JP2004228552A - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
JP2004228552A
JP2004228552A JP2003153390A JP2003153390A JP2004228552A JP 2004228552 A JP2004228552 A JP 2004228552A JP 2003153390 A JP2003153390 A JP 2003153390A JP 2003153390 A JP2003153390 A JP 2003153390A JP 2004228552 A JP2004228552 A JP 2004228552A
Authority
JP
Japan
Prior art keywords
terminal
ferrite bead
optical module
bead inductor
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003153390A
Other languages
Japanese (ja)
Other versions
JP4479168B2 (en
Inventor
Akihiro Moto
昭宏 本
Tomokazu Katsuyama
智和 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003153390A priority Critical patent/JP4479168B2/en
Publication of JP2004228552A publication Critical patent/JP2004228552A/en
Application granted granted Critical
Publication of JP4479168B2 publication Critical patent/JP4479168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/665Bias feed arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1423Monolithic Microwave Integrated Circuit [MMIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Abstract

<P>PROBLEM TO BE SOLVED: To improve the high frequency characteristic of an optical module by reducing the capacitive component with a padding. <P>SOLUTION: The optical module is equipped with a light emitting device 51 having an electrode to which bias current is supplied, a wiring board 81 where a circuit pattern to supply bias current is formed, and a ferrite bead inductor L12 having one terminal connected to a padding 54 which is connected to the electrode through a bonding wire 83 and the other terminal connected to a padding 84 located in the wiring pattern. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光伝送システムなどに使用する高速広帯域で動作する光モジュールに関する。
【0002】
【従来の技術】
近年、光ファイバを伝送媒体とする光伝送システムは、伝送容量が増大し、システムに用いられる光送受信器などの回路の高速広帯域化が進められている。例えば、40Gb/s光伝送システムに用いられる回路は、数十kHzから50GHz程度の広帯域で動作することが求められている。このような回路として、能動素子、受動素子、伝送線路を半導体基板上に一体化して、複数の機能を有する回路を集積したMMIC(Microwave Monolithic Integrated Circuit)が知られている。また、発光素子または受光素子などの光素子と、駆動回路または増幅回路を集積したMMICとを、1つの筐体に収めた光モジュールが知られている(例えば、特許文献1参照)。
【0003】
