JP2004233637A - 冷陰極電界電子放出表示装置の駆動方法 - Google Patents

冷陰極電界電子放出表示装置の駆動方法 Download PDF

Info

Publication number
JP2004233637A
JP2004233637A JP2003021812A JP2003021812A JP2004233637A JP 2004233637 A JP2004233637 A JP 2004233637A JP 2003021812 A JP2003021812 A JP 2003021812A JP 2003021812 A JP2003021812 A JP 2003021812A JP 2004233637 A JP2004233637 A JP 2004233637A
Authority
JP
Japan
Prior art keywords
voltage
cathode
electrode
gate electrode
field emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003021812A
Other languages
English (en)
Inventor
Tomonari Imayasu
知成 今安
Takao Yagi
貴郎 八木
Masayasu Hayashi
正健 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003021812A priority Critical patent/JP2004233637A/ja
Publication of JP2004233637A publication Critical patent/JP2004233637A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

【課題】低輝度の画素(画像)表示を行う場合であっても、輝度ムラが生じることの無い冷陰極電界電子放出表示装置の駆動方法を提供する。
【解決手段】M本のカソード電極、N本のゲート電極、及び、電子放出領域を備えたカソードパネルと、蛍光体層及びアノード電極を備えたアノードパネルとから成る冷陰極電界電子放出表示装置の駆動方法であって、アノード電極に電圧Vを印加した状態で、第m番目のカソード電極に電圧Vを印加し、且つ、N本のゲート電極に同時に電圧Vを印加することで、該第m番目のカソード電極とN本のゲート電極とによって構成されるN個の電子放出領域からの電子の放出/非放出を同時に制御する工程を、m=1からm=Mまで繰り返し、所望の輝度を得るために該N本のゲート電極のそれぞれに印加する電圧Vの印加時間を変える。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、冷陰極電界電子放出表示装置の駆動方法に関する。
【0002】
【従来の技術】
テレビジョン受像機や情報端末機器に用いられる表示装置の分野では、従来主流の陰極線管(CRT)から、薄型化、軽量化、大画面化、高精細化の要求に応え得る平面型(フラットパネル型)の表示装置への移行が検討されている。このような平面型の表示装置として、液晶表示装置(LCD)、エレクトロルミネッセンス表示装置(ELD)、プラズマ表示装置(PDP)、冷陰極電界電子放出表示装置(FED:フィールドエミッションディスプレイ)を例示することができる。このなかでも、液晶表示装置は情報端末機器用の表示装置として広く普及しているが、据置き型のテレビジョン受像機に適用するには、高輝度化や大型化に未だ課題を残している。これに対して、冷陰極電界電子放出表示装置は、熱的励起によらず、量子トンネル効果に基づき固体から真空中に電子を放出することが可能な冷陰極電界電子放出素子(以下、電界放出素子と呼ぶ場合がある)を利用しており、高輝度及び低消費電力の点から注目を集めている。
【0003】
図3及び図4に、電界放出素子を利用した冷陰極電界電子放出表示装置(以下、表示装置と呼ぶ場合がある)の一例を示す。尚、図3は表示装置の模式的な一部端面図であり、図4はカソードパネルCPとアノードパネルAPを分解したときの模式的な部分的斜視図である。
【0004】
図示した電界放出素子は、略平面状の電子放出部115を有する、所謂扁平型電界放出素子と呼ばれるタイプの電界放出素子である。この電界放出素子は、支持体10上に形成されたカソード電極11と、支持体10及びカソード電極11上に形成された絶縁層12と、絶縁層12上に形成されたゲート電極13と、ゲート電極13及び絶縁層12に設けられた開口部14(ゲート電極13に設けられた第1開口部14A、及び、絶縁層12に設けられた第2開口部14B)と、開口部14の底部に位置するカソード電極11上に形成された電子放出部115から構成されている。電子放出部115は、例えば、多数のカーボン・ナノチューブから構成されている。
【0005】
一般に、カソード電極11とゲート電極13とは、これらの両電極の射影像が互いに直交する方向に各々ストライプ状に形成されており、これらの両電極の射影像が重複する重複領域(1サブピクセルに相当する大きさを有する)に、通常、複数の電界放出素子が設けられている。更に、かかる重複領域が、カソードパネルCPの有効領域(実際の表示部分として機能する領域)内に、通常、2次元マトリックス状に配列されている。重複領域における電子放出部115の集合が、電子放出領域15に相当する。
【0006】
一方、アノードパネルAPは、基板30と、基板30上に形成され、所定のパターンを有する蛍光体層31(赤色発光蛍光体層31R,青色発光蛍光体層31B,緑色発光蛍光体層31G)と、その上に形成されたアノード電極33から構成されている。1サブピクセルは、カソードパネル側のカソード電極11とゲート電極13との重複領域に設けられた電界放出素子の一群と、これらの電界放出素子の一群に対面したアノードパネル側の蛍光体層31の領域とによって構成されている。有効領域には、かかる3つのサブピクセルから成る画素が、例えば数十万〜数百万個ものオーダーにて配列されている。尚、蛍光体層31と蛍光体層31との間の基板30上にはブラックマトリックス32が形成されている。
【0007】
アノードパネルAPとカソードパネルCPとを、重複領域と蛍光体層31とが対向するように配置し、周縁部において枠体34を介して接合することによって、表示装置を作製することができる。アノードパネルAPとカソードパネルCPと枠体34とによって囲まれた空間は真空となっている。
【0008】
カソード電極11には相対的な負電圧Vがカソード電極制御回路40から印加され、ゲート電極13には相対的な正電圧Vがゲート電極制御回路41から印加され、アノード電極33にはゲート電極13よりも更に高い正電圧Vがアノード電極制御回路42から印加される。かかる表示装置において表示を行う場合、例えば、カソード電極11にカソード電極制御回路40から走査信号に相当する電圧Vを印加し、ゲート電極13にゲート電極制御回路41からビデオ信号に相当する電圧Vを印加する。あるいは又、カソード電極11にカソード電極制御回路40からビデオ信号に相当する電圧Vを印加し、ゲート電極13にゲート電極制御回路41から走査信号に相当する電圧Vを印加してもよい。カソード電極11とゲート電極13とに電圧V,Vを印加した際に生ずる電界により、量子トンネル効果に基づき電子放出部115を構成する各カーボン・ナノチューブの先端部から電子が放出され、この電子がアノード電極33に引き付けられ、蛍光体層31に衝突する。その結果、蛍光体層31が励起されて発光し、所望の画像を得ることができる。
【0009】
一般に、カソード電極11に印加される電圧Vとゲート電極13に印加される電圧Vとの電位差ΔVが一定の値(閾値電圧Vth)を超えると、電子放出部115を構成する各カーボン・ナノチューブの先端部から電子が放出される。そして、電位差ΔVが大きくなるに従い、放出される電子の量は急増する。尚、このような放出電子の量は、放出電子電流密度によって調べることができる。
【0010】
従って、例えば、カソード電極11にカソード電極制御回路40から走査信号に相当する電圧Vを印加し、ゲート電極13にゲート電極制御回路41からビデオ信号に相当する電圧Vを印加する場合、カソード電極11に印加される電圧Vを一定とし、ゲート電極13に印加される電圧Vを変化させることで、即ち、電位差ΔVを変化させることで、画素(画像)における輝度制御を行っている。
【0011】
【特許文献1】特開平4−58684号公報
【特許文献2】特開2002−40983
【特許文献3】特開2002−189443
【0012】
【発明が解決しようとする課題】
ところで、1つの電子放出部115が多数のカーボン・ナノチューブから構成されている場合、個々のカーボン・ナノチューブの特性のばらつき、1つの電子放出部115内におけるカーボン・ナノチューブの配置状態のばらつき等に依って、個々のカーボン・ナノチューブにおける閾値電圧Vthにばらつきが生じる。その結果、1つの電子放出部115において、電位差ΔVが小さいときには電子を放出するカーボン・ナノチューブの数が少なく、電位差ΔVが大きいときには電子を放出するカーボン・ナノチューブの数が多いといった現象が生じる。尚、電子放出部の電子を放出する部分を、電子放出点(エミッション・サイト)と表現する場合がある。
【0013】
即ち、電位差ΔVが小さいときにはエミッション・サイトの密度が低く、電位差ΔVが大きいときにはエミッション・サイトの密度が高い。エミッション・サイトの密度(ESD)と放出電子電流密度(単位:μA/cm)の関係の一例を、図9に示す。
【0014】
それ故、低輝度の画素(画像)を表示するために電位差ΔVを小さくすると、エミッション・サイトの密度が低くなり、電子放出部115に対向する蛍光体層31の領域において発光ムラ(輝度ムラ)が発生し、均一な低輝度の発光状態を達成することが極めて難しいといった問題がある。
【0015】
表示セルの駆動をPWM(Pulse Width Modulation)方式に基づき行う技術が、特開平4−58684号公報から公知である。また、3本の陰極線管を用いたプロジェクタや、HMD(Head Mounted Display)、プラズマ表示装置、LEDを用いた表示装置において、PWM方式に基づきデジタル階調表示を行う技術が、特開2002−40983から公知である。更には、プラズマ表示装置において、アドレスパルスのパルス幅を切り替えることでデジタル階調表示を行う技術が、特開2002−189443から公知である。しかしながら、これらの特許公開公報には、冷陰極電界電子放出表示装置の駆動方法に関して、何ら言及がなされていないし、冷陰極電界電子放出表示装置に特有の上述した問題に関しても、何ら言及がなされていない。
【0016】
従って、本発明の目的は、低輝度の画素(画像)表示を行う場合であっても、蛍光体層における発光ムラ(輝度ムラ)が生じることが無く、即ち、電子放出領域におけるエミッション・サイトの密度が高く、均一な低輝度発光状態を達成することを可能とする冷陰極電界電子放出表示装置の駆動方法を提供することにある。
【0017】
【課題を解決するための手段】
本発明の第1の態様に係る冷陰極電界電子放出表示装置の駆動方法は、基本的には、線順次駆動方式とPWM(Pulse Width Modulation)方式あるいはPNM(Pulse Numbers Modulation)方式の組合せであり、M本のカソード電極から成るカソード電極列における線順次駆動方式を採用し、走査信号に相当する電圧VをM本のカソード電極に印加し、ビデオ信号に相当する電圧VをN本のゲート電極に印加する。
【0018】
即ち、本発明の第1の態様に係る冷陰極電界電子放出表示装置の駆動方法は、
(A)支持体、
(B)支持体上に形成され、第1の方向に延びる帯状のM本のカソード電極、
(C)支持体及びカソード電極上に形成された絶縁層、
(D)絶縁層上に形成され、第1の方向とは異なる第2の方向に延びる帯状のN本のゲート電極、
(E)カソード電極とゲート電極の重複する重複領域に位置するゲート電極及び絶縁層の部分に形成された少なくとも1つの開口部、並びに、
(F)各重複領域に設けられた開口部の底部に位置し、多数の電子放出点から電子を放出する電子放出領域、
から成るカソードパネルと、
