスを放出する際に、蓄電デバイス内部の非水電解液の漏出防止効果を簡単な構成で向上させることができ、ひいては静電容量の低下の少ない長期信頼性に優れた蓄電デバイスを提供することにある。   Therefore, the present invention has been made to solve the above-described problems, and its purpose is to prevent the leakage of the non-aqueous electrolyte inside the electricity storage device when releasing the gas generated inside the electricity storage device. It is an object of the present invention to provide an electricity storage device that can be improved with a simple configuration and that is excellent in long-term reliability with little decrease in capacitance.

本発明の蓄電デバイスは、上記課題を解決するために、電極体と、前記電極体を内包し熱溶着部により前記電極体を気密に封止する外装フィルム材とを備え、前記熱溶着部は前記外装フィルム材同士を重ね合わせて熱溶着により形成されてなる蓄電デバイスであって、前記熱溶着部の一部において前記外装フィルム材同士の間に介在するとともに一端が前記電極体に向かって前記熱溶着部から露出する多孔質フィルムと、前記多孔質フィルムに対向して前記外装フィルム材に設けられる孔とを備えることを特徴とする。   In order to solve the above-described problem, an electricity storage device of the present invention includes an electrode body and an exterior film material that encloses the electrode body and hermetically seals the electrode body with a heat welding portion, and the heat welding portion includes: It is an electrical storage device formed by superposing the exterior film materials on each other by thermal welding, and is interposed between the exterior film materials in a part of the thermal welding portion and has one end toward the electrode body. It is characterized by comprising a porous film exposed from the heat-welded portion and holes provided in the exterior film material so as to face the porous film.

また、前記多孔質フィルムは、前記孔よりも大きな開口部を有し、前記孔と開口部との隙間は前記熱溶着部により封止されることが好ましい。   Moreover, it is preferable that the said porous film has an opening part larger than the said hole, and the clearance gap between the said hole and an opening part is sealed by the said heat welding part.

また、前記孔を気密に覆うガス放出弁を更に備えることが好ましい。   Moreover, it is preferable to further provide a gas release valve that covers the hole in an airtight manner.

また、前記多孔質フィルムは、ポリテトラフルオロエチレンからなることが好ましい。   Moreover, it is preferable that the said porous film consists of polytetrafluoroethylene.

本発明によれば、蓄電デバイスの内部で発生したガスが、外装フィルム材同士の間に介在する多孔質フィルムの内部を多孔質フィルムの面方向に沿って通過する。そして、多孔質フィルムの内部を通過したガスは、外装フィルム材に設けられる孔から放出される。そのため、本発明は、従来の厚みの薄い多孔質フィルムにおいて、ガスがその厚み方向に通過していた場合に比べ、ガス通過経路の距離を長くすることができる。   According to the present invention, the gas generated inside the electricity storage device passes through the inside of the porous film interposed between the exterior film materials along the surface direction of the porous film. And the gas which passed the inside of a porous film is discharge | released from the hole provided in an exterior film material. Therefore, this invention can lengthen the distance of a gas passage path compared with the case where gas has passed in the thickness direction in the conventional porous film with thin thickness.

そして、非水電解液はガスとともに多孔質フィルムを通過しようとするところ、ガス通過経路の距離が長いので、非水電解液は多孔質フィルムを通過しきれなくなる。したがって、本発明は、多孔質フィルムの有する電解液の漏出防止効果を向上させることができる。ひいては、蓄電デバイスの体積膨張を解消し、静電容量の低下の少ない長期信頼性に優れた蓄電デバイスを提供することができる。   Then, when the non-aqueous electrolyte tries to pass through the porous film together with the gas, the distance of the gas passage route is long, so that the non-aqueous electrolyte cannot pass through the porous film. Therefore, this invention can improve the leakage prevention effect of the electrolyte solution which a porous film has. As a result, it is possible to provide a power storage device that eliminates the volume expansion of the power storage device and has excellent long-term reliability with little decrease in capacitance.

本発明の実施形態の一例を示す蓄電デバイスの平面図である。It is a top view of the electrical storage device which shows an example of embodiment of this invention. 本発明の実施形態の一例を示す蓄電デバイスの側面図である。It is a side view of an electrical storage device showing an example of an embodiment of the present invention. 図1におけるX‐X視を示す断面図である。It is sectional drawing which shows the XX view in FIG. 図3に示す本発明の実施形態であり、多孔質フィルムまわりの平面図である。FIG. 4 is a plan view around the porous film according to the embodiment of the present invention shown in FIG. 3. 図4における本発明の実施形態の別の例を示す断面図である。It is sectional drawing which shows another example of embodiment of this invention in FIG. 図1におけるX‐X視であり、本発明の実施形態の別の例を示す断面図である。FIG. 6 is a cross-sectional view taken along the line XX in FIG. 1 and showing another example of the embodiment of the present invention. 図6に示す本発明の実施形態の平面図であり、多孔質フィルムまわりの平面図である。It is a top view of embodiment of this invention shown in FIG. 6, and is a top view around a porous film. 図6に示す本発明の実施形態の平面図であり、多孔質フィルムまわりの平面図である。It is a top view of embodiment of this invention shown in FIG. 6, and is a top view around a porous film. 比較例3の蓄電デバイスに用いられるアルミラミネートフィルムの半体を示す平面図である。10 is a plan view showing a half of an aluminum laminate film used in the electricity storage device of Comparative Example 3. FIG. 比較例3の蓄電デバイスに用いられるガス放出弁まわりを示し、(A)は断面図、(B)は下面図である。The gas discharge valve periphery used for the electrical storage device of the comparative example 3 is shown, (A) is sectional drawing, (B) is a bottom view.

