JP2004228598A - マルチチップ半導体装置 - Google Patents

マルチチップ半導体装置 Download PDF

Info

Publication number
JP2004228598A
JP2004228598A JP2004119405A JP2004119405A JP2004228598A JP 2004228598 A JP2004228598 A JP 2004228598A JP 2004119405 A JP2004119405 A JP 2004119405A JP 2004119405 A JP2004119405 A JP 2004119405A JP 2004228598 A JP2004228598 A JP 2004228598A
Authority
JP
Japan
Prior art keywords
chip
semiconductor device
substrate
connection
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004119405A
Other languages
English (en)
Inventor
Keiichi Sasaki
圭一 佐々木
Mie Matsuo
美恵 松尾
Nobuo Hayasaka
伸夫 早坂
Katsuya Okumura
勝弥 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004119405A priority Critical patent/JP2004228598A/ja
Publication of JP2004228598A publication Critical patent/JP2004228598A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】 装置の平面面積が小さく、かつ放熱性に優れたマルチチップ半導体装置を提供すること。
【解決手段】 素子が集積形成されたシリコン基板2を有するチップ11 ,12 ,13 を積層してなるマルチチップ半導体装置において、隣り合う上下の2つのチップ11 ,12 の間に、貫通孔内に導電性プラグ4が形成された接続基板311 を設け、チップ11 ,12 を導電性プラグ4を介して互いに電気的に接続し、かつチップ11 ,12 の放熱性を改善するために、接続基板311 内にそれよりも熱伝導率の高い金属プレート32を設ける。チップ12 ,13 についても同様の手法により、チップ12 ,13 を接続し、かつチップ12 ,13 の放熱性を改善する。
【選択図】 図8