(G)蛍光体層、並びに、アノード電極、
が設けられたアノードパネルとが、それらの周縁部で接合されて成る冷陰極電界電子放出表示装置の駆動方法であって、
アノード電極に電圧Vを印加した状態で、第m番目のカソード電極に電圧Vを印加し、且つ、N本のゲート電極に同時に電圧Vを印加することで、該第m番目のカソード電極とN本のゲート電極とによって構成されるN個の電子放出領域からの電子の放出/非放出を同時に制御し、以て、各重複領域に対向した蛍光体層の領域における発光状態を制御する工程を、m=1からm=Mまで繰り返し、
所望の輝度を得るために、該N本のゲート電極のそれぞれに印加する電圧Vの値を一定とし、且つ、電圧Vの印加時間を変化させることを特徴とする。
【0019】
上記の目的を達成するための本発明の第2の態様に係る冷陰極電界電子放出表示装置の駆動方法も、基本的には、線順次駆動方式とPWM方式あるいはPNM方式の組合せであり、M本のゲート電極から成るゲート電極列における線順次駆動方式を採用し、走査信号に相当する電圧V’をM本のゲート電極に印加し、ビデオ信号に相当する電圧V’をN本のカソード電極に印加する。
【0020】
即ち、本発明の第2の態様に係る冷陰極電界電子放出表示装置の駆動方法は、
(A)支持体、
(B)支持体上に形成され、第1の方向に延びる帯状のN本のカソード電極、
(C)支持体及びカソード電極上に形成された絶縁層、
(D)絶縁層上に形成され、第1の方向とは異なる第2の方向に延びる帯状のM本のゲート電極、
(E)カソード電極とゲート電極の重複する重複領域に位置するゲート電極及び絶縁層の部分に形成された少なくとも1つの開口部、並びに、
(F)各重複領域に設けられた開口部の底部に位置し、多数の電子放出点から電子を放出する電子放出領域、
から成るカソードパネルと、
(G)蛍光体層、並びに、アノード電極、
が設けられたアノードパネルとが、それらの周縁部で接合されて成る冷陰極電界電子放出表示装置の駆動方法であって、
アノード電極に電圧Vを印加した状態で、第m番目のゲート電極に電圧V’を印加し、且つ、N本のカソード電極に同時に電圧V’を印加することで、該第m番目のゲート電極とN本のカソード電極とによって構成されるN個の電子放出領域からの電子の放出/非放出を同時に制御し、以て、各重複領域に対向した蛍光体層の領域における発光状態を制御する工程を、m=1からm=Mまで繰り返し、
所望の輝度を得るために、該N本のカソード電極のそれぞれに印加する電圧V’の値を一定とし、且つ、電圧V’の印加時間を変化させることを特徴とする。
【0021】
本発明の第1の態様に係る冷陰極電界電子放出表示装置の駆動方法においては、第m番目のカソード電極に電圧Vを印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、前記N本のゲート電極のそれぞれに継続的に印加する電圧Vの印加時間を変化させる構成とすることができる。即ち、N本のゲート電極のそれぞれに印加する電圧Vの印加時間を、PWM方式にて制御することができる。
【0022】
あるいは又、本発明の第1の態様に係る冷陰極電界電子放出表示装置の駆動方法においては、前記N本のゲート電極のそれぞれに印加する電圧Vは離散パルス電圧VP_Gであり、第m番目のカソード電極に電圧Vを印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、前記N本のゲート電極のそれぞれに印加するパルス電圧VP_Gのパルス数を変化させることで、該N本のゲート電極のそれぞれに印加する電圧Vの印加時間を変化させる構成とすることもできる。即ち、N本のゲート電極のそれぞれに印加する電圧Vの印加時間を、PNM方式にて制御することができる。
【0023】
また、本発明の第2の態様に係る冷陰極電界電子放出表示装置の駆動方法においては、第m番目のゲート電極に電圧V’を印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、前記N本のカソード電極のそれぞれに継続的に印加する電圧V’の印加時間を変化させる構成とすることができる。即ち、N本のゲート電極のそれぞれに印加する電圧V’の印加時間を、PWM方式にて制御することができる。
【0024】
あるいは又、本発明の第2の態様に係る冷陰極電界電子放出表示装置の駆動方法においては、前記N本のカソード電極のそれぞれに印加する電圧V’は離散パルス電圧V’P_Cであり、第m番目のゲート電極に電圧V’を印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、前記N本のカソード電極のそれぞれに印加するパルス電圧V’P_Cのパルス数を変化させることで、該N本のカソード電極のそれぞれに印加する電圧V’の印加時間を変化させる構成とすることもできる。即ち、N本のゲート電極のそれぞれに印加する電圧V’の印加時間を、PNM方式にて制御することができる。
【0025】
尚、以上に説明したPWM方式あるいはPNM方式においては、離散比較パルスは、第m番目のカソード電極に電圧Vを印加する時間TをP等分して得られ、あるいは又、第m番目のゲート電極に電圧V’を印加する時間TをP等分して得られるが、この時間Tは、厳密な意味で第m番目のカソード電極あるいはゲート電極への電圧Vあるいは電圧V’の印加時間と一致していなくともよく、第m番目のカソード電極あるいはゲート電極への電圧Vあるいは電圧V’の印加時間よりも若干短くともよい。この時間Tは、概ね1水平走査/表示期間に相当し、あるいは、1水平走査/表示期間よりも若干短い時間に相当する。
【0026】
上記の各種の形態を含む本発明の第1の態様に係る冷陰極電界電子放出表示装置の駆動方法においては、N本のゲート電極のそれぞれに印加する電圧Vの値を一定とする代わりに、所望の輝度を得るために、前記N本のゲート電極のそれぞれに印加する電圧Vの印加時間を変化させると同時に、電圧Vの値を変化させてもよい。このような構成にすることで、一層の多階調表示を行うことができる。
【0027】
また、上記の各種の形態を含む本発明の第2の態様に係る冷陰極電界電子放出表示装置の駆動方法においては、N本のカソード電極のそれぞれに印加する電圧V’の値を一定とする代わりに、所望の輝度を得るために、前記N本のカソード電極のそれぞれに印加する電圧V’の印加時間を変化させると同時に、電圧V’の値を変化させてもよい。このような構成にすることで、一層の多階調表示を行うことができる。
【0028】
上記の各種の形態を含む本発明の第1の態様あるいは第2の態様に係る冷陰極電界電子放出表示装置の駆動方法において、M及びNの値の組合せとして、具体的には、(1920,1080)、(1920,1035)、(1024,768)、(800,600)、(640,480)、(720,480)、(1280,960)、(1280,1024)等、画像表示用解像度の幾つかを例示することができるが、これらの値に限定するものではない。
【0029】
上記の各種の形態を含む本発明の第1の態様あるいは第2の態様に係る冷陰極電界電子放出表示装置の駆動方法において、アノード電極、ゲート電極、カソード電極のそれぞれに電圧を印加する回路は、周知の回路から構成することができる。
【0030】
上記の各種の形態を含む本発明の第1の態様あるいは第2の態様に係る冷陰極電界電子放出表示装置の駆動方法における冷陰極電界電子放出表示装置にあっては、冷陰極電界電子放出素子(以下、電界放出素子と略称する)は、
(a)支持体上に形成され、第1の方向に延びる帯状のカソード電極、
(b)支持体及びカソード電極上に形成された絶縁層、
(c)絶縁層上に形成され、第1の方向とは異なる第2の方向に延びる帯状のゲート電極、
(d)カソード電極とゲート電極の重複する重複領域に位置するゲート電極及び絶縁層の部分に形成された少なくとも1つの開口部、並びに、
(e)開口部の底部に位置し、多数の電子放出点から電子を放出する電子放出部、
から構成されている。
【0031】
ここで、冷陰極電界電子放出素子として、
(1)多数の電子放出点を有する略平面状の電子放出部が開口部の底部に位置するカソード電極上に設けられ、多数の電子放出点から電子を放出する扁平型電界放出素子
(2)王冠状の電子放出部が開口部の底部に位置するカソード電極上に設けられ、電子放出部の王冠状の部分(多数の電子放出点に相当する)から電子を放出するクラウン型電界放出素子
(3)平坦なカソード電極の表面の多数の電子放出点から電子を放出する平面型電界放出素子
(4)凹凸が形成されたカソード電極の表面の多数の凸部(電子放出点に相当する)から電子を放出するクレータ型電界放出素子
(5)カソード電極のエッジ部の多数点(電子放出点に相当する)から電子を放出するエッジ型電界放出素子
を例示することができるが、中でも、カーボン・ナノチューブ構造体から構成された扁平型電界放出素子とすることが好ましい。
【0032】
ここで、各重複領域に設けられた1又は複数の電界放出素子を構成する電子放出部によって、電子放出領域が構成される。
【0033】
扁平型電界放出素子にあっては、電子放出部を構成する材料として、カソード電極を構成する材料よりも仕事関数Φの小さい材料から構成することが好ましく、どのような材料を選択するかは、カソード電極を構成する材料の仕事関数、ゲート電極とカソード電極との間の電位差、要求される放出電子電流密度の大きさ等に基づいて決定すればよい。電界放出素子におけるカソード電極を構成する代表的な材料として、タングステン(Φ=4.55eV)、ニオブ(Φ=4.02〜4.87eV)、モリブデン(Φ=4.53〜4.95eV)、アルミニウム(Φ=4.28eV)、銅(Φ=4.6eV)、タンタル(Φ=4.3eV)、クロム(Φ=4.5eV)、シリコン(Φ=4.9eV)を例示することができる。電子放出部は、これらの材料よりも小さな仕事関数Φを有していることが好ましく、その値は概ね3eV以下であることが好ましい。かかる材料として、炭素(Φ<1eV)、セシウム(Φ=2.14eV)、LaB(Φ=2.66〜2.76eV)、BaO(Φ=1.6〜2.7eV)、SrO(Φ=1.25〜1.6eV)、Y(Φ=2.0eV)、CaO(Φ=1.6〜1.86eV)、BaS(Φ=2.05eV)、TiN(Φ=2.92eV)、ZrN(Φ=2.92eV)を例示することができる。仕事関数Φが2eV以下である材料から電子放出部を構成することが、一層好ましい。尚、電子放出部を構成する材料は、必ずしも導電性を備えている必要はない。
【0034】
あるいは又、扁平型電界放出素子において、電子放出部を構成する材料として、かかる材料の2次電子利得δがカソード電極を構成する導電性材料の2次電子利得δよりも大きくなるような材料から適宜選択してもよい。即ち、銀(Ag)、アルミニウム(Al)、金(Au)、コバルト(Co)、銅(Cu)、モリブデン(Mo)、ニオブ(Nb)、ニッケル(Ni)、白金(Pt)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)等の金属;シリコン(Si)、ゲルマニウム(Ge)等の半導体;炭素やダイヤモンド等の無機単体;及び酸化アルミニウム(Al)、酸化バリウム(BaO)、酸化ベリリウム(BeO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化錫(SnO)、フッ化バリウム(BaF)、フッ化カルシウム(CaF)等の化合物の中から、適宜選択することができる。尚、電子放出部を構成する材料は、必ずしも導電性を備えている必要はない。
【0035】
扁平型電界放出素子にあっては、特に好ましい電子放出部の構成材料として、炭素、より具体的にはダイヤモンドやグラファイト、カーボン・ナノチューブ構造体を挙げることができる。電子放出部をこれらから構成する場合、5×10V/m以下の電界強度にて、冷陰極電界電子放出表示装置に必要な放出電子電流密度を得ることができる。また、ダイヤモンドは電気抵抗体であるため、各電子放出部から得られる放出電子電流を均一化することができ、よって、冷陰極電界電子放出表示装置に組み込まれた場合の輝度ばらつきの抑制が可能となる。更に、これらの材料は、冷陰極電界電子放出表示装置内の残留ガスのイオンによるスパッタ作用に対して極めて高い耐性を有するので、電界放出素子の長寿命化を図ることができる。
【0036】
