JP2004233757A - Manufacture method of optical waveguide element - Google Patents

Manufacture method of optical waveguide element Download PDF

Info

Publication number
JP2004233757A
JP2004233757A JP2003023528A JP2003023528A JP2004233757A JP 2004233757 A JP2004233757 A JP 2004233757A JP 2003023528 A JP2003023528 A JP 2003023528A JP 2003023528 A JP2003023528 A JP 2003023528A JP 2004233757 A JP2004233757 A JP 2004233757A
Authority
JP
Japan
Prior art keywords
input
dicing
grinding
waveguide
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003023528A
Other languages
Japanese (ja)
Inventor
Akitoshi Mesaki
明年 目▲崎▼
Takashi Takiguchi
敬 瀧口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2003023528A priority Critical patent/JP2004233757A/en
Publication of JP2004233757A publication Critical patent/JP2004233757A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacture method of optical waveguide element which has such advantages in the cost aspect that fine grinding for optical finishing is efficiently performed in a short period of time, and the consumption of consumable material like grinding liquid etc. is reduced. <P>SOLUTION: Optical waveguides 11, 12 are formed on a work wafer and a marker is formed in a direction along an input/output waveguide 12. By performing dicing on the basis of the marker, two diced surfaces y1, y2 in parallel along the input/output waveguide and two diced surfaces 19, 29 inclined at a prescribed angle from the direction orthogonal with respect to the input/output waveguide are obtained. Thereby, a wafer 10 is cut out into a parallelogram and the vicinity of the end part 13 of the input/output waveguide is subjected to dicing vertically to the diced surfaces y1, y2 and is faired into surfaces x19, x29 orthogonal to the optical axis of the input/output waveguide. The diced surfaces y1, y2 on the basis of the guide are opposed vertically to a grind stone surface 30 and are ground and, thereby, only a region part of the end part 13 is finished into an optical surface. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光導波路素子の製造方法に関するもので、より具体的には、ウエハに形成した導波路パターンを所定形状に切り出しするダイシングと、入出力導波路の端部を光学面に仕上げる研削との改良に関する。
【0002】
【発明の背景】
光デバイスに関して、光の導波路を平面に形成するようにしたPLC(Planer Lightwave Circuit)が注目されている。PLCは、半導体プロセスの技術を応用して、シリコンや石英等の平板状の基板(ウエハ)上に光導波路を形成するため、特性の安定性,小型化,量産性の面で優れた光導波路素子を製造できて開発が盛んである。
【0003】
つまり、光導波路素子の製造では、フォトリソグラフィやドライエッチングといった半導体プロセスの技術を応用して、ワークウエハ上に導波路パターンを形成した後に、ウエハの周縁をダイシングして所定の形状に単体チップを切り出すことが行われる。切り出した光導波路素子は、図1に示すように、その基板10上に導波路11を所定パターンに有していて入出力導波路12の端部13が所定のダイシング面x1,x2に位置している。この入出力導波路12は光ファイバアレイと接続するので、接続損失を低く抑えるため当該端部13には光学的な仕上げを施す必要があり、該当するダイシング面x1,x2を研削(研磨)して所定の平滑度に仕上げ、いわゆる鏡面にする。
【0004】
しかしながら、そのような製造では、光学的な仕上げのための研削は削り量を抑えた精密研削になるため、研削に時間がかかり生産性が悪いという問題がある。しかもその研削は、該当するダイシング面x1,x2の全体に対して施すことから、研削対象の面積が広くて研削の条件が悪い。その結果、研削面にダレが出て平滑面が得られず、不良が起きやすい。また、研削時に使う研削液などの消耗材も大量に消費することになるためコスト面にも不利がある。