Description

本発明は、複数のチップを用いた半導体装置であるマルチチップ半導体装置に関する。
近年、コンピュータや通信機器の重要部分には、多数のトランジスタや抵抗等を電気回路を達成するようにむすびつけ、半導体基板上に集積化して形成した大規模集積回路(チップ)が多用されている。このため、機器全体の性能は、チップ単体の性能と大きく結び付いている。一方、複数のチップを用いて、機器全体の性能を図った、いわゆるマルチチップ半導体装置も提案されている。図19〜図24に、従来のマルチチップ半導体装置の断面図を示す。
図19は、例えば、積層の配線基板81上に複数のチップ82を平面配置するタイプのマルチチップ半導体装置を示している。なお、図中、83は半田バンプを示している。
図20は、表面を向かい合わせ(Face to Face)にしてチップ同士を接続するタイプのマルチチップ半導体装置を示している。
図21は、複数のチップ82を積層板84を用いて積層配置するタイプのマルチチップ半導体装置を示している。
図22は、実装方法としてワイヤーボンディングを用いたマルチチップ半導体装置を示しており、Siチップ91のパッド(不図示)はボンディングワイヤー92によって積層板93のリードフレーム94と接続している。
図23は、実装方法としてTAB(Tape Automated Bonding)を用いたマルチチップ半導体装置を示しており、Siチップ91のパッドはハンダバンプ95、TABリード96を介して積層板93のパッド(不図示)に接続している。なお、図22、図23において、97はソケット、98はコネクタピンを示している。
図24は、実装方法としてフリップチップを用いたマルチチップ半導体装置を示しており、Siチップ91の全面に格子状に配置されたパッド100は、ハンダバンプ102を介して、積層板99の全面に同様に格子状に配置されたパッド101と接続している。
図24において、103はフィラー入りのエポキシ樹脂系の接着剤を示しており、この接着剤103はSiチップ91と積層板99との間に充填され、これら91,93を密着固定する。また、104,105,107はパッド、106,108はハンダバンプを示している。
しかしながら、これらの従来のマルチチップ半導体装置にあっては、以下のような問題がある。
すなわち、図19の従来のマルチチップ半導体装置は、複数のチップ82を平面配置するため、装置の平面面積が大きいという問題がある。
図20の従来のマルチチップ半導体装置は、複数のチップ82を積層するため、装置の平面面積が大きくなるという問題はないが、積層枚数が2枚に限定されるという問題がある。また、装置の検査が困難であるという問題もある。
図21の従来のマルチチップ半導体装置は、複数のチップ82を積層できるので、装置の平面面積が大きくなる問題や、積層枚数が2枚に限定されるという問題はないが、特定のチップ82上のバンプ83を選択的に溶融させることができず、チップ82のリペアが困難であるという問題がある。また、チップの動作時にチップは発熱するが、その熱を効果的に外部に逃がすことができないために、チップの動作特性が劣化したり、チップの寿命が短くなるという問題がある。
図22の従来のマルチチップ半導体装置は、高集積化したSiチップ91のピッチの狭いパッドを、ボンディングワイヤー92によって、積層板93のリードフレーム94と接続するためには、積層板93上に配線を形成すること、チップ・積層板間を高い精度で位置合わせする必要があり、接続が困難になってきている。
また、図22および図23の従来のマルチチップ半導体装置は、ソケット97およびコネクタピン98を用いて積層板93同士を接続するため、ある程度の高さが必要となり、積層する際の接続ギャップが大きく、縦方向の集積化が困難であるという問題がある。
この種の問題は、図24の従来のマルチチップ半導体装置を用いることによって解決できるが、図24のマルチチップ半導体装置には以下のような問題がある。
ハンダバンプ102の形状は鼓形であるため、Siチップ91の高集積化がさらに進んで、パッド100,101のサイズやピッチ間隔がさらに縮小した場合には、Siチップ91と積層板99との間の距離(接続距離)を短くしてハンダバンプ102の径を小さくしないと、隣同士のハンダバンプ102がショートするという接続不良が生じる。
しかしながら、Siチップ91はSi基板を用いて形成されているのに対し、積層板99はガラスエポキシ等からなるプラスチック基板を用いて形成されているために、Siチップ91と積層板99とは互いに熱膨張率が異なり、その結果として接続距離を短くすると、ハンダバンプ102に熱歪みが生じ、熱サイクルの繰り返しによって疲労破壊が生じる。接続距離が短いほど熱歪みは大きく、疲労寿命は短くなる。したがって、接続距離が短いほどSiチップ91と積層板99との間の接続の信頼性は低下する。
Siチップ91と積層板99との間に充填された接着剤103にはこのような熱歪みを小さくする役割があり、そのために両者の熱膨張率を近づけることができるSiO2 がフィラーとして混入されている。
フィラーの大きさは10〜30μm程度であるが、接続距離が短くなると、接着剤103が充填されない部分が生じるため、Siチップ91と積層板99との間の接続の信頼性を確保できず、その結果として上下のSiチップ91間の接続の信頼性も確保できなくなるという問題が起こる。
本発明は、上記事情を考慮してなされたもので、その目的とするところは、装置の平面面積が小さく、かつリペアを容易に行なえるマルチチップ半導体装置を提供することにある。
上記課題を解決するために本発明は、次のような構成を採用している。
即ち、本発明の一態様に係わるマルチチップ半導体装置は、素子が集積形成された半導体基板を有するチップを複数積層してなるマルチチップ半導体装置において、隣り合う上下の2つのチップの間にが、貫通孔内に導電性プラグが形成された接続基板が設けられ、かつ前記2つのチップがそれぞれバンプを介して前記導電性プラグに電気的に接続し、かつ前記接続基板は発熱部を有することを特徴とする。
本発明によれば、複数のチップを積層しているので、複数のチップを平面配置する従来のマルチチップ半導体装置とは異なり、装置の平面面積を小さくすることができる。しかも、接続基板の発熱部により、不良なチップに接続したバンプを溶融することで、接続基板から不良なチップを分離することができるので、チップのリペアを容易に行なえるようになる。
以下、図面を参照しながら本発明の実施の形態(以下、実施形態という)を説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係るマルチチップ半導体装置の断面図である。
このマルチチップ半導体装置は、2つのチップ11 ,12 がセラミック製の積層配線基板9を介して接続された構成となっている。チップ11 ,12 は、大きく分けて、素子が集積形成されたシリコン基板2と、素子を所定の関係に接続するための多層配線層3とから構成されている。
チップ11 の多層配線層3に設けられたパッド6は、半田バンプ8を介して、積層配線基板9に設けられたパッド6に電気的に接続している。このパッド6に電気的に接続している積層配線基板9に設けられた他のパッド6は、チップ12 の多層配線層3に設けられたパッド6に電気的に接続している。このようにして、上下の2つのチップ1 ,チップ12 は、これらの間に設けられた積層配線基板9を介して互いに電気的に接続されることになる。
また、チップ12 には、シリコン基板2を貫通する導電性の貫通プラグ4(導電性プラグ)が設けられている。この貫通プラグ4は、チップ12 に設けられたパッド6、その上のバンプ8を介して、積層配線基板9に設けられたパッド6に電気的に接続している。
貫通プラグ4は素子形成領域の外側に形成され、貫通プラグ4とシリコン基板2(貫通孔)との間には、絶縁膜5が設けられている。この絶縁膜5と貫通プラグ4とで接続プラグが構成されている。
また、チップ12 の多層配線層3とは反対側のシリコン基板2のシリコン領域、つまり貫通プラグ4以外の領域は絶縁膜7で被覆されている。このような貫通プラグ4には、放熱を促進する効果がある。
放熱を促進する他の手段としては、積層配線基板9をチップ11 ,12 よりも熱伝導率の高い材料で形成することがあげられる。具体的には、Siチップの場合であれば、SiCやSiNなどの絶縁材料があげられる。また、第2の実施形態で説明するように金属プレートを内部に埋め込んでも良い。