以下にこの発明における実施形態の一例を説明する。図1〜5を参照して、この発明の実施形態1における蓄電デバイスは、電極体1と、外装フィルム材2と、多孔質フィルム3と、孔4と、リード端子5と、によって構成されている。また、外装フィルム材2は、二枚の外装フィルム材の半体2a,2bを重ね合わせ、その外縁部を熱溶着して形成した熱溶着部20で一体化したものである。そして、外装フィルム材2の内部に電極体1および非水電解液が封入されている。   An example of the embodiment of the present invention will be described below. With reference to FIGS. 1-5, the electrical storage device in Embodiment 1 of this invention is comprised by the electrode body 1, the exterior film material 2, the porous film 3, the hole 4, and the lead terminal 5. As shown in FIG. Yes. Further, the exterior film material 2 is obtained by integrating two outer film material halves 2a and 2b and integrating them with a heat weld portion 20 formed by thermally welding the outer edge portions thereof. And the electrode body 1 and the nonaqueous electrolyte are enclosed in the exterior film material 2.

電極体1は、正極および負極の間にセパレータを介して順次重ね合わせたものを積層または巻回したものである。そして、正極および負極は、金属箔からなる集電体の片面または両面に、炭素材料や金属化合物の粉末を含む活物質層を形成したものである。この活物質層はリチウムイオン電池や電気二重層キャパシタ等の蓄電デバイスで公知の方法により製造される。例えば、電気二重層キャパシタ用の活物質層であれば、活性炭とカーボンブラックの混合物にポリテトラフルオロエチレンを添加・混合した後、プレス成型、ロール成型して製造される。また、上記混合物をスラリー状にしてから塗布することで薄い塗布膜とする方法で製造してもよい。   The electrode body 1 is obtained by laminating or winding a laminate in which a positive electrode and a negative electrode are sequentially stacked via a separator. The positive electrode and the negative electrode are obtained by forming an active material layer containing a carbon material or a metal compound powder on one or both sides of a current collector made of a metal foil. This active material layer is manufactured by a known method using an electricity storage device such as a lithium ion battery or an electric double layer capacitor. For example, in the case of an active material layer for an electric double layer capacitor, polytetrafluoroethylene is added to and mixed with a mixture of activated carbon and carbon black, and then manufactured by press molding or roll molding. Moreover, you may manufacture by the method of making it the thin coating film by apply | coating after making the said mixture into a slurry form.

電極体1を構成する正極および負極の集電体の一端には、突起状の露出部が形成されている。該露出部は、正極、負極ごとに集合されていて、板状のリード端子5が該露出部の集合体に超音波溶接やスポット溶接等によって取り付けられている。   A protruding exposed portion is formed at one end of the positive and negative electrode current collectors constituting the electrode body 1. The exposed portion is assembled for each of the positive electrode and the negative electrode, and the plate-like lead terminal 5 is attached to the aggregate of the exposed portion by ultrasonic welding, spot welding, or the like.

電極体1は、リード端子5が引き出された状態で非水電解液とともに外装フィルム材2によって気密に収容される。外装フィルム材2は、この実施形態では二枚の外装フィルム材の半体2a,2bを各々の外縁部で重ね合わせて一体にしている。また、外装フィルム材の半体2a,2bには、それぞれ電極体1を収容するための凹部が外縁部を除く領域でプレス成型されている。なお、外装フィルム材2は、半体二枚分の大きさの一体物を折り曲げて重ね合わせるようにしてもよい。   The electrode body 1 is airtightly accommodated by the exterior film material 2 together with the non-aqueous electrolyte in a state where the lead terminal 5 is drawn out. In this embodiment, the exterior film material 2 is formed by integrating two halves 2a and 2b of the exterior film material on each outer edge portion. Moreover, in the half bodies 2a and 2b of the exterior film material, a concave portion for accommodating the electrode body 1 is press-molded in a region excluding the outer edge portion. In addition, the exterior film material 2 may be made to be overlap | superposed by bend | folding the integral object of the magnitude | size for two half bodies.

外装フィルム材2には軽量で薄くガスバリア性に優れたアルミラミネートフィルムが好適に用いられる。アルミラミネートフィルムは、アルミニウム層の両側にポリプロピレン層やナイロン層等の樹脂層がラミネート成形されている。そして、外装フィルム材2の外縁部を互いに重ね合わせた状態で加熱することで、樹脂層同士が熱溶着により一体化する。このようにして、熱溶着部20により蓄電デバイスの内部を気密にしているので、蓄電デバイスの内部の非水電解液やガスが外部に漏出することはない。   As the exterior film material 2, an aluminum laminate film that is light and thin and excellent in gas barrier properties is suitably used. In the aluminum laminated film, a resin layer such as a polypropylene layer or a nylon layer is laminated on both sides of the aluminum layer. And the resin layer mutually integrates by heat welding by heating the outer edge part of the exterior film material 2 in the state which mutually overlap | superposed. Thus, since the inside of the electricity storage device is hermetically sealed by the heat welding part 20, the non-aqueous electrolyte and gas inside the electricity storage device will not leak to the outside.

