JP6665729B2 - Lithium-air battery cathode structure - Google Patents

Lithium-air battery cathode structure Download PDF

Info

Publication number
JP6665729B2
JP6665729B2 JP2016155586A JP2016155586A JP6665729B2 JP 6665729 B2 JP6665729 B2 JP 6665729B2 JP 2016155586 A JP2016155586 A JP 2016155586A JP 2016155586 A JP2016155586 A JP 2016155586A JP 6665729 B2 JP6665729 B2 JP 6665729B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
air battery
current collector
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016155586A
Other languages
Japanese (ja)
Other versions
JP2018026207A (en
Inventor
浩成 南
浩成 南
泉 博章
博章 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2016155586A priority Critical patent/JP6665729B2/en
Publication of JP2018026207A publication Critical patent/JP2018026207A/en
Application granted granted Critical
Publication of JP6665729B2 publication Critical patent/JP6665729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、リチウム空気電池の正極構造に関する。   The present invention relates to a positive electrode structure of a lithium air battery.

リチウム空気電池は、そのエネルギー密度が現在車載が始まっているリチウムイオン電池の7倍以上であり、本格的な電気自動車(EV)の普及に必要とされる700Wh/kgのエネルギー密度を得られることから、盛んに研究されている。このようなリチウム空気電池は、負極活物質として金属リチウム又は金属リチウムを主成分とする合金若しくは化合物を使用する構造を有し、電解液の種類により、水溶液系電解液と非水系電解液との2つに大別される。   The lithium-air battery has an energy density that is more than seven times that of the lithium-ion battery that is currently being mounted on vehicles, and can provide the energy density of 700 Wh / kg required for the spread of full-scale electric vehicles (EV). Has been actively researched. Such a lithium-air battery has a structure using metal lithium or an alloy or a compound containing metal lithium as a main component as a negative electrode active material. Depending on the type of the electrolyte, an aqueous electrolyte and a non-aqueous electrolyte may be used. It is roughly divided into two.

水溶液系リチウム空気電池の正極構造として、正極と負極層との間に電解液を配置し、正極の外側にポリテトラフルオロエチレン(PTFE)のフィルタを配置し、これらをガスバリア性のラミネートフィルム内に封入し、PTFE側のラミネートフィルムのみに窓を開けて空気と接触させるリチウム空気電池セルの構造が知られている(例えば、非特許文献1)。しかしながら、非特許文献1に記載の構造では、リチウム空気電池を横にすると電解液が漏洩してしまう虞がある。また、リチウム空気電池を長時間に亘って使用する場合に、放電電圧を所望の値に維持できない傾向がある。   As a positive electrode structure of an aqueous lithium-ion battery, an electrolytic solution is disposed between the positive electrode and the negative electrode layer, a polytetrafluoroethylene (PTFE) filter is disposed outside the positive electrode, and these are placed in a gas barrier laminate film. There is known a structure of a lithium-air battery cell that is sealed, and a window is opened only in a laminated film on the PTFE side to make contact with air (for example, Non-Patent Document 1). However, in the structure described in Non-Patent Document 1, when the lithium-air battery is placed on its side, the electrolyte may leak. Further, when a lithium air battery is used for a long time, the discharge voltage tends to be unable to be maintained at a desired value.

株式会社ジーエス・ユアサ・コーポレーションのレポート「水溶液系リチウム/空気電池の現状と課題」(2010年6月)Report of GS Yuasa Corporation, "Current status and issues of aqueous lithium / air batteries" (June 2010)

前記課題に照らして、本発明は、電解液の漏洩を防止でき、縦置のリチウム空気電池セル等に好適な構造とすることができ、レイアウトの自由度を向上し、かつ長時間に亘る安定した放電を可能とするリチウム空気電池の正極構造を提供することを目的とする。   In view of the above problems, the present invention can prevent the electrolyte from leaking, can have a structure suitable for a vertical lithium-air battery cell or the like, improve the flexibility of layout, and stabilize for a long time. It is an object of the present invention to provide a positive electrode structure of a lithium air battery capable of performing a discharged operation.

上記目的を達成するため、本発明は1つの側面でリチウム空気電池の正極構造であり、正極材と正極集電体と外装材とを少なくとも備えるリチウム空気電池の正極構造であって、前記正極材が第一の正極材と第二の正極材とを備え、平面視において、前記第一の正極材が前記第二の正極材を全周に亘って包囲し、前記第一の正極材と前記第二の正極材との大きさの差異によって形成される領域が、前記第一の正極材と前記正極集電体との接触領域を形成し、前記接触領域にて前記正極集電体と前記外装材とが接合されている。   In order to achieve the above object, the present invention provides, in one aspect, a positive electrode structure of a lithium-air battery, the positive electrode structure of a lithium-air battery including at least a positive electrode material, a positive electrode current collector, and an exterior material, Comprises a first positive electrode material and a second positive electrode material, in plan view, the first positive electrode material surrounds the second positive electrode material over the entire circumference, the first positive electrode material and the The region formed by the difference in size from the second positive electrode material forms a contact region between the first positive electrode material and the positive electrode current collector, and the positive electrode current collector and the The exterior material is joined.

本発明によれば、電解液の漏洩を防止でき、縦置のリチウム空気電池セル等に好適な構造とすることができ、レイアウトの自由度を向上し、かつ長時間に亘る安定した放電を可能とするリチウム空気電池の正極構造が提供される。   ADVANTAGE OF THE INVENTION According to this invention, leakage of an electrolyte solution can be prevented, it can be set as the suitable structure for a lithium air battery cell of a vertical installation, etc., the degree of freedom of a layout is improved, and the stable discharge for a long time is possible. The positive electrode structure of the lithium air battery described above is provided.

図1は、本発明に係るリチウム空気電池の正極構造が適用されるリチウム空気電池の基本的概念を説明する模式的な断面図である。FIG. 1 is a schematic cross-sectional view illustrating a basic concept of a lithium-air battery to which a positive electrode structure of a lithium-air battery according to the present invention is applied. 図2(a)は、本発明に係るリチウム空気電池の正極構造の第一実施の形態について、正極材の構成を概略的に示す模式図であり、図2(b)は、図2(a)中の矢印の方向から正極材を視た平面視での正極材の構成を概略的に示す模式図である。FIG. 2A is a schematic diagram schematically showing the configuration of the positive electrode material in the first embodiment of the positive electrode structure of the lithium-air battery according to the present invention, and FIG. FIG. 2 is a schematic diagram schematically showing the configuration of the positive electrode material in a plan view when the positive electrode material is viewed from the direction of the arrow in FIG. 図3は、本発明に係るリチウム空気電池の正極構造の第一実施の形態について、正極構造を概略的に示す断面図である。FIG. 3 is a sectional view schematically showing the positive electrode structure of the first embodiment of the positive electrode structure of the lithium-air battery according to the present invention. 図4は、本発明に係るリチウム空気電池の正極構造を採用するリチウム空気電池セルの構造を概略的に示す部分断面図である。FIG. 4 is a partial cross-sectional view schematically showing the structure of a lithium-air battery cell employing the positive electrode structure of the lithium-air battery according to the present invention. 図5は、本発明に係るリチウム空気電池の正極構造の第二実施の形態について、正極構造を概略的に示す部分断面図である。FIG. 5 is a partial cross-sectional view schematically showing a positive electrode structure in a second embodiment of the positive electrode structure of the lithium-air battery according to the present invention. 図6は、本発明に係るリチウム空気電池の正極構造の第三実施の形態について、正極構造を概略的に示す部分断面図である。FIG. 6 is a partial cross-sectional view schematically showing a positive electrode structure in a third embodiment of the positive electrode structure of the lithium-air battery according to the present invention. 図7は、本発明に係るリチウム空気電池の正極構造の第四実施の形態について、正極構造を概略的に示す部分断面図である。FIG. 7 is a partial sectional view schematically showing a positive electrode structure of a fourth embodiment of the positive electrode structure of the lithium-air battery according to the present invention. 図8は、本発明に係るリチウム空気電池の正極構造について、実施例の正極構造の一部を概略的に示す模式図である。FIG. 8 is a schematic diagram schematically showing a part of the positive electrode structure of the example regarding the positive electrode structure of the lithium-air battery according to the present invention. 図9は、本発明に係るリチウム空気電池の正極構造について、比較例のリチウム空気電池セルの構造を概略的に示す模式図である。FIG. 9 is a schematic diagram schematically showing the structure of a lithium-air battery cell of a comparative example, with respect to the positive electrode structure of the lithium-air battery according to the present invention. 図10は、本発明に係るリチウム空気電池セルの正極構造について、実施例及び比較例の放電特性を示すグラフである。FIG. 10 is a graph showing the discharge characteristics of the example and the comparative example with respect to the positive electrode structure of the lithium-air battery cell according to the present invention.

以下、本発明に係るリチウム空気電池の正極構造の実施の形態について、添付図面を参照して詳細に説明する。なお、本発明は、本実施の形態によって限定されない。また、添付図面は、本実施の形態の概要を説明するための図であり、付属する機器を一部省略している。   Hereinafter, embodiments of a positive electrode structure of a lithium-air battery according to the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited by the present embodiment. Further, the accompanying drawings are diagrams for explaining the outline of the present embodiment, and some of the attached devices are omitted.

先ず、図1に、本発明に係る正極構造を適用するリチウム空気電池1を模式的に示す。図1に示すように、リチウム空気電池1は、触媒が担持された正極集電体を備える正極(空気極)2、水溶液系電解液3、固体電解質(隔離層)4、負極層5を備えている。緩衝層(保護層)6は、セパレータとも称され、固体電解質4と負極層5とが直接接触しないようにするための層である。なお、図中では、負荷7を模式的に示している。リチウム空気電池1は、負極層5及び正極2の各々にて、下記式(i)〜式(iii)で表される反応が起こるように構成されている。   First, FIG. 1 schematically shows a lithium air battery 1 to which a positive electrode structure according to the present invention is applied. As shown in FIG. 1, a lithium-air battery 1 includes a positive electrode (air electrode) 2 having a positive electrode current collector supporting a catalyst, an aqueous electrolyte 3, a solid electrolyte (isolation layer) 4, and a negative electrode layer 5. ing. The buffer layer (protective layer) 6 is also referred to as a separator, and is a layer for preventing the solid electrolyte 4 and the negative electrode layer 5 from directly contacting each other. In the figure, the load 7 is schematically shown. The lithium air battery 1 is configured such that reactions represented by the following formulas (i) to (iii) occur in each of the negative electrode layer 5 and the positive electrode 2.

Figure 0006665729
Figure 0006665729

図1に示すように、正極2よりも内部側に水溶液系電解液3を配置している。また、リチウム空気電池1の放電の際に、空気中の酸素(O2)を正極活物質として使用するため、正極2では、空気を取り入れて、かつ有効な反応場を確保することが必要である。 As shown in FIG. 1, an aqueous electrolyte 3 is disposed inside the positive electrode 2. In addition, since oxygen (O 2 ) in the air is used as a positive electrode active material when discharging the lithium-air battery 1, it is necessary for the positive electrode 2 to take in air and secure an effective reaction field. is there.