本実施形態によれば、チップ11 上に積層配線基板9を介してチップ12 を積層しているので、複数のチップを平面位置する従来のマルチチップ半導体装置とは異なり、装置の平面面積を小さくすることができる。
また、本実施形態によれば、積層配線基板9を介してチップ11 に電気的に接続した貫通プラグ4を有するチップ12 を使用しているため、貫通プラグ4に検査プローブをあてることにより、装置の検査を行なえる。ここで、貫通プラグ4は半導体基板2の裏面に露出しているため、貫通プラグ4に検査プローブを容易にあてることができる。したがって、本実施形態によれば、装置の検査を容易に行なえるようにある。
また、ここでは、チップが2個の場合について説明したが、本実施形態では、積層配線基板9によりチップ同士を接続しているので、Face to Face によりチップ同士を接続する従来のマルチチップ半導体装置とは異なり、チップの積層枚数が2枚に限定されるという問題はない。
したがって、本実施形態によれば、装置の平面面積が小さく、かつ装置の検査を容易に行なえ、かつ積層枚数が2枚に限定されないマルチチップ半導体装置を実現できるようになる。
なお、本実施形態では、貫通プラグ4をチップ12 に設けたが、チップ11 に設けても良いし、あるいはチップ11 ,12 の両方に設けても良い。
(第2の実施形態)
図2、図3は、図1のマルチチップ半導体装置の貫通プラグ4の形成方法を示す工程断面図である。なお、以下の図において、前出した図と同一符号は同一部分または相当部分を示し、詳細な説明は省略する。
まず、図2(a)に示すように、シリコン基板2を用意する。このシリコン基板2は、素子分離前、素子分離後、素子形成途中および素子形成後のいずれの段階のものでも良い。
図中、丸印で囲んだ領域に、素子形成前、STI素子分離後、MOSトランジスタ上に保護膜(BPSG)を形成した後(素子形成後)の基板を示す。素子形成後としては、他に配線を形成した後があげられる。
また、素子形成途中としては、例えば、イオン注入により必要なウェルを基板表面に形成した後の次の工程や、ゲート電極を形成した後の次の工程があげられる。
次に図2(b)に示すように、SiO2 からなる厚さ1μmのマスクパターン11をシリコン基板2上に形成した後、エッチングガスがF系ガスのRIEを用いて、マスクパターン11をマスクとしてシリコン基板2を選択的にエッチングし、シリコン基板2の表面に深さ100μmの溝12を形成する。この溝12は最終的には貫通孔となる。
なお、ここでは、構成材料がSiO2 のマスクパターン11を用いたが、その代わりに、構成材料がAlやAl2 3 等のSiに対して高選択比を有する材料のマスクパターン11を用いても良い。
また、溝12(貫通孔)を形成する加工技術はRIEに限定されるものではなく、光エッチング、ウエットエッチング、超音波加工、放電加工を用いることもできる。さらに、上記加工技術を適宜組み合わせても良い。なお、RIEまたは光エッチングと、ウエットエッチングとを組み合わせた方法については後で説明する。
次に図2(c)に示すように、マスクパターン11を除去した後、全面に厚さ100nmのSiO2 膜、厚さ100nmのSi3 4 膜をLPCVD法を用いて順次堆積して、SiO2 膜、Si3 4 膜からなる積層構造の絶縁膜5を形成する。なお、積層構造の絶縁膜5の代わりに、単層の絶縁膜を用いても良い。
次に図2(d)に示すように、貫通プラグとなる、B等の不純物がドープされた低抵抗の多結晶シリコン膜4を、溝12から溢れる厚さに全面に形成して、溝12内を多結晶シリコン膜4で埋め込む。
多結晶シリコン膜4の形成方法としては、例えば、CVD法、スパッタ法を用いる。また、多結晶シリコン膜4の代わりに、金属膜を用いる場合には、メッキ法を用いることもできる。
なお、ここでは、貫通プラグとなる導電性膜として、不純物がドープされた多結晶シリコン膜4を用いたが、その代わりに、不純物がドープされたアモルファスシリコン膜を用いても良い。さらに、W膜、Mo膜、Ni膜、Ti膜等の金属、またはこれらの金属シリサイド膜を用いても良い。
次に図3(a)に示すように、CMP法やエッチバック法等の方法を用いて、シリコン基板2の表面が露出するまで、多結晶シリコン膜4、絶縁膜5を後退させる。この結果、溝12内に絶縁膜5を介して多結晶シリコン膜(貫通プラグ)4が埋め込まれた構造が形成される。
次に図3(b)に示すように、貫通プラグ4が形成された側のシリコン基板2上に多層配線層3を形成する。この多層配線層3を形成する前に、素子分離、素子形成は行なっておく。次いでこの多層配線層3の表面に溝を形成した後、この溝にパッド6を形成する。
次に図3(c)に示すように、貫通プラグ4が形成された側と反対側のシリコン基板2の表面(以下、裏面という)を、溝12の底部の絶縁膜5が露出するまで、シリコン基板2を後退させる。シリコン基板2の後退(薄化)は、例えば、CMP、化学研磨、機械研磨、ウエットエッチング、プラズマエッチングまたはガスエッチングの加工技術を用いた方法、またはこれら加工技術を組み合わせた方法により行なう。
次に図3(d)に示すように、溝12の底部の絶縁膜5より上の、溝12の側壁の絶縁膜5が露出するまで、シリコン基板2の裏面を選択的にエッチングする。このエッチングには、例えば、CDE、RIEまたはウエットエッチングを用いる。
次に同図(d)に示すように、プラズマCVD法を用いて、シリコン基板2の裏面にSiO2 からなる絶縁膜7(第2の絶縁膜)を堆積する。
なお、低温プロセスが要求される場合には、SiO2 からなる絶縁膜7の代わりに、SOG膜等の塗布膜を用いると良い。また、シリコン基板2が受ける応力を小さくしたい場合には、SiO2 の代わりに、ポリイミド等の有機材料からなる絶縁膜を用いると良い。
次に図3(e)に示すように、シリコン基板2の裏面が露出するまで、CMP法を用いて貫通プラグ4、絶縁膜5,7を研磨する。
この結果、貫通孔(溝12)に貫通プラグ(多結晶シリコン膜4)が埋め込まれ、かつシリコン基板2の裏面のシリコン領域が絶縁膜7で被覆された構造が形成される。
以上述べたように、本実施形態では、シリコン基板2の表面に該シリコン基板2を貫通しない溝12を形成した後、裏面からシリコン基板2等を研磨することにより、貫通孔(溝12)が貫通プラグ(多結晶シリコン膜4)で埋め込まれた構造を形成している。
したがって、本実施形態によれば、もとのシリコン基板2が厚くても(通常は厚い)、深い貫通孔を形成する必要がないので、貫通孔(溝12)が接続プラグ(多結晶シリコン膜4、絶縁膜5)で埋め込まれた構造を容易に形成できるようになる。
なお、裏面のシリコン領域を絶縁膜7で覆う必要がない場合には、図3(c)の工程で、多結晶シリコン膜4が露出するまで、シリコン基板2および絶縁膜5を研磨することで、貫通孔(溝12)が接続プラグ(多結晶シリコン膜4、絶縁膜5)で埋め込まれた構造が完成する。
また、シリコン基板2の研磨(後退)は、シリコン基板2をウェハから切り出した後に行なうことが好ましい。何故なら、ウェハは一般に大きく、機械的強度が弱いので、均一に研磨(後退)を行なうのが困難であるからである。
図4に、種々の構造の接続プラグの断面図を示す。これは図3(b)の工程に相当する断面図である。なお、図において、多層配線層3、パッド6、絶縁膜7は省略してある。
図4(a)は、低ストレス膜13を有する接続プラグを示している。
すなわち、この接続プラグの外側は導電性膜4aで構成され、内側は半導体基板2aとの熱膨脹係数の差が、導電性膜4aよりも小さい低ストレス膜13で構成されている。
低ストレス膜13は、絶縁膜、半導体膜、金属膜のいずれでも良い。このような接続プラグを用いることにより、シリコン基板2が受ける応力を低減できるようになる。
なお、本実施形態のように、貫通プラグ(多結晶シリコン膜4)と半導体基板(シリコン基板2)との構成材料(シリコン)が同じ場合には、このような構造は必ずしも必要ではない。
図4(b)は、キャップ金属膜14を有する接続プラグを示している。すなわち、多結晶シリコン膜4は、貫通孔の途中の深さまでしか形成されておらず、この多結晶シリコン膜4の上面には、貫通孔を充填するようにキャップ金属膜14が形成されている。また、図4(c)は、キャップ金属膜14の代わりに、キャップ絶縁膜15を用いた接続プラグを示している。