カーボン・ナノチューブ構造体として、具体的には、カーボン・ナノチューブ及び/又はカーボン・ナノファイバーを挙げることができる。より具体的には、カーボン・ナノチューブから電子放出領域(電子放出部)を構成してもよいし、カーボン・ナノファイバーから電子放出領域(電子放出部)を構成してもよいし、カーボン・ナノチューブとカーボン・ナノファイバーの混合物から電子放出領域(電子放出部)を構成してもよい。カーボン・ナノチューブやカーボン・ナノファイバーは、巨視的には、粉末状であってもよいし、薄膜状であってもよいし、場合によっては、カーボン・ナノチューブ構造体は円錐状の形状を有していてもよい。カーボン・ナノチューブやカーボン・ナノファイバーは、周知のアーク放電法やレーザアブレーション法といったPVD法、プラズマCVD法やレーザCVD法、熱CVD法、気相合成法、気相成長法といった各種のCVD法によって製造、形成することができる。
【0037】
扁平型電界放出素子を、バインダー材料にカーボン・ナノチューブ構造体を分散させたものをカソード電極の所望の領域に例えば塗布した後、バインダー材料の焼成あるいは硬化を行う方法(より具体的には、エポキシ系樹脂やアクリル系樹脂等の有機系バインダー材料や水ガラス等の無機系バインダー材料にカーボン・ナノチューブ構造体を分散したものを、カソード電極の所望の領域に例えば塗布した後、溶媒の除去、バインダー材料の焼成・硬化を行う方法)によって製造することができる。尚、このような方法を、カーボン・ナノチューブ構造体の第1の形成方法と呼ぶ。塗布方法として、スクリーン印刷法を例示することができる。
【0038】
あるいは又、扁平型電界放出素子を、カーボン・ナノチューブ構造体が分散された金属化合物溶液をカソード電極上に塗布した後、金属化合物を焼成する方法によって製造することもでき、これによって、金属化合物を構成する金属原子を含むマトリックスにてカーボン・ナノチューブ構造体がカソード電極表面に固定される。尚、このような方法を、カーボン・ナノチューブ構造体の第2の形成方法と呼ぶ。マトリックスは、導電性を有する金属酸化物から成ることが好ましく、より具体的には、酸化錫、酸化インジウム、酸化インジウム−錫、酸化亜鉛、酸化アンチモン、又は、酸化アンチモン−錫から構成することが好ましい。焼成後、各カーボン・ナノチューブ構造体の一部分がマトリックスに埋め込まれている状態を得ることもできるし、各カーボン・ナノチューブ構造体の全体がマトリックスに埋め込まれている状態を得ることもできる。マトリックスの体積抵抗率は、1×10−9Ω・m乃至5×10−6Ω・mであることが望ましい。
【0039】
金属化合物溶液を構成する金属化合物として、例えば、有機金属化合物、有機酸金属化合物、又は、金属塩(例えば、塩化物、硝酸塩、酢酸塩)を挙げることができる。有機酸金属化合物溶液として、有機錫化合物、有機インジウム化合物、有機亜鉛化合物、有機アンチモン化合物を酸(例えば、塩酸、硝酸、あるいは硫酸)に溶解し、これを有機溶媒(例えば、トルエン、酢酸ブチル、イソプロピルアルコール)で希釈したものを挙げることができる。また、有機金属化合物溶液として、有機錫化合物、有機インジウム化合物、有機亜鉛化合物、有機アンチモン化合物を有機溶媒(例えば、トルエン、酢酸ブチル、イソプロピルアルコール)に溶解したものを例示することができる。溶液を100重量部としたとき、カーボン・ナノチューブ構造体が0.001〜20重量部、金属化合物が0.1〜10重量部、含まれた組成とすることが好ましい。溶液には、分散剤や界面活性剤が含まれていてもよい。また、マトリックスの厚さを増加させるといった観点から、金属化合物溶液に、例えばカーボンブラック等の添加物を添加してもよい。場合によっては、有機溶媒の代わりに水を溶媒として用いることもできる。
【0040】
カーボン・ナノチューブ構造体が分散された金属化合物溶液をカソード電極上に塗布する方法として、スプレー法、スピンコーティング法、ディッピング法、ダイクォーター法、スクリーン印刷法を例示することができるが、中でもスプレー法を採用することが塗布の容易性といった観点から好ましい。
【0041】
カーボン・ナノチューブ構造体が分散された金属化合物溶液をカソード電極上に塗布した後、金属化合物溶液を乾燥させて金属化合物層を形成し、次いで、カソード電極上の金属化合物層の不要部分を除去した後、金属化合物を焼成してもよいし、金属化合物を焼成した後、カソード電極上の不要部分を除去してもよいし、カソード電極の所望の領域上にのみ金属化合物溶液を塗布してもよい。
【0042】
金属化合物の焼成温度は、例えば、金属塩が酸化されて導電性を有する金属酸化物となるような温度、あるいは又、有機金属化合物や有機酸金属化合物が分解して、有機金属化合物や有機酸金属化合物を構成する金属原子を含むマトリックス(例えば、導電性を有する金属酸化物)が形成できる温度であればよく、例えば、300゜C以上とすることが好ましい。焼成温度の上限は、電界放出素子あるいはカソードパネルの構成要素に熱的な損傷等が発生しない温度とすればよい。
【0043】
カーボン・ナノチューブ構造体の第1の形成方法あるいは第2の形成方法にあっては、電子放出部の形成後、電子放出部の表面の一種の活性化処理(洗浄処理)を行うことが、電子放出部からの電子の放出効率の一層の向上といった観点から好ましい。このような処理として、水素ガス、アンモニアガス、ヘリウムガス、アルゴンガス、ネオンガス、メタンガス、エチレンガス、アセチレンガス、窒素ガス等のガス雰囲気中でのプラズマ処理を挙げることができる。
【0044】
カーボン・ナノチューブ構造体の第1の形成方法あるいは第2の形成方法にあっては、電子放出部は、開口部の底部に位置するカソード電極の部分の表面に形成されていればよく、開口部の底部に位置するカソード電極の部分から開口部の底部以外のカソード電極の部分の表面に延在するように形成されていてもよい。また、電子放出部は、開口部の底部に位置するカソード電極の部分の表面の全面に形成されていても、部分的に形成されていてもよい。
【0045】
各種の電界放出素子におけるカソード電極を構成する材料として、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、クロム(Cr)、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)等の金属;これらの金属元素を含む合金あるいは化合物(例えばTiN等の窒化物や、WSi、MoSi、TiSi、TaSi等のシリサイド);シリコン(Si)等の半導体;ダイヤモンド等の炭素薄膜;ITO(インジウム・錫酸化物)を例示することができる。カソード電極の厚さは、おおよそ0.05〜0.5μm、好ましくは0.1〜0.3μmの範囲とすることが望ましいが、かかる範囲に限定するものではない。
【0046】
各種の電界放出素子におけるゲート電極を構成する導電性材料として、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、クロム(Cr)、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、鉄(Fe)、白金(Pt)及び亜鉛(Zn)から成る群から選択された少なくとも1種類の金属;これらの金属元素を含む合金あるいは化合物(例えばTiN等の窒化物や、WSi、MoSi、TiSi、TaSi等のシリサイド);あるいはシリコン(Si)等の半導体;ITO(インジウム錫酸化物)、酸化インジウム、酸化亜鉛等の導電性金属酸化物を例示することができる。
【0047】
カソード電極やゲート電極の形成方法として、例えば、電子ビーム蒸着法や熱フィラメント蒸着法といった蒸着法、スパッタリング法、CVD法やイオンプレーティング法とエッチング法との組合せ、スクリーン印刷法、メッキ法、リフトオフ法等を挙げることができる。スクリーン印刷法やメッキ法によれば、直接、例えばストライプ状のカソード電極やゲート電極を形成することが可能である。
【0048】
電界放出素子においては、電界放出素子の構造に依存するが、1つの開口部(ゲート電極に設けられた開口部を第1開口部と呼び、絶縁層に設けられた開口部を第2開口部と呼ぶ場合がある)内に1つの電子放出部が存在してもよいし、1つの開口部内に複数の電子放出部が存在してもよいし、ゲート電極に複数の第1開口部を設け、かかる第1開口部と連通する1つの第2開口部を絶縁層に設け、絶縁層に設けられた1つの第2開口部内に1又は複数の電子放出部が存在してもよい。
【0049】
第1開口部(ゲート電極に形成された開口部)あるいは第2開口部(絶縁層に形成された開口部)の平面形状(支持体表面と平行な仮想平面で開口部を切断したときの形状)は、円形、楕円形、矩形、多角形、丸みを帯びた矩形、丸みを帯びた多角形等、任意の形状とすることができる。第1開口部の形成は、例えば、異方性エッチング、等方性エッチング、異方性エッチングと等方性エッチングの組合せによって行うことができ、あるいは又、ゲート電極の形成方法に依っては、第1開口部を直接形成することもできる。第2開口部の形成も、例えば、異方性エッチング、等方性エッチング、異方性エッチングと等方性エッチングの組合せによって行うことができる。
【0050】
電界放出素子において、カソード電極と電子放出部との間に抵抗体層を設けてもよい。あるいは又、カソード電極の表面が電子放出部に相当している場合、カソード電極を導電材料層、抵抗体層、電子放出部に相当する電子放出層の3層構成としてもよい。抵抗体層を設けることによって、電界放出素子の動作安定化、電子放出特性の均一化を図ることができる。抵抗体層を構成する材料として、シリコンカーバイド(SiC)やSiCNといったカーボン系材料、SiN、アモルファスシリコン等の半導体材料、酸化ルテニウム(RuO)、酸化タンタル、窒化タンタル等の高融点金属酸化物を例示することができる。抵抗体層の形成方法として、スパッタリング法や、CVD法やスクリーン印刷法を例示することができる。抵抗値は、概ね1×10〜1×10Ω、好ましくは数MΩとすればよい。
【0051】
絶縁層の構成材料として、SiO、BPSG、PSG、BSG、AsSG、PbSG、SiN、SiON、SOG(スピンオングラス)、低融点ガラス、ガラスペーストといったSiO系材料、SiN、ポリイミド等の絶縁性樹脂を、単独あるいは適宜組み合わせて使用することができる。絶縁層の形成には、CVD法、塗布法、スパッタリング法、スクリーン印刷法等の公知のプロセスが利用できる。
【0052】
アノード電極の構成材料は、冷陰極電界電子放出表示装置の構成によって適宜選択すればよい。即ち、冷陰極電界電子放出表示装置が透過型(アノードパネルが表示面に相当する)であって、且つ、アノードパネルを構成する基板上にアノード電極と蛍光体層がこの順に積層されている場合には、基板は元より、アノード電極自身も透明である必要があり、ITO(インジウム錫酸化物)等の透明導電材料を用いる。一方、冷陰極電界電子放出表示装置が反射型(カソードパネルが表示面に相当する)である場合、及び、透過型であっても基板上に蛍光体層とアノード電極とがこの順に積層されている場合には、ITOの他、アルミニウム(Al)あるいはクロム(Cr)を用いることができる。アルミニウム(Al)あるいはクロム(Cr)からアノード電極を構成する場合、アノード電極の厚さとして、具体的には、3×10−8m(30nm)乃至1.5×10−7m(150nm)、好ましくは5×10−8m(50nm)乃至1×10−7m(100nm)を例示することができる。アノード電極は、蒸着法やスパッタリング法にて形成することができる。
【0053】
アノードパネルには、更に、蛍光体層から反跳した電子、あるいは、蛍光体層から放出された二次電子が他の蛍光体層に入射し、所謂光学的クロストーク(色濁り)が発生することを防止するための、あるいは又、蛍光体層から反跳した電子、あるいは、蛍光体層から放出された二次電子が隔壁を越えて他の蛍光体層に向かって侵入したとき、これらの電子が他の蛍光体層と衝突することを防止するための、隔壁が、複数、設けられていることが好ましい。
【0054】