1.第一実施の形態
図2(a)〜図3を用いて、本発明に係るリチウム空気電池の正極構造の第一実施の形態を説明する。本実施の形態に係るリチウム空気電池の正極構造は、正極材10と、正極集電体20と、正極外装材30と、熱溶着部材40とを少なくとも備えている。
1. First Embodiment A first embodiment of a positive electrode structure of a lithium-air battery according to the present invention will be described with reference to FIGS. The positive electrode structure of the lithium air battery according to the present embodiment includes at least a positive electrode material 10, a positive electrode current collector 20, a positive electrode exterior material 30, and a heat welding member 40.

先ず、図2(a)及び図2(b)では、本発明の理解を容易とするために、正極材10のみを図解している。
図2(a)に示すように、正極材10は、平板形状を有し、同一又は略同一の形状及び材料を有する第一の正極材11と第二の正極材12とを備えている。第一の正極材11は、その側面に第一の外周部11aを有している。第二の正極材12は、第一の正極材11よりも小さく、その側面に第二の外周部12aを有している。第一の正極材11の第一の外周部11aで規定する面は、第二の正極材12の第二の外周部12aで規定する面よりも大きい。したがって、第一の正極材11に第二の正極材12を載置することにより、第一の正極材11のうちの第二の正極材12の周囲(第二の外周部12aよりも外方)の面には、第一の正極材11と正極集電体20が接触するための領域(接触領域11b)が形成される。なお、本明細書で「同一の形状」とは、一般的に、相似形を意味する。
First, FIGS. 2A and 2B illustrate only the positive electrode material 10 to facilitate understanding of the present invention.
As shown in FIG. 2A, the positive electrode material 10 has a flat plate shape, and includes a first positive electrode material 11 and a second positive electrode material 12 having the same or substantially the same shape and material. The first positive electrode material 11 has a first outer peripheral portion 11a on a side surface thereof. The second positive electrode material 12 is smaller than the first positive electrode material 11, and has a second outer peripheral portion 12a on a side surface thereof. The surface defined by the first outer peripheral portion 11a of the first positive electrode material 11 is larger than the surface defined by the second outer peripheral portion 12a of the second positive electrode material 12. Therefore, by placing the second positive electrode material 12 on the first positive electrode material 11, the first positive electrode material 11 is surrounded by the second positive electrode material 12 (outward from the second outer peripheral portion 12 a). A region (contact region 11b) for contact between the first positive electrode material 11 and the positive electrode current collector 20 is formed on the surface (1). In this specification, “the same shape” generally means a similar shape.

また、図2(b)に示すように、平面視において、第一の正極材11の第一の外周部11aは、第二の正極材12の第二の外周部12aを全周に亘って包囲している。言い換えれば、第一の外周部11aにより囲まれた領域は、第二の外周部12aにより囲まれた領域を包含している。また、第一の正極材11と第二の正極材12との大きさの差異によって形成する領域は、第一の正極材11と正極集電体20との接触領域11bを形成することとなる。すなわち、第一の正極材11の第二の外周部12aにより囲まれた領域以外の領域に、第一の正極材11と正極集電体20との接触領域11bを設けている。なお、本明細書では、正極を第二の正極側から水溶液系電解液に向かって見た平面を「平面視」として用いている。   Further, as shown in FIG. 2B, in plan view, the first outer peripheral portion 11 a of the first positive electrode material 11 extends over the entire outer periphery of the second outer peripheral portion 12 a of the second positive electrode material 12. Siege. In other words, the region surrounded by the first outer peripheral portion 11a includes the region surrounded by the second outer peripheral portion 12a. Further, a region formed by a difference in size between the first positive electrode material 11 and the second positive electrode material 12 forms a contact region 11b between the first positive electrode material 11 and the positive electrode current collector 20. . That is, a contact region 11b between the first positive electrode material 11 and the positive electrode current collector 20 is provided in a region other than the region surrounded by the second outer peripheral portion 12a of the first positive electrode material 11. In addition, in this specification, a plane viewed from the second positive electrode side toward the aqueous electrolyte solution is used as “plan view”.

第一の正極材11と第二の正極材12の形状は、平面視において、第二の正極材12の周囲に接触領域11bが形成され、第一の正極材11が第二の正極材12を全周に亘って包囲できる形状あればよく、互いに同一でもよく、異なっていてもよい。例えば、正極材10の形状は、図示する平板形状以外にも、円盤形、円形等を採用することができる。また、第一の正極材11及び第二の正極材12の外寸及び厚みは、接触領域11bにて水溶液系電解液13側から正極集電体20、熱溶着部材40及び外装材30を順に配置できる外寸及び厚みであればよい。   The shape of the first positive electrode material 11 and the second positive electrode material 12 is such that a contact region 11b is formed around the second positive electrode material 12 in plan view, and the first positive electrode material 11 is The shape may be any shape as long as the shape can surround the entire circumference, and may be the same or different. For example, the shape of the positive electrode material 10 can adopt a disk shape, a circular shape, or the like in addition to the illustrated flat plate shape. The outer dimensions and thicknesses of the first positive electrode material 11 and the second positive electrode material 12 are such that the positive electrode current collector 20, the heat welding member 40, and the exterior material 30 are arranged in this order from the aqueous electrolyte 13 side in the contact region 11b. Any external dimensions and thickness can be used.

続いて、図3を用いて、本実施の形態に係るリチウム空気電池の正極構造について説明する。
図3に示すように、第一の正極材11は、第二の正極材12に対し、水溶液系電解液13側に位置している。また、第二の正極材12は、第一の正極材11に対し、大気側に位置し、大気中に露出するように構成している。なお、本明細書中、「大気側」とは、第二の正極材12が曝される大気側を指す。
Subsequently, the positive electrode structure of the lithium-air battery according to the present embodiment will be described with reference to FIG.
As shown in FIG. 3, the first positive electrode material 11 is located on the aqueous electrolyte 13 side with respect to the second positive electrode material 12. Further, the second positive electrode material 12 is located on the air side with respect to the first positive electrode material 11, and is configured to be exposed to the air. In this specification, the “atmosphere side” refers to the atmosphere side to which the second positive electrode material 12 is exposed.

正極集電体20は、少なくとも第一の正極材11の接触領域11bで、第一の正極材11と接触している。図示する例では、正極集電体20は、第一の正極材11と第二の正極材12との間を貫通し、互いに対向した第一の正極材11の外周部11aで規定される面及び第二の正極材12の外周部12aで規定される面の両方に接触するように構成されている。正極集電体20が第一の正極材11及び第二の正極材12と密着しているため、正極における抵抗を小さくできる。このような構造は、例えば、正極材10の混練物を第一の正極材11と第二の正極材12に分けて、これらで正極集電体20を挟持することによって製造できる。   The positive electrode current collector 20 is in contact with the first positive electrode material 11 at least in a contact region 11b of the first positive electrode material 11. In the illustrated example, the positive electrode current collector 20 penetrates between the first positive electrode material 11 and the second positive electrode material 12 and is defined by an outer peripheral portion 11a of the first positive electrode material 11 facing each other. And the surface defined by the outer peripheral portion 12 a of the second positive electrode material 12. Since the positive electrode current collector 20 is in close contact with the first positive electrode material 11 and the second positive electrode material 12, the resistance at the positive electrode can be reduced. Such a structure can be manufactured, for example, by dividing the kneaded material of the positive electrode material 10 into the first positive electrode material 11 and the second positive electrode material 12 and sandwiching the positive electrode current collector 20 therebetween.

正極外装材30は、正極集電体20に対して大気側に位置し、第二の正極材12と同一又は略同一の形状の開口部31を有している。また、正極外装材30は、第二の正極材12と(熱溶着部材40が第二の正極材12との間にある場合は、熱溶着部材40を介して)接触し、溶着部40aにて正極集電体20と熱溶着部材40を介して接触するように構成している。正極外装材30の開口部31の面積は、第二の正極材12の外周部12aで規定される大気側の面の面積より小さく、かつ第二の正極材12に空気を取り込める面積であればよい。正極外装材30の形状、外寸及び厚みは、正極を熱圧着してなる正極構造にて、第二の正極材12と熱溶着部材40を介して接触し、溶着部40aで正極集電体20と接合できる形状、外寸及び厚みであればよい。   The positive electrode exterior material 30 is located on the atmosphere side with respect to the positive electrode current collector 20, and has an opening 31 having the same or substantially the same shape as the second positive electrode material 12. Further, the positive electrode exterior material 30 comes into contact with the second positive electrode material 12 (or via the heat welding member 40 when the heat welding member 40 is located between the second positive electrode material 12), and Thus, the positive electrode current collector 20 and the heat welding member 40 are in contact with each other. The area of the opening 31 of the positive electrode exterior material 30 is smaller than the area of the atmosphere side surface defined by the outer peripheral portion 12a of the second positive electrode material 12 and is an area capable of taking air into the second positive electrode material 12. Good. The shape, outer dimensions, and thickness of the positive electrode exterior material 30 are such that the second positive electrode material 12 contacts the second positive electrode material 12 via the heat welding member 40 in the positive electrode structure formed by thermocompression bonding of the positive electrode, and the positive electrode current collector Any shape, external dimensions and thickness that can be joined to the substrate 20 may be used.

熱溶着部材40は、正極集電体20に対して大気側かつ正極外装材30に対して水溶液系電解液13側に位置し、第二の正極材12と同一又は略同一の形状の開口部41を有している。熱溶着部材40の開口部41は、正極外装材30の開口部31と同一又は略同一の位置に配置されている。また、熱溶着部材40は、溶着部40aにて溶融することにより正極集電体20と正極外装材30とを接合する。熱溶着部材40の開口部41の面積は、第二の正極材12の第二の外周部12aで規定される大気側の面の面積よりも小さく、溶着部40aにて正極集電体20と正極外装材30とを熱溶着により接合でき、かつ第二の正極材12に空気を取り込める面積であればよい。熱溶着部材40の形状、外寸及び厚みは、正極を熱圧着してなる正極構造にて、溶着部40aで正極集電体20と正極外装部材30とを接合できる形状、外寸及び厚みであればよい。   The heat welding member 40 is located on the air side with respect to the positive electrode current collector 20 and on the aqueous electrolyte solution 13 side with respect to the positive electrode exterior material 30, and has an opening having the same or substantially the same shape as the second positive electrode material 12. 41. The opening 41 of the heat welding member 40 is disposed at the same or substantially the same position as the opening 31 of the positive electrode exterior material 30. Also, the heat welding member 40 joins the positive electrode current collector 20 and the positive electrode exterior material 30 by melting at the welding portion 40a. The area of the opening 41 of the heat welding member 40 is smaller than the area of the surface on the atmosphere side defined by the second outer peripheral portion 12a of the second positive electrode material 12, and the area of the positive electrode current collector 20 at the welding portion 40a Any area may be used as long as the area can be joined to the positive electrode exterior material 30 by thermal welding and air can be taken into the second positive electrode material 12. The shape, outer dimensions, and thickness of the heat welding member 40 are determined by the shape, outer dimensions, and thickness of the positive electrode structure formed by thermocompression bonding of the positive electrode, so that the positive electrode current collector 20 and the positive electrode exterior member 30 can be joined at the welded portion 40a. I just need.