外装フィルム材2の外縁部における熱溶着部20の一部において、前記外装フィルム材の半体2a,2bの間に多孔質フィルム3が介在している。このとき外装フィルム材の半体2a,2bと多孔質フィルム3との各界面は、熱溶着により封止されている。そして、多孔質フィルム3の一端3eは、蓄電デバイス内部の電極体1に向かって熱溶着部20から露出している。すなわち、この多孔質フィルム3の一端3eは、蓄電デバイス内部の非水電解液やガスと接触可能な状態となっている。一方、多孔質フィルム3の他端3sは、図4に示すように、幅w1からなる熱融着部によって封止されている。幅w1は例えば3〜10mmであり、蓄電デバイスを気密に封止することが可能な幅であれば特に限定されない。なお、多孔質フィルム3を設ける熱溶着部20の位置は特に限定されない。   The porous film 3 is interposed between the halves 2a and 2b of the exterior film material in a part of the heat-welded portion 20 at the outer edge of the exterior film material 2. At this time, each interface between the half bodies 2a and 2b of the exterior film material and the porous film 3 is sealed by thermal welding. And the one end 3e of the porous film 3 is exposed from the heat welding part 20 toward the electrode body 1 inside an electrical storage device. That is, one end 3e of the porous film 3 is in a state in which it can come into contact with the nonaqueous electrolyte solution or gas inside the electricity storage device. On the other hand, the other end 3s of the porous film 3 is sealed by a heat-sealed portion having a width w1, as shown in FIG. The width w1 is, for example, 3 to 10 mm, and is not particularly limited as long as it is a width capable of hermetically sealing the electricity storage device. In addition, the position of the heat welding part 20 which provides the porous film 3 is not specifically limited.

そして、外装フィルム材2には、多孔質フィルム3に対向する位置に一つ以上の孔4が設けられており、孔4は外装フィルム材を貫通している。孔4は、多孔質フィルム3の一端3eから他端3sに向かってある程度の距離lを離して設けられる。距離lは、ガス通過経路であるとともに非水電解液の通過抑止長であり、少なくとも蓄電デバイス内の非水電解液が孔4に到達しない距離に設定される。孔4の形状は特に限定されず、円形であっても多角形であってもよい。また、孔4は外装フィルム材の半体2a,2bのいずれかに設けられていればよい。   The exterior film material 2 is provided with one or more holes 4 at positions facing the porous film 3, and the holes 4 penetrate the exterior film material. The holes 4 are provided at a certain distance l from one end 3e of the porous film 3 toward the other end 3s. The distance l is a gas passage route and a non-aqueous electrolyte passage inhibition length, and is set to a distance at least where the nonaqueous electrolyte solution in the electricity storage device does not reach the hole 4. The shape of the hole 4 is not particularly limited, and may be circular or polygonal. Moreover, the hole 4 should just be provided in either half body 2a, 2b of an exterior film material.

多孔質フィルム3としては、ポリテトラフルオロエチレン(PTFE)からなる不織布を好適に用いることができ、具体的には日本ゴア株式会社製のオレオベントフィルターHtypeを例示することができる。このような多孔質フィルム3は、非水電解液との接触角が大きく透気性を有するので、非水電解液の通過を抑止し、ガスのみを通過させることができる。   As the porous film 3, a non-woven fabric made of polytetrafluoroethylene (PTFE) can be suitably used. Specifically, an oleovent filter Htype manufactured by Japan Gore Co., Ltd. can be exemplified. Since such a porous film 3 has a large contact angle with the non-aqueous electrolyte and has air permeability, it is possible to suppress the passage of the non-aqueous electrolyte and allow only gas to pass therethrough.

次に、この発明の実施形態1における発明の作用について説明する。図3および図4を参照して、蓄電デバイスの充放電サイクルにより蓄電デバイス内部で発生したガスは、多孔質フィルム3の露出する一端3eから多孔質フィルム3内に侵入する。そして、多孔質フィルム3内に侵入したガスは、外装フィルム材2に設けた孔4に到達し、孔4から蓄電デバイスの外部に放出される。このとき、蓄電デバイス内の非水電解液は、蓄電デバイスの内圧によって多孔質フィルム3内部に侵入しようとするものの、一端3eから孔4までの距離lが長いので、孔4に到達することはできない。したがって、従来の蓄電デバイスでは、多孔質フィルムに対する非水電解液の通過抑止長が、多孔質フィルムの厚みである数十μm〜数百μmに制約されていたところ、この発明の実施形態では、多孔質フィルム3の面方向に数mm以上と長い通過抑止長を自由に設定することができる。それゆえ、多孔質フィルム3および孔4は、蓄電デバイス内部のガスを放出しつつ、蓄電デバイス内部の非水電解液の漏出防止効果を簡単な構成で向上させることができる。   Next, the operation of the invention in Embodiment 1 of the present invention will be described. With reference to FIG. 3 and FIG. 4, the gas generated inside the electricity storage device by the charge / discharge cycle of the electricity storage device enters the porous film 3 from the exposed end 3 e of the porous film 3. And the gas which penetrate | invaded in the porous film 3 reaches | attains the hole 4 provided in the exterior film material 2, and is discharge | released from the hole 4 to the exterior of an electrical storage device. At this time, the non-aqueous electrolyte in the electricity storage device tries to enter the porous film 3 due to the internal pressure of the electricity storage device, but the distance l from the one end 3e to the hole 4 is long, so that it does not reach the hole 4 Can not. Therefore, in the conventional electricity storage device, the passage inhibition length of the non-aqueous electrolyte with respect to the porous film was restricted to several tens of μm to several hundreds of μm, which is the thickness of the porous film. A long passage inhibition length of several mm or more in the surface direction of the porous film 3 can be freely set. Therefore, the porous film 3 and the holes 4 can improve the leakage prevention effect of the non-aqueous electrolyte inside the electricity storage device with a simple configuration while releasing the gas inside the electricity storage device.