【0005】
本発明は、上記した背景に鑑みてなされたもので、その目的とするところは、上記した問題を解決し、光学的な仕上げのための精密研削を短時間で効率よく行うことができ、研削液などの消耗材の消費量を低減できてコスト面に優れる光導波路素子の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る光導波路素子の製造方法は、光の導波路をウエハ上に形成して所定形状に切り出す光導波路素子の製造方法であって、前記導波路のパターンは入出力導波路の端部をダイシング面が2つ隣り合う角部近辺に設定し、ダイシング工程の後の研削工程では砥石面に、前記入出力端部を含む所定領域のみを対面させて研削して、当該領域部分を光ファイバとの結合のための光学面に加工するようにした。
【0007】
また、前記入出力導波路に沿う方向性にマーカを設け、前記ウエハは切り出し形状を平行四辺形として、一方の対辺は前記マーカ方向に沿って平行にスクライブし、他方の対辺は前記マーカ方向に対して交差方向で所定の傾きにスクライブしてダイシングを行い、前記研削工程では前記マーカ方向に平行に切り出したダイシング面を前記砥石面に対して垂直に対立させるようにするとよい。
【0008】
あるいはまた、前記入出力導波路に直交する方向性にマーカを設け、前記ウエハは切り出し形状を平行四辺形として、一方の対辺は前記マーカ方向に沿って平行にスクライブし、他方の対辺は前記マーカ方向に対して交差方向で所定の傾きにスクライブしてダイシングを行い、前記研削工程では前記マーカ方向に交差の傾きに切り出したダイシング面を前記砥石面に対して垂直に対立させるようにすることもできる。
【0009】
そして、上記した各発明を前提として、前記導波路のパターンは、イオン交換法,CVD法,火炎堆積法,高分子法などの成膜プロセスにより形成することができる。
【0010】
したがって本発明では、入出力導波路の端部はダイシング面が2つ隣り合う角部近辺に位置し、その入出力端部を含む所定領域のみを砥石面に対面させて研削を行うので、研削対象がその所定領域に限定される。つまり研削に係る面積が従来よりも格段に低減する。
【0011】
【発明の実施の形態】
図2は、本発明の第1の実施の形態を示している。本実施の形態において、光導波路素子は、平板状の基板(ウエハ10)上に光の導波路11を所定パターンに形成するとともに、入出力導波路12が所定のダイシング面に位置する構成となっている。
【0012】
この光導波路素子の製造には、導波路11のパターンは入出力導波路12の端部13をダイシング面が2つ隣り合う角部近辺に設定する。そして、ダイシング工程の後の研削工程では砥石面に、入出力導波路12の端部13を含む所定領域のみを対面させて研削し、当該領域部分を光ファイバアレイとの結合のための光学面に加工する。
【0013】
具体的には、半導体プロセスにより、ワークウエハ1上に光の導波路11,12を形成するとともに、それら導波路パターンの方向性の基準のためのマーカ2を形成する。マーカ2は、入出力導波路12に沿う方向性に形成する。つまり、複数のマーカ2を入出力導波路12と平行に並べて設ける。なお、導波路11のパターンは、適宜な成膜プロセスにより形成すればよく、例えばイオン交換法,CVD法,火炎堆積法,高分子法などの成膜プロセスにより形成することができる。また、導波路11は、図示は省略したが、多数を配列させてパターン形成する複数チャネルの構成にすることができるのはもちろんである。
【0014】
ここでは、ワークウエハ1は切り出し形状を平行四辺形としている。そして、一方の対辺は、マーカ2の並び方向に沿って平行にスクライブしてダイシングを行い、入出力導波路12に平行に沿う2つのダイシング面y1,y2を得る。他方の対辺は、マーカ2の並び方向に対して交差方向で所定の傾きにスクライブしてダイシングを行い、入出力導波路12に対して直交方向から所定に傾斜した2つのダイシング面19,29を得る。
【0015】
以上のダイシングにより、光導波路素子としては平行四辺形にウエハ10を切り出すことになる。さらにこのダイシング工程において、入出力導波路12の端部13の近辺は、図3(a),(b)に示すように、ガイド基準のダイシング面y1,y2に対して垂直にダイシングして、入出力導波路12の光軸と直交する面x19,x29に整える。
【0016】
次に、研削工程では、図3(b)に示すように、マーカ2の並び方向に平行に切り出したダイシング面y1,y2を、砥石面30に対して垂直に対立させて、これをガイド基準にして研削を行う。これにより、対立面x19,x29つまり端部13の領域部分を所定の平滑度に仕上げて、光ファイバアレイとの結合のための光学面を得る。
【0017】
なお、光導波路素子の厚み方向は、図4に示すように、砥石面30に対して傾けて研削して、光ファイバアレイとの結合に所定の傾きを設けて結合における反射を防止する構成を採る。
【0018】
このように、入出力導波路12の端部13はダイシング面が2つ隣り合う角部近辺に位置し、その端部13を含む所定領域x19,x29のみを砥石面30に対面させて研削を行うので、研削対象がその所定領域に限定し、つまり研削に係る面積が従来よりも格段に低減する。
【0019】
このため、光学的な仕上げのための精密研削を短時間で効率よく行うことができ、研削に係る面積が少なくなるので、研削面のダレや平滑不良の面で有利になり高精度に研削が行える。またその結果、研削液などの消耗材の消費量を低減できてコスト面に優れる。
【0020】
また、研削加工ではガイド基準としたダイシング面y1,y2を砥石面30に対して垂直に対立させるので、研削装置における角度の取り合い設定が容易であり作業性がよく、このため研削加工を安定に行えて高精度を得る面で有利になる。
【0021】
さらにまた、ダイシング工程において入出力導波路12の端部13の近辺をダイシングして砥石面30と平行にするので、研削する際には砥石面30との突き当て時に欠けや割れを防止でき、当該領域を予め平行に整えるので精密研削の加工時間をより短縮することができる。
【0022】
図5は、本発明の第2の実施の形態を示している。この第2の実施の形態では、第1の実施の形態と比較すると、マーカ2の配置を変更しており、入出力導波路12に直交する方向性にマーカ2を設ける。
【0023】