溶着部40aは、第一の正極材11の外周部11aで規定される接触領域11b側の面に位置し、正極を熱圧着することにより、熱溶着部材40を介して正極集電体20と正極外装体30とが接合される部分である。   The welded portion 40a is located on the surface on the side of the contact region 11b defined by the outer peripheral portion 11a of the first positive electrode material 11, and the positive electrode is bonded to the positive electrode current collector 20 via the heat welded member 40 by thermocompression bonding. This is a portion where the positive electrode exterior body 30 is joined.

以上の構成を備え、正極を熱圧着してなる正極構造では、第一の正極材11の接触領域11bで、第一の正極材11と正極集電体20とが接触し、接触領域11bの溶着部40aで、正極材10に接触した正極集電体20と正極外装材30とを熱溶着部材40を介して接合することとなる。このように、正極材10の大きな外周部と小さな外周部の間の領域に正極集電体20を設け、接合しにくい正極材10と正極外装材30の代わりに、正極集電体20と正極外装材30とを接合することによって、水溶液系電解液13の漏洩を防止することができる。また、平面視において、第一の正極材11を第二の正極材12を全周に亘って包囲できる大きさとすることにより、正極集電体20と正極外装材30との容易な接触を可能とし、第二の正極材12の大気に曝される部分を大きく維持し、かつ第一の正極材11が水溶液系電解液13と接触する部分を大きくすることができる。したがって、水溶液系電解液の漏洩を防止し、放電反応に必要な空気をリチウム空気電池の外部から正極に効率よく取り入れ、かつリチウム空気電池の反応に寄与する正極の部分を増加できる。その結果、長時間に亘って高い放電電圧を維持できる。   In the positive electrode structure provided with the above configuration and thermocompression-bonding the positive electrode, the first positive electrode material 11 and the positive electrode current collector 20 contact each other in the contact area 11b of the first positive electrode material 11, and the contact area 11b At the welding portion 40 a, the positive electrode current collector 20 in contact with the positive electrode material 10 and the positive electrode exterior material 30 are joined via the heat welding member 40. As described above, the positive electrode current collector 20 is provided in the region between the large outer peripheral portion and the small outer peripheral portion of the positive electrode material 10, and the positive electrode current collector 20 and the positive electrode By joining with the exterior material 30, leakage of the aqueous electrolyte solution 13 can be prevented. Further, by making the first positive electrode material 11 large enough to surround the second positive electrode material 12 over the entire circumference in plan view, easy contact between the positive electrode current collector 20 and the positive electrode exterior material 30 is possible. Thus, the portion of the second positive electrode material 12 that is exposed to the air can be maintained large, and the portion of the first positive electrode material 11 that contacts the aqueous electrolyte 13 can be increased. Therefore, leakage of the aqueous electrolyte solution can be prevented, air required for the discharge reaction can be efficiently taken into the positive electrode from outside the lithium-air battery, and the portion of the positive electrode that contributes to the reaction of the lithium-air battery can be increased. As a result, a high discharge voltage can be maintained for a long time.

続いて、本実施の形態に係るリチウム空気電池の正極構造の材料について、主に説明する。
正極材10は、一般的に、導電助剤、結着剤(バインダ)及び正極集電体20に担持させるための触媒により構成している。触媒には、二酸化マンガン(MnO2)、酸化ルテニウム(RuO2)、酸化イリジウム(IrO2)等の電気反応を促進できる触媒、白金(Pt)等の貴金属をカーボン等に担持した触媒等が挙げられる。導電助剤としては、カーボンブラック等の電極材料として使用可能なカーボン材料を用いることができる。結着剤としては、透気防水性を有するポリテトラフルオロエチレン(PTFE)が好ましい。結着剤をPTFEとすることにより、正極に優れた透気防水性を付与することができる。したがって、正極に空気を効率よく取り込み、かつ正極からの水溶液系電解液の漏洩を好適に防止することができる。結着剤の量としては、例えば正極材に対してPTFEを20重量%以上含有することが好ましく、20重量%以上50重量%以下がより好ましい。このような範囲であれば、水溶液系電解液の漏洩を好適に防止することができる。
Subsequently, the material of the positive electrode structure of the lithium-air battery according to the present embodiment will be mainly described.
The positive electrode material 10 is generally composed of a conductive auxiliary, a binder (binder), and a catalyst to be supported on the positive electrode current collector 20. Examples of the catalyst include a catalyst capable of promoting an electric reaction such as manganese dioxide (MnO 2 ), ruthenium oxide (RuO 2 ), and iridium oxide (IrO 2 ), and a catalyst in which a noble metal such as platinum (Pt) is supported on carbon or the like. Can be As the conductive additive, a carbon material that can be used as an electrode material such as carbon black can be used. As the binder, polytetrafluoroethylene (PTFE) having air permeability and waterproofness is preferable. By using PTFE as the binder, it is possible to impart excellent air permeability and waterproofness to the positive electrode. Therefore, air can be efficiently taken into the positive electrode, and leakage of the aqueous electrolyte solution from the positive electrode can be suitably prevented. The amount of the binder is, for example, preferably 20% by weight or more, more preferably 20% by weight or more and 50% by weight or less based on the positive electrode material. Within such a range, leakage of the aqueous electrolyte solution can be suitably prevented.

正極集電体20は、耐食性と導電性を有する材料であればよい。具体的には、正極集電体20として、カーボンペーパ、カーボンクロス、カーボン不織布、多孔質の金属(金属の発砲体)、金属メッシュ等が挙げられる。これらのうち、金属メッシュが好ましい。正極集電体が金属メッシュであれば、例えば、熱溶着部材40及び正極材10に容易に結着して正極の作製を容易とすることができる。また、金属メッシュは、アルカリ水溶液に対する耐腐食性が高い金属メッシュであればよく、例えば白金(Pt)、ニッケル(Ni)、チタン(Ti)等のメッシュが挙げられる。これらのうち、金属メッシュは、チタンメッシュが好ましい。チタンメッシュは、アルカリ水溶液に対する耐腐食性が高く、比較的に軽量かつ安価であり、熱溶着部材40との接合性及び正極材10との密着性の両方を向上することができる。その結果、水溶液系電解液の漏洩を好適に防止することができ、かつ高い強度を正極及びリチウム空気電池に付与できる。   The positive electrode current collector 20 may be any material having corrosion resistance and conductivity. Specifically, examples of the positive electrode current collector 20 include carbon paper, carbon cloth, carbon nonwoven fabric, porous metal (metal foam), and metal mesh. Of these, metal meshes are preferred. When the positive electrode current collector is a metal mesh, for example, the positive electrode current collector can be easily bonded to the heat welding member 40 and the positive electrode material 10 to facilitate the production of the positive electrode. The metal mesh may be any metal mesh having high corrosion resistance to an aqueous alkaline solution, and examples thereof include a mesh of platinum (Pt), nickel (Ni), titanium (Ti), and the like. Among these, the metal mesh is preferably a titanium mesh. The titanium mesh has high corrosion resistance to an aqueous alkali solution, is relatively lightweight and inexpensive, and can improve both the bonding property with the heat welding member 40 and the adhesion property with the positive electrode material 10. As a result, leakage of the aqueous electrolyte solution can be suitably prevented, and high strength can be imparted to the positive electrode and the lithium-air battery.

正極外装材30は、少なくとも1層の金属箔のラミネートフィルムである。金属箔としては、アルミニウム(Al)、SUS(Stainless Used Steel)等の箔が挙げられる。これらのうち、正極外装材30は、Al箔であることが好ましく、Al箔を少なくとも含む3層以上の構造であることがより好ましい。3層構造を有する正極外装材30としては、中間層がAl箔であり、最外層がポリエチレンテレフタレート(PET)樹脂であり、最内層がポリプレン(PP)樹脂であるラミネートフィルムが好ましい。このような層構造によって、最外層により優れた耐熱性及び強度を正極外装材に付与でき、かつ、最内層により低融点、優れた熱加工性及びヒートシール性を正極外装材に付与できる。なお、このような層構成に限らず、最外層として、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ナイロン系樹脂等のフィルム、最内層として、PE樹脂等のフィルム等を使用することができる。また、4層以上の構造を有する外装材としては、3層の間にナイロンフィルム等のフィルムを1層以上含む構造を採用できる。   The positive electrode casing 30 is a laminated film of at least one layer of metal foil. Examples of the metal foil include aluminum (Al) and SUS (Stainless Used Steel). Among these, the positive electrode exterior material 30 is preferably an Al foil, and more preferably has a structure of three or more layers including at least the Al foil. As the positive electrode exterior material 30 having a three-layer structure, a laminate film in which the intermediate layer is an Al foil, the outermost layer is a polyethylene terephthalate (PET) resin, and the innermost layer is a polypropylene (PP) resin is preferable. With such a layer structure, the outermost layer can impart more excellent heat resistance and strength to the cathode exterior material, and the innermost layer can impart a low melting point, excellent heat workability and heat sealability to the cathode exterior material. It should be noted that the present invention is not limited to such a layer configuration, and an outermost layer may be a film of an olefin resin such as polyethylene or polypropylene, a film of a nylon resin or the like, and an innermost layer may be a film of a PE resin or the like. Further, as the exterior material having a structure of four or more layers, a structure including one or more layers of a film such as a nylon film between three layers can be adopted.

熱溶着部材40は、正極集電体20と正極外装材30とを熱によって溶着できる部材であればよい。熱溶着部材40としては、熱溶着シート、接着剤等が挙げられる。具体的には、熱溶着部材40は、熱溶着シートが好ましく、熱溶着シートとしては、酸変性ポリプロピレン樹脂等を基材としたシート等が挙げられる。熱溶着部材40を熱溶着シートとすれば、正極外装材30(特にPP)や正極集電体20の金属等と容易に接合することができる。また、正極外装材30を大気側から1回溶着するだけで正極集電体20と接合できる。したがって、正極及びリチウム空気電池を簡易に製造できるため、正極及びリチウム空気電池の生産性を向上することができる。また、正極集電体20と正極外装材30との接合強度を高くすることができるため、水溶液系電解液13の漏洩を確実に防止し、かつ正極及びリチウム空気電池が破損しにくくなる。なお、熱溶着部材40を接着剤とする場合、接合前に、正極外装材30の正極集電体20と接合面をエッチングすることが好ましい。   The heat welding member 40 may be any member that can weld the positive electrode current collector 20 and the positive electrode exterior material 30 by heat. Examples of the heat welding member 40 include a heat welding sheet, an adhesive, and the like. Specifically, the heat welding member 40 is preferably a heat welding sheet, and examples of the heat welding sheet include a sheet using an acid-modified polypropylene resin or the like as a base material. If the heat welding member 40 is a heat welding sheet, it can be easily joined to the positive electrode exterior material 30 (particularly PP), the metal of the positive electrode current collector 20, and the like. Further, the positive electrode exterior material 30 can be joined to the positive electrode current collector 20 only by welding once from the atmosphere side. Therefore, since the positive electrode and the lithium-air battery can be easily manufactured, the productivity of the positive electrode and the lithium-air battery can be improved. In addition, since the bonding strength between the positive electrode current collector 20 and the positive electrode exterior material 30 can be increased, the leakage of the aqueous electrolyte solution 13 is reliably prevented, and the positive electrode and the lithium-air battery are less likely to be damaged. When the heat-welding member 40 is used as an adhesive, it is preferable to etch the bonding surface between the positive electrode current collector 20 and the positive electrode current collector 20 before bonding.