また、この発明の実施形態1では、図5に示すように、孔4を気密に覆うガス放出弁40を設けることが好ましい。ガス放出弁40は、弁体46と、弁孔47と、弾性部材48とによって構成されている。弁体46は内部に空洞を有しており、この空洞に通じるように弁孔47が弁体46の上下面にそれぞれ設けられている。そして、弁体46の空洞に収納された弾性部材が、弁体46の一方の面の弁孔47を密閉している。弁体46は、孔4周囲の外装フィルム材2aに超音波溶接等で溶着されている。また、弾性部材47で密閉された弁孔47は、孔4に通じている。   Moreover, in Embodiment 1 of this invention, as shown in FIG. 5, it is preferable to provide the gas discharge valve 40 which airtightly covers the hole 4. The gas release valve 40 includes a valve body 46, a valve hole 47, and an elastic member 48. The valve body 46 has a cavity inside, and valve holes 47 are respectively provided on the upper and lower surfaces of the valve body 46 so as to communicate with the cavity. The elastic member housed in the cavity of the valve body 46 seals the valve hole 47 on one surface of the valve body 46. The valve body 46 is welded to the exterior film material 2a around the hole 4 by ultrasonic welding or the like. Further, the valve hole 47 sealed by the elastic member 47 communicates with the hole 4.

ガス放出弁40は、孔4に通じる弁孔47を弾性部材48で密閉しているので、外気が孔4を通じて蓄電デバイスに侵入することはない。また、蓄電デバイス内のガスが孔4から放出されると、弁孔47を塞いでいる弾性部材がガスの圧力により持ち上げられて弁孔47を通過する。そして、蓄電デバイス内部のガスは、ガス放出弁40から放出される。このように、ガス放出弁40は逆止弁として機能するが、逆止弁として機能するものであれば上述したガス放出弁40に限定されず、ガス放出弁40の代わりに公知の逆止弁を採用してもよい。   In the gas release valve 40, the valve hole 47 communicating with the hole 4 is sealed with the elastic member 48, so that outside air does not enter the power storage device through the hole 4. Further, when the gas in the electricity storage device is released from the hole 4, the elastic member blocking the valve hole 47 is lifted by the gas pressure and passes through the valve hole 47. Then, the gas inside the electricity storage device is released from the gas release valve 40. As described above, the gas release valve 40 functions as a check valve. However, the gas release valve 40 is not limited to the above-described gas release valve 40 as long as it functions as a check valve. May be adopted.

次に、この発明の実施形態2について図6〜8を用いて説明する。実施形態1と同じ説明は繰り返さない。図6および図7を参照して、実施形態2による蓄電デバイスは、実施形態1の蓄電デバイスと比べ、多孔質フィルム3は孔4よりも大きな開口部30を有している。そして、開口部30の内側において、開口部30に沿って外装フィルム材の半体2a,2bによる熱溶着部21が形成されており、孔4と開口部30との隙間は熱溶着部21により封止されている。これにより、蓄電デバイス外部から外気が孔4を通って内部に侵入することはない。   Next, Embodiment 2 of the present invention will be described with reference to FIGS. The same description as in the first embodiment will not be repeated. With reference to FIG. 6 and FIG. 7, in the electricity storage device according to the second embodiment, the porous film 3 has an opening 30 larger than the holes 4 as compared with the electricity storage device of the first embodiment. And inside the opening part 30, the heat welding part 21 by the half bodies 2a and 2b of the exterior film material is formed along the opening part 30, and the gap between the hole 4 and the opening part 30 is formed by the heat welding part 21. It is sealed. Thereby, outside air does not enter through the hole 4 from the outside of the electricity storage device.

図7を参照して、熱溶着部21の幅w2は例えば0.5〜3mmである。熱溶着部21は、蓄電デバイス内部の圧力がある閾値に達したときに一部が剥離するよう、その幅W2や熱溶着の強度が設定される。   Referring to FIG. 7, the width w2 of the heat welding part 21 is, for example, 0.5 to 3 mm. The width W2 and the strength of thermal welding are set so that a part of the thermal welding part 21 peels when the pressure inside the electric storage device reaches a certain threshold value.

図8を参照して、蓄電デバイス内部でガスが発生し、蓄電デバイスの内圧が高くなると、多孔質フィルム3を通過したガスは熱溶着部21を剥離させる。そして、ガスは熱溶着部21の剥離部を通過し、孔4から蓄電デバイス外部に放出される。このとき、実施形態1と同様に、多孔質フィルム3および孔4は、蓄電デバイス内部のガスを放出しつつ、蓄電デバイス内部の非水電解液の漏出防止効果を簡単な構成で向上させることができる。   Referring to FIG. 8, when gas is generated inside the electricity storage device and the internal pressure of the electricity storage device increases, the gas that has passed through porous film 3 peels off heat-welded portion 21. Then, the gas passes through the peeling portion of the heat welding portion 21 and is released from the hole 4 to the outside of the electricity storage device. At this time, as in the first embodiment, the porous film 3 and the holes 4 can improve the leakage prevention effect of the nonaqueous electrolytic solution inside the electricity storage device with a simple configuration while releasing the gas inside the electricity storage device. it can.