そして、ワークウエハ1は切り出し形状を平行四辺形として、一方の対辺はマーカ2の並び方向に沿って平行にスクライブしてダイシングを行い、入出力導波路12に直交する2つのダイシング面x1,x2を得る。他方の対辺はマーカ2の並び方向に対して交差方向で所定の傾きにスクライブしてダイシングを行い、入出力導波路12に沿う平行ラインから所定に傾斜した2つのダイシング面y19,y29を得る。この場合、ダイシング面y19,y29を研削加工のためのガイド基準にするもので、ダイシング面y19,y29が砥石面30に対して垂直に対立する姿勢に傾きを戻すことにより、ダイシング面x1,x2の側が所定に傾斜することになる。
【0024】
以上のダイシングにより、光導波路素子としては、平行四辺形にウエハ10を切り出すことになる。さらにこのダイシング工程において、入出力導波路12の端部13の近辺は、図6に示すように、ガイド基準のダイシング面y19,y29に対して垂直にダイシングして、砥石面30に平行に対面させる面x19,x29に整える。
【0025】
したがって研削工程では、図6に示すように、所定の傾きに切り出したダイシング面y19,y29を逆に傾き戻して、砥石面30に対して垂直に対立させて、これをガイド基準にして研削を行うので、対立面x19,x29つまり端部13の領域部分を所定の平滑度に仕上げて、光ファイバアレイとの結合のための光学面を得る。
【0026】
この場合、入出力導波路12の光軸は、仕上げた光学面x19,x29に対して所定の傾きを持つので、光ファイバアレイの結合には、光ファイバアレイ側において結合面を対応する逆の傾き面に研削しておくことになる。
【0027】
したがって第1の実施の形態と同様であり、入出力導波路12の端部13を含む所定領域x19,x29のみを砥石面30に対面させて研削を行うので、研削対象がその所定領域に限定し、つまり研削に係る面積が従来よりも格段に低減する。このため、光学的な仕上げのための精密研削を短時間で効率よく行うことができ、研削面のダレや平滑不良の面で有利になり高精度に研削が行える。またその結果、研削液などの消耗材の消費量を低減できてコスト面に優れる。なお、その他の構成並びに作用効果は、上記した第1の実施の形態と同様であるのでその詳細な説明を省略する。
【0028】
図7は、本発明の第3の実施の形態を示している。この第3の実施の形態では、導波路のパターンを変更している。そして、それに伴って光導波路素子の外形を多角形状に形成している。すなわち、本発明は、入出力導波路を角部近辺に位置させればよいものなので外形形状は適宜に設定すればよく、ここでは入出力導波路12のパターン設定の関係から略6角形状にしている。
【0029】
つまり、ワークウエハ1上では入出力導波路12は対向するパターン設定としてあり、マーカ2は入出力導波路12に沿う方向性に形成し、一方の対辺はマーカ2の並び方向に沿って平行にスクライブしてダイシングを行い、入出力導波路12に平行に沿う2つのダイシング面y1,y2を得る。他方の対辺は、入出力導波路12が中央部に位置するため、その中央部へ向けてダイシング面y1,y2から傾き線をそれぞれスクライブしてダイシングを行い、交点近辺に入出力導波路12が位置するダイシング面18,19および28,29を得る。
【0030】
以上のダイシングにより、光導波路素子としては略6角形状にウエハ10を切り出すことになる。さらにこのダイシング工程において、入出力導波路12の端部13の近辺は、ガイド基準のダイシング面y1,y2に対して垂直にダイシングして、入出力導波路12の光軸と直交する面x19,x29に整える。
【0031】
次に研削工程では、マーカ2の並び方向に平行に切り出したダイシング面y1,y2を、砥石面に対して垂直に対立させて、これをガイド基準にして研削を行う。これにより、対立面x19,x29つまり端部13の領域部分を所定の平滑度に仕上げて、光ファイバアレイとの結合のための光学面を得る。
【0032】
この場合も第1の実施の形態と同様であり、砥石面に対面させた所定領域x19,x29に研削対象が限定し、研削に係る面積が従来よりも格段に低減するので、光学的な仕上げのための精密研削を短時間で効率よく行うことができ、研削面のダレや平滑不良の面で有利になり高精度に研削が行える。またその結果、研削液などの消耗材の消費量を低減できてコスト面に優れる。なお、その他の構成並びに作用効果は、上記した各実施の形態と同様であるので、その詳細な説明を省略する。
【0033】
【発明の効果】
以上のように、本発明に係る光導波路素子の製造方法では、入出力導波路の端部はダイシング面が2つ隣り合う角部近辺に位置し、その入出力端部を含む所定領域のみを砥石面に対面させて研削を行うので、研削対象がその所定領域に限定し、つまり研削に係る面積が従来よりも格段に低減する。このため、光学的な仕上げのための精密研削を短時間で効率よく行うことができ、研削に係る面積が少なくなるので、研削面のダレや平滑不良の面で有利になり高精度に研削が行える。その結果、研削液などの消耗材の消費量を低減できてコスト面に優れる。
【図面の簡単な説明】
【図1】PLCによる光導波路素子の従来例を示す平面図である。
【図2】第1の実施の形態を示すウエハの平面図である。
【図3】ダイシングと研削を説明する平面図である。
【図4】光学面に対する仕上げの研削を説明する側面図である。
【図5】第2の実施の形態を示すウエハの平面図である。
【図6】ダイシングと研削を説明する平面図である。
【図7】第3の実施の形態を示すウエハの平面図である。
【符号の説明】
1 ワークウエハ
2 マーカ
10 ウエハ
11 導波路
12 入出力導波路
13 端部
30 砥石面
x1,x2,y1,y2 ダイシング面
18,19,28,29,y19,y29 ダイシング面
x19,x29 対立面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical waveguide element, and more specifically, dicing for cutting a waveguide pattern formed on a wafer into a predetermined shape, and grinding for finishing an end of an input / output waveguide to an optical surface. Regarding improvement.
[0002]
BACKGROUND OF THE INVENTION