隔壁の平面形状としては、格子形状(井桁形状)、即ち、1サブピクセルに相当する、例えば平面形状が略矩形(ドット状)の蛍光体層の四方を取り囲む形状を挙げることができ、あるいは、略矩形あるいはストライプ状の蛍光体層の対向する二辺と平行に延びる帯状形状あるいはストライプ形状を挙げることができる。隔壁を格子形状とする場合、1つの蛍光体層の領域の四方を連続的に取り囲む形状としてもよいし、不連続に取り囲む形状としてもよい。隔壁を帯状形状あるいはストライプ形状とする場合、連続した形状としてもよいし、不連続な形状としてもよい。隔壁を形成した後、隔壁を研磨し、隔壁の頂面の平坦化を図ってもよい。
【0055】
蛍光体層からの光を吸収するブラックマトリックスが蛍光体層と蛍光体層との間(隔壁が形成されている場合には、蛍光体層と蛍光体層との間であって隔壁と基板との間)に形成されていることが、表示画像のコントラスト向上といった観点から好ましい。ブラックマトリックスを構成する材料として、蛍光体層からの光を99%以上吸収する材料を選択することが好ましい。このような材料として、カーボン、金属薄膜(例えば、クロム、ニッケル、アルミニウム、モリブデン等、あるいは、これらの合金)、金属酸化物(例えば、酸化クロム)、金属窒化物(例えば、窒化クロム)、耐熱性有機樹脂、ガラスペースト、黒色顔料や銀等の導電性粒子を含有するガラスペースト等の材料を挙げることができ、具体的には、感光性ポリイミド樹脂、酸化クロムや、酸化クロム/クロム積層膜を例示することができる。尚、酸化クロム/クロム積層膜においては、クロム膜が基板と接する。
【0056】
カソードパネルとアノードパネルとを周縁部において接合する場合、接合は接着層を用いて行ってもよいし、あるいは、ガラスやセラミックス等の絶縁剛性材料から成る枠体と接着層とを併用して行ってもよい。枠体と接着層とを併用する場合には、枠体の高さを適宜選択することにより、接着層のみを使用する場合に比べ、カソードパネルとアノードパネルとの間の対向距離をより長く設定することが可能である。尚、接着層の構成材料としては、フリットガラスが一般的であるが、融点が120〜400゜C程度の所謂低融点金属材料を用いてもよい。かかる低融点金属材料としては、In(インジウム:融点157゜C);インジウム−金系の低融点合金;Sn80Ag20(融点220〜370゜C)、Sn95Cu(融点227〜370゜C)等の錫(Sn)系高温はんだ;Pb97.5Ag2.5(融点304゜C)、Pb94.5Ag5.5(融点304〜365゜C)、Pb97.5Ag1.5Sn1.0(融点309゜C)等の鉛(Pb)系高温はんだ;Zn95Al(融点380゜C)等の亜鉛(Zn)系高温はんだ;SnPb95(融点300〜314゜C)、SnPb98(融点316〜322゜C)等の錫−鉛系標準はんだ;Au88Ga12(融点381゜C)等のろう材(以上の添字は全て原子%を表す)を例示することができる。
【0057】
カソードパネルとアノードパネルと枠体の三者を接合する場合、三者を同時に接合してもよいし、あるいは、第1段階でカソードパネル又はアノードパネルのいずれか一方と枠体とを接合し、第2段階でカソードパネル又はアノードパネルの他方と枠体とを接合してもよい。三者同時接合や第2段階における接合を高真空雰囲気中で行えば、カソードパネルとアノードパネルと枠体と接着層とにより囲まれた空間は、接合と同時に真空となる。あるいは、三者の接合終了後、カソードパネルとアノードパネルと枠体と接着層とによって囲まれた空間を排気し、真空とすることもできる。接合後に排気を行う場合、接合時の雰囲気の圧力は常圧/減圧のいずれであってもよく、また、雰囲気を構成する気体は、大気であっても、あるいは窒素ガスや周期律表0族に属するガス(例えばArガス)を含む不活性ガスであってもよい。
【0058】
接合後に排気を行う場合、排気は、カソードパネル及び/又はアノードパネルに予め接続されたチップ管を通じて行うことができる。チップ管は、典型的にはガラス管を用いて構成され、カソードパネル及び/又はアノードパネルの無効領域に設けられた貫通部の周囲に、フリットガラス又は上述の低融点金属材料を用いて接合され、空間が所定の真空度に達した後、熱融着によって封じ切られる。尚、封じ切りを行う前に、冷陰極電界電子放出表示装置全体を一旦加熱してから降温させると、空間に残留ガスを放出させることができ、この残留ガスを排気により空間外へ除去することができるので好適である。
【0059】
カソードパネルを構成する支持体は、少なくとも表面が絶縁性部材より構成されていればよく、ガラス基板、表面に絶縁膜が形成されたガラス基板、石英基板、表面に絶縁膜が形成された石英基板、表面に絶縁膜が形成された半導体基板を挙げることができるが、製造コスト低減の観点からは、ガラス基板、あるいは、表面に絶縁膜が形成されたガラス基板を用いることが好ましい。アノードパネルを構成する基板も、支持体と同様に構成することができる。
【0060】
本発明の冷陰極電界電子放出表示装置の駆動方法にあっては、所望の輝度を得るために、N本のゲート電極のそれぞれに印加する電圧Vの印加時間を変化させ、あるいは又、N本のカソード電極のそれぞれに印加する電圧V’の印加時間を変化させる。従って、電圧Vと電圧Vとの電位差ΔVG−Cあるいは電圧V’と電圧V’との電位差ΔV’G−Cを閾値電圧Vthよりも十分に大きな値とすることによって、エミッション・サイトの密度(ESD)を100%、あるいは100%に近づけることができる。そして、高輝度(蛍光体層における高発光状態)を得るためには電圧V,V’の印加時間を長くし、低輝度(蛍光体層における低発光状態)を得るためには電圧V,V’の印加時間を短くすればよいので、低輝度の画素(画像)表示を行う場合であっても、輝度ムラの無い、均一な低輝度発光状態を達成することができる。
【0061】
【発明の実施の形態】
以下、図面を参照して、発明の実施の形態(以下、実施の形態と略称する)に基づき本発明を説明する。
【0062】
(実施の形態1)
実施の形態1は、本発明の第1の態様に係る冷陰極電界電子放出表示装置(以下、単に、表示装置と略称する)の駆動方法に関する。実施の形態1における表示装置の模式的な一部端面図を図3に示し、カソードパネルCPとアノードパネルAPを分解したときの模式的な部分的斜視図を図4に示す。
【0063】
実施の形態1の表示装置の駆動方法は、基本的には、線順次駆動方式とPWM方式の組合せであり、M本のカソード電極から成るカソード電極列における線順次駆動方式を採用し、走査信号に相当する電圧VをM本のカソード電極に印加し、ビデオ信号に相当する電圧VをN本のゲート電極に印加する。具体的には、第m番目のカソード電極に電圧Vを印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、N本のゲート電極のそれぞれに継続的に印加する電圧Vの印加時間を変化させる。
【0064】
実施の形態1の表示装置は、冷陰極電界電子放出素子(以下、電界放出素子と呼ぶ)を、複数、備えたカソードパネルCPと、蛍光体層31及びアノード電極33が設けられたアノードパネルAPとが、それらの周縁部で接合されて成る。
【0065】
より具体的には、カソードパネルCPは、
(A)支持体10、
(B)支持体10上に形成され、第1の方向(図3の紙面垂直方向)に延びる帯状のM本(実施の形態1にあっては、カラー表示を想定しているので、3M。ここで、M=480)のカソード電極11、
(C)支持体10及びカソード電極11上に形成された絶縁層12、
(D)絶縁層12上に形成され、第1の方向とは異なる第2の方向(図3の紙面水平方向)に延びる帯状のN本(実施の形態1にあっては、カラー表示を想定しているので、3N。ここで、N=640)のゲート電極13、
(E)カソード電極11とゲート電極13の重複する重複領域に位置するゲート電極13及び絶縁層12の部分に形成された少なくとも1つの開口部14(ゲート電極13に設けられた第1開口部14A、及び、絶縁層12に設けられ、第1開口部14Aと連通した第2開口部14B)、並びに、
(F)各重複領域に設けられた開口部14の底部に位置し、多数の電子放出点から電子を放出する電子放出領域15、
から成る。
【0066】
尚、画像を見るために表示装置を垂直に配置した状態においては、帯状のM本のカソード電極11は水平方向に延び、帯状のN本のゲート電極13は垂直方向に延びている。
【0067】
実施の形態1にあっては、電子放出領域15は多数のカーボン・ナノチューブ構造体(より具体的には、カーボン・ナノチューブ)から構成されている。そして、それぞれのカーボン・ナノチューブ構造体の先端部から電子が放出される。
【0068】
即ち、電界放出素子は、略平面状の電子放出部115が開口部14の底部に位置するカソード電極11上に設けられた扁平型電界放出素子(より具体的には、カーボン・ナノチューブ構造体から構成された扁平型電界放出素子)から構成されている。
【0069】
ここで、1つの電界放出素子は、その模式的な一部端面図を図6の(B)に示すように、
(a)支持体10上に形成されたカソード電極11、
(b)支持体10及びカソード電極11上に形成された絶縁層12、
(c)絶縁層12上に形成されたゲート電極13、
(d)カソード電極11とゲート電極13の重複する重複領域に位置するゲート電極13及び絶縁層12の部分に形成された少なくとも1つの開口部14(ゲート電極13に設けられた第1開口部14A、及び、絶縁層12に設けられ、第1開口部14Aと連通した第2開口部14B)、並びに、
(e)開口部14の底部に位置し、多数の電子放出点から電子を放出する電子放出部115、
から成る。
【0070】
電子放出部115は、マトリックス20、及び、先端部が突出した状態でマトリックス20中に埋め込まれた多数のカーボン・ナノチューブ構造体(具体的には、カーボン・ナノチューブ21)から成り、マトリックス20は、導電性を有する金属酸化物(具体的には、酸化インジウム−錫、ITO)から成る。そして、第2開口部14Bの底部に露出した電子放出部115を構成するカーボン・ナノチューブ21のそれぞれの先端部から電子が放出される。即ち、カーボン・ナノチューブ21のそれぞれの先端部が、電子放出点に相当する。
【0071】
カソード電極11とゲート電極13とは、これらの両電極の射影像が互いに直交する方向に各々ストライプ状に形成されており、これらの両電極の射影像が重複する重複領域(1サブピクセルに相当する大きさを有する)に、1又は複数の電界放出素子が設けられている。即ち、電子放出領域15は、各重複領域に設けられた1又は複数の電子放出部115から構成されている。更に、かかる重複領域が、カソードパネルCPの有効領域(実際の表示部分として機能する領域)内に、通常、2次元マトリックス状に配列されている。
【0072】
一方、アノードパネルAPは、基板30と、基板30上に形成され、所定のパターンを有する蛍光体層31(赤色発光蛍光体層31R,青色発光蛍光体層31B,緑色発光蛍光体層31G)と、その上に形成されたアノード電極33から構成されている。1サブピクセルは、カソードパネル側のカソード電極11とゲート電極13との重複領域に設けられた電界放出素子の一群と、これらの電界放出素子の一群に対面したアノードパネル側の蛍光体層31とによって構成されている。有効領域には、かかる3つのサブピクセルから成る画素が、例えば数十万〜数百万個ものオーダーにて配列されている。尚、蛍光体層31と蛍光体層31との間の基板30上にはブラックマトリックス32が形成されている。
【0073】
実施の形態1にあっては、アノード電極制御回路42からアノード電極33に電圧Vを印加した状態で、第m番目のカソード電極11にカソード電極制御回路40から電圧Vを印加し、且つ、N本のゲート電極13にゲート電極制御回路41から同時に電圧Vを印加することで、この第m番目のカソード電極11とN本のゲート電極13とによって構成されるN個の電子放出領域15からの電子の放出/非放出を同時に制御し、以て、各重複領域に対向した蛍光体層31の領域(即ち、サブピクセルに相当する蛍光体層31の領域)における発光状態を制御する工程を、m=1からm=Mまで繰り返す。そして、所望の輝度(蛍光体層31における所望の発光状態)を得るために、N本のゲート電極のそれぞれに印加する電圧Vの値を一定とし、且つ、電圧Vの印加時間を変化させる。具体的には、それぞれの電子放出領域15において高輝度(蛍光体層31における高発光状態)を得るためには、電圧Vの印加時間を長くし、それぞれの電子放出領域15において低輝度(蛍光体層31における低発光状態)を得るためには、電圧Vの印加時間を短くする。