図5は、溝12の他の形成方法を示す工程断面図である。これは、RIEまたは光エッチングと、ウエットエッチングとを組み合わせた形成方法である。
まず、図5(a)に示すように、主面が{100}のシリコン基板2上にマスクパターン11を形成した後、このマスクパターン11をマスクにしてシリコン基板2をエッチングして、断面形状が長方形の溝121 を形成する。
ここで、エッチングとしては、RIE、または光エッチング(光化学エッチング、光溶発(光アブレーション)エッチング)を用いる。特に光エッチングは、高速エッチング、低ダメージという利点を有するので、深い溝121 を形成するのに適している。光化学エッチングの場合には、例えば、エッチングガスとしてCl2 ガス、励起光として紫外線を用いる。
次に図5(b)に示すように、マスクパターン11をマスクにしてシリコン基板2をウエットエッチングして、{111}面を露出させる。この結果、断面形状が三角形の溝122 が形成される。エッチング液としては、例えば、温度が60〜90℃のKOH溶液を用いる。
次に同図(b)に示すように、溝122 内に、例えば、Ni、Ti、Zr、Hf、V等の金属ボール16を配置する。具体的には、金属ボール16を溝122 の底の部分に配置する。
次に図5(c)に示すように、熱処理により、金属ボール16とシリコン基板2とを反応させて、溝122 の下部のシリコン基板2に金属シリサイド膜17を形成する。
次に図5(d)に示すように、金属シリサイド膜17を選択的にエッチング除去して、より深い溝123 を形成する。最後に、絶縁膜形成および金属埋め込みを行なった後、基板裏面を研磨することにより、深い貫通孔が得られる。
このように孔を段階的に深くすることにより、深い孔を容易に形成できるようになり、したがって、深い貫通孔を容易に形成できるようになる。
図6に、貫通プラグの他の形成方法を示す。
図6(a)は、全面に貫通プラグとしての導電ペースト18を塗布した後、熱処理により導電ペースト18を流動化させて、溝内に導電ペースト18を埋め込むという方法を示している。この後、溝外の余分な導電ペースト18は、CMP法等を用いて除去する。
図6(b)は、全面に貫通プラグとしての複数の金属微粒子19を堆積して、溝内を微粒子19で埋め込んだ後、溝外の余分な金属微粒子19をCMP法等を用いて除去するという方法を示している。
なお、金属微粒子19の代わりに、金属粒が分散された溶剤(懸濁液)を用いても良い。
図6(c)は、全面にシリコン膜20を堆積し、次にシリコン膜20上にTi膜等の高融点金属膜(不図示)を堆積した後、熱処理により貫通プラグとしての金属シリサイド膜21を形成するという方法を示している。この後、溝外の余分な金属シリサイド膜21をCMP法等を用いて除去する。
シリコン膜は絶縁膜上にコンフォーマルに堆積する。したがって、溝が深くても、シリコン膜20は溝内の絶縁膜5の全体を被覆するので、溝の側面および底面の全面を被覆する金属シリサイド膜21を形成することが可能となる。なお、溝内に空胴部が残った場合には、例えば低ストレス膜で埋めると良い。
図7に、貫通プラグのさらに別の形成方法を示す。
まず、図7(a)に示すように、溝12の側面および底面の全面を被覆するが、溝12の内部を充填しない厚さのシリコン膜22を形成する。この後、同図(a)に示すように、溝12内に直径10μm程度のNi粒23(金属ボール)を配置する。
次に図7(b)に示すように、熱処理により、シリコン膜22とNi粒23とを反応させ、溝12内に貫通プラグとしてのNiシリサイド膜24を形成する。ここで、溝12内には十分な量のシリコン膜22およびNi粒23がないので、Niシリサイド膜24の上部には空胴部が残る。
最後に、図7(c)に示すように、全面にキャップ膜25となる絶縁膜または金属膜を堆積した後、この絶縁膜または金属膜を研磨して、Niシリサイド膜24の上部の空胴部をキャップ膜25で埋める。
なお、貫通プラグを形成する方法はこれまでに述べた方法(CVD法、スパッタ法、メッキ法、導電ペーストを用いた方法、金属微粒子を用いた方法、金属ボールを用いた方法、懸濁液を用いた方法)に限定されるものではなく、これらの方法を適宜組み合わせた方法など種々の方法が可能である。
(第3の実施形態)
図8は、本発明の第3の実施形態に係るマルチチップ半導体装置の断面図である。図9は、図8のマルチチップ半導体装置の接続基板の平面図である。
このマルチチップ半導体装置の特徴は、隣り合う上下の2つのチップを、貫通プラグおよびヒータを有する接続基板を介して、互いに電気的に接続したことにある。
すなわち、チップ11 の多層配線層3に設けられたパッド6は半田バンプ8を介して接続基板311 の貫通プラグ4に接続し、この接続基板311 の貫通プラグ4は半田バンプ8を介してチップ12 の貫通プラグ4に接続している。
このようにして、隣り合う上下の2つのチップ11 ,12 は、その間に設けられた接続基板311 の貫通プラグ4を介して、互いに電気的に接続することになる。同様にして、チップ12 は、接続基板312 の貫通プラグ4を介して、チップ13 と電気的に接続することになる。貫通プラグ4の形成方法は、第2の実施形態のそれに準じる。
また、接続基板311 ,312 は、チップ11 〜13 よりも熱伝導率が十分に高くなるように形成されている。
具体的には、接続基板311 ,312 の構成材料は、シリコン基板2の構成材料であるシリコンよりも熱伝導率の高い材料、例えばSiC、SiN等の絶縁材料により形成されている。なお、図には、接続基板312 の構成材料が絶縁材料である場合のものを示している。このため、貫通プラグ4が埋め込まれた貫通孔の側面には絶縁膜は形成されていない。
さらに、接続基板本体(貫通プラグ4+接続基板311 、貫通プラグ4+接続基板312 )の内部には、それよりも熱伝導率の高い金属プレート32が埋め込まれている。この金属プレート32の構成材料は、例えばW、Cuなどの金属である。なお、金属プレート32は、接続基板311 ,312 の表面に設けても良いし、内部および表面の両方に設けても良い。
また、接続基板311 ,312 の表面および裏面には、それぞれ半田バンプ8の周辺部を囲むように、ヒータ33が埋込み形成されている。ヒータ33は、接続基板311 ,312 に設けられたW等からなる電源ライン34を介して、外部電源に接続されている。
各電源ライン34は独立に制御でき、これにより接続基板311 の表面および裏面にそれぞれ埋込み形成されたヒータ33、ならびに接続基板312 の表面および裏面にそれぞれ埋込み形成されたヒータ33、つまり4個のヒータをそれぞれ独立に制御できるようになっている。また、電源ライン34はキャパシタを構成し、安定した電源の供給が可能となっている。
なお、図中、35は配線基板、36は多層配線層を示している。また、313 は接続基板311 ,312 と同様の接続基板を示しているが、チップ同士の接続には用いられない。この接続基板313 は放熱板として用いられるものであるが、必ずしも必要ではない。また、半導体基板の貫通孔側壁の絶縁膜は省略してある。
本実施形態では、接続基板311 ,312 が、チップ11 〜13 よりも熱伝導率が十分に高いことから、チップ11 〜13 の動作時にチップ11 〜13 が発熱しても、その熱は接続基板311 ,312 を介して外部に効果的に逃がすことができる。これにより、発熱によるチップ11 〜13 の動作特性の劣化や、チップ11 〜13 の短命化を防止できるようになる。
また、本実施形態によれば、接続基板311 ,312 に設けられた、独立に制御できるヒータ33により、検査により不良と判定されたチップに接続したバンプのみを選択的に溶融することで、接続基板から不良なチップのみを選択的に分離することができるので、チップのリペアを容易に行なえるようになる。
図10にリペアの様子を示す。なお、図には、説明に必要な参照番号のみしか付していないが、マルチチップ半導体装置の構成は図8に示したものと同じである(他の実施形態においても同様)。
図10(a)は検査プローブによりチップの検査を行なっている様子を示しており、図10(b)は検査により不良と判定されたチップ12 と、それに接続された接続基板312 を取り除く様子を示している。なお、図10(b)の工程でチップ12 と、それに接続された接続基板311 を取り除いても良い。