図1に、従来のMMICの構成を示す。図1(a)は、MMICの概略の回路図である。機能IC11には電源Vddが接続されている。電源Vddには、電源雑音を除去するためのバイパスコンデンサC1が接続されている。機能IC11は、例えば、光受信器における前置増幅器であり、高周波領域で動作する。MMICにおいては、機能IC11における高周波信号が、電源ラインに雑音として侵入するのを防ぐために、電源ラインにLCフィルタを形成する。
【0004】
図1(b)は、MMICの概略の実装図である。LCフィルタを形成するインダクタンス素子は、一般的に高価であり、MMICに比較して専有面積が大きい。そこで、電源Vdd用の実装基板12のパッド13から機能IC11までのボンディングワイヤ14を長くして、インダクタンス成分L1を有意な値とすることが行われている。
【0005】
図2に、従来の光送信器の構成を示す。図2(a)は、光送信器の概略の回路図である。駆動回路52は、インダクタンス成分L1を介して、発光素子51にバイアス電流を供給し、インダクタンス成分L2を介して、発光素子51に入力された電気信号に応じた変調電流を供給する。駆動回路52から発光素子51に供給される変調電流の交流成分が、駆動回路52のバイアス電流供給回路に影響を与えないように、インダクタンス成分L1を大きくしなければならない。
【0006】
図2(b)は、光送信器の概略の実装図である。インダクタンス素子は、一般的に高価であり、発光素子に比較して専有面積が大きい。そこで、発光素子51を搭載するヒートシンク53のパッド54から駆動回路52までのバイアス電流供給用のボンディングワイヤ55を長くして、インダクタンス成分L1を大きくすることが行われている。
【0007】
【特許文献1】
特開2002−270942号公報(図1)
【0008】
【発明が解決しようとする課題】
しかしながら、インダクタンス成分L1を得るために、ボンディングワイヤ14,55の長さが数cm必要であり実装スペースが必要であること、およびワイヤの強度不足による断線など信頼性に劣るという問題があった。また、光送信器においては、変調電流供給用のボンディングワイヤ56も長くなるため、高周波領域における変調特性が劣化するという問題もあった。
【0009】
そこで、フェライトビーズインダクタを用いる方法が知られている。図3に、従来のフェライトビーズインダクタを使用したMMICの構成を示す。図3(a)は、MMICの概略の実装図である。電源Vdd用の実装基板21に、バイパスコンデンサC1とフェライトビーズインダクタL2とによりLCフィルタを構成する。図3(b)は、電源ラインの等価回路である。実装基板21において部品を搭載するためのパッド21,23は、裏面アースのセラミック基板では容量成分C22,C23を有する。例えば、比誘電率9、基板厚さ200μm、パッド面積500×2000μmのセラミック基板では、容量成分C22,C23はそれぞれ0.4pF程度である。
【0010】
このような容量成分C22,C23により、フェライトビーズインダクタL2との間で共振が起こり、電源ラインを介して機能IC11の出力に反映される。機能IC11が増幅器であれば、ゲインディップとして表れ、出力波形のジッタが増加するという問題があった。
【0011】
図4に、従来のフェライトビーズインダクタを使用した光送信器の構成を示す。図4(a)は、光送信器の概略の実装図である。図2(b)に示したバイアス電流供給用のボンディングワイヤ55の代わりに、フェライトビーズインダクタL11を介して、発光素子51と駆動回路52とを接続する。図4(b)は、バイアスラインの等価回路である。フェライトビーズインダクタL11を搭載するためのパッド61,62は、裏面アースのセラミック基板では容量成分C61,C62を有する。
【0012】
このような容量成分C61,C62と、ボンディングワイヤ63,64のインダクタンス成分L63,L64及びフェライトビーズインダクタL11との間で共振が起こり、高周波領域における変調特性が劣化するという問題もあった。
【0013】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、パッドによる容量成分を低減して、高周波特性を改善するための光モジュールを提供することにある。
【0014】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、バイアス電流が供給される電極を有する発光素子と、前記バイアス電流を供給するための配線パターンが形成された配線基板と、結線部材により前記電極と接続された一方の端子と、前記配線パターンに接続された他方の端子とを有するインダクタ部品とを備えたことを特徴とする。
【0015】
この構成によれば、インダクタ部品を接続するパッドの面積を小さくすることができ、パッドによる容量成分が小さくなり、一方の端子には、パッドを設ける必要がなく、パッドによる容量成分は生じないので、高周波特性を改善することができる。