With respect to optical devices, a PLC (Planer Lightwave Circuit) in which an optical waveguide is formed in a plane has been receiving attention. The PLC forms an optical waveguide on a flat substrate (wafer) made of silicon, quartz, or the like by applying a semiconductor process technology. Therefore, the optical waveguide is excellent in stability of characteristics, miniaturization, and mass productivity. The device has been manufactured and is being actively developed.
[0003]
In other words, in the manufacture of an optical waveguide element, after applying a semiconductor pattern technology such as photolithography or dry etching to form a waveguide pattern on a work wafer, dicing the periphery of the wafer to form a single chip into a predetermined shape. Cutting is performed. As shown in FIG. 1, the cut out optical waveguide element has a waveguide 11 on a substrate 10 in a predetermined pattern, and an end 13 of an input / output waveguide 12 is located on predetermined dicing surfaces x1 and x2. ing. Since the input / output waveguide 12 is connected to an optical fiber array, it is necessary to apply an optical finish to the end portion 13 in order to suppress the connection loss, and the corresponding dicing surfaces x1 and x2 are ground (polished). To obtain a so-called mirror surface.
[0004]
However, in such manufacturing, since the grinding for optical finishing is precision grinding with a reduced amount of grinding, there is a problem that grinding takes time and productivity is poor. Moreover, since the grinding is performed on the entire dicing surfaces x1 and x2, the area to be ground is large and the grinding conditions are poor. As a result, sagging occurs on the ground surface, a smooth surface cannot be obtained, and defects are likely to occur. In addition, a large amount of consumables such as a grinding fluid used for grinding is consumed, which is disadvantageous in terms of cost.
[0005]
SUMMARY OF THE INVENTION The present invention has been made in view of the above background, and has as its object to solve the above-described problems and to perform precision grinding for optical finishing in a short time and efficiently. An object of the present invention is to provide a method of manufacturing an optical waveguide device which can reduce consumption of a consumable material such as a liquid and is excellent in cost.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing an optical waveguide device according to the present invention is a method for manufacturing an optical waveguide device in which a light waveguide is formed on a wafer and cut into a predetermined shape, In the pattern, the end of the input / output waveguide is set near a corner where two dicing surfaces are adjacent to each other, and in a grinding step after the dicing step, only a predetermined area including the input / output end faces the grindstone surface. By grinding, the region is processed into an optical surface for coupling with an optical fiber.