この後、接続基板312 からチップ12 を分離し、接続基板312 に新しいチップを接続する。次にこの新しいチップが接続された接続基板312 を元の通りに接続する。この後、チップの検査を行なって合格であれば、リペアは終了するが、不合格の場合には、合格になるまで上記ステップを繰り返す。
なお、本実施形態では、半田バンプ8の周辺部を囲むようにヒータ33を形成し、半田バンプ8の周辺部を優先的に加熱する場合について説明したが、接続基板全体を加熱するようにヒータ33を設けた場合でも、従来よりもリペアを容易に行なえる。
(第4の実施形態)
図11は、本発明の第4の実施形態に係るマルチチップ半導体装置の断面図である。
本実施形態が第3の実施形態と異なる点は、接続基板311 〜313 に放熱フィン37を設けたことにある。この放熱フィン37は、例えば接着剤により接続基板311 〜313 に固定される。なお、メタライズすることにより固定するなど他の固定方法を用いても良い。
本実施形態によれば、接続基板311 〜313 から熱を逃がすだけではなく、それよりも熱伝導率の高い放熱フィン37からも熱を逃がすることができるので、チップ11 〜13 から熱をより効果的に逃がすことができる。
(第5の実施形態)
図12は、本発明の第5の実施形態に係るマルチチップ半導体装置の断面図である。
本実施形態が第4の実施形態と異なる点は、発熱量の大きいチップのみに放熱フィン37を設けたことにある。ここでは、チップ12 ,13 がチップ11 よりも発熱量が大きいとしている。この場合、チップ13 に放熱板としての接続基板313 を設ける必要がなくなり、積層方向に関して装置の微細化を図ることができる。
(第6の実施形態)
図13は、本発明の第6の実施形態に係るマルチチップ半導体装置の断面図である。
本実施形態が第3の実施形態と異なる点は、接続基板312 の内部を多層配線化し、配線を再配列したことにある。具体的には、半田バンプ8aはその上の半田バンプ8bに接続せずに、プラグ38a、配線層39a、プラグ38bを介して左上の半田バンプ8cに接続し、また、半田バンプ8dはその上の半田バンプ6cに接続せずに、プラグ38cを介して配線層39bに接続している。
なお、ヒータ33はチップ13 の表面および裏面に埋込み形成され、配線層39a,39bとから離れた位置に設けられているが、ヒータ33をチップ13 の内部に形成し、配線層39a,39bと同じレイヤに設けても良い。
(第7の実施形態)
図14は、本発明の第7の実施形態に係るマルチチップ半導体装置の断面図である。
本実施形態が第3の実施形態と異なる点は、接続基板の内部にキャパシタを設け、チップに供給される電源の安定化を図ったことにある。接続基板313 について説明すると、電源線40の上下にグランド線41が存在するように、接続基板313 内に電源線40、グランド線41を形成する。これにより、上下方向に2つの直接接続されたキャパシタが形成される。
なお、接続基板313 の構成材料は絶縁材料である。また、図中、42、43は配線を示している。配線42,43はそれぞれパッドを介してバンプに接続するがこれらのパッドは省略してある。また、接続基板313 以外の他の接続基板(不図示)についても、同様なキャパシタが形成されている。
(第8の実施形態)
図15は、本発明の第8の実施形態に係るマルチチップ半導体装置の断面図である。
本実施形態のマルチチップ半導体装置は、上層のSiチップ511 がSiで形成された積層配線基板521 ,522 によって下層のSiチップ512 ,513 に接続されている構成になっている。図中、50はSiチップ511 〜513 の素子形成面を示している。
Siチップ511 に設けられたパッド53は、ハンダバンプ54を介して、積層配線基板521 に設けられたパッド55に接続している。このパッド55は、積層配線基板521 に形成された図示しない配線層、この配線層に接続した貫通プラグ4、積層配線基板521 に設けられたパッド56およびハンダバンプ57を介して、積層配線基板522 に設けられたパッド58に接続している。ここでは、貫通プラグ4、上記配線層はその本来の目的を十分に発揮するためにCu、Al等の金属を通常は使用するが、熱膨張率を同じにすることに重点を置きたい場合には、高不純物濃度のSi膜で形成されたものを使用すると良い。
パッド58は、積層配線基板522 に形成された図示しない配線層、この配線層に接続したパッド59、およびハンダバンプ60を介して、Siチップ512 ,51に設けられたパッド61に接続している。上記配線層は上述したように金属材料、もしくは高不純物濃度のSi膜を使用する。
このようにして上層のSiチップ511 は、積層配線基板521 ,522 を介して下層のSiチップ512 ,513 に接続している。
また、積層配線基板521 は、パッド56、ハンダバンプ57、およびパッド58を介して、積層配線基板522 に接続している。積層配線基板522 は、同様にして、パッド62、ハンダバンプ63、およびパッド64を介して、プラスチック基板65に接続している。プラスチック基板65にはパッド66、ハンダバンプ67が設けられ、またプラスチック基板65中にはパッド64,66間を接続する配線層68が形成されている。
Siチップ511 と積層配線基板521 との間、Siチップ512 ,513 と積層配線基板522 とのそれぞれの間には、フィラーが混入されていない接着剤69が充填されている。
接着剤69にフィラーが混入されていなくても、Siチップ511 〜513 の構成材料と積層配線基板521 ,522 のそれとは同じSiであり、したがってSiチップ511 〜513 の熱膨張係数と積層配線基板521 ,522 のそれとが等しくなるため、信頼性の高い接続を得ることができる。
一方、積層配線基板522 とプラスチック基板65とは互いに構成材料が異なるので、積層配線基板522 とプラスチック基板65との間には、フィラーが混入された接着剤70が充填されており、これら522 ,65の間の接続の信頼性は確保されている。
ここで、積層配線基板521 ,522 には素子が形成されていないため、ハンダバンプ63間のピッチを所望の値に設定できる。そのため、ハンダバンプ63間に接着剤70が確実に入る程度に、ハンダバンプ63間のピッチを取ることができる。
以上述べたように実施形態では、積層配線基板521 ,522 とSiチップ511 〜513 とが同じSiで形成されているので、ハンダバンプ54,60に熱歪みはほとんど生じない。
したがって、Siチップ511 〜513 の高集積化がさらに進んで、Siチップ511 と積層配線基板521 との間の距離、Siチップ512 ,513 と積層配線基板522 との間の距離が短くなっても、これらの間の接続の信頼性は確保され、したがって上層のSiチップ511 と下層のSiチップ512 ,513 との間の接続の信頼性を確保できるようになる。
また、積層配線基板521 ,522 とSiチップ511 〜513 とが同じSiで形成されているので、これらの熱膨張率を近づける必要なく、したがってフィラーが入っていない接着剤69を用いることができる。
したがって、Siチップ511 〜513 の高集積化がさらに進んで、Siチップ511 と積層配線基板521 との間の距離、Siチップ512 ,513 と積層配線基板522 との間の距離が短くなっても、接着剤69が充填されない部分は生じないので、上層のSiチップ511 と下層のSiチップ512 ,513 との間の接続の信頼性を確保できるようになる。
また、第1の実施形態と同様の理由により、装置の平面面積を小さくすることができる。
また、本実施形態では、素子の形成されたSiチップ511 〜513 には貫通プラグを形成する必要がないので、コストの上昇を抑制できる。もちろん、貫通プラグを有するSiチップ511 〜513 を用いて、Siチップ511 とSiチップ512 ,513 とを積層配線基板521 だけを介して接続する構成にしても良い。
ここで、下記の(表1)に、チップに用いる半導体基板の構成材料や接続基板の構成材料に用いる主な物質の熱伝導率および線膨張率を示す。
Figure 2004228598
本実施形態における接続基板の構成材料は、例えば半導体基板の構成材料がSiの場合であれば、熱歪みの緩和の点では同材料のSiが最も良いが、Siと線膨張率がほぼ等しいシリコンカーバイト(SiC)、窒化アルミニウム(AlN)でも良い。これらはSiよりも熱伝導率が高いので、放熱性の点でも優れている。