本実施の形態によれば、接合しにくい正極材10と外装材30ではなく、正極集電体20を活用して正極集電体20と外装材30とを接合することによって、正極からの水溶液系電解液13の漏洩を防止することができる。   According to the present embodiment, the positive electrode current collector 20 and the exterior material 30 are joined using the positive electrode current collector 20 instead of the cathode material 10 and the exterior material 30 that are difficult to join, so that the aqueous solution from the positive electrode is Leakage of the system electrolyte 13 can be prevented.

また、本実施の形態によれば、電解液が漏洩することのない正極となるため、正極構造として、例えば、防湿性かつ気体透過性を有するポリテトラフルオロエチレン(PTFE)シート等を別途設ける必要が無くなる。これにより、正極及びリチウム空気電池の部品点数を削減し、軽量化することができる。さらに、電解液が漏洩することのない正極となるため、縦置のリチウム空気電池セルに好適な構造とすることができ、レイアウトの自由度を向上することができる。さらにまた、電解液が漏洩することのない正極となるため、長時間に亘って安定した放電を可能とする。   In addition, according to the present embodiment, since the positive electrode does not leak electrolyte solution, it is necessary to separately provide, for example, a polytetrafluoroethylene (PTFE) sheet having moisture resistance and gas permeability as the positive electrode structure. Disappears. Thereby, the number of parts of the positive electrode and the lithium air battery can be reduced, and the weight can be reduced. Further, since the positive electrode does not leak the electrolyte solution, a structure suitable for a vertically arranged lithium-air battery cell can be obtained, and the degree of freedom in layout can be improved. Furthermore, since the positive electrode does not leak electrolyte solution, stable discharge can be performed for a long time.

さらに、本実施の形態よれば、第二の正極12を大気中に直接的に曝すことができるので、放電反応に必要な空気をリチウム空気電池の外部から効率良く供給でき、長時間に亘って安定した放電を可能とし、かつリチウム空気電池の平均放電電圧を向上できる。さらにまた、第一の正極材11が水溶液系電解液13と接触する部分を大きくすることができる。したがって、正極中に有効な反応場を確保することができる。その結果、長時間に亘って安定かつ高電圧の放電が可能となる。   Furthermore, according to the present embodiment, since the second positive electrode 12 can be directly exposed to the atmosphere, the air required for the discharge reaction can be efficiently supplied from outside the lithium-air battery, and can be supplied for a long time. It enables stable discharge and improves the average discharge voltage of the lithium-air battery. Furthermore, the portion where the first positive electrode material 11 comes into contact with the aqueous electrolyte 13 can be increased. Therefore, an effective reaction field can be secured in the positive electrode. As a result, stable and high-voltage discharge can be performed for a long time.

[リチウム空気電気セル]
続いて、以上のような正極構造を有するリチウム空気電池セルについて、図4を用いて説明する。図4に、本発明に係るリチウム空気電池セルの第一実施の形態を部分的な断面図にて示す。本実施の形態のリチウム空気電池は、水溶液系電解液を用いたリチウム空気電池として説明する。また、前述の第一実施の形態に係る正極構造については、同一の番号を付し、特段の記載がない限りにおいて説明を省略している。
[Lithium air electric cell]
Subsequently, a lithium-air battery cell having the above-described positive electrode structure will be described with reference to FIG. FIG. 4 is a partial cross-sectional view of the first embodiment of the lithium-air battery cell according to the present invention. The lithium air battery of the present embodiment will be described as a lithium air battery using an aqueous electrolyte. The same reference numerals are given to the positive electrode structure according to the above-described first embodiment, and the description is omitted unless otherwise specified.

なお、以下の説明において、図中上方向に位置する要素を「上側」等のように表現している。しかし、これはあくまで説明上の便宜的なものであり、金属空気電池の配置される状態によって、上側として説明したものが下側となることもある。また、上下関係ではなく、左右関係に位置することもある。   In the following description, an element located in the upper direction in the drawing is expressed as “upper” or the like. However, this is only for the convenience of description, and what is described as the upper side may be the lower side depending on the state in which the metal-air battery is arranged. In addition, they may be located in a left-right relationship instead of an up-down relationship.

図4に示すように、リチウム空気電池は、第一実施の形態に記載の正極構造を有する正極と負極複合体とを対向させ、それらの間に水溶液系電解液13を充填し、正極及び負極複合体の固体電解質54の各々を水溶液系電解液13に接するように構成している。   As shown in FIG. 4, the lithium-air battery has a positive electrode having the positive electrode structure described in the first embodiment and a negative electrode composite opposed to each other, and an aqueous electrolyte 13 is filled between the positive electrode and the negative electrode composite. Each of the composite solid electrolytes 54 is configured to be in contact with the aqueous electrolyte 13.

正極は、平板形状を有する。正極の一方の面は、負極複合体の一方の面(すなわち、固体電解質54側の面)に対向している。正極の正極外装材30の形状、層構造並びに材料は、前述の正極外装材と同一又は略同一の形状、層構造及び材料を採用することができる。図示の例では、正極外装材30の層構造を3層構造とし、3層構造のうちの中間層30aをAl箔とし、最外層30bをPET樹脂とし、最内層30cをPP樹脂としている。   The positive electrode has a flat plate shape. One surface of the positive electrode faces one surface of the negative electrode composite (that is, the surface on the solid electrolyte 54 side). The shape, layer structure, and material of the positive electrode exterior material 30 of the positive electrode may be the same or substantially the same shape, layer structure, and material as those of the above-described positive electrode exterior material. In the illustrated example, the layer structure of the positive electrode exterior material 30 is a three-layer structure, of which the intermediate layer 30a is an Al foil, the outermost layer 30b is a PET resin, and the innermost layer 30c is a PP resin.

第一の正極材11と正極外装材30の最内層30cとは、第一の正極材11と正極集電体20とを密着させて、かつ水溶液系電解液の漏洩を防ぐために、外周封止部材18により封止している。外周封止部材18は、第一の正極材11の水溶液系電解液13側の面を除いた領域を閉ざし、この領域内に、第一の正極材11、第二の正極材12、正極集電体20の一部、第二の正極材12、熱溶着部材40を封入するように構成している。外周封止部材18は、熱溶着シートや接着剤等が使用でき、好ましくは接着剤である。熱溶着シートとしては、酸変性ポリプロピレン等が挙げられる。接着剤としては、透湿性が低く、かつ、密閉性が高いものが好適であり、エポキシ系接着剤、オレフィン系接着剤、合成ゴム系接着剤等が挙げられる。   The first positive electrode material 11 and the innermost layer 30c of the positive electrode exterior material 30 are sealed with the outer periphery in order to make the first positive electrode material 11 and the positive electrode current collector 20 adhere to each other and to prevent leakage of the aqueous electrolyte solution. It is sealed by a member 18. The outer peripheral sealing member 18 closes a region excluding the surface of the first positive electrode material 11 on the side of the aqueous electrolyte 13, and the first positive electrode material 11, the second positive electrode material 12, and the positive electrode It is configured to enclose a part of the electric body 20, the second positive electrode material 12, and the heat welding member 40. The outer peripheral sealing member 18 can use a heat welding sheet or an adhesive, and is preferably an adhesive. Examples of the heat welding sheet include acid-modified polypropylene. As the adhesive, those having low moisture permeability and high sealing property are suitable, and examples thereof include an epoxy-based adhesive, an olefin-based adhesive, and a synthetic rubber-based adhesive.

正極の正極集電体20の寸法は、第一の正極材11と略同一としている。また、正極集電体20は、リチウム空気電池セルの外部まで延出するタブ部を備えている。タブ部の形状は、外周封止部材18による正極の気密性及びリチウム空気電池セルの気密を維持できる形状であればよく、正極集電体20と異なっていてもよい。タブ部の材料は、正極集電体20と異なってもよく、同一でもよい。   The dimensions of the positive electrode current collector 20 of the positive electrode are substantially the same as those of the first positive electrode material 11. In addition, the positive electrode current collector 20 includes a tab portion extending to the outside of the lithium-air battery cell. The shape of the tab portion may be any shape as long as it can maintain the airtightness of the positive electrode and the airtightness of the lithium-air battery cell by the outer peripheral sealing member 18, and may be different from the positive electrode current collector 20. The material of the tab portion may be different from or the same as that of the positive electrode current collector 20.

負極複合体は、負極層55と、緩衝層56と、固体電解質54との積層体を上側外装体60及び下側外装体70で挟持し、それらの間に非水系電解液80を充填している。また、負極複合体は、正極と対向するように、正極側から、上側外装材60、固体電解質54、緩衝層56、負極層55及び下側外装材70を順に配置して構成している。   In the negative electrode composite, a laminate of the negative electrode layer 55, the buffer layer 56, and the solid electrolyte 54 is sandwiched between the upper exterior body 60 and the lower exterior body 70, and a nonaqueous electrolyte solution 80 is filled therebetween. I have. In addition, the negative electrode composite is configured by arranging, in order from the positive electrode, an upper exterior material 60, a solid electrolyte 54, a buffer layer 56, a negative electrode layer 55, and a lower exterior material 70 so as to face the positive electrode.

上側外装材60及び下側外装材70の層構造並びに材料は、第一実施の形態の正極外装材30と同一又は略同一の層構造及び材料を採用することができる。図示の例では、上側外装材60及び下側外装材70の層構造を3層構造としている。具体的には、上側外装材60及び下側外装材70の材料について、3層構造のうちの中間層60a、70aをAl箔とし、最外層60b、70bをPET樹脂とし、最内層60c、70cをPP樹脂としている。上側外装材60及び下側外装材70の形状は、水溶液系電解液13を漏洩することなく、正極と接合できる形状であればよい。   The layer structure and the material of the upper exterior material 60 and the lower exterior material 70 may be the same or substantially the same as the positive electrode exterior material 30 of the first embodiment. In the illustrated example, the upper exterior material 60 and the lower exterior material 70 have a three-layer structure. Specifically, as for the materials of the upper exterior material 60 and the lower exterior material 70, of the three-layer structure, the intermediate layers 60a and 70a are made of Al foil, the outermost layers 60b and 70b are made of PET resin, and the innermost layers 60c and 70c. Is a PP resin. The shape of the upper exterior material 60 and the lower exterior material 70 may be any shape that can be joined to the positive electrode without leaking the aqueous electrolyte solution 13.