[0007]
In addition, a marker is provided in the direction along the input / output waveguide, the wafer has a cutout shape as a parallelogram, and one opposite side is scribed in parallel along the marker direction, and the other opposite side is scribed in the marker direction. On the other hand, dicing is performed by scribing at a predetermined inclination in the intersecting direction, and in the grinding step, the dicing surface cut out parallel to the marker direction may be opposed to the grinding wheel surface perpendicularly.
[0008]
Alternatively, a marker is provided in a direction orthogonal to the input / output waveguide, and the cutout shape of the wafer is a parallelogram, one opposite side is scribed in parallel along the marker direction, and the other opposite side is the marker. Dicing is performed by scribing at a predetermined inclination in a direction crossing the direction, and in the grinding step, the dicing surface cut out at an inclination crossing in the marker direction may be opposed to the grinding wheel surface perpendicularly. it can.
[0009]
On the premise of each of the above-described inventions, the pattern of the waveguide can be formed by a film forming process such as an ion exchange method, a CVD method, a flame deposition method, and a polymer method.
[0010]
Therefore, in the present invention, since the end of the input / output waveguide is located near the corner where two dicing surfaces are adjacent to each other, and only a predetermined area including the input / output end faces the grindstone surface, the grinding is performed. The target is limited to the predetermined area. That is, the area related to grinding is significantly reduced as compared with the conventional case.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 shows a first embodiment of the present invention. In this embodiment, the optical waveguide device has a configuration in which a light waveguide 11 is formed in a predetermined pattern on a flat substrate (wafer 10), and an input / output waveguide 12 is positioned on a predetermined dicing surface. ing.
[0012]
In manufacturing this optical waveguide device, the pattern of the waveguide 11 is such that the end 13 of the input / output waveguide 12 is set near a corner where two dicing surfaces are adjacent to each other. Then, in a grinding process after the dicing process, only a predetermined region including the end portion 13 of the input / output waveguide 12 is faced to the grindstone surface and ground, and the region portion is subjected to an optical surface for coupling with an optical fiber array. Process into
[0013]
More specifically, the optical waveguides 11 and 12 are formed on the work wafer 1 by a semiconductor process, and the marker 2 for determining the directionality of the waveguide pattern is formed. The marker 2 is formed in a direction along the input / output waveguide 12. That is, a plurality of markers 2 are provided in parallel with the input / output waveguide 12. The pattern of the waveguide 11 may be formed by an appropriate film forming process, for example, by a film forming process such as an ion exchange method, a CVD method, a flame deposition method, and a polymer method. Although not shown, the waveguide 11 may have a configuration of a plurality of channels in which a large number of channels are arranged and patterned.
[0014]
Here, the cut-out shape of the work wafer 1 is a parallelogram. Then, one opposite side is scribed in parallel along the direction in which the markers 2 are arranged to perform dicing to obtain two dicing surfaces y1 and y2 parallel to the input / output waveguide 12. The other side is scribed at a predetermined inclination in a direction crossing the arrangement direction of the markers 2 to perform dicing, and two dicing surfaces 19 and 29 inclined at a predetermined angle from the orthogonal direction with respect to the input / output waveguide 12. obtain.
[0015]
By the above dicing, the wafer 10 is cut into a parallelogram as an optical waveguide device. Further, in this dicing step, as shown in FIGS. 3A and 3B, the vicinity of the end portion 13 of the input / output waveguide 12 is diced perpendicular to the dicing surfaces y1 and y2 of the guide reference. The planes x19 and x29 orthogonal to the optical axis of the input / output waveguide 12 are arranged.
[0016]
Next, in the grinding step, as shown in FIG. 3B, the dicing surfaces y1 and y2 cut out in parallel with the direction in which the markers 2 are arranged are made to oppose perpendicularly to the grindstone surface 30, and this is set as a guide reference. And perform grinding. As a result, the opposing surfaces x19 and x29, that is, the region of the end portion 13 is finished to a predetermined smoothness, and an optical surface for coupling with the optical fiber array is obtained.
[0017]
In addition, as shown in FIG. 4, the thickness direction of the optical waveguide element is ground by being inclined with respect to the grindstone surface 30 to provide a predetermined inclination to the coupling with the optical fiber array to prevent reflection at the coupling. take.
[0018]
As described above, the end 13 of the input / output waveguide 12 is located near a corner where two dicing surfaces are adjacent to each other, and only predetermined regions x19 and x29 including the end 13 are opposed to the grindstone surface 30 for grinding. Since the grinding is performed, the grinding target is limited to the predetermined region, that is, the area related to grinding is significantly reduced as compared with the related art.