また、チップに用いる半導体基板の構成材料が化合物半導体の場合、例えばガリウム砒素(GaAs)の場合には、GaAs、ベリリア(BeO)、アルミナ(Al2 3 )が適している。
熱膨張の差がどの程度許容できるかどうかは、接続端子(パッド)の大きさとピッチ、接続基板の大きさに依存するが、本発明の目的とするチップ間の接続の信頼性の確保のためには、接続基板の構成材料の熱膨張率と半導体基板の構成材料のそれとの差は、±5.0×10-6以内であることが好ましい。
図16〜図18は、本実施形態のマルチチップ半導体装置の製造方法を示す工程断面図である。
まず、図16(a)に示すように、Si基板の素子形成面50に図示しない素子を集積形成し、次にパッド53を形成してSiチップ511 を作成し、続いてパッド53上にハンダバンプ54を形成する。
次に図16(b)に示すように、Si基板にSiからなる貫通プラグ4および配線層、ならびにパッド55を形成して積層配線基板521 を作成する。パッド55はパッド33に対応した位置に形成する。パッド33,55は一辺が20μmの正方形で、パッド33,55のピッチは30μm(パッド間の距離は10μm)である。
次に図16(c)に示すように、Siチップ511 のハンダバンプ54と積層配線基板521 のパッド55との位置合わせを行い、これら54,55を接合した後、Siチップ511 と積層配線基板521 との間にフィラーが混入されていないエポキシ系の接着剤69を充填することによって、積層配線基板521 上にSiチップ511 がフリップチップボンディングされてなるユニット711 を形成する。
積層配線基板521 を構成するSi基板とSiチップ511 を構成するSi基板との距離は20μmとする。そのためには、ハンダバンプ54の大きさは20μmφ程度で良い。
次に図17(d)に示すように、Si基板の素子形成面50に図示しない素子を集積形成し、次にパッド61を形成してSiチップ512 を作成し、続いてSiチップ512 のパッド61上にハンダバンプ60を形成する。次に同図(d)に示すように、同様にしてSiチップ512 を作成し、続いてSiチップ512 のパッド61上にハンダバンプ60を形成する。
次に図17(e)に示すように、Si基板にSiからなる貫通プラグ4および配線層、パッド58,59,62を形成して積層配線基板522 を作成し、次にパッド58上にハンダバンプ57を形成する。
次に図17(f)に示すように、ユニット711 の場合と同様に、位置合わせ、接合、接着剤69の充填を行って、積層配線基板522 上にSiチップ512 ,513 がフリップチップボンディングされてなるユニット712 を形成する。
次に図18(g)に示すように、ハンダバンプ58とパッド56とを接合することによって、ユニット711 とユニット712 とを接続する。
このとき、積層配線基板521 ,522 、Siチップ512 〜513 がSiで形成されているので、熱膨張率の違いによる熱歪みは無い。そのため、各バンプの大きさとピッチの設計は、熱膨張率の違いによる熱歪みは考慮せずに、積層配線基板521 ,522 間のSiチップ512 ,513 の厚さだけを考慮して行えば良い。
積層配線基板522 の下面に形成されたパッド62は、プラスチック基板65のハンダバンプ63と接続されるため、パッド62の直径およびピッチはそれぞれ100μm、200μm程度以上取る必要がある。また、積層配線基板522 にはピッチを緩和するための配線層が形成されている。
最後に、図18(h)に示すように、パッド64,66、配線層68を有するプラスチック基板65を形成し、次にパッド64,66上にハンダバンプ63,67を形成し、次にプラスチック基板65と、ユニット711 が接続されたユニット712 とを位置合わせして接合した後、プラスチック基板65とユニット712 との間に歪みを緩和するためにSiO2 のフィラーが入った接着剤70を充填して、図15に示したマルチチップ半導体装置が完成する。
本実施形態では、積層配線基板521 ,522 の基板としてSi基板を用いている。そのため、大量生産によって安価で均質な積層配線基板521 ,522 を形成することができる。
また、積層配線基板521 ,522 に形成する配線層のデザインルールは、Siチップ511 ,512 に形成する配線層のそれに比べて遥かに緩い(例えば数μmのオーダー)。そのため、歩留まりもほぼ100%を得ることができる。また、MOSトランジスタ、キャパシタ等の素子を形成する必要がないので、Si基板の汚染を考慮する必要はほとんどなく、プロセスも簡略化できる。
なお、本実施形態では、チップの構成材料と積層配線基板の構成材料とが同じ場合について説明したが、熱膨張係数がほぼ等しければ、構成材料は異なっていても良い。また、この場合、チップよりも積層配線基板(接続基板)の放熱性が高くなる構成材料の組み合わせが良い。
また、同じ構成材料の場合には、積層配線基板に放熱フィン等の放熱手段を設けたり、あるいは積層配線基板に形成する貫通プラグに放熱機能を持たせることにより、例えば積層配線基板の構成材料よりも放熱性の高い材料で貫通プラグを形成すると良い。具体的には、チップおよび積層配線基板の構成材料がSiの場合であれば、表1からSiCやAlNを用いれば良いことが分かる。
第1の実施形態に係るマルチチップ半導体装置の断面図 第2の実施形態に係るマルチチップ半導体装置の貫通プラグの前半の形成方法を示す工程断面図 第2の実施形態に係るマルチチップ半導体装置の貫通プラグの前半の形成方法を示す工程断面図 貫通プラグを示す断面図 溝の形成方法を示す工程断面図 貫通プラグの他の形成方法を示す工程断面図 貫通プラグのさらに別の形成方法を示す工程断面図 第3の実施形態に係るマルチチップ半導体装置の断面図 図8のマルチチップ半導体装置の接続基板の平面図 図8のマルチチップ半導体装置のリペアの様子を示す図 第4の実施形態に係るマルチチップ半導体装置の断面図 第5の実施形態に係るマルチチップ半導体装置の断面図 第6の実施形態に係るマルチチップ半導体装置の断面図 第7の実施形態に係るマルチチップ半導体装置の断面図 第7の実施形態に係るマルチチップ半導体装置の断面図 図15のマルチチップ半導体装置の製造方法を示す工程断面図 図16に続く同マルチチップ半導体装置の製造方法を示す工程断面図 図17に続く同マルチチップ半導体装置の製造方法を示す工程断面図 従来のマルチチップ半導体装置の断面図 従来の他のマルチチップ半導体装置の断面図 従来のさらに別のマルチチップ半導体装置の断面図 従来の実装方法としてワイヤーボンディングを用いたマルチチップ半導体装置の断面図 従来の実装方法としてTABを用いたマルチチップ半導体装置の断面図 従来の実装方法としてフリップチップを用いたマルチチップ半導体装置の断面図
符号の説明
1 ,12 ,13 …チップ
2…シリコン基板
3…多層配線層
4…貫通プラグ(導電性プラグ)
4a…導電性膜
5…絶縁膜
6…パッド
7…絶縁膜
8…半田バンプ
9…積層配線基板(接続基板)
11…マスクパターン
12,121 〜123 …溝
13…低ストレス膜
14…キャップ金属膜
15…キャップ絶縁膜
16…金属ボール
17…金属シリサイド膜
18…導電ペースト
19…金属微粒子
20…シリコン膜
21…金属シリサイド膜
22…シリコン膜
23…Ni粒
24…Niシリサイド膜
25…キャップ膜
311 〜313 …接続基板
32…金属プレート(高熱伝導率部材、導電性プレート)
33…ヒータ(発熱部)
34…電源ライン
35…配線基板
36…多層配線層
37…放熱フィン
38a〜38c…プラグ
39a,39b…配線層
40…電源線
41…グランド線
42,43…配線
50…素子形成面
511 ,512 ,513 …Siチップ
521 ,522 …積層配線基板(接続基板)
53…パッド
54…ハンダバンプ
55…パッド
54…貫通プラグ
56…パッド
57…ハンダバンプ
58,59…パッド
60…ハンダバンプ
61,62…パッド
63…ハンダバンプ
64…パッド
65…プラスチック基板
66…パッド
67…ハンダバンプ
68…配線層
69…接着剤(フィラー無し)
70…接着剤(フィラー入り)
711 ,712 …ユニット