【0074】
以下、図1のタイミング図、及び、図2のカラムドライバ回路の一例のブロック図を参照して、より具体的に、実施の形態1の表示装置の駆動方法を説明する。尚、カラムドライバ回路は、ゲート電極制御回路41に組み込まれている。
【0075】
[図1のタイミング図の説明]
[Device Select In]
1水平走査/表示期間における表示カラム数(電子を放出すべき電子放出領域の数)は3N(例えば、N=640)に等しいので、複数のカラムドライバ回路(実施の形態1においては、例えば20×3個のカラムドライバ回路)を使用する必要がある。最初のカラムドライバ回路に Device Select In 信号が入力されれば、後続のカラムドライバ回路に順次、カラムデータが転送(リレー)される。
【0076】
[Shift Clock (SC)]
Shift Clock (SC) パルスは、カラムデータをカラムドライバ回路のデータ・ラッチ回路DLTに順次書き込むためのパルスである。ここでは、立ち上がり/立ち下がりの両方のパルスエッジを利用して、書き込みを行う。
【0077】
[Date In (D1.....D7)]
カラムデータバスである。図示した例では、7ビットであり、128階調の輝度制御を行う。
【0078】
[Load Count (LC)]
1水平走査/表示期間の始まりを規定するパルスであり、次の列(カソード電極。尚、後述する実施の形態2にあってはゲート電極)の選択を開始するための信号でもある。
【0079】
[PWM Clock (PC)]
1水平走査/表示期間における輝度階調を制御するための離散比較パルスであり、第m番目のカソード電極に電圧Vを印加する時間TをP等分(実施の形態1においては、128等分)して得られるものであり、128階調の輝度制御を行う。電圧Vの印加時間制御の基礎となる。即ち、この離散比較パルス列が電圧Vの印加時間に変換される。1水平走査/表示期間において、128の離散比較パルスが送出される。尚、後述する実施の形態2にあっては、第m番目のゲート電極に電圧V’を印加する時間TをP等分(実施の形態2においても、128等分)して得られるものであり、128階調の輝度制御を行い、電圧V’の印加時間制御の基礎となる。即ち、この離散比較パルス列が電圧V’の印加時間に変換される。
【0080】
[Column A, B, C]
第A番目のカラムの発光状態(即ち、第A番目のゲート電極13とカソード電極11の重複領域に対向する蛍光体層の領域における発光状態)、第B番目のカラムの発光状態(即ち、第B番目のゲート電極13とカソード電極11の重複領域に対向する蛍光体層の領域における発光状態)、第C番目のカラムの発光状態(即ち、第C番目のゲート電極13とカソード電極11の重複領域に対向する蛍光体層の領域における発光状態)を示す。
【0081】
図示した例では、第A番目のゲート電極13によって構成される電子放出領域15に対応した蛍光体層31の領域において最も高い発光状態(最高輝度)が達成され、第B番目のゲート電極13によって構成される電子放出領域15に対応した蛍光体層31の領域において最も低い発光状態(最低輝度)が達成され、第C番目のゲート電極13によって構成される電子放出領域15に対応した蛍光体層31の領域において中程度の発光状態(中間の輝度)が達成される。
【0082】
第m番目のカソード電極11とN本のゲート電極13とによって構成されるN個の電子放出領域15からの電子の放出/非放出の同時制御を、以下、具体的に説明する。
【0083】
第(m−1)番目のカソード電極11とN本のゲート電極13とによって構成されるN個の電子放出領域15からの電子の放出/非放出の同時制御が、別の1組のカラムドライバ回路等に基づき行われている間に、以下の処理が行われる。即ち、第(m−1)番目のカソード電極11に対する駆動が、図2に示すRSフリップフロップ回路RS及びロード・カウント回路LC等によって行われている1水平期間/表示期間に、データ・ラッチ回路DLTへ第m番目のカソード電極11に対する駆動データの書き込みが行われる。
【0084】
TVチューナ、コンピュータ等の外部装置からR,G,Bの3色の輝度レベルを示すビデオ信号が、各種の同期信号と共にゲート電極制御回路41に入力される。ゲート電極制御回路41において、ビデオ信号はデータ変換回路(図示せず)の中のフレームメモリ(図示せず)に一時的に記憶される。そして、データ変換回路によって、ビデオ信号は、輝度レベルを階調表示のための7ビットのカラムデータに変換される。
【0085】
そして、最初のカラムドライバ回路に Device Select In 信号が入力される。これによって、後続のカラムドライバ回路に順次、カラムデータが転送(リレー)されていく。そして、シフト・クロック回路SCからシフト・クロック・バッファSCBを介して、シフト・クロック信号が、デュアル・16ビット・シフト・レジスタSRに送られる。デュアル・16ビット・シフト・レジスタSRからの各出力である Shift Clock パルスは、AND回路に送られ、32個のデータ・ラッチ回路DLTの1つ1つが順次選択される。そして、7ビットのカラムデータが、選択されたデータ・ラッチ回路DLTに書き込まれる(ラッチされる)。
【0086】
そして、1水平走査/表示期間の開始(第m番目のカソード電極11とN本のゲート電極13とによって構成されるN個の電子放出領域15からの電子の放出/非放出の同時制御の開始)にあっては、ロード・カウント回路LCからロード・カウント・バッファLCBを介してカウンタCNがリセットされる。そして、PWM回路PCから PWM Clock (PC) 信号(離散比較パルス)がカウント・クロック・バッファCCBを介してカウンタCNに送出され、カウンタCNにて PWMClock (PC) 信号の数(離散比較パルスのパルス数)がカウントされ、この PWMClock (PC) 信号はカウンタCNから各ラッチ・コンパレータ回路LCへと送られる。更には、ロード・カウント回路LCからロード・カウント・バッファLCBを介して Load Count 信号が各ラッチ・コンパレータ回路LCへと送られ、各データ・ラッチ回路DLTにラッチされた7ビットのカラムデータが各ラッチ・コンパレータ回路LCへと送られる。そして、各ラッチ・コンパレータ回路LCからの出力(7ビットのカラムデータと離散比較パルスのパルス数が一致するまではこの出力は「L」を保持し、7ビットのカラムデータを離散比較パルスのパルス数が越えたときにはこの出力は「H」を保持する)は、NAND回路へと送られる。また、PWM回路から PWM Clock (PC) 信号がNAND回路に送られる。そして、ラッチ・コンパレータ回路LCからの入力が「L」から「H」に変化したとき、NAND回路からパルスがRSフリップフロップ回路RSに送られ、RSフリップフロップ回路RSから出力「H」が出力端子Out,Out・・・,Out31,Out32を介して出力される。この出力端子の出力は、クリア・パルス発生器によってRSフリップフロップ回路RSがリセットされるまで、保持される。
【0087】
各ゲート電極13は、Out,Out・・・,Out31,Out32の出力によってオン・オフが制御されるスイッチ回路(図示せず)を介して電圧Vを出力する電源に接続されている。そして、出力端子Out,Out・・・,Out31,Out32に出力「H」がある場合には、スイッチ回路がオン状態となり、電源からゲート電極13に電圧Vが印加される。ゲート電極13への電圧Vの印加時間は、7ビットのカラムデータを離散比較パルスのパルス数が越えたときから、クリア・パルス発生器によってRSフリップフロップ回路RSがリセットされるまでの時間である。即ち、1水平走査/表示期間における離散比較パルスのパルス数は、例えば、128であり、7ビットのカラムデータが32離散比較パルス数に相当する場合、1番目の離散比較パルスから32番目の離散比較パルスまでは、ゲート電極13に電圧は印加されず、33番目の離散比較パルスから128番目の離散比較パルスまでは、ゲート電極13に電圧Vが印加される。
【0088】
一方、カソード電極制御回路40からは、第m番目のカソード電極11に電圧Vが印加される。また、アノード電極制御回路42からは、アノード電極33に電圧Vが印加され続ける。
【0089】
カソード電極11とゲート電極13とに電圧V,Vを印加した際に生ずる電界により、量子トンネル効果に基づき電子放出部115を構成する各カーボン・ナノチューブ21の先端部から電子が放出され、この電子がアノード電極33に引き付けられ、蛍光体層31に衝突する。その結果、蛍光体層31が励起されて発光し、所望の画像を得ることができる。このとき、電圧Vの印加時間の長短により、1水平走査/表示期間において各電子放出領域15から放出される電子の総量を異ならせることができる結果、画像の輝度制御を行うことができる。しかも、各電子放出領域における電圧Vと電圧Vとの電位差ΔVG−Cは同じであるが故に、各電子放出領域におけるエミッション・サイトの密度(ESD)はほぼ等しい。従って、低輝度の画素(画像)表示を行う場合であっても、輝度ムラの無い、均一な低輝度発光状態を達成することができる。
【0090】
(実施の形態2)
実施の形態2は、本発明の第2の態様に係る表示装置の駆動方法に関する。実施の形態2における表示装置は、カソード電極制御回路40及びゲート電極制御回路41の構成が異なる点を除き、実施の形態1における表示装置と同様の構成を有している。
【0091】
実施の形態2の表示装置の駆動方法も、基本的には、線順次駆動方式とPWM方式の組合せであり、M本のゲート電極から成るゲート電極列における線順次駆動方式を採用し、走査信号に相当する電圧V’をM本のゲート電極に印加し、ビデオ信号に相当する電圧V’をN本のカソード電極11に印加する。具体的には、第m番目のゲート電極に電圧V’を印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、N本のカソード電極のそれぞれに継続的に印加する電圧V’の印加時間を変化させる。
【0092】
実施の形態2の表示装置も、実施の形態1と同様の電界放出素子を、複数、備えたカソードパネルCPと、実施の形態1と同様の蛍光体層31及びアノード電極33が設けられたアノードパネルAPとが、それらの周縁部で接合されて成る。
【0093】
より具体的には、カソードパネルCPは、
(A)支持体10、
(B)支持体10上に形成され、第1の方向(図3の紙面垂直方向)に延びる帯状のN本(実施の形態2にあっても、カラー表示を想定しているので、3N。ここで、N=640)のカソード電極11、
(C)支持体10及びカソード電極11上に形成された絶縁層12、
(D)絶縁層12上に形成され、第1の方向とは異なる第2の方向(図3の紙面水平方向)に延びる帯状のM本(実施の形態2にあっても、カラー表示を想定しているので、3M。ここで、M=480)のゲート電極13、
(E)カソード電極11とゲート電極13の重複する重複領域に位置するゲート電極13及び絶縁層12の部分に形成された少なくとも1つの開口部14(ゲート電極13に設けられた第1開口部14A、及び、絶縁層12に設けられ、第1開口部14Aと連通した第2開口部14B)、並びに、
(F)各重複領域に設けられた開口部14の底部に位置し、多数の電子放出点から電子を放出する電子放出領域15、
から成る。
【0094】
尚、画像を見るために表示装置を垂直に配置した状態においては、帯状のM本のゲート電極13は水平方向に延び、帯状のN本のカソード電極11は垂直方向に延びている。
【0095】
実施の形態2にあっては、アノード電極制御回路42からアノード電極33に電圧Vを印加した状態で、第m番目のゲート電極13にゲート電極制御回路41から電圧V’を印加し、且つ、N本のカソード電極11にカソード電極制御回路40から同時に電圧V’を印加することで、この第m番目のゲート電極13とN本のカソード電極11とによって構成されるN個の電子放出領域15からの電子の放出/非放出を同時に制御し、以て、各重複領域に対向した蛍光体層31の領域(即ち、サブピクセルに相当する蛍光体層31の領域)における発光状態を制御する工程を、m=1からm=Mまで繰り返す。そして、所望の輝度(蛍光体層31における所望の発光状態)を得るために、N本のカソード電極のそれぞれに印加する電圧V’の値を一定とし、且つ、電圧V’の印加時間を変化させる。具体的には、それぞれの電子放出領域15において高輝度(蛍光体層31における高発光状態)を得るためには、電圧V’の印加時間を長くし、それぞれの電子放出領域15において低輝度(蛍光体層31における低発光状態)を得るためには、電圧V’の印加時間を短くする。