[0019]
For this reason, precision grinding for optical finishing can be performed efficiently in a short time, and the area related to grinding is reduced, which is advantageous in terms of sagging of the grinding surface and poor smoothness, and grinding with high precision. I can do it. As a result, the consumption of consumables such as grinding fluid can be reduced, which is excellent in cost.
[0020]
In the grinding process, the dicing surfaces y1 and y2, which are used as guide references, are perpendicularly opposed to the grindstone surface 30, so that the angle setting in the grinding device is easy and the workability is good, so that the grinding process can be stably performed. This is advantageous in that high accuracy can be obtained.
[0021]
Furthermore, in the dicing process, the vicinity of the end portion 13 of the input / output waveguide 12 is diced to be parallel to the grindstone surface 30, so that when grinding, chipping or cracking can be prevented when abutting against the grindstone surface 30, Since the regions are arranged in advance in parallel, the processing time of precision grinding can be further reduced.
[0022]
FIG. 5 shows a second embodiment of the present invention. In the second embodiment, as compared with the first embodiment, the arrangement of the marker 2 is changed, and the marker 2 is provided in a direction orthogonal to the input / output waveguide 12.
[0023]
The cut shape of the work wafer 1 is a parallelogram, and one of the opposite sides is scribed in parallel along the direction in which the markers 2 are arranged for dicing, and two dicing surfaces x1 and x2 orthogonal to the input / output waveguide 12 are formed. Get. The other opposite side is scribed at a predetermined inclination in a direction crossing the arrangement direction of the markers 2 to perform dicing, and two dicing surfaces y19 and y29 inclined at a predetermined angle are obtained from a parallel line along the input / output waveguide 12. In this case, the dicing surfaces y19 and y29 are used as a guide reference for the grinding, and the dicing surfaces y19 and y29 return to a posture perpendicular to the grindstone surface 30 so that the dicing surfaces x1 and x2 are returned. Is inclined at a predetermined angle.
[0024]
By the above dicing, the wafer 10 is cut into a parallelogram as an optical waveguide element. Further, in this dicing step, as shown in FIG. 6, the vicinity of the end 13 of the input / output waveguide 12 is diced perpendicularly to the dicing surfaces y19 and y29 of the guide reference, and faces in parallel to the grindstone surface 30. The planes x19 and x29 to be adjusted are prepared.
[0025]
Therefore, in the grinding step, as shown in FIG. 6, the dicing surfaces y19 and y29 cut out to a predetermined inclination are tilted back to be opposed to the grindstone surface 30 perpendicularly, and the grinding is performed using this as a guide reference. Therefore, the opposing surfaces x19 and x29, that is, the region of the end portion 13 is finished to a predetermined smoothness to obtain an optical surface for coupling with the optical fiber array.
[0026]
In this case, since the optical axis of the input / output waveguide 12 has a predetermined inclination with respect to the finished optical surfaces x19 and x29, the coupling of the optical fiber array is performed in the opposite direction corresponding to the coupling surface on the optical fiber array side. It is necessary to grind the inclined surface.
[0027]
Therefore, it is the same as the first embodiment, and only the predetermined areas x19 and x29 including the end portion 13 of the input / output waveguide 12 face the grindstone surface 30 for grinding, so that the object to be ground is limited to the predetermined area. That is, the area related to grinding is significantly reduced as compared with the related art. For this reason, precision grinding for optical finishing can be performed efficiently in a short time, which is advantageous in terms of sagging and poor smoothness of the grinding surface, and high precision grinding can be performed. As a result, the consumption of consumables such as grinding fluid can be reduced, which is excellent in cost. Note that the other configuration and operation and effect are the same as those of the above-described first embodiment, and a detailed description thereof will be omitted.
[0028]
FIG. 7 shows a third embodiment of the present invention. In the third embodiment, the pattern of the waveguide is changed. Accordingly, the outer shape of the optical waveguide element is formed in a polygonal shape. That is, in the present invention, since the input / output waveguide only needs to be located near the corner, the external shape may be appropriately set. In this case, the input / output waveguide 12 is formed into a substantially hexagonal shape in view of the pattern setting. ing.
[0029]
That is, on the work wafer 1, the input / output waveguides 12 are set in a pattern facing each other, the markers 2 are formed in a directionality along the input / output waveguides 12, and one opposite side is parallel to the marker 2 in the arrangement direction. Dicing is performed by scribing to obtain two dicing surfaces y1 and y2 parallel to the input / output waveguide 12. On the other side, since the input / output waveguide 12 is located at the center, dicing is performed by scribing the slope lines from the dicing surfaces y1 and y2 toward the center, and the input / output waveguide 12 is located near the intersection. The dicing surfaces 18, 19 and 28, 29 located are obtained.