Claims (5)

  1. 素子が集積形成された半導体基板を有するチップを複数積層してなるマルチチップ半導体装置において、
    隣り合う上下の2つのチップの間には、貫通孔内に導電性プラグが形成された接続基板が設けられ、かつ前記2つのチップはそれぞれバンプを介して前記導電性プラグに電気的に接続し、かつ前記接続基板は発熱部を有することを特徴とするマルチチップ半導体装置。
  2. 各接続基板の発熱部を独立に制御できることを特徴とする請求項1記載のマルチチップ半導体装置。
  3. 前記発熱部は、前記バンプを囲むように形成されていることを特徴とする請求項1記載のマルチチップ半導体装置。
  4. 前記接続基板内に多層配線が形成されていることを特徴とする請求項1記載のマルチチップ半導体装置。
  5. 前記接続基板の構成材料は絶縁材料であり、前記接続基板内に電源線を第1のキャパシタ電極、グランド線を第2のキャパシタ電極、前記接続基板をキャパシタ絶縁膜としたキャパシタが形成されていることを特徴とする請求項1記載のマルチチップ半導体装置。
JP2004119405A 1997-10-01 2004-04-14 マルチチップ半導体装置 Pending JP2004228598A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004119405A JP2004228598A (ja) 1997-10-01 2004-04-14 マルチチップ半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26867797 1997-10-01
JP2004119405A JP2004228598A (ja) 1997-10-01 2004-04-14 マルチチップ半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28022598A Division JP3673094B2 (ja) 1996-12-02 1998-10-01 マルチチップ半導体装置