また、実施形態2においても実施形態1で説明したように、ガス放出弁40を設けることで、熱溶着部21が剥離した後であっても、外気が孔4を通じて蓄電デバイス内部に侵入することを防止することができる。   Further, in the second embodiment, as described in the first embodiment, by providing the gas release valve 40, the outside air can enter the inside of the electricity storage device through the holes 4 even after the heat welding portion 21 is peeled off. Can be prevented.

次に、蓄電デバイスに電気二重層キャパシタを用いて、この発明の実施例を説明する。   Next, an embodiment of the present invention will be described using an electric double layer capacitor as an electricity storage device.

1.電極体の準備 1. Preparation of electrode body

比表面積が1800m/gの活性炭1.0g、ケッチェンブラック0.1g、ポリフッ化ビニリデン0.1gを乳鉢にて混合・混練し、これにN−メチル−2−ピロリドンを適量添加し、粘度調整を行ったスラリーを得た。このスラリーを0.05mm厚のアルミニウムからなる集電体の両面または片面に塗布し、その後120℃で2時間乾燥して0.08mm厚(片面塗布)、0.10mm厚(両面塗布)の電極シートを作製した。そして、得られた電極シートを矩形で規定の大きさに成形するとともに各電極シートの一端に突起状の露出部を設けた。 1.0 g of activated carbon having a specific surface area of 1800 m 2 / g, 0.1 g of ketjen black, and 0.1 g of polyvinylidene fluoride are mixed and kneaded in a mortar, and an appropriate amount of N-methyl-2-pyrrolidone is added to the mixture. An adjusted slurry was obtained. This slurry is applied to both sides or one side of a 0.05 mm thick current collector, and then dried at 120 ° C. for 2 hours to obtain 0.08 mm thick (single side coated) and 0.10 mm thick (double side coated) electrodes. A sheet was produced. And the obtained electrode sheet was shape | molded by rectangle with the defined magnitude | size, and the protrusion-shaped exposed part was provided in the end of each electrode sheet.

次いで両面塗布した電極シートを二枚積層したものの両端に片面塗布した電極を更に一枚ずつ積層した。そして、電極間に厚さ0.05mm厚のセルロース製セパレータを介挿して電極体とした。正極および負極ごとに、集電体の突起状の露出部を集合し、各々にアルミニウムからなるリード端子を超音波溶接により取り付けた。こうして、電極体を準備した。   Subsequently, two electrodes coated on both sides were laminated, and one side coated electrode was further laminated one by one on both ends. Then, a cellulose separator having a thickness of 0.05 mm was interposed between the electrodes to obtain an electrode body. For each of the positive electrode and the negative electrode, the protruding exposed portions of the current collector were assembled, and lead terminals made of aluminum were attached to each by ultrasonic welding. Thus, an electrode body was prepared.

2.蓄電デバイスの作製
〔実施例1〕
2. Production of electricity storage device [Example 1]

矩形のアルミラミネートフィルムに外縁部を残して凹部をプレス成型した半体を二枚準備し、一方の半体の外縁部の一部に孔を設けた。そして、これら二枚の半体を重ね合わせ、孔と対向する位置の半体間に、多孔質フィルムとしてPTFE不織布(日本ゴア社製のオレオベントフィルターHtype)を介在させた。また、半体の凹部を突き合わせて形成されるアルミラミネートフィルムの内部空間に電極体を収容し、リード端子はアルミラミネートフィルム外部に引き出した。   Two halves were prepared by pressing the recesses while leaving the outer edge portion of the rectangular aluminum laminate film, and a hole was provided in a part of the outer edge portion of one half body. Then, these two halves were overlapped, and a PTFE nonwoven fabric (Orevent filter Htype manufactured by Gore Japan) was interposed as a porous film between the halves at positions facing the holes. Moreover, the electrode body was accommodated in the internal space of the aluminum laminate film formed by abutting the concave portions of the half body, and the lead terminals were drawn out of the aluminum laminate film.

次いで非水電解液として1M−トリエチルメチルアンモニウムBF4/プロピレンカーボネートを電極体に真空含浸した。そして、重ね合わせたアルミラミネートフィルムの半体の外縁部を熱シールして熱溶着部を形成することにより、電極体を気密に封止した。このとき、多孔質フィルムの一端は、電極体に向かって熱溶着部から露出しており、非水電解液と接触可能な状態になっている。こうして、実施例1の蓄電デバイスを得た。
〔実施例2〕
Next, 1M-triethylmethylammonium BF 4 / propylene carbonate as a nonaqueous electrolyte was vacuum impregnated into the electrode body. And the electrode body was airtightly sealed by heat-sealing the outer edge part of the half body of the laminated | stacked aluminum laminate film, and forming a heat welding part. At this time, one end of the porous film is exposed from the heat welded portion toward the electrode body, and is in a state where it can contact the non-aqueous electrolyte. Thus, an electricity storage device of Example 1 was obtained.
[Example 2]

多孔質フィルムには、孔と対向する位置に孔よりも大きな開口部を設け、孔と開口部との隙間は熱溶着部により封止した他は、実施例1と同様にして実施例2の蓄電デバイスを得た。
〔実施例3〕
In the porous film, an opening larger than the hole is provided at a position opposite to the hole, and the gap between the hole and the opening is sealed with a heat welded portion. An electricity storage device was obtained.
Example 3