【0096】
実施の形態2においては、図2のブロック図に示したカラムドライバ回路は、カソード電極制御回路40に組み込まれている。尚、[図1のタイミング図の説明]において説明した[Column A, B, C]の項は、以下のとおりに読み替えるものとする。
【0097】
[Column A, B, C]
第A番目のカラムの発光状態(即ち、第A番目のカソード電極11とゲート電極13の重複領域に対向する蛍光体層の領域における発光状態)、第B番目のカラムの発光状態(即ち、第B番目のカソード電極11とゲート電極13の重複領域に対向する蛍光体層の領域における発光状態)、第C番目のカラムの発光状態(即ち、第C番目のカソード電極11とゲート電極13の重複領域に対向する蛍光体層の領域における発光状態)を示す。
【0098】
図示した例では、第A番目のカソード電極11によって構成される電子放出領域15に対応した蛍光体層31の領域において最も高い発光状態(最高輝度)が達成され、第B番目のカソード電極11によって構成される電子放出領域15に対応した蛍光体層31の領域において最も低い発光状態(最低輝度)が達成され、第C番目のカソード電極11によって構成される電子放出領域15に対応した蛍光体層31の領域において中程度の発光状態(中間の輝度)が達成される。
【0099】
第m番目のゲート電極13とN本のカソード電極11とによって構成されるN個の電子放出領域15からの電子の放出/非放出の同時制御は、実質的に、実施の形態1にて説明したと同様の制御とすることができるので、詳細な説明は省略する。尚、実施の形態2にあっては、実施の形態1にて説明した制御において、「ゲート電極制御回路41」を『カソード電極制御回路40』に読み替え、「カソード電極制御回路40」を『ゲート電極制御回路41』に読み替え、「カソード電極11」を『ゲート電極13』に読み替え、「ゲート電極13」を『カソード電極11』に読み替え、「電圧V」を『電圧V’』に読み替え、「電圧V」を『電圧V’』に読み替えるものとする。
【0100】
実施の形態2にあっては、カソード電極11とゲート電極13とに電圧V’,V’を印加した際に生ずる電界により、量子トンネル効果に基づき電子放出部115を構成する各カーボン・ナノチューブ21の先端部から電子が放出され、この電子がアノード電極33に引き付けられ、蛍光体層31に衝突する。その結果、蛍光体層31が励起されて発光し、所望の画像を得ることができる。このとき、電圧V’の印加時間の長短により、1水平走査/表示期間において各電子放出領域15から放出される電子の総量を異ならせることができる結果、画像の輝度制御を行うことができる。しかも、各電子放出領域における電圧V’と電圧V’との電位差ΔV’G−Cは同じであるが故に、各電子放出領域におけるエミッション・サイトの密度(ESD)はほぼ等しい。従って、低輝度の画素(画像)表示を行う場合であっても、輝度ムラの無い、均一な低輝度発光状態を達成することができる。
【0101】
(各種の電界放出素子及びその製造方法)
以下、各種の電界放出素子及びその製造方法を説明する。尚、図5〜図7においては、1つの電子放出部のみを図示する。
【0102】
[扁平型電界放出素子(その1)]
扁平型電界放出素子は、
(イ)支持体10上に設けられ、第1の方向に延びるカソード電極11と、
(ロ)支持体10及びカソード電極11上に形成された絶縁層12と、
(ハ)絶縁層12上に設けられ、第1の方向とは異なる第2の方向に延びるゲート電極13と、
(ニ)ゲート電極13に設けられた第1開口部14A、及び、絶縁層12に設けられ、第1開口部14Aと連通した第2開口部14Bと、
(ホ)第2開口部14Bの底部に位置するカソード電極11上に設けられた扁平状の電子放出部115、
から成る。
【0103】
以下、電界放出素子の製造方法を、図5の(A)、(B)及び図6の(A)、(B)を参照して説明する。
【0104】
[工程−100]
先ず、例えばガラス基板から成る支持体10上に、例えばスパッタリング法及びエッチング技術により形成された厚さ約0.2μmのクロム(Cr)層から成るストライプ状のカソード電極11を形成する。
【0105】
[工程−110]
次に、カーボン・ナノチューブ構造体が分散された有機酸金属化合物から成る金属化合物溶液をカソード電極11上に、例えばスプレー法にて塗布する。具体的には、以下の表1に例示する金属化合物溶液を用いる。尚、金属化合物溶液中にあっては、有機錫化合物及び有機インジウム化合物は酸(例えば、塩酸、硝酸、あるいは硫酸)に溶解された状態にある。カーボン・ナノチューブはアーク放電法にて製造され、平均直径30nm、平均長さ1μmである。塗布に際しては、支持体を70〜150゜Cに加熱しておく。塗布雰囲気を大気雰囲気とする。塗布後、5〜30分間、支持体を加熱し、酢酸ブチルを十分に蒸発させる。このように、塗布時、支持体を加熱することによって、カソード電極の表面に対してカーボン・ナノチューブが水平に近づく方向にセルフレベリングする前に塗布溶液の乾燥が始まる結果、カーボン・ナノチューブが水平にはならない状態でカソード電極の表面にカーボン・ナノチューブを配置することができる。即ち、カーボン・ナノチューブの先端部がアノード電極の方向を向くような状態、言い換えれば、カーボン・ナノチューブを、支持体の法線方向に近づく方向に配向させることができる。尚、予め、表1に示す組成の金属化合物溶液を調製しておいてもよいし、カーボン・ナノチューブを添加していない金属化合物溶液を調製しておき、塗布前に、カーボン・ナノチューブと金属化合物溶液とを混合してもよい。また、カーボン・ナノチューブの分散性向上のため、金属化合物溶液の調製時、超音波を照射してもよい。
【0106】
[表1]
有機錫化合物及び有機インジウム化合物:0.1〜10重量部
分散剤(ドデシル硫酸ナトリウム) :0.1〜5 重量部
カーボン・ナノチューブ :0.1〜20重量部
酢酸ブチル :残余
【0107】
尚、有機酸金属化合物溶液として、有機錫化合物を酸に溶解したものを用いれば、マトリックスとして酸化錫が得られ、有機インジウム化合物を酸に溶解したものを用いれば、マトリックスとして酸化インジウムが得られ、有機亜鉛化合物を酸に溶解したものを用いれば、マトリックスとして酸化亜鉛が得られ、有機アンチモン化合物を酸に溶解したものを用いれば、マトリックスとして酸化アンチモンが得られ、有機アンチモン化合物及び有機錫化合物を酸に溶解したもの用いれば、マトリックスとして酸化アンチモン−錫が得られる。また、有機金属化合物溶液として、有機錫化合物を用いれば、マトリックスとして酸化錫が得られ、有機インジウム化合物を用いれば、マトリックスとして酸化インジウムが得られ、有機亜鉛化合物を用いれば、マトリックスとして酸化亜鉛が得られ、有機アンチモン化合物を用いれば、マトリックスとして酸化アンチモンが得られ、有機アンチモン化合物及び有機錫化合物を用いれば、マトリックスとして酸化アンチモン−錫が得られる。あるいは又、金属の塩化物の溶液(例えば、塩化錫、塩化インジウム)を用いてもよい。
【0108】
場合によっては、金属化合物溶液を乾燥した後の金属化合物層の表面に著しい凹凸が形成されている場合がある。このような場合には、金属化合物層の上に、支持体を加熱することなく、再び、金属化合物溶液を塗布することが望ましい。
【0109】
[工程−120]
その後、有機酸金属化合物から成る金属化合物を焼成することによって、有機酸金属化合物を構成する金属原子(具体的には、In及びSn)を含むマトリックス(具体的には、金属酸化物であり、より一層具体的にはITO)20にてカーボン・ナノチューブ21がカソード電極11の表面に固定された電子放出部115を得る。焼成を、大気雰囲気中で、350゜C、20分の条件にて行う。こうして、得られたマトリックス20の体積抵抗率は、5×10−7Ω・mであった。有機酸金属化合物を出発物質として用いることにより、焼成温度350゜Cといった低温においても、ITOから成るマトリックス20を形成することができる。尚、有機酸金属化合物溶液の代わりに、有機金属化合物溶液を用いてもよいし、金属の塩化物の溶液(例えば、塩化錫、塩化インジウム)を用いた場合、焼成によって塩化錫、塩化インジウムが酸化されつつ、ITOから成るマトリックス20が形成される。
【0110】
[工程−130]
次いで、全面にレジスト層を形成し、カソード電極11の所望の領域の上方に、例えば直径10μmの円形のレジスト層を残す。そして、10〜60゜Cの塩酸を用いて、1〜30分間、マトリックス20をエッチングして、電子放出部の不要部分を除去する。更に、所望の領域以外にカーボン・ナノチューブが未だ存在する場合には、以下の表2に例示する条件の酸素プラズマエッチング処理によってカーボン・ナノチューブをエッチングする。尚、バイアスパワーは0Wでもよいが、即ち、直流としてもよいが、バイアスパワーを加えることが望ましい。また、支持体を、例えば80゜C程度に加熱してもよい。
【0111】
[表2]
使用装置 :RIE装置
導入ガス :酸素を含むガス
プラズマ励起パワー:500W
バイアスパワー :0〜150W
処理時間 :10秒以上
【0112】
あるいは又、表3に例示する条件のウェットエッチング処理によってカーボン・ナノチューブをエッチングしてもよい。
【0113】
[表3]
使用溶液:KMnO
温度 :20〜120゜C
処理時間:10秒〜20分
【0114】
その後、レジスト層を除去することによって、図5の(A)に示す構造を得ることができる。尚、直径10μmの円形の電子放出部を残すことに限定されない。例えば、電子放出部をカソード電極11上に残してもよい。
【0115】
尚、[工程−110]、[工程−130]、[工程−120]の順に実行してもよい。
【0116】
[工程−140]
次に、電子放出部115、支持体10及びカソード電極11上に絶縁層12を形成する。具体的には、例えばTEOS(テトラエトキシシラン)を原料ガスとして使用するCVD法により、全面に、厚さ約1μmの絶縁層12を形成する。
【0117】
[工程−150]
その後、絶縁層12上にストライプ状のゲート電極13を形成し、更に、絶縁層12及びゲート電極13上にマスク層22を設けた後、ゲート電極13に第1の開口部14Aを形成し、更に、ゲート電極13に形成された第1の開口部14Aに連通する第2の開口部14Bを絶縁層12に形成する(図5の(B)参照)。尚、マトリックス20を金属酸化物、例えばITOから構成する場合、絶縁層12をエッチングするとき、マトリックス20がエッチングされることはない。即ち、絶縁層12とマトリックス20とのエッチング選択比はほぼ無限大である。従って、絶縁層12のエッチングによってカーボン・ナノチューブ21に損傷が発生することはない。
【0118】
[工程−160]
次いで、以下の表4に例示する条件にて、マトリックス20の一部を除去し、マトリックス20から先端部が突出した状態のカーボン・ナノチューブ21を得ることが好ましい。こうして、図6の(A)に示す構造の電子放出部115を得ることができる。
【0119】
[表4]
エッチング溶液:塩酸
エッチング時間:10秒〜30秒
エッチング温度:10〜60゜C
【0120】
マトリックス20のエッチングによって一部あるいは全てのカーボン・ナノチューブ21の表面状態が変化し(例えば、その表面に酸素原子や酸素分子、フッ素原子が吸着し)、電界放出に関して不活性となっている場合がある。それ故、その後、電子放出部115に対して水素ガス雰囲気中でのプラズマ処理を行うことが好ましく、これによって、電子放出部115が活性化し、電子放出部115からの電子の放出効率の一層の向上させることができる。プラズマ処理の条件を、以下の表5に例示する。
【0121】
[表5]
使用ガス :H=100sccm
電源パワー :1000W
支持体印加電力:50V
反応圧力 :0.1Pa
支持体温度 :300゜C
【0122】