固体電解質54は、リチウムイオンを透過させることができる電解質であり、負極複合体が水溶液系電解液13と接する面に位置している。固体電解質としては、イオン導電性に優れ、不燃性である点からガラスセラミックが挙げられる。ガラスセラミックとしては、NASICON型の結晶構造を有するリチウム(Li)、チタン(Ti)、アルミニウム(Al)、リン(P)、珪素(Si)、酸素(O)等からなる酸化物であるLTAPが好ましい。固体電解質がLTAPであれば、良好な耐水性と高い強度とをリチウム空気電池に付与できる。   The solid electrolyte 54 is an electrolyte that allows lithium ions to pass therethrough, and is located on a surface where the negative electrode complex contacts the aqueous electrolyte 13. Examples of the solid electrolyte include glass ceramics, which are excellent in ionic conductivity and nonflammable. As a glass ceramic, LTAP which is an oxide composed of lithium (Li), titanium (Ti), aluminum (Al), phosphorus (P), silicon (Si), oxygen (O), or the like having a NASICON-type crystal structure is used. preferable. If the solid electrolyte is LTAP, good water resistance and high strength can be imparted to the lithium-air battery.

緩衝層56は、固体電解質54と負極層55の間に位置し、負極層55と固体電解質54との接触を防ぐように構成している。緩衝層は、有機電解液である電解質をセパレータ(多孔質のポリエチレンやポリプロピレン、セルロース等のシート)に浸み込ませた層である。   The buffer layer 56 is located between the solid electrolyte 54 and the negative electrode layer 55, and is configured to prevent contact between the negative electrode layer 55 and the solid electrolyte 54. The buffer layer is a layer in which an electrolyte, which is an organic electrolytic solution, is impregnated in a separator (a sheet of porous polyethylene, polypropylene, cellulose, or the like).

負極層55は、金属リチウム等の表面に銅(Cu)箔等の負極集電体57の一部分を貼り合わせて構成している。負極集電体57の残部は、負極複合体の両端部が熱溶着接合しても負極複合体から突出するように構成している。   The negative electrode layer 55 is configured by bonding a part of a negative electrode current collector 57 such as a copper (Cu) foil to a surface of lithium metal or the like. The remaining portion of the negative electrode current collector 57 is configured to protrude from the negative electrode composite even when both ends of the negative electrode composite are thermally welded and joined.

非水系電解液80としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等のカーボネート系溶媒やテトラエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン等のエーテル系溶媒、およびこれら複数の溶媒の混合溶液に、ヘキサフルオロリン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)、テトラフルオロホウ酸リチウム(LiBF4)、リチウムビス(トリフルオロメタンスルホニル)イミド)(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)等の電解質を添加してなる電解液を使用できる。 Examples of the non-aqueous electrolyte solution 80 include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), carbonate solvents such as ethyl methyl carbonate (EMC), tetraethylene glycol dimethyl ether, triethylene glycol dimethyl ether, Ether solvents such as ethylene glycol dimethyl ether, tetrahydrofuran, 1,4-dioxane, and 1,3-dioxolane, and a mixed solution of these solvents are added to lithium hexafluorophosphate (LiPF 6 ) and lithium perchlorate (LiClO 4). ), Lithium tetrafluoroborate (LiBF 4 ), lithium bis (trifluoromethanesulfonyl) imide) (LiTFSI), lithium bis (fluorosulfonyl) imide (LiFSI) and other electrolytes Can be used.

また、上側外装体60の固体電解質54側の端部と固体電解質54とを、外周封止部材58により封止している。外周封止部材58は、固体電解質54の正極側の面を除いた領域を閉ざし、この領域内に負極集電体57の一部、負極層55、緩衝層56、固体電解質54の一部及び非水系電解液80を封入するように構成している。外周封止部材58の材料は、外周封止部材18と同様の部材を好適に採用できる。   In addition, an end of the upper exterior body 60 on the solid electrolyte 54 side and the solid electrolyte 54 are sealed with an outer peripheral sealing member 58. The outer peripheral sealing member 58 closes a region excluding the surface on the positive electrode side of the solid electrolyte 54, and a part of the negative electrode current collector 57, the negative electrode layer 55, the buffer layer 56, a part of the solid electrolyte 54 and The non-aqueous electrolyte 80 is sealed. As the material of the outer peripheral sealing member 58, the same member as the outer peripheral sealing member 18 can be suitably adopted.

以上の構成を有する負極複合体は、例えば、固体電解質と負極層が対向するように、上側外装材、固体電解質、緩衝層、負極層と、下側外装材とを順に重ね、上側外装材と下側外装材とを、非水系電解液の注入するための端面口を残すように、図示しない熱溶着シート等の熱溶着層を介してヒートシーラにより接合する。端面口から上側外装部材と下側外装部材内に非水系電解液を注入した後、この端面口をヒートシーラにより熱溶着接合することにより作製できる。   The negative electrode composite having the above configuration, for example, such that the solid electrolyte and the negative electrode layer face each other, the upper exterior material, the solid electrolyte, the buffer layer, the negative electrode layer, and the lower exterior material are sequentially stacked, and the upper exterior material and The lower exterior material is joined by a heat sealer via a heat welding layer such as a heat welding sheet (not shown) so as to leave an end face opening for injecting the non-aqueous electrolyte. After the non-aqueous electrolyte is injected into the upper exterior member and the lower exterior member from the end opening, the end opening can be thermally welded and joined by a heat sealer.

また、以上の構成を有するリチウム空気電池セルは、例えば、正極の下端面の外装体と負極複合体の上端面の外装体とを、水溶液系電解液の注入するための端面口を残すように、熱溶着シート等の熱溶着層90を介してヒートシーラにより接合し、水溶液系電解液を注入した後、端面口をヒートシーラにより熱溶着接合することにより作製できる。   Further, the lithium-air battery cell having the above configuration, for example, the exterior body of the lower end face of the positive electrode and the exterior body of the upper end face of the negative electrode composite, leaving an end face opening for injecting the aqueous electrolyte solution. It can be manufactured by joining with a heat sealer via a heat-welding layer 90 such as a heat-welding sheet, injecting an aqueous electrolyte solution, and then heat-welding the end face opening with a heat sealer.

2.第二実施の形態
図5に、第二実施の形態に係るリチウム空気電池の正極構造を概略的に示す。図5に示すように、本実施の形態に係るリチウム空気電池の正極構造は、外装材130及び熱溶着部材140を備える点において、第一実施の形態と主に相違する。第一実施の形態と同様の構成については、同一の番号を付し、説明を省略する。
2. Second Embodiment FIG. 5 schematically shows a positive electrode structure of a lithium-air battery according to a second embodiment. As shown in FIG. 5, the positive electrode structure of the lithium-air battery according to the present embodiment is mainly different from the first embodiment in that it has an outer package 130 and a heat welding member 140. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

正極外装材130は、正極集電体20に対して大気側に位置し、第二の正極材12と同一又は略同一の形状の開口部131を有している。また、正極外装材130は、溶着部140aにて正極集電体20と熱溶着部材140を介して接触するように構成している。正極外装材130の開口部131の面積は、第二の正極材12の第二の外周部12aで規定される大気側の面の面積よりも大きく、第一の正極材11の第一の外周部11aで規定される大気側の面の面積よりも小さく、かつ第二の正極材12に空気を取り込める面積であればよい。正極外装材130の形状、外寸及び厚みは、正極を熱圧着してなる正極構造にて、溶着部140aで正極集電体20と接合できる形状、外寸及び厚みであればよい。正極外装材130の材料及び層構造については、第一実施の形態と同様の材料及び層構造を採用できる。   The positive electrode exterior material 130 is located on the atmosphere side with respect to the positive electrode current collector 20, and has an opening 131 having the same or substantially the same shape as the second positive electrode material 12. Further, the positive electrode exterior material 130 is configured to be in contact with the positive electrode current collector 20 via the heat welding member 140 at the welding portion 140a. The area of the opening 131 of the positive electrode material 130 is larger than the area of the surface on the atmosphere side defined by the second outer peripheral portion 12 a of the second positive electrode material 12, and the first outer periphery of the first positive electrode material 11 is Any area may be used as long as it is smaller than the area of the surface on the atmosphere side defined by the portion 11a and the air can be taken into the second positive electrode material 12. The shape, outer dimensions, and thickness of the positive electrode casing 130 may be any shape, outer dimensions, and thickness that can be joined to the positive electrode current collector 20 at the welded portion 140a in the positive electrode structure formed by thermocompression of the positive electrode. The same material and layer structure as in the first embodiment can be adopted for the material and the layer structure of the positive electrode casing 130.

熱溶着部材140は、正極集電体20に対して大気側かつ正極外装材130に対して水溶液系電解液13側に位置し、第二の正極材12と同一又は略同一の形状の開口部141を有している。熱溶着部材140の開口部141は、正極外装材130の開口部131と同一又は略同一の位置に配置されている。また、熱溶着部材140は、溶着部140aにて正極集電体20と正極外装材30とを熱溶着により接合するように構成している。熱溶着部材140の開口部141の面積は、第一の正極材11の外周部11aで規定される大気側の面の面積よりも小さく、第二の正極材12の外周部12aで規定される大気側の面の面積よりも大きく、溶着部140aにて正極集電体20と正極外装材130とを熱溶着により接合できる面積であればよい。熱溶着部材140の形状、外寸及び厚みは、正極を熱圧着してなる正極構造にて、溶着部140aで正極集電体20と正極外装部材130とを接合できる形状、外寸及び厚みであればよい。熱溶着部材140の材料については、第一実施の形態と同様の材料を採用できる。   The heat welding member 140 is located on the air side with respect to the positive electrode current collector 20 and on the aqueous electrolyte solution 13 side with respect to the positive electrode exterior material 130, and has an opening having the same or substantially the same shape as the second positive electrode material 12. 141. The opening 141 of the heat welding member 140 is arranged at the same or substantially the same position as the opening 131 of the positive electrode casing 130. Further, the heat welding member 140 is configured so that the positive electrode current collector 20 and the positive electrode exterior material 30 are joined by welding at the welding portion 140a. The area of the opening 141 of the heat welding member 140 is smaller than the area of the surface on the atmosphere side defined by the outer peripheral portion 11a of the first positive electrode material 11, and is defined by the outer peripheral portion 12a of the second positive electrode material 12. Any area may be used as long as it is larger than the area of the surface on the air side and can join the positive electrode current collector 20 and the positive electrode exterior material 130 by thermal welding at the welding portion 140a. The shape, outer dimensions, and thickness of the heat welding member 140 are determined by the shape, outer dimensions, and thickness of the positive electrode structure formed by thermocompression bonding of the positive electrode, so that the positive electrode current collector 20 and the positive electrode exterior member 130 can be joined at the welded portion 140a. I just need. As the material of the heat welding member 140, the same material as in the first embodiment can be adopted.