弁体と弁孔と弾性部材によって構成されるガス放出弁を、孔を気密に覆うように、アルミラミネートフィルムに超音波溶接により取り付けた他は、実施例1と同様にして実施例3の蓄電デバイスを得た。
〔比較例1〕
The electricity storage in Example 3 was performed in the same manner as in Example 1 except that a gas release valve constituted by a valve body, a valve hole, and an elastic member was attached to an aluminum laminate film by ultrasonic welding so as to cover the hole in an airtight manner Got a device.
[Comparative Example 1]

孔も多孔質フィルムも設けない他は、実施例1と同様にして比較例1の蓄電デバイスを得た。
〔比較例2〕
An electricity storage device of Comparative Example 1 was obtained in the same manner as in Example 1 except that neither a hole nor a porous film was provided.
[Comparative Example 2]

多孔質フィルムであるPTFE不織布に代えてポリイミド不織布を用いた他は、実施例3と同様にして比較例2の蓄電デバイスを得た。
〔比較例3〕
An electricity storage device of Comparative Example 2 was obtained in the same manner as in Example 3 except that a polyimide nonwoven fabric was used instead of the PTFE nonwoven fabric, which was a porous film.
[Comparative Example 3]

図9および図10を参照して、矩形のアルミラミネートフィルムに外縁部を残して凹部をプレス成型した半体を二枚準備し、一方の半体2cの凹部において電極体と当接することがない位置に孔14を設けた。そして、孔14を半体2cの凹部側2rから塞ぐようにしてPTFE不織布13(日本ゴア社製のオレオベントフィルターHtype)を孔14の周囲に超音波溶接により取り付けた。更に、孔14を半体2cの凸部側2fから気密に覆うように、実施例3と同じガス放出弁50をアルミラミネートフィルムに超音波溶接により取り付けた。その後、この半体2cをもう一枚の半体と重ね合わせ、半体の凹部を突き合わせて形成されるアルミラミネートフィルムの内部空間に電極体を収容し、リード端子はアルミラミネートフィルム外部に引き出した。そして、以降の工程は実施例1と同様にして比較例3の蓄電デバイスを得た。   Referring to FIG. 9 and FIG. 10, two halves obtained by press-molding the recesses while leaving the outer edge portion on the rectangular aluminum laminate film are prepared, and no contact is made with the electrode body in the recesses of one half 2c. A hole 14 was provided at the position. Then, a PTFE nonwoven fabric 13 (Oleovent filter Htype manufactured by Japan Gore) was attached to the periphery of the hole 14 by ultrasonic welding so as to close the hole 14 from the recessed side 2r of the half 2c. Further, the same gas release valve 50 as in Example 3 was attached to the aluminum laminate film by ultrasonic welding so that the hole 14 was airtightly covered from the convex side 2f of the half body 2c. Thereafter, the half body 2c is overlapped with another half body, the electrode body is accommodated in the internal space of the aluminum laminate film formed by abutting the concave portion of the half body, and the lead terminals are drawn out of the aluminum laminate film. . And the subsequent process was carried out similarly to Example 1, and obtained the electrical storage device of the comparative example 3.

3.評価試験 3. Evaluation test

上記のようにして作製した実施例1〜3および比較例1〜3の蓄電デバイスを60℃に設定した恒温槽に入れ、各蓄電デバイスに2.7Vの電圧を印加した。   The electricity storage devices of Examples 1 to 3 and Comparative Examples 1 to 3 prepared as described above were placed in a thermostat set to 60 ° C., and a voltage of 2.7 V was applied to each electricity storage device.

実施例1〜3および比較例1〜3の蓄電デバイスに対する電圧印加100時間経過後と300時間経過後の静電容量の変化を表1に示す。静電容量の変化は電圧印加前の静電容量初期値を100として評価した。   Table 1 shows the changes in capacitance after 100 hours and 300 hours of voltage application to the electricity storage devices of Examples 1 to 3 and Comparative Examples 1 to 3. The change in capacitance was evaluated with the initial value of capacitance before voltage application being 100.

表1を参照して、実施例1の蓄電デバイスと比較例1の蓄電デバイスとを比べると、実施例1の蓄電デバイスでは、アルミラミネートフィルムの熱溶着部に孔を設け、その孔に対向するようにPTFE不織布の多孔質フィルムを設けることにより、静電容量の低下の少ない蓄電デバイスを得られることが分かる。   Referring to Table 1, when comparing the electricity storage device of Example 1 and the electricity storage device of Comparative Example 1, in the electricity storage device of Example 1, a hole was provided in the heat-welded portion of the aluminum laminate film and opposed to the hole. Thus, it turns out that an electrical storage device with little fall of an electrostatic capacitance can be obtained by providing the porous film of a PTFE nonwoven fabric.

なお、電圧印加300時間経過後において、比較例1の蓄電デバイスでは、内部で発生したガスによって蓄電デバイス内の圧力が上昇し、アルミラミネートフィルムの熱溶着部が剥離した。このため、外気が蓄電デバイス内に流入し、静電容量が大きく低下したと考えられる。   Note that after 300 hours of voltage application, in the electricity storage device of Comparative Example 1, the pressure in the electricity storage device was increased by the gas generated inside, and the heat-welded portion of the aluminum laminate film was peeled off. For this reason, it is considered that the outside air flows into the electricity storage device and the capacitance is greatly reduced.