[0030]
By the above dicing, the wafer 10 is cut into a substantially hexagonal shape as an optical waveguide device. Further, in this dicing step, the vicinity of the end portion 13 of the input / output waveguide 12 is diced perpendicularly to the dicing surfaces y1 and y2 of the guide reference, and a surface x19 orthogonal to the optical axis of the input / output waveguide 12 is formed. Adjust to x29.
[0031]
Next, in the grinding step, the dicing surfaces y1 and y2 cut out in parallel to the direction in which the markers 2 are arranged are opposed to each other perpendicularly to the grindstone surface, and grinding is performed using this as a guide reference. As a result, the opposing surfaces x19 and x29, that is, the region of the end portion 13 is finished to a predetermined smoothness, and an optical surface for coupling with the optical fiber array is obtained.
[0032]
Also in this case, the same as in the first embodiment, the object to be ground is limited to the predetermined areas x19 and x29 facing the grindstone surface, and the area related to the grinding is remarkably reduced as compared with the prior art. Precision grinding for grinding can be performed efficiently in a short period of time, which is advantageous in terms of sagging of the ground surface and poor smoothness, thereby enabling high-precision grinding. As a result, the consumption of consumables such as grinding fluid can be reduced, which is excellent in cost. Note that the other configurations, functions, and effects are the same as those of the above-described embodiments, and thus detailed description thereof will be omitted.
[0033]
【The invention's effect】
As described above, in the method for manufacturing an optical waveguide device according to the present invention, the end of the input / output waveguide is located near a corner where two dicing surfaces are adjacent to each other, and only a predetermined region including the input / output end is provided. Since the grinding is performed while facing the grindstone surface, the grinding target is limited to the predetermined region, that is, the area related to the grinding is significantly reduced as compared with the related art. For this reason, precision grinding for optical finishing can be performed efficiently in a short time, and the area related to grinding is reduced, which is advantageous in terms of sagging of the grinding surface and poor smoothness, and grinding with high precision. I can do it. As a result, the consumption of consumables such as grinding fluid can be reduced, and the cost is excellent.
[Brief description of the drawings]
FIG. 1 is a plan view showing a conventional example of an optical waveguide device using a PLC.
FIG. 2 is a plan view of a wafer showing the first embodiment.
FIG. 3 is a plan view illustrating dicing and grinding.
FIG. 4 is a side view illustrating finish grinding of an optical surface.
FIG. 5 is a plan view of a wafer showing a second embodiment.
FIG. 6 is a plan view illustrating dicing and grinding.
FIG. 7 is a plan view of a wafer showing a third embodiment.
[Explanation of symbols]
1 Work Wafer 2 Marker 10 Wafer 11 Waveguide 12 Input / Output Waveguide 13 End 30 Grinding Surface x1, x2, y1, y2 Dicing Surface 18, 19, 28, 29, y19, y29 Dicing Surface x19, x29 Opposing Surface

Claims (4)

光の導波路をウエハ上に形成して所定形状に切り出す光導波路素子の製造方法であって、
前記導波路のパターンは、入出力導波路の端部をダイシング面が2つ隣り合う角部近辺に設定し、
ダイシング工程の後の研削工程では、砥石面に、前記入出力端部を含む所定領域のみを対面させて研削して、当該領域部分を光ファイバとの結合のための光学面に加工することを特徴とする光導波路素子の製造方法。
A method for manufacturing an optical waveguide device, in which a light waveguide is formed on a wafer and cut into a predetermined shape,
The waveguide pattern, the end of the input and output waveguide is set near the corner where two dicing surfaces are adjacent to each other,
In the grinding step after the dicing step, the grinding surface is ground only by facing a predetermined area including the input / output end, and the area is processed into an optical surface for coupling with an optical fiber. A method for manufacturing an optical waveguide device, comprising:
前記入出力導波路に沿う方向性にマーカを設け、
前記ウエハは切り出し形状を平行四辺形として、一方の対辺は前記マーカ方向に沿って平行にスクライブし、他方の対辺は前記マーカ方向に対して交差方向で所定の傾きにスクライブしてダイシングを行い、
前記研削工程では前記マーカ方向に平行に切り出したダイシング面を前記砥石面に対して垂直に対立させることを特徴とする請求項1に記載の光導波路素子の製造方法。
Providing a marker in the direction along the input / output waveguide,
The wafer has a cutout shape as a parallelogram, one opposite side is scribed in parallel along the marker direction, and the other opposite side is scribed at a predetermined inclination in a direction crossing the marker direction to perform dicing,
2. The method according to claim 1, wherein in the grinding step, a dicing surface cut in parallel with the marker direction is perpendicularly opposed to the grindstone surface. 3.