その後、カーボン・ナノチューブ21からガスを放出させるために、加熱処理や各種のプラズマ処理を施してもよいし、カーボン・ナノチューブ21の表面に意図的に吸着物を吸着させるために吸着させたい物質を含むガスにカーボン・ナノチューブ21を晒してもよい。また、カーボン・ナノチューブ21を精製するために、酸素プラズマ処理やフッ素プラズマ処理を行ってもよい。
【0123】
[工程−170]
その後、絶縁層12に設けられた第2の開口部14Bの側壁面を等方的なエッチングによって後退させることが、ゲート電極13の開口端部を露出させるといった観点から、好ましい。尚、等方的なエッチングは、ケミカルドライエッチングのようにラジカルを主エッチング種として利用するドライエッチング、あるいはエッチング液を利用するウェットエッチングにより行うことができる。エッチング液としては、例えば49%フッ酸水溶液と純水の1:100(容積比)混合液を用いることができる。次いで、マスク層22を除去する。こうして、図6の(B)に示す電界放出素子を完成することができる。
【0124】
尚、[工程−150]の後、[工程−170]、[工程−160]の順に実行してもよい。
【0125】
[扁平型電界放出素子(その2)]
扁平型電界放出素子の模式的な一部断面図を、図7の(A)に示す。この扁平型電界放出素子は、例えばガラスから成る支持体10上に形成されたカソード電極11、支持体10及びカソード電極11上に形成された絶縁層12、絶縁層12上に形成されたゲート電極13、ゲート電極13及び絶縁層12を貫通する開口部14(ゲート電極13に設けられた第1開口部、及び、絶縁層12に設けられ、第1開口部14Aと連通した第2開口部)、並びに、開口部14の底部に位置するカソード電極11の部分の上に設けられた扁平の電子放出部(電子放出層115A)から成る。ここで、電子放出層115Aは、図面の紙面垂直方向に延びたストライプ状のカソード電極11上に形成されている。また、ゲート電極13は、図面の紙面左右方向に延びている。カソード電極11及びゲート電極13はクロムから成る。電子放出層115Aは、具体的には、グラファイト粉末から成る薄層から構成されている。グラファイト粉末のそれぞれから電子が放出され、グラファイト粉末が電子放出点に相当する。図7の(A)に示した扁平型電界放出素子においては、カソード電極11の表面の全域に亙って、電子放出層115Aが形成されているが、このような構造に限定するものではなく、要は、少なくとも開口部14の底部に電子放出層115Aが設けられていればよい。
【0126】
[平面型電界放出素子]
平面型電界放出素子の模式的な一部断面図を、図7の(B)に示す。この平面型電界放出素子は、例えばガラスから成る支持体10上に形成されたストライプ状のカソード電極11、支持体10及びカソード電極11上に形成された絶縁層12、絶縁層12上に形成されたストライプ状のゲート電極13、並びに、ゲート電極13及び絶縁層12を貫通する第1開口部及び第2開口部(開口部14)から成る。開口部14の底部にはカソード電極11が露出している。カソード電極11は、図面の紙面垂直方向に延び、ゲート電極13は、図面の紙面左右方向に延びている。カソード電極11及びゲート電極13はクロム(Cr)から成り、絶縁層12はSiOから成る。ここで、開口部14の底部に露出したカソード電極11の部分が電子放出部115Bに相当し、開口部14の底部に露出したカソード電極11の部分の多数の点が電子放出点に相当する。
【0127】
以上、本発明を、発明の実施の形態に基づき説明したが、本発明はこれらに限定されるものではない。発明の実施の形態にて説明したアノードパネルやカソードパネル、表示装置や電界放出素子の構成、構造、ゲート電極制御回路やカソード電極制御回路の構成は例示であり、適宜変更することができるし、アノードパネルやカソードパネル、表示装置や電界放出素子の製造方法も例示であり、適宜変更することができる。更には、アノードパネルやカソードパネルの製造において使用した各種材料も例示であり、適宜変更することができる。表示装置においては、専らカラー表示を例にとり説明したが、単色表示とすることもできる。
【0128】
実施の形態においては、1水平走査/表示期間における離散比較パルスのパルス数をPとしたとき、カラムデータがp個の離散比較パルス数に相当する場合、1番目の離散比較パルスからp番目の離散比較パルスまでは、ゲート電極13あるいはカソード電極11に電圧は印加されず、(p+1)番目の離散比較パルスからP番目の離散比較パルスまでは、ゲート電極13あるいはカソード電極11に電圧Vあるいは電圧V’が印加される構成としたが、カラムドライバ回路の構成を変更して、1番目の離散比較パルスからp番目の離散比較パルスまで、ゲート電極13あるいはカソード電極11に電圧Vあるいは電圧V’が印加され、(p+1)番目の離散比較パルスからP番目の離散比較パルスまでは、ゲート電極13あるいはカソード電極11に電圧は印加されない構成とすることもできる。
【0129】
また、実施の形態においては、電圧V,V’の値を一定とし、電圧V,V’の印加時間を変えたが、その代わりに、電圧V,V’の印加時間を変え、且つ、電圧V,V’の値を変える構成とすることもできる。このような構成にすることで、一層の多階調表示(例えば、512階調、1024階調)を行うことができる。具体的には、電圧V,V’の値を可変とする回路を電圧V,V’を出力する電源に組み込めばよい。
【0130】
また、図2のブロック図に示したカラムドライバ回路において、NAND回路に代わりにAND回路を配置し、このAND回路の出力を出力端子Out,Out・・・,Out31,Out32から出力する構成とすれば、出力端子Out,Out・・・,Out31,Out32から離散比較パルスに相当するパルス出力が出現する結果、電源とゲート電極13との間、あるいは又、電源とカソード電極11との間に設けられたスイッチ回路がパルス状にオン状態となり、電源からゲート電極13あるいはカソード電極11にパルス状の電圧V(パルス電圧VP_G)、あるいはパルス状のV’(パルス電圧VP_C)が印加される。
【0131】
即ち、実施の形態1の変形例にあっては、N本のゲート電極のそれぞれに印加する電圧Vは離散パルス電圧VP_Gであり、第m番目のカソード電極に電圧Vを印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、N本のゲート電極のそれぞれに印加するパルス電圧VP_Gのパルス数を変化させることで、N本のゲート電極のそれぞれに印加する電圧Vの印加時間を変化させる。
【0132】
また、実施の形態2の変形例にあっては、N本のカソード電極のそれぞれに印加する電圧V’は離散パルス電圧V’P_Cであり、第m番目のゲート電極に電圧V’を印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、N本のカソード電極のそれぞれに印加するパルス電圧V’P_Cのパルス数を変化させることで、本のカソード電極のそれぞれに印加する電圧V’の印加時間を変化させる。
【0133】
尚、このように、1水平走査/表示期間における離散比較パルスのパルス数をPとしたとき、カラムデータがp個の離散比較パルス数に相当する場合、1番目の離散比較パルスからp番目の離散比較パルスまでは、ゲート電極13あるいはカソード電極11にパルス電圧VP_Gあるいはパルス電圧V’P_Cは印加されず、(p+1)番目の離散比較パルスからP番目の離散比較パルスまでは、ゲート電極13あるいはカソード電極11にパルス電圧VP_Gあるいはパルス電圧V’P_Cが印加される構成としてもよいし、カラムドライバ回路の構成を変更して、1番目の離散比較パルスからp番目の離散比較パルスまで、ゲート電極13あるいはカソード電極11にパルス電圧VP_Gあるいはパルス電圧V’P_Cが印加され、(p+1)番目の離散比較パルスからP番目の離散比較パルスまでは、ゲート電極13あるいはカソード電極11に電圧は印加されない構成とすることもできる。
【0134】
アノード電極は、有効領域を1枚のシート状の導電材料で被覆した形式のアノード電極としてもよいし、1又は複数の画素に対応するアノード電極ユニットが集合した形式のアノード電極としてもよい。アノード電極が前者の構成の場合、かかるアノード電極をアノード電極制御回路に接続すればよいし、アノード電極が後者の構成の場合、例えば、各アノード電極ユニットをアノード電極制御回路に接続すればよい。
【0135】
また、電界放出素子においては、専ら1つの開口部に1つの電子放出部が対応する形態を説明したが、電界放出素子の構造に依っては、1つの開口部に複数の電子放出部が対応した形態、あるいは、複数の開口部に1つの電子放出部が対応する形態とすることもできる。あるいは又、ゲート電極に複数の第1開口部を設け、絶縁層にかかる複数の第1開口部に連通した1つの第2開口部を設け、1又は複数の電子放出部を設ける形態とすることもできる。
【0136】
電界放出素子において、ゲート電極13及び絶縁層12の上に更に第2の絶縁層52を設け、第2の絶縁層52上に収束電極53を設けてもよい。このような構造を有する電界放出素子の模式的な一部端面図を図8に示す。第2の絶縁層52には、第1開口部14Aに連通した第3開口部54が設けられている。収束電極53の形成は、例えば、[工程−150]において、絶縁層12上にストライプ状のゲート電極13を形成した後、第2の絶縁層52を形成し、次いで、第2の絶縁層52上にパターニングされた収束電極53を形成した後、収束電極53、第2の絶縁層52に第3開口部54を設け、更に、ゲート電極13に第1開口部14Aを設ければよい。尚、収束電極のパターニングに依存して、1又は複数の電子放出部、あるいは、1又は複数の画素に対応する収束電極ユニットが集合した形式の収束電極とすることもでき、あるいは又、有効領域を1枚のシート状の導電材料で被覆した形式の収束電極とすることもできる。尚、図8においては、扁平型電界放出素子を図示したが、その他の電界放出素子とすることもできることは云うまでもない。
【0137】
収束電極は、このような方法にて形成するだけでなく、例えば、厚さ数十μmの42%Ni−Feアロイから成る金属板の両面に、例えばSiOから成る絶縁膜を形成した後、各画素に対応した領域にパンチングやエッチングすることによって開口部を形成することで収束電極を作製することもできる。そして、カソードパネル、金属板、アノードパネルを積み重ね、両パネルの外周部に枠体を配置し、加熱処理を施すことによって、金属板の一方の面に形成された絶縁膜と絶縁層12とを接着させ、金属板の他方の面に形成された絶縁膜とアノードパネルとを接着し、これらの部材を一体化させ、その後、真空封入することで、表示装置を完成させることもできる。
【0138】
ゲート電極を、有効領域を1枚のシート状の導電材料(開口部を有する)で被覆した形式のゲート電極とすることもできる。この場合には、かかるゲート電極に正の電圧V’を印加する。そして、各画素を構成するカソード電極とカソード電極制御回路との間に、例えば、TFTから成るスイッチング素子を設け、かかるスイッチング素子の作動によって、各画素を構成する電子放出領域への印加状態(V’)を制御し、画素の発光状態を制御する。
【0139】
あるいは又、カソード電極を、有効領域を1枚のシート状の導電材料で被覆した形式のカソード電極とすることもできる。この場合には、かかるカソード電極に電圧Vを印加する。そして、各画素を構成するゲート電極とゲート電極制御回路との間に、例えば、TFTから成るスイッチング素子を設け、かかるスイッチング素子の作動によって、各画素を構成するゲート電極への印加状態(V)を制御し、画素の発光状態を制御する。
【0140】
【発明の効果】
本発明の冷陰極電界電子放出表示装置の駆動方法にあっては、ゲート電極あるいはカソード電極に印加する電圧の印加時間を変化させているので、電子放出領域におけるエミッション・サイトの密度(ESD)を100%、あるいは100%に近づけることができるので、低輝度の画素(画像)表示を行う場合であっても、輝度ムラの無い、均一な低輝度発光状態を達成することができる。即ち、低輝度/中輝度/高輝度いずれの場合にも著しい輝点数の変動が無く、ユニフォーミティの良い画面を再現することができる。
【図面の簡単な説明】