また、実施例2の蓄電デバイスと比較例1の蓄電デバイスとを比べると、実施例2の蓄電デバイスでは、多孔質フィルムの開口部とアルミラミネートフィルムの孔との隙間を熱溶着部で封止することにより、実施例1よりも更に静電容量の低下の少ない蓄電デバイスを得られることが分かる。   Further, comparing the electricity storage device of Example 2 and the electricity storage device of Comparative Example 1, in the electricity storage device of Example 2, the gap between the opening of the porous film and the hole of the aluminum laminate film was sealed with a heat welding part. By doing so, it can be seen that an electricity storage device with a smaller decrease in capacitance than in Example 1 can be obtained.

また、実施例3の蓄電デバイスと比較例2の蓄電デバイスとを比べると、実施例3の蓄電デバイスでは、アルミラミネートフィルムの熱溶着部に孔を設け、その孔に対向するようにPTFE不織布の多孔質フィルムを設け、更にアルミラミネートフィルムの孔をガス放出弁で気密に覆うことにより、実施例2よりも更に静電容量の低下の少ない蓄電デバイスを得られることが分かる。   Moreover, when comparing the electricity storage device of Example 3 and the electricity storage device of Comparative Example 2, in the electricity storage device of Example 3, a hole was formed in the heat-welded portion of the aluminum laminate film, and the PTFE nonwoven fabric was opposed to the hole. It can be seen that by providing a porous film and covering the pores of the aluminum laminate film with a gas release valve in an air-tight manner, an electricity storage device with a lower capacitance than that of Example 2 can be obtained.

なお、電圧印加300時間経過後において、比較例2の蓄電デバイスでは、電解液がポリイミド不織布を通過して孔からガス放出弁に漏出し、ガス放出弁に電解質が結晶となって析出していた。これは、PTFE不織布でない多孔質フィルムは適さないことを示している。   In addition, in the electricity storage device of Comparative Example 2 after 300 hours of voltage application, the electrolyte solution passed through the polyimide nonwoven fabric and leaked from the hole to the gas release valve, and the electrolyte was deposited as crystals on the gas release valve. . This indicates that a porous film that is not a PTFE nonwoven fabric is not suitable.

更に、実施例3の蓄電デバイスと比較例3の蓄電デバイスとを比べると、実施例3の蓄電デバイスでは、多孔質フィルムをアルミラミネートフィルム間に介在させることにより、静電容量の低下の少ない蓄電デバイスを得られることが分かる。   Furthermore, comparing the electricity storage device of Example 3 and the electricity storage device of Comparative Example 3, in the electricity storage device of Example 3, electricity storage with little decrease in capacitance was achieved by interposing a porous film between the aluminum laminate films. You can see that you get a device.

なお、電圧印加300時間経過後において、比較例3の蓄電デバイスでは、ガス放出弁に電解質が結晶となって析出していたが、実施例3の蓄電デバイスではこのような現象は見られなかった。これは、多孔質フィルムにおける非水電解液の通過抑止長に着目すると、実施例3の蓄電デバイスでは多孔質フィルムの面方向に沿って通過抑止長を確保することができるので、多孔質フィルムに対する非水電解液の通過を抑制することができることを示している。   In addition, after 300 hours of voltage application, in the electricity storage device of Comparative Example 3, the electrolyte was deposited as crystals on the gas release valve, but such a phenomenon was not seen in the electricity storage device of Example 3. . If this pays attention to the passage inhibition length of the nonaqueous electrolyte in the porous film, the electricity storage device of Example 3 can secure the passage inhibition length along the surface direction of the porous film. It shows that the passage of the non-aqueous electrolyte can be suppressed.

以上説明したように、実施例1〜3による本発明の蓄電デバイスは、静電容量の低下が少なく、長期信頼性に優れている。なお、今回開示された実施例では、蓄電デバイスとして電気二重層キャパシタを用いたが、外装フィルム材を備えた蓄電デバイス全般に対して広く本発明を適用することができることは明らかである。   As described above, the electricity storage device of the present invention according to Examples 1 to 3 has little decrease in capacitance and is excellent in long-term reliability. In addition, in the Example disclosed this time, the electric double layer capacitor was used as the electricity storage device, but it is clear that the present invention can be widely applied to all electricity storage devices including the exterior film material.

1 電極体
2 外装フィルム材
2a,2b 外装フィルム材半体
3 多孔質フィルム
4 孔
5 リード端子
20,21 熱溶着部
30 開口部
40 ガス放出弁
DESCRIPTION OF SYMBOLS 1 Electrode body 2 Exterior film material 2a, 2b Exterior film material half 3 Porous film 4 Hole 5 Lead terminal 20, 21 Thermal welding part 30 Opening part 40 Gas release valve

Claims (4)