【0016】
請求項2に記載の発明は、請求項1に記載の前記配線パターンに接続され、前記発光素子に前記バイアス電流を供給する駆動回路をさらに備えたことを特徴とする。
【0017】
請求項3に記載の発明は、請求項2に記載の前記駆動回路は、前記バイアス電流を供給するバイアス電流供給回路と前記発光素子に変調電流を供給する変調電流供給回路とを含み、前記バイアス電流供給回路は、前記配線パターンに接続され、前記変調電流供給回路は、前記インダクタ部品を介さずに前記電極と接続されていることを特徴とする。
【0018】
請求項4に記載の発明は、請求項1、2または3に記載の前記結線部材は、ボンディングワイヤまたはボンディングリボンであることを特徴とする。
【0019】
請求項5に記載の発明は、請求項1ないし4のいずれかに記載の前記一方の端子は、金メッキが付されていることを特徴とする。
【0020】
請求項6に記載の発明は、請求項1ないし4のいずれかに記載の前記インダクタ部品は、金メッキが付された第1金属ブロックと、該第1金属ブロックが接続された第1端子および第2端子を有するインダクタンス素子とを含むことを特徴とする。
【0021】
請求項7に記載の発明は、請求項6に記載の前記第1端子および第2端子は、少なくとも半田メッキ、錫メッキおよび金メッキのいずれかが付されていることを特徴とする。
【0022】
請求項8に記載の発明は、請求項6または7に記載の前記インダクタ部品は、金メッキが付された第2金属ブロックを含み、該第2金属ブロックは、前記第2端子に接続されていることを特徴とする。
【0023】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施形態について詳細に説明する。
図5に、本発明の一実施形態にかかるMMICの実装構成を示す。図5(a)は、MMICの概略の実装平面図である。電源Vdd用の実装基板31に、バイパスコンデンサC1とフェライトビーズインダクタL3とによりLCフィルタを構成する。フェライトビーズインダクタL3は、パッド32上に立てて実装されている。図5(b)に、MMICの側面図を示す。フェライトビーズインダクタL3の一方の端子は、ボンディングワイヤ33により、機能IC11に接続されており、他方の端子は、パッド32に半田付けされている。フェライトビーズインダクタL3の詳細は、図12を参照して後述する。
【0024】
このような構成により、フェライトビーズインダクタL3の一方の端子には、パッドを設ける必要がないので、パッドによる容量成分は生じない。
【0025】
図6に、機能ICとして構成された増幅器の入出力特性を示す。機能IC11が40Gb/s光伝送システムに用いられる増幅器であり、SパラメータS21を測定した結果である。図6(a)は、図2に示したMMICの増幅器の入出力特性であり、周波数2GHz付近に大きなゲインディップが認められる。図6(b)は、図5に示したMMICの増幅器の入出力特性であり、周波数2GHz付近のゲインディップが改善されているのがわかる。フェライトビーズインダクタL3の一方の端子には、パッドによる容量成分がないので、共振が抑えられて、ゲインディップが減少している。40Gb/s光伝送システムにおいては、ゲインディップが2dB以下であることが要求されており、本実施形態により、その要求を満たすことができる。
【0026】
図7に、本発明の一実施形態にかかるMMICの応用例を示す。機能ICの電源ラインに挿入されるLCフィルタとして説明したが、以下のような応用例にも適用することができる。図7(a)は、機能IC11の出力端子に設けられたバイアスT回路に適用した実装平面図である。バイアスT回路は、機能IC11の出力端子の直流電位を所定の電位に設定するための回路であり、電源VddからフェライトビーズインダクタL3を介して電位が与えられる。容量素子C42は、直流成分を阻止し、機能IC11の出力端子からの交流成分のみを出力する。
【0027】
図7(b)は、機能IC11の入力端子に設けられたバイアスT回路に適用した実装平面図である。バイアスT回路は、図7(a)の場合と同様の機能を有する。フェライトビーズインダクタL3は、パッド41上に立てて実装されおり、一方の端子のパッドによる容量成分がなくなるので、ゲインディップを改善することができる。
【0028】