Publications (1)

Publication Number Publication Date
JP2004228598A true JP2004228598A (ja) 2004-08-12

Family

ID=32910611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119405A Pending JP2004228598A (ja) 1997-10-01 2004-04-14 マルチチップ半導体装置

Country Status (1)

Country Link
JP (1) JP2004228598A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906846B2 (en) 2005-09-06 2011-03-15 Nec Corporation Semiconductor device for implementing signal transmission and/or power supply by means of the induction of a coil
US8141243B2 (en) 2007-03-08 2012-03-27 Sony Corporation Method of manufacturing circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906846B2 (en) 2005-09-06 2011-03-15 Nec Corporation Semiconductor device for implementing signal transmission and/or power supply by means of the induction of a coil
US8141243B2 (en) 2007-03-08 2012-03-27 Sony Corporation Method of manufacturing circuit board
US8461464B2 (en) 2007-03-08 2013-06-11 Sony Corporation Circuit board having interconnected holes

Similar Documents

Publication Publication Date Title
US6809421B1 (en) Multichip semiconductor device, chip therefor and method of formation thereof
US7691672B2 (en) Substrate treating method and method of manufacturing semiconductor apparatus
TWI573223B (zh) 空腔基板保護之積體電路
TWI408795B (zh) Semiconductor device and manufacturing method thereof
TWI538145B (zh) 半導體裝置及其製造方法
JP3673094B2 (ja) マルチチップ半導体装置
TWI303096B (ja)
US7728439B2 (en) Semiconductor device, wiring substrate, and method for manufacturing wiring substrate
US6867501B2 (en) Semiconductor device and method for manufacturing same
KR20210003923A (ko) 멀티-티어 3d 집적용 다이 적층
US20060008944A1 (en) Substrate having built-in semiconductor apparatus and manufacturing method thereof
TW201603235A (zh) 具有加強框的積體電路組件及製造方法
JP2003258189A (ja) 半導体装置及びその製造方法
JP2012501077A (ja) チップ・パッケージ相互作用安定性を高めるための応力緩和ギャップを含む半導体デバイス。
TW200428608A (en) Semiconductor device and manufacturing method thereof
JPWO2011024939A1 (ja) 半導体装置およびその製造方法
JP7025948B2 (ja) 半導体装置および半導体装置の製造方法
CN110517992B (zh) 一种扇出芯片封装结构及封装方法
US20060267190A1 (en) Semiconductor device, laminated semiconductor device, and method for producing semiconductor device
CN110718529A (zh) 半导体装置以及半导体装置的制造方法
CN113097201B (zh) 半导体封装结构、方法、器件和电子产品
JP2007158078A (ja) 半導体装置とその製造方法
JP2004228598A (ja) マルチチップ半導体装置
TWI572268B (zh) 中介板及其製造方法
TWI834469B (zh) 半導體封裝及其製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911