  1. 非水電解液を含浸した電極体と、前記電極体を内包し熱溶着部により前記電極体を気密に封止する外装フィルム材とを備え、前記熱溶着部は前記外装フィルム材同士を重ね合わせて熱溶着により形成されてなる蓄電デバイスであって、前記熱溶着部の一部において前記外装フィルム材同士の間に介在するとともに一端が前記電極体に向かって前記熱溶着部から露出する多孔質フィルムと、前記多孔質フィルムに対向して前記外装フィルム材に設けられる孔とを備える、前記多孔質フィルムは前記熱溶着部の一部において前記外装フィルム材同士の間に介在した状態において前記非水電解液の通過をさせず、ガスを通過させる機能を有する蓄電デバイス。 An electrode body impregnated with a non-aqueous electrolyte ; and an exterior film material that encloses the electrode body and hermetically seals the electrode body with a heat-welded portion, wherein the heat-welded portion overlaps the exterior film materials An electrical storage device formed by thermal welding, wherein a porous member is interposed between the exterior film materials in a part of the thermal welding portion and one end is exposed from the thermal welding portion toward the electrode body The porous film is provided with a film and a hole provided in the exterior film material so as to face the porous film , and the porous film is in the state where the porous film is interposed between the exterior film materials in a part of the heat welded portion. An electricity storage device having a function of allowing gas to pass without passing water electrolyte .
  2. 前記多孔質フィルムは、前記孔よりも大きな開口部を有し、前記孔と開口部との隙間は前記熱溶着部により封止される、請求項に記載の蓄電デバイス。 The power storage device according to claim 1 , wherein the porous film has an opening larger than the hole, and a gap between the hole and the opening is sealed by the heat welding part.
  3. 前記孔を気密に覆うガス放出弁を更に備える、請求項1または2に記載の蓄電デバイス。   The electricity storage device according to claim 1, further comprising a gas release valve that covers the hole in an airtight manner.
  4. 前記多孔質フィルムは、ポリテトラフルオロエチレンからなる、請求項1〜3のいずれかに記載の蓄電デバイス。   The electricity storage device according to claim 1, wherein the porous film is made of polytetrafluoroethylene.
JP2013087010A 2013-04-18 2013-04-18 Power storage device Active JP6179169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013087010A JP6179169B2 (en) 2013-04-18 2013-04-18 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013087010A JP6179169B2 (en) 2013-04-18 2013-04-18 Power storage device

Publications (2)

Publication Number Publication Date
JP2014211994A JP2014211994A (en) 2014-11-13
JP6179169B2 true JP6179169B2 (en) 2017-08-16

Family

ID=51931608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087010A Active JP6179169B2 (en) 2013-04-18 2013-04-18 Power storage device

Country Status (1)

Country Link
JP (1) JP6179169B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI517482B (en) * 2015-02-16 2016-01-11 有量科技股份有限公司 Exhaust structure of lithium battery
WO2016203619A1 (en) * 2015-06-18 2016-12-22 Jsr株式会社 Electricity storage device with laminated outer package, and method of manufacturing same
WO2020218623A1 (en) * 2019-04-26 2020-10-29 大日本印刷株式会社 Accumulation device valve structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603866A (en) * 1983-06-22 1985-01-10 Seiko Instr & Electronics Ltd Flat type battery
JP4604441B2 (en) * 2002-07-18 2011-01-05 日本電気株式会社 Film-clad battery and manufacturing method thereof
JP4876915B2 (en) * 2004-06-14 2012-02-15 日本電気株式会社 Film exterior electrical device
JP2007157678A (en) * 2005-05-23 2007-06-21 Matsushita Electric Ind Co Ltd Safety mechanism for laminate battery
JP4977375B2 (en) * 2006-02-15 2012-07-18 Necエナジーデバイス株式会社 Lithium ion battery and battery pack using the same
CN101512821B (en) * 2006-08-28 2011-11-30 株式会社Lg化学 Secondary battery including one-way exhaust valve
JP5261908B2 (en) * 2006-09-20 2013-08-14 大日本印刷株式会社 Flat electrochemical cell
JP5125053B2 (en) * 2006-09-20 2013-01-23 大日本印刷株式会社 Flat electrochemical cell and assembled battery comprising the same
JP2010153841A (en) * 2008-11-27 2010-07-08 Jm Energy Corp Safety mechanism for laminate external package electric storage device
JP5059890B2 (en) * 2009-03-31 2012-10-31 Jmエナジー株式会社 Laminate exterior power storage device
KR101191657B1 (en) * 2010-07-19 2012-10-17 에스비리모티브 주식회사 Battery module

Also Published As

Publication number Publication date
JP2014211994A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP6794502B2 (en) Batteries and battery packs
JP4670430B2 (en) Electrochemical devices
JP6494596B2 (en) Sheet laminated lithium ion secondary battery and method for producing sheet laminated lithium ion secondary battery
US8900742B2 (en) Secondary battery and method of manufacturing the secondary battery
JP4470124B2 (en) battery
JP3972205B2 (en) Stacked battery
CN104488113B (en) Secondary cell including current interrupt device
JP3789438B2 (en) Film outer battery
JP5214543B2 (en) Secondary battery
KR101351654B1 (en) Electrode unit and method of manufacturing the same, secondary battery having the same
JPWO2005091398A1 (en) Film-clad electrical device and method for manufacturing the same
JP5045434B2 (en) ELECTRODE LAMINATE, ELECTRIC DEVICE USING THE ELECTRODE LAMINATE, AND METHOD FOR PRODUCING THEM
JP4281302B2 (en) Method for manufacturing film outer package
JP4788889B2 (en) Film-clad battery and method for producing film-clad battery
CN103858254B (en) Nonaqueous electrolytic solution secondary battery
JP2007311323A (en) Secondary battery which has fixed separator to battery case and raised stability
JP6487712B2 (en) Power storage device
JP2005038613A (en) Plate-shaped battery
JP2003187762A (en) Nonaqueous electrolyte battery using laminated outer covering, and manufacturing method therefor
JP5618706B2 (en) Stacked battery
KR20110041870A (en) Rechargeable battery, bipolar electrode, and fabricating method rechargeable battery
JP2005093261A (en) Method for manufacturing battery wrapped with laminated film
JP6315572B2 (en) Electrochemical cell
JP6102058B2 (en) Electricity storage element
JP2009187889A (en) Battery case and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250