溶着部140aは、第一の正極材11の第一の外周部11aで規定される接触領域11b側の面に位置し、正極を熱圧着することにより、熱溶着部材140を介して正極集電体20と正極外装体130とを接合する部分に位置している。   The welded portion 140a is located on the surface of the first positive electrode material 11 on the side of the contact region 11b defined by the first outer peripheral portion 11a, and the positive electrode is heat-pressed to collect the positive electrode current via the thermal welding member 140. It is located at a portion where the body 20 and the positive electrode exterior body 130 are joined.

本実施の形態によれば、第一実施の形態と同様に、水溶液系電解液の漏洩を防止することができ、長時間に亘って安定した放電が可能とする。結果として、長時間に亘って安定かつ高電圧の放電が可能となる。さらに、第一実施の形態と比較して、正極を熱圧着し多構造としても第二の正極12上に正極外装体130と熱溶着部材140が積層することがないため、第一実施の形態よりも正極を薄く形成することができる。さらにまた、第二の正極12の第二の外周部12aで規定される大気側の面の全てが大気中に直接的に曝すことにより、第二の正極材12と大気との接触面積を増加させて、正極に取り入れる空気量を増加することができる。これにより、より長時間に亘って安定した放電が可能とし、リチウム空気電池の平均放電電圧を向上できる。   According to the present embodiment, similarly to the first embodiment, leakage of the aqueous electrolyte solution can be prevented, and stable discharge can be performed for a long time. As a result, stable and high-voltage discharge can be performed for a long time. Furthermore, as compared with the first embodiment, the positive electrode casing 130 and the heat welding member 140 are not laminated on the second positive electrode 12 even when the positive electrode is thermocompression-bonded to form a multi-structure. The positive electrode can be formed thinner than that. Furthermore, by directly exposing the entire surface on the atmosphere side defined by the second outer peripheral portion 12a of the second cathode 12 to the atmosphere, the contact area between the second cathode material 12 and the atmosphere is increased. Thus, the amount of air taken into the positive electrode can be increased. Thereby, stable discharge can be performed for a longer time, and the average discharge voltage of the lithium-air battery can be improved.

また、本実施の形態に係るリチウム空気電池の正極構造についても、第一実施の形態にて示したリチウム空気電池セル及びその負極複合体の構造を好適に採用することができる。   Further, the structure of the lithium-air battery cell and the structure of the negative electrode composite thereof described in the first embodiment can also be suitably used for the positive electrode structure of the lithium-air battery according to the present embodiment.

3.第三実施の形態
図6に、本発明に係るリチウム空気電池の正極構造の第三実施の形態を示す。図6に示すように、本実施の形態に係るリチウム空気電池の正極構造は、正極集電体220を備える点において、第二実施の形態と主に相違する。第二実施の形態と同様の構成については、同一の番号を付し、説明を省略する。
3. Third Embodiment FIG. 6 shows a third embodiment of the positive electrode structure of the lithium-air battery according to the present invention. As shown in FIG. 6, the positive electrode structure of the lithium air battery according to the present embodiment is mainly different from the second embodiment in that a positive electrode current collector 220 is provided. The same components as those in the second embodiment are denoted by the same reference numerals, and description thereof is omitted.

正極集電体220は、接触領域11bに一端部を有し、第一の正極材11の接触領域11b、第一の正極材11の第一の外周部11a及び第一の正極材11の第一の外周部11aで規定される水溶液系電解液13側の面にて、第一の正極材11と接触している。また、正極集電体220は、正極を熱圧着してなる正極構造にて、溶着部140aにて熱溶着部材140を介して正極外装体130と接合するように構成している。正極外装材220の材料については、第一実施の形態及び第二実施の形態と同様の材料を採用できる。   The positive electrode current collector 220 has one end in the contact region 11b, the contact region 11b of the first positive electrode material 11, the first outer peripheral portion 11a of the first positive electrode material 11, and the first The surface on the side of the aqueous electrolyte 13 defined by one outer peripheral portion 11 a is in contact with the first positive electrode material 11. The positive electrode current collector 220 has a positive electrode structure formed by thermocompression bonding of the positive electrode, and is configured to be joined to the positive electrode exterior body 130 via the heat welding member 140 at the welding portion 140a. As the material of the positive electrode casing 220, the same material as in the first embodiment and the second embodiment can be adopted.

本実施の形態によれば、第二実施の形態と同様に、第一実施の形態よりも正極を薄く形成できる。また、第一実施の形態及び第二実施の形態に比べて、正極構造を容易に形成することができる。例えば、正極材の混練物の片側の外周を切除することにより、正極材の混練物を二つに分けることなく、第一の正極材11と第二の正極材12を形成することができる。これにより、正極及びリチウム空気電池の製造コストを削減することができる。また、正極集電体220が第一の正極材11の第一の外周部11aで規定される水溶液系電解液13側の面と接触しているので、正極集電体と正極との接触面積を大きく維持できる。   According to the present embodiment, as in the second embodiment, the positive electrode can be formed thinner than in the first embodiment. Further, the positive electrode structure can be easily formed as compared with the first embodiment and the second embodiment. For example, the first positive electrode material 11 and the second positive electrode material 12 can be formed without cutting the kneaded material of the positive electrode material into two by cutting off the outer periphery on one side of the kneaded material of the positive electrode material. Thereby, the manufacturing cost of the positive electrode and the lithium air battery can be reduced. In addition, since the positive electrode current collector 220 is in contact with the surface of the first positive electrode material 11 on the side of the aqueous electrolyte 13 defined by the first outer peripheral portion 11a, the contact area between the positive electrode current collector and the positive electrode Can be kept large.

また、本実施の形態に係るリチウム空気電池の正極構造についても、第一実施の形態にて示したリチウム空気電池セル及びその負極複合体の構造を好適に採用することができる。   Further, the structure of the lithium-air battery cell and the structure of the negative electrode composite thereof described in the first embodiment can also be suitably used for the positive electrode structure of the lithium-air battery according to the present embodiment.

4.第四実施の形態
図7に、本発明に係るリチウム空気電池の正極構造の第四実施の形態を示す。図7に示すように、本実施の形態に係るリチウム空気電池の正極構造は、正極集電体320を備える点において、第二実施の形態と主に相違する。第二実施の形態と同様の構成については、同一の番号を付し、説明を省略する。
4. Fourth Embodiment FIG. 7 shows a fourth embodiment of the positive electrode structure of the lithium-air battery according to the present invention. As shown in FIG. 7, the positive electrode structure of the lithium air battery according to the present embodiment is mainly different from the second embodiment in that a positive electrode current collector 320 is provided. The same components as those in the second embodiment are denoted by the same reference numerals, and description thereof is omitted.

正極集電体320は、第二の正極材12の第二の外周部12aで規定される大気側の面、第一の正極材11の接触領域11b、第一の正極材11の第一の外周部11a及び第一の正極材11の水溶液系電解液13側の面にて、第一の正極材11及び第二の正極材12と接触している。また、正極集電体320は、正極を熱圧着してなる正極構造にて、溶着部140aにて熱溶着部材140を介して正極外装体130と接合するように構成している。正極外装材320の材料については、第一実施の形態、第二実施の形態及び第三実施の形態と同様の材料を採用できる。   The positive electrode current collector 320 includes a surface on the atmosphere side defined by the second outer peripheral portion 12a of the second positive electrode material 12, a contact region 11b of the first positive electrode material 11, and a first The outer peripheral portion 11 a and the surface of the first positive electrode material 11 on the side of the aqueous electrolyte 13 are in contact with the first positive electrode material 11 and the second positive electrode material 12. Further, the positive electrode current collector 320 has a positive electrode structure formed by thermocompression bonding of the positive electrode, and is configured to be joined to the positive electrode exterior body 130 via the heat welding member 140 at the welding portion 140a. As the material of the positive electrode exterior material 320, the same material as in the first embodiment, the second embodiment, and the third embodiment can be adopted.

本実施の形態によれば、第二実施の形態及び第三実施の形態と同様に、第一実施の形態よりも正極を薄く形成できる。また、第三実施の形態と同様に、正極構造を容易に形成することができる。さらに、第三実施の形態と比べて、正極集電体320が第二の正極材12の第二の外周部12aで規定する大気側の面及び外周部12aと接触しているので、正極集電体と正極との接触面積を大きく維持できる。   According to this embodiment, as in the second and third embodiments, the positive electrode can be formed thinner than in the first embodiment. Further, similarly to the third embodiment, the positive electrode structure can be easily formed. Furthermore, as compared with the third embodiment, since the positive electrode current collector 320 is in contact with the surface on the air side defined by the second outer peripheral portion 12a of the second positive electrode material 12 and the outer peripheral portion 12a, A large contact area between the conductor and the positive electrode can be maintained.

また、本実施の形態に係るリチウム空気電池の正極構造についても、第一実施の形態にて示したリチウム空気電池セル及びその負極複合体の構造を好適に採用することができる。   Further, the structure of the lithium-air battery cell and the structure of the negative electrode composite thereof described in the first embodiment can also be suitably used for the positive electrode structure of the lithium-air battery according to the present embodiment.

なお、前述した実施の形態では、正極集電体を1つの部材とする構造を例示した。本発明はこれに限定されない。例えば、水溶液系電解液等への耐食性が求められる部分(正極材を圧着する部分)にはチタン、その他の部分はアルミニウムにすることで軽量化が可能となる。   In the above-described embodiment, the structure in which the positive electrode current collector is used as one member has been exemplified. The present invention is not limited to this. For example, titanium can be used for a portion requiring corrosion resistance to an aqueous electrolytic solution or the like (a portion to which a positive electrode material is pressed), and aluminum can be used for other portions to reduce the weight.