図8に、本発明の第1の実施形態にかかる光送信器の構成を示す。図8(a)は、光送信器の概略の実装平面図である。フェライトビーズインダクタL12を介して、発光素子51と駆動回路52とを接続する。フェライトビーズインダクタL12は、パッド71上に立てて実装されている。図8(b)に、光送信器の側面図を示す。フェライトビーズインダクタL12一方の端子は、ボンディングワイヤ72により、発光素子51に接続されており、他方の端子は、パッド71に半田付けされている。このような構成により、駆動回路52は、発光素子51に対して、ボンディングワイヤ73、フェライトビーズインダクタL12およびボンディングワイヤ72を介してバイアス電流を供給する。フェライトビーズインダクタL12の一方の端子には、パッドを設ける必要がないので、パッドによる容量成分は生じないため、高周波領域における変調特性を改善することができる。また、フェライトビーズインダクタのインダクタンス成分は、ボンディングワイヤのインダクタンス成分よりはるかに大きいので、ボンディングワイヤ56を介して発光素子51に供給される変調電流の交流成分が、駆動回路52のバイアス電流供給回路に影響を与えることはない。
【0029】
図9に、本発明の一実施形態にかかる発光素子モジュールの構成を示す。図9(a)は、発光素子モジュールの概略の実装図である。発光素子51と駆動回路とは、配線パターン74,75を介して接続されている。フェライトビーズインダクタL12は、パッド71上に立てて実装されている。フェライトビーズインダクタL12の一方の端子は、ボンディングワイヤ72により、パッド54を介して発光素子51に接続され、他方の端子は、パッド71に半田付けされ、ボンディングワイヤ73を介して配線パターン75に接続されている。配線パターン74は、パッド54を介して発光素子51に接続されている。駆動回路は、発光素子51に対して、配線パターン74を介して変調電流を供給し、配線パターン75を介してバイアス電流を供給する。
【0030】
図9(b)は、バイアスラインの等価回路である。フェライトビーズインダクタL12を搭載するためのパッド71は、裏面アースのセラミック基板では容量成分C71を有する。フェライトビーズインダクタL12の一方の端子には、パッドを設ける必要がないので、パッドによる容量成分は生じない。
【0031】
ここで、バイアス用のボンディングワイヤ72によるインダクタンス成分L72と、フェライトビーズインダクタL12により、高周波ノイズを阻止することができ、発光素子51とフェライトビーズインダクタL12との間に容量成分が存在しないので、共振も生じないため、高周波領域における変調特性を改善することができる。
【0032】
図10に、光送信器の出力特性を示す。図10(a)は、比較のために図2(b)に示した光送信器の出力特性であり、図10(b)は、図8(a)に示した光送信器の出力特性である。図10(b)は、図10(a)と比較してアイパターンの開口部が大きく、高周波領域における変調特性が改善されていることがわかる。
【0033】
図11に、本発明の第2の実施形態にかかる光送信器の構成を示す。図11(a)は、光送信器の概略の実装平面図である。光送信器は、発光素子51を搭載するヒートシンク53と、駆動回路IC82を搭載する配線基板81とから構成されている。発光素子51と駆動回路IC82のバイアス電流供給回路とは、ボンディングワイヤ83と、フェライトビーズインダクタL12とを介して接続される。フェライトビーズインダクタL12は、パッド84上に立てて実装されている。一方、発光素子51と駆動回路IC82の変調電流供給回路とは、ボンディングワイヤ86とパッド85とを介して接続される。
【0034】
図11(b)に、光送信器の側面図を示す。フェライトビーズインダクタL12の一方の端子は、ボンディングワイヤ83により、パッド54を介して発光素子51の電極に接続されており、他方の端子は、配線基板81に形成された配線パターンであるパッド84に半田付けされている。このような構成により、駆動回路IC82は、発光素子51に対して、バイアス電流を供給する。フェライトビーズインダクタL12の一方の端子には、パッドを設ける必要がないので、パッドによる容量成分は生じないため、高周波領域における変調特性を改善することができる。
【0035】
一方、発光素子51に対する変調電流は、ボンディングワイヤ86とパッド85とを介して供給されるので、ボンディングワイヤ86の長さを短くすることができる。また、パッド85の面積を小さくすることにより、配線基板81の裏面アースとの間で形成される容量を小さくすることができるので、高周波特性を損なうことがない。
【0036】
図12は、本発明の第1の実施形態にかかるフェライトビーズインダクタの製造方法を説明するための図である。フェライトビーズインダクタ101の端子は、半田接続を行うために半田メッキが付されている。このままでは、ボンディングワイヤを接続することができないので、一方の面121を金メッキし、他方の面122を半田メッキした金属ブロック102を、フェライトビーズインダクタ101の一方の端子に接続する。このようにして、フェライトビーズインダクタの一方の端子は、金属ブロック102を介してボンディングワイヤを接続することができ、他方