【図1】図1は、発明の実施の形態1の冷陰極電界電子放出表示装置の駆動方法を説明するためのタイミング図の一例である。
【図2】図2は、発明の実施の形態1の冷陰極電界電子放出表示装置の駆動方法を実行するためのカラムドライバ回路の一例のブロック図である。
【図3】図3は、冷陰極電界電子放出表示装置の模式的な一部端面図である。
【図4】図4は、カソードパネルCPとアノードパネルAPを分解したときの模式的な部分的斜視図である。
【図5】図5の(A)及び(B)は、扁平型冷陰極電界電子放出素子(その1)の製造方法を説明するための支持体等の模式的な一部断面図である。
【図6】図6の(A)及び(B)は、図5の(B)に引き続き、扁平型冷陰極電界電子放出素子(その1)の製造方法を説明するための支持体等の模式的な一部断面図である。
【図7】図7の(A)及び(B)は、それぞれ、扁平型冷陰極電界電子放出素子(その2)の模式的な一部断面図、及び、平面型冷陰極電界電子放出素子の模式的な一部断面図である。
【図8】図8は、収束電極を有する扁平型冷陰極電界電子放出素子の模式的な一部端面図である。
【図9】図9は、エミッション・サイトの密度(ESD)と放出電子電流密度(単位:μA/cm)の関係の一例を示すグラフである。
【符号の説明】
CP・・・カソードパネル、AP・・・アノードパネル、10・・・支持体、11・・・カソード電極、12・・・絶縁層、13・・・ゲート電極、14,114,214・・・開口部、14A・・・第1開口部、14B・・・第2開口部、15,15A,15B,15C・・・電子放出領域、115,115A,115B・・・電子放出部、20・・・マトリックス、21・・・カーボン・ナノチューブ、30・・・基板、31,31R,31G,31B・・・蛍光体層、32・・・ブラックマトリックス、33・・・アノード電極、40・・・カソード電極制御回路、41・・・ゲート電極制御回路、42・・・アノード電極制御回路、52・・・第2の絶縁層、53・・・収束電極、54・・・第3開口部

Claims (10)

  1. (A)支持体、
    (B)支持体上に形成され、第1の方向に延びる帯状のM本のカソード電極、
    (C)支持体及びカソード電極上に形成された絶縁層、
    (D)絶縁層上に形成され、第1の方向とは異なる第2の方向に延びる帯状のN本のゲート電極、
    (E)カソード電極とゲート電極の重複する重複領域に位置するゲート電極及び絶縁層の部分に形成された少なくとも1つの開口部、並びに、
    (F)各重複領域に設けられた開口部の底部に位置し、多数の電子放出点から電子を放出する電子放出領域、
    から成るカソードパネルと、
    (G)蛍光体層、並びに、アノード電極、
    が設けられたアノードパネルとが、それらの周縁部で接合されて成る冷陰極電界電子放出表示装置の駆動方法であって、
    アノード電極に電圧Vを印加した状態で、第m番目のカソード電極に電圧Vを印加し、且つ、N本のゲート電極に同時に電圧Vを印加することで、該第m番目のカソード電極とN本のゲート電極とによって構成されるN個の電子放出領域からの電子の放出/非放出を同時に制御し、以て、各重複領域に対向した蛍光体層の領域における発光状態を制御する工程を、m=1からm=Mまで繰り返し、
    所望の輝度を得るために、該N本のゲート電極のそれぞれに印加する電圧Vの値を一定とし、且つ、電圧Vの印加時間を変化させることを特徴とする冷陰極電界電子放出表示装置の駆動方法。
  2. 第m番目のカソード電極に電圧Vを印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、前記N本のゲート電極のそれぞれに継続的に印加する電圧Vの印加時間を変化させることを特徴とする請求項1に記載の冷陰極電界電子放出表示装置の駆動方法。
  3. 前記N本のゲート電極のそれぞれに印加する電圧Vは離散パルス電圧VP_Gであり、
    第m番目のカソード電極に電圧Vを印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、前記N本のゲート電極のそれぞれに印加するパルス電圧VP_Gのパルス数を変化させることで、該N本のゲート電極のそれぞれに印加する電圧Vの印加時間を変化させることを特徴とする請求項1に記載の冷陰極電界電子放出表示装置の駆動方法。
  4. N本のゲート電極のそれぞれに印加する電圧Vの値を一定とする代わりに、所望の輝度を得るために、前記N本のゲート電極のそれぞれに印加する電圧Vの印加時間を変化させると同時に、電圧Vの値を変化させることを特徴とする請求項1乃至請求項3のいずれか1項に記載の冷陰極電界電子放出表示装置の駆動方法。
  5. 電子放出領域はカーボン・ナノチューブ構造体から構成されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の冷陰極電界電子放出表示装置。
  6. (A)支持体、
    (B)支持体上に形成され、第1の方向に延びる帯状のN本のカソード電極、
    (C)支持体及びカソード電極上に形成された絶縁層、
    (D)絶縁層上に形成され、第1の方向とは異なる第2の方向に延びる帯状のM本のゲート電極、
    (E)カソード電極とゲート電極の重複する重複領域に位置するゲート電極及び絶縁層の部分に形成された少なくとも1つの開口部、並びに、
    (F)各重複領域に設けられた開口部の底部に位置し、多数の電子放出点から電子を放出する電子放出領域、
    から成るカソードパネルと、
    (G)蛍光体層、並びに、アノード電極、
    が設けられたアノードパネルとが、それらの周縁部で接合されて成る冷陰極電界電子放出表示装置の駆動方法であって、
    アノード電極に電圧Vを印加した状態で、第m番目のゲート電極に電圧V’を印加し、且つ、N本のカソード電極に同時に電圧V’を印加することで、該第m番目のゲート電極とN本のカソード電極とによって構成されるN個の電子放出領域からの電子の放出/非放出を同時に制御し、以て、各重複領域に対向した蛍光体層の領域における発光状態を制御する工程を、m=1からm=Mまで繰り返し、
    所望の輝度を得るために、該N本のカソード電極のそれぞれに印加する電圧V’の値を一定とし、且つ、電圧V’の印加時間を変化させることを特徴とする冷陰極電界電子放出表示装置の駆動方法。
  7. 第m番目のゲート電極に電圧V’を印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、前記N本のカソード電極のそれぞれに継続的に印加する電圧V’の印加時間を変化させることを特徴とする請求項6に記載の冷陰極電界電子放出表示装置の駆動方法。
  8. 前記N本のカソード電極のそれぞれに印加する電圧V’は離散パルス電圧V’P_Cであり、
    第m番目のゲート電極に電圧V’を印加する時間TをP等分して得られる離散比較パルスのパルス数に基づき、前記N本のカソード電極のそれぞれに印加するパルス電圧V’P_Cのパルス数を変化させることで、該N本のカソード電極のそれぞれに印加する電圧V’の印加時間を変化させることを特徴とする請求項6に記載の冷陰極電界電子放出表示装置の駆動方法。
  9. N本のカソード電極のそれぞれに印加する電圧V’の値を一定とする代わりに、所望の輝度を得るために、前記N本のカソード電極のそれぞれに印加する電圧V’の印加時間を変化させると同時に、電圧V’の値を変化させることを特徴とする請求項6乃至請求項8のいずれか1項に記載の冷陰極電界電子放出表示装置の駆動方法。
  10. 電子放出領域はカーボン・ナノチューブ構造体から構成されていることを特徴とする請求項6乃至請求項9のいずれか1項に記載の冷陰極電界電子放出表示装置。
JP2003021812A 2003-01-30 2003-01-30 冷陰極電界電子放出表示装置の駆動方法 Abandoned JP2004233637A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021812A JP2004233637A (ja) 2003-01-30 2003-01-30 冷陰極電界電子放出表示装置の駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021812A JP2004233637A (ja) 2003-01-30 2003-01-30 冷陰極電界電子放出表示装置の駆動方法

Publications (1)

Publication Number Publication Date
JP2004233637A true JP2004233637A (ja) 2004-08-19

Family

ID=32951046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021812A Abandoned JP2004233637A (ja) 2003-01-30 2003-01-30 冷陰極電界電子放出表示装置の駆動方法

Country Status (1)

Country Link
JP (1) JP2004233637A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042712A (ja) * 2007-08-08 2009-02-26 Samsung Sdi Co Ltd 電子放出素子及びこれを利用した液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042712A (ja) * 2007-08-08 2009-02-26 Samsung Sdi Co Ltd 電子放出素子及びこれを利用した液晶表示装置

Similar Documents

Publication Publication Date Title
JP3937907B2 (ja) 冷陰極電界電子放出表示装置
JP2004047408A (ja) 冷陰極電界電子放出表示装置
JP2004158350A (ja) 平面型表示装置及びその製造方法
JP2004273376A (ja) 冷陰極電界電子放出表示装置
JP4023419B2 (ja) 固定画素表示装置及び冷陰極電界電子放出表示装置
JP2009020184A (ja) 平面型表示装置の駆動方法
JP2004233637A (ja) 冷陰極電界電子放出表示装置の駆動方法
JP2004158232A (ja) 冷陰極電界電子放出表示装置
JP2002197965A (ja) 電子放出装置、冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置及びその製造方法
JP2005116469A (ja) 冷陰極電界電子放出素子の製造方法
JP4802583B2 (ja) スペーサの製造方法
JP2003249184A (ja) 電子源用ペースト、電子源およびこの電子源を用いた自発光パネル型表示装置
JP2004241292A (ja) 冷陰極電界電子放出表示装置
JP2004111292A (ja) 表示装置及びその製造方法
JP4543604B2 (ja) 電子放出領域の製造方法
JP4305144B2 (ja) 冷陰極電界電子放出表示装置の組立方法
JP4273848B2 (ja) 平面型表示装置及びその組立方法
JP4678156B2 (ja) カソードパネルのコンディショニング方法、冷陰極電界電子放出表示装置のコンディショニング方法、及び、冷陰極電界電子放出表示装置の製造方法
JP2004200109A (ja) 冷陰極電界電子放出表示装置
JP2005004971A (ja) 平面型表示装置及びその組立方法
JP4622145B2 (ja) 電子放出装置の製造方法、冷陰極電界電子放出素子の製造方法、及び、冷陰極電界電子放出表示装置の製造方法
JP4466496B2 (ja) スペーサ、並びに、平面型表示装置
JP5345324B2 (ja) 冷陰極電界電子放出表示装置
JP2005141926A (ja) 冷陰極電界電子放出表示装置
JP2003086085A (ja) 冷陰極電界電子放出素子の製造方法、及び、冷陰極電界電子放出表示装置の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20051116