また、前述した実施の形態では、リチウム空気電池セルの作製するための手段として、正極の下端面と負極複合体の上端面とを、水溶液系電解液の注入するための端面口を残すように接合し、これに水溶液系電解液を直接注入する手段を例示した。本発明は、これに限定されない。例えば、電解液を吸収可能な材料に水溶液系電解液を吸収させ、これを水溶液系電解液(水溶液系電解質層)としてもよい。この場合、例えば、正極と負極複合体と共に水溶液系電解液を配置した後、正極の下端面と負極複合体の上端面を接合するだけでリチウム空気電池セルを作製できる。電解液を吸収させる材料としては、水分を吸収でき、電解液を保持できる材料であればよい。例えば、電解液を吸収させる材料として、セルロース、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂の多孔質体をシート形状で使用できる。また、水溶液系電解液を使用してゲル体を作製し、これを水溶液系電解質層として使用してもよい。この場合、電解液として、例えば、ポリアクリルアミド(PAA)、ポリフッ化ビニリデン(PVdF)等で作製したゲルを使用できる。   Further, in the above-described embodiment, as a means for manufacturing a lithium-air battery cell, the lower end surface of the positive electrode and the upper end surface of the negative electrode composite are formed so as to leave an end face opening for injecting an aqueous electrolyte solution. The means for joining and directly injecting the aqueous electrolyte solution into this is exemplified. The present invention is not limited to this. For example, a material capable of absorbing an electrolytic solution may be made to absorb the aqueous solution-based electrolytic solution, and this may be used as an aqueous-based electrolytic solution (aqueous-based electrolyte layer). In this case, for example, a lithium-air battery cell can be manufactured only by disposing an aqueous electrolyte solution together with the positive electrode and the negative electrode composite, and then joining the lower end surface of the positive electrode and the upper end surface of the negative electrode composite. The material for absorbing the electrolytic solution may be any material that can absorb moisture and retain the electrolytic solution. For example, as a material for absorbing the electrolytic solution, a porous body of a resin such as cellulose, polyethylene (PE), or polypropylene (PP) can be used in a sheet shape. Alternatively, a gel body may be prepared using an aqueous electrolyte solution and used as an aqueous electrolyte layer. In this case, for example, a gel made of polyacrylamide (PAA), polyvinylidene fluoride (PVdF), or the like can be used as the electrolytic solution.

以下、実施例によって本発明を具体的に説明することにより、本発明の効果を明らかにする。本発明に係るリチウム空気電池の正極構造は、以下の実施例によって制限されない。   Hereinafter, the effects of the present invention will be clarified by specifically describing the present invention with reference to examples. The positive electrode structure of the lithium-air battery according to the present invention is not limited by the following examples.

[実施例1]
1.正極の作製
正極を、以下の手順i)〜手順iii)で作製した。図8に、実施例にて作製した正極集電体及び熱溶着部材の構造を示す。
i)正極材として、酸素還元触媒である二酸化マンガン(MnO2)0.5gと、導電助剤である比表面積が800m2/gのケッチェンブラック0.07gと、結着剤であるポリテトラフルオロエチレン(PTFE)0.15gを計りとり、乳鉢内に移し、エタノール5mlを加えて混練し、混練物を得た。
ii)図8に示すように、正極集電体420としてチタンメッシュを25mm×25mmのサイズとし、その一部から正極集電体420のタブ部490として幅10mm、長さ60mmのチタンのサイズの延出部分が突出するように切断した。また、熱溶着部材440として熱溶着シートを外枠が35mm×35mm、内枠が18mm×18mmとなるように、切断した。この熱溶着シートを溶着部440aのサイズが外枠20mm×20mm、内枠が18mm×18mmとなるように、正極集電体420の一方側に配置した。
iii)手順i)で得られた混練物を第一の正極と第二の正極とに二等分し、ホットプレス機を使用して、チタンメッシュの正極材料圧着部(寸法:20mm×20mm)に両側から圧着した。図8の溶着部440aでは、水溶液系の電解液の漏洩を防止するために、一部の正極材料を熱溶着シートの上から圧着させた。正極材料の圧着部分からはみ出した混練物は除去した。その後、空気中で24時間自然乾燥させて、正極を作製した。
[Example 1]
1. Preparation of positive electrode A positive electrode was prepared by the following procedures i) to iii). FIG. 8 shows the structure of the positive electrode current collector and the heat-welded member manufactured in the example.
i) As a positive electrode material, 0.5 g of manganese dioxide (MnO 2 ) as an oxygen reduction catalyst, 0.07 g of Ketjen black having a specific surface area of 800 m 2 / g as a conductive aid, and polytetrafluoroethylene as a binder 0.15 g of fluoroethylene (PTFE) was weighed, transferred into a mortar, and kneaded by adding 5 ml of ethanol to obtain a kneaded product.
ii) As shown in FIG. 8, a titanium mesh having a size of 25 mm × 25 mm was formed as the positive electrode current collector 420, and a part of the titanium mesh having a width of 10 mm and a length of 60 mm was formed as a tab portion 490 of the positive electrode current collector 420. Cutting was performed so that the extension portion protruded. Further, the heat welding sheet as the heat welding member 440 was cut so that the outer frame was 35 mm × 35 mm and the inner frame was 18 mm × 18 mm. This heat-sealed sheet was arranged on one side of the positive electrode current collector 420 such that the size of the welded portion 440a was 20 mm × 20 mm in the outer frame and 18 mm × 18 mm in the inner frame.
iii) The kneaded product obtained in the procedure i) is bisected into a first positive electrode and a second positive electrode, and a positive electrode material pressing portion of titanium mesh (dimensions: 20 mm × 20 mm) using a hot press machine. Was crimped from both sides. In the welded part 440a of FIG. 8, in order to prevent the leakage of the aqueous electrolyte solution, a part of the positive electrode material was pressed on the heat-welded sheet. The kneaded material protruding from the pressure-bonded portion of the positive electrode material was removed. Then, it was air-dried in air for 24 hours to prepare a positive electrode.

2.負極複合体の作製
アルゴン雰囲気下のグローブボックス内で、PP樹脂/Al箔/PET樹脂のラミネートフィルムの中心部分を20mm×20mm角に打ち抜いた外装材と、酸変性ポリプロピレンフィルムの打ち抜き品(外枠:30mm×30mm、内枠:20mm×20mm)と、25mm×25mm角の固体電解質(LTAP)と、酸変性ポリプロピレンフィルム打ち抜き品(外枠:30mm×30mm、内枠:20mm×20mm)とを順に重ねて、ヒートシーラで熱溶着接合し、開口部を有する上側外装材とした。
2. Fabrication of Negative Electrode Composite In a glove box under an argon atmosphere, an exterior material obtained by punching a central portion of a laminated film of PP resin / Al foil / PET resin into a square of 20 mm × 20 mm, and a punched product of an acid-modified polypropylene film (outer frame) 30 mm × 30 mm, inner frame: 20 mm × 20 mm), 25 mm × 25 mm square solid electrolyte (LTAP), and an acid-modified polypropylene film punched product (outer frame: 30 mm × 30 mm, inner frame: 20 mm × 20 mm). They were stacked and heat-welded with a heat sealer to form an upper exterior material having an opening.

固体電解質(LTAP、株式会社オハラ製LICGC)と負極である金属Liとが対向するように、上側外装材、リチウムイオン電池用セパレータ(緩衝層)、銅箔(負極集電体)に金属Li(寸法:14.5mm×14mm、厚さ:200μm)を接合した接合体と、下側外装材である金属箔ラミネートフィルムとを順で重ね、その端部3辺をヒートシーラにより熱溶着接合した。続いて、接合していない端部より、非水系電解液(1MのLiPF6/EC:EMC=1:1)を接合体内に1ml注入した。残りの1辺の端部をヒートシーラで熱溶着接合して密閉し、負極複合体を作製した。 In order that the solid electrolyte (LTAP, LICGC manufactured by OHARA CORPORATION) and the metal Li as the negative electrode face each other, the metal Li () is added to the upper exterior material, the lithium ion battery separator (buffer layer), and the copper foil (negative electrode current collector). A joined body having dimensions: 14.5 mm × 14 mm, thickness: 200 μm) and a metal foil laminated film as a lower exterior material were sequentially stacked, and three edges of the joined portions were heat-welded using a heat sealer. Subsequently, 1 ml of a non-aqueous electrolyte (1M LiPF 6 / EC: EMC = 1: 1) was injected into the joined body from the unjoined end. The other end of one side was heat-sealed and joined with a heat sealer to form a negative electrode composite.

3.リチウム空気電池セルの作製
図4のリチウム空気電池セルについて説明した際と同様に、外装材であるアルミラミネートフィルム(PP樹脂/Al箔/PET樹脂)の中央に20mm×20mm角の穴を開け、この穴を正極材料圧着部で塞ぐように配置して、正極の端部とアルミラミネートフィルムを熱溶着シートで溶着した。このアルミラミネートフィルムの3辺を負極複合体と接合させ、残り1辺から水溶液系電解液(LiClが2Mの水溶液)2mlを注入した後、この1辺も接合して、空気電池セルとした。
3. Preparation of Lithium-Air Battery Cell As in the case of the lithium-air battery cell of FIG. 4, a 20 mm × 20 mm square hole was made in the center of an aluminum laminate film (PP resin / Al foil / PET resin) as an exterior material. This hole was arranged so as to be closed by the positive electrode material crimping portion, and the end of the positive electrode and the aluminum laminate film were welded with a heat welding sheet. Three sides of this aluminum laminated film were joined to the negative electrode composite, and 2 ml of an aqueous electrolyte solution (aqueous solution of 2M of LiCl) was injected from the remaining one side, and this one side was also joined to obtain an air battery cell.

[比較例1]
1.正極の作製
実施例1と同様の手順で正極を作製した。
[Comparative Example 1]
1. Production of Positive Electrode A positive electrode was produced in the same procedure as in Example 1.

2.負極複合体の作製
実施例1と同様の手順で正極を作製した。
2. Production of Negative Electrode Composite A positive electrode was produced in the same procedure as in Example 1.

3.リチウム空気電池セルの作製
図9に示すように、比較例で使用したリチウム空気電池セルを作製した。図4のリチウム空気電池セルについて説明した際と同様に、外装材530であるアルミラミネートフィルム(PP樹脂530c/Al箔530a/PET樹脂530b)の中央に20mm×20mm角の穴(開口部531)を開け、この穴をPTFEシート501で塞ぐように配置して、PTFEシート501の端部とアルミラミネートフィルム530を熱溶着シート540で溶着した。このアルミラミネートフィルム530と負極複合体の間に作製した正極を配置し、アルミラミネートフィルム530の3辺を負極複合体と接合させ、残り1辺から水溶液系電解液513(LiClが2Mの水溶液)2mlを注入した後、この1辺も接合して、リチウム空気電池セルとした。アルミラミネートフィルムと負極複合体は合計4辺で接合しているが、これらのうち1辺は正極のタブ部を挟んで接合させた。
3. Production of Lithium-Air Battery Cell As shown in FIG. 9, the lithium-air battery cell used in the comparative example was produced. 4, a 20 mm × 20 mm square hole (opening 531) is formed in the center of the aluminum laminate film (PP resin 530c / Al foil 530a / PET resin 530b), which is the exterior material 530, as described for the lithium air battery cell of FIG. The PTFE sheet 501 was placed so as to close this hole, and the end of the PTFE sheet 501 and the aluminum laminated film 530 were welded with a heat welding sheet 540. The prepared positive electrode is disposed between the aluminum laminated film 530 and the negative electrode composite, three sides of the aluminum laminated film 530 are joined to the negative electrode composite, and an aqueous electrolyte 513 (a 2M aqueous solution of LiCl) is formed from the remaining one side. After injecting 2 ml, this one side was also joined to obtain a lithium air battery cell. The aluminum laminate film and the negative electrode composite were bonded on a total of four sides, and one side of these was bonded across the tab portion of the positive electrode.