前記入出力導波路に直交する方向性にマーカを設け、
前記ウエハは切り出し形状を平行四辺形として、一方の対辺は前記マーカ方向に沿って平行にスクライブし、他方の対辺は前記マーカ方向に対して交差方向で所定の傾きにスクライブしてダイシングを行い、
前記研削工程では前記マーカ方向に交差の傾きに切り出したダイシング面を前記砥石面に対して垂直に対立させることを特徴とする請求項1に記載の光導波路素子の製造方法。
Providing a marker in a direction orthogonal to the input / output waveguide,
The wafer has a cutout shape as a parallelogram, one opposite side is scribed in parallel along the marker direction, and the other opposite side is scribed at a predetermined inclination in a direction crossing the marker direction to perform dicing,
2. The method according to claim 1, wherein in the grinding step, a dicing surface cut at an inclination crossing the marker direction is perpendicularly opposed to the grindstone surface. 3.
前記導波路のパターンは、イオン交換法,CVD法,火炎堆積法,高分子法などの成膜プロセスにより形成することを特徴とする請求項1〜3に記載の光導波路素子の製造方法。4. The method according to claim 1, wherein the waveguide pattern is formed by a film forming process such as an ion exchange method, a CVD method, a flame deposition method, and a polymer method.
JP2003023528A 2003-01-31 2003-01-31 Manufacture method of optical waveguide element Withdrawn JP2004233757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003023528A JP2004233757A (en) 2003-01-31 2003-01-31 Manufacture method of optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023528A JP2004233757A (en) 2003-01-31 2003-01-31 Manufacture method of optical waveguide element

Publications (1)

Publication Number Publication Date
JP2004233757A true JP2004233757A (en) 2004-08-19

Family

ID=32952301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023528A Withdrawn JP2004233757A (en) 2003-01-31 2003-01-31 Manufacture method of optical waveguide element

Country Status (1)

Country Link
JP (1) JP2004233757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071293A (en) * 2018-10-30 2020-05-07 住友大阪セメント株式会社 Optical waveguide element and optical modulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071293A (en) * 2018-10-30 2020-05-07 住友大阪セメント株式会社 Optical waveguide element and optical modulator
JP7293605B2 (en) 2018-10-30 2023-06-20 住友大阪セメント株式会社 Optical waveguide element and optical modulator

Similar Documents

Publication Publication Date Title
US7573073B2 (en) Arrays of light emitting articles and method of manufacturing same
CN103502853A (en) Lightwave circuit and method of manufacturing same
WO2007061638A1 (en) Arrays of optical elements and method of manufacturing same
JP2008042213A (en) Semiconductor wafer having very correct edge profile and method of manufacturing same
JP6819853B2 (en) Disc-shaped flat glass and its manufacturing method
US20110062111A1 (en) Method of fabricating microscale optical structures
US6869347B2 (en) Fabrication of devices with fibers engaged to grooves on substrates
JP2003202410A (en) Microlens array
JP2003200278A (en) Fiber optic parts array and method of manufacturing the same
JP2004233757A (en) Manufacture method of optical waveguide element
CN110208905A (en) For improving the scribing etching of optical chip cut quality and the production method and optical chip of optical chip
JP2003270465A (en) Optical waveguide device and method of manufacturing optical waveguide device
JP4449088B2 (en) Semiconductor wafer and manufacturing method thereof
CN208005361U (en) A kind of positioning tool of Si meter Te roof prisms
JP4935230B2 (en) Method for manufacturing translucent substrate
JPH08222798A (en) Manufacture of semiconductor laser
JPH0610690B2 (en) Optical device package
KR101833773B1 (en) Tool holder and tool holder unit
JP7035777B2 (en) Semiconductor substrates and their manufacturing methods
JPS6360401A (en) Manufacture of optical film parts
KR20180003425A (en) Multipoint diamond tool and method of manufactureing the same
JP7003178B2 (en) Manufacturing method of disk-shaped glass substrate, manufacturing method of thin glass substrate, manufacturing method of light guide plate and disk-shaped glass substrate
JP4011300B2 (en) Semiconductor wafer and manufacturing method thereof
JPS63115113A (en) Connection structure between light guide and optical fiber
JP2001196333A (en) Semiconductor wafer with off-angle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404