4.放電試験
実施例1及び比較例1のリチウム空気電池セルについて、放電試験を実施し、放電電圧の経時的な変化を検討した。先ず、実施例1のリチウム空気電池セルについて、電流密度を84mAh相当の理論容量の0.05Cに相当する4mA/cm2とした。比較例1のリチウム空気電池も同一の電流密度とした。実施例1及び比較例1について、100%の放電試験を行った際の電圧の経時的な推移を25℃の温度にて電池充放電装置(北斗電工社製、HJ1001SD8)を用いて測定した。図10に、測定結果を示す。
4. Discharge test The lithium-air battery cells of Example 1 and Comparative example 1 were subjected to a discharge test, and the change over time in the discharge voltage was examined. First, with respect to the lithium-air battery cell of Example 1, the current density was set to 4 mA / cm 2 corresponding to a theoretical capacity of 0.05 C corresponding to 84 mAh. The same current density was used for the lithium air battery of Comparative Example 1. With respect to Example 1 and Comparative Example 1, the time course of the voltage when a 100% discharge test was performed was measured at a temperature of 25 ° C. using a battery charging / discharging device (HJ1001SD8, manufactured by Hokuto Denko Corporation). FIG. 10 shows the measurement results.

図10に示すように、比較例1は、10000秒程度放電すると、放電電圧が2.2V程度まで著しく低下し、45000秒程度放電すると1.7V程度まで低下した。実施例1は、45000秒まで放電しても放電電圧を2.4V程度で維持しつつけた。   As shown in FIG. 10, in Comparative Example 1, the discharge voltage dropped to about 2.2 V when discharged for about 10000 seconds, and dropped to about 1.7 V when discharged for about 45000 seconds. In Example 1, the discharge voltage was maintained at about 2.4 V even after discharging up to 45000 seconds.

結果より、比較例1では、放電開始の初期に放電電圧が低下することがわかった。一方、実施例1では、放電開始の初期に電圧低下することはなく、安定した高い放電電圧を示すことがわかった。   From the results, it was found that in Comparative Example 1, the discharge voltage was lowered at the beginning of the discharge start. On the other hand, in Example 1, it was found that the voltage did not drop at the beginning of the discharge start, and showed a stable high discharge voltage.

本発明に係るリチウム空気電池の正極構造によれば、簡易な構造で電解液の漏洩を防止でき、縦置のリチウム空気電池セル等に好適な構造とすることができ、レイアウトの自由度を向上し、かつ長時間に亘る安定した放電を可能とする。   ADVANTAGE OF THE INVENTION According to the positive electrode structure of the lithium air battery which concerns on this invention, leakage of electrolyte solution can be prevented with a simple structure, it can be set as a structure suitable for a lithium air battery cell of a vertical installation, etc., and the flexibility of a layout is improved. And stable discharge over a long period of time is enabled.

1 リチウム空気電池
2 正極(空気極)
3、13、513 水溶液系電解液
4、54、554 固体電解質(隔離層)
5、55、555 負極層
6、56、556 緩衝層(保護層)
7 負荷
10 正極材
11、511 第一の正極材
12、512 第二の正極材
11a 第一の外周部
11b 接合領域
12a 第二の外周部
18、58、558 外周封止部材
20、220、320、420、520 正極集電体
30、130、530 正極外装材
30a、530a 正極外装材の中間層
30b、530b 正極外装材の最外層
30c、530c 正極外装材の最内層
31、41、131、141、531 開口部
40、140、440、540 熱溶着部材
40a、140a、440a、540a 溶着部
57、557 負極集電体
60、560 上側外装材
60a、560a 上側外装材の中間層
60b、560b 上側外装材の最外層
60c、560c 上側外装材の最内層
70、570 下側外装材
70a、570a 下側外装材の中間層
70b、570b 下側外装材の最外層
70c、570c 下側外装材の最内層
80、580 非水系電解液
90、590 熱圧着層
490 正極集電体のタブ部
501 PTFEシート
1 Lithium-air battery 2 Positive electrode (air electrode)
3, 13, 513 Aqueous electrolyte 4, 54, 554 Solid electrolyte (isolation layer)
5, 55, 555 Negative electrode layer 6, 56, 556 Buffer layer (protective layer)
7 Load 10 Positive electrode material 11, 511 First positive electrode material 12, 512 Second positive electrode material 11a First outer peripheral portion 11b Joining area 12a Second outer peripheral portion 18, 58, 558 Outer peripheral sealing members 20, 220, 320 , 420, 520 Positive electrode current collector 30, 130, 530 Positive exterior material 30a, 530a Positive exterior material middle layer 30b, 530b Positive exterior material outer layer 30c, 530c Positive exterior material inner layer 31, 41, 131, 141 , 531 Opening portions 40, 140, 440, 540 Heat welding members 40a, 140a, 440a, 540a Welding portions 57, 557 Negative electrode current collector 60, 560 Upper exterior material 60a, 560a Outermost layers 60c, 560c of the materials Innermost layers 70, 570 of the upper exterior materials 70a, 570a Lower intermediate materials 70b of the lower exterior materials The outermost layer 70c of 570b lower exterior member, the tab portion 501 PTFE sheets innermost 80,580 nonaqueous electrolyte 90,590 thermocompression layer 490 positive electrode current collector of 570c lower exterior member

Claims (5)

正極材と正極集電体と外装材とを少なくとも備えるリチウム空気電池の正極構造であって、
前記正極材が第一の正極材と第二の正極材とを備え、
平面視において、前記第一の正極材が前記第二の正極材を全周に亘って包囲し、前記第一の正極材と前記第二の正極材との大きさの差異によって形成される領域が、前記第一の正極材と前記正極集電体との接触領域を形成してなり、
前記接触領域にて前記正極集電体と前記外装材とが接合されている、リチウム空気電池の正極構造。
A positive electrode structure of a lithium air battery including at least a positive electrode material, a positive electrode current collector, and an exterior material,
The positive electrode material includes a first positive electrode material and a second positive electrode material,
In a plan view, the first positive electrode material surrounds the second positive electrode material over the entire circumference, and is formed by a difference in size between the first positive electrode material and the second positive electrode material. Forming a contact area between the first positive electrode material and the positive electrode current collector,
The positive electrode structure of a lithium-air battery, wherein the positive electrode current collector and the exterior material are joined at the contact area.
前記正極集電体が、前記第一の正極材と前記第二の正極材との間を貫通している請求項1に記載のリチウム空気電池の正極構造。   The positive electrode structure of a lithium air battery according to claim 1, wherein the positive electrode current collector penetrates between the first positive electrode material and the second positive electrode material. 前記正極集電体と前記外装材との間に、熱により溶着する熱溶着部材をさらに備える請求項1又は2に記載のリチウム空気電池の正極構造。   The positive electrode structure of a lithium air battery according to claim 1 or 2, further comprising a heat welding member that is welded by heat between the positive electrode current collector and the exterior material. 前記正極材が大気中に露出している請求項1〜3のいずれか一項に記載のリチウム空気電池の正極構造。   The positive electrode structure of a lithium air battery according to any one of claims 1 to 3, wherein the positive electrode material is exposed to the atmosphere. 前記リチウム空気電池の電解液が水溶液系電解液であり、前記正極集電体のうちの少なくとも前記電解液に接する部位がチタンからなる請求項1〜4のいずれか一項に記載のリチウム空気電池の正極構造。   The lithium-air battery according to any one of claims 1 to 4, wherein the electrolyte of the lithium-air battery is an aqueous electrolyte, and at least a portion of the positive electrode current collector that contacts the electrolyte is made of titanium. Positive electrode structure.
JP2016155586A 2016-08-08 2016-08-08 Lithium-air battery cathode structure Active JP6665729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016155586A JP6665729B2 (en) 2016-08-08 2016-08-08 Lithium-air battery cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016155586A JP6665729B2 (en) 2016-08-08 2016-08-08 Lithium-air battery cathode structure

Publications (2)

Publication Number Publication Date
JP2018026207A JP2018026207A (en) 2018-02-15
JP6665729B2 true JP6665729B2 (en) 2020-03-13

Family

ID=61194163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016155586A Active JP6665729B2 (en) 2016-08-08 2016-08-08 Lithium-air battery cathode structure

Country Status (1)

Country Link
JP (1) JP6665729B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239633A1 (en) * 2018-06-14 2019-12-19 パナソニックIpマネジメント株式会社 Positive electrode for air battery and air battery in which same is used

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198861A (en) * 1982-05-17 1983-11-18 Matsushita Electric Ind Co Ltd Button type air cell
JP3557860B2 (en) * 1997-07-31 2004-08-25 松下電器産業株式会社 Air electrode for air battery and method of manufacturing the air electrode
US7282295B2 (en) * 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US7842423B2 (en) * 2006-10-25 2010-11-30 Maxpower, Inc. Lithium metal anode construction for seawater or air semi-fuel cells having flexible pouch packaging
JP2014120339A (en) * 2012-12-17 2014-06-30 Showa Denko Packaging Co Ltd Sheath material for air secondary battery, manufacturing method of sheath material for air secondary battery and air secondary battery
JP6070671B2 (en) * 2014-10-09 2017-02-01 トヨタ自動車株式会社 Air battery

Also Published As

Publication number Publication date
JP2018026207A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6493057B2 (en) Metal-air battery negative electrode composite and metal-air battery
JP6250921B2 (en) battery
JP4720384B2 (en) Bipolar battery
JP2012124146A (en) Secondary battery, battery unit, and battery module
WO2011002064A1 (en) Laminated battery
CN108539204B (en) Negative electrode composite structure of lithium air battery
JP4670275B2 (en) Bipolar battery and battery pack
JP4135474B2 (en) Laminated secondary battery, assembled battery module comprising a plurality of laminated secondary batteries, assembled battery comprising a plurality of assembled battery modules, and an electric vehicle equipped with any of these batteries
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP2005251617A (en) Secondary battery and battery pack
KR101821488B1 (en) Battery
JP5986740B2 (en) Lithium secondary battery, sheet material, battery pack
CN109075413B (en) Negative electrode composite structure of lithium air battery
JP2011129446A (en) Laminated type battery
US20130323557A1 (en) Secondary battery and method for manufacturing same
JP5609829B2 (en) Air battery
JP6665729B2 (en) Lithium-air battery cathode structure
JP2004171954A (en) Laminated secondary battery, battery pack module comprising multiple laminated secondary batteries, battery pack comprising multiple set battery modules, and electric automobile with either battery mounted
JP5181422B2 (en) Bipolar secondary battery
JP2010244865A (en) Laminated battery
JP2019029642A (en) Electrochemical cell module and manufacturing method of electrochemical cell module
JP5334109B2 (en) Laminated battery
JP7131214B2 (en) metal air battery
JP2011108538A (en) Laminate battery
JP6962070B2 (en) Air battery and negative electrode complex used for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R151 Written notification of patent or utility model registration

Ref document number: 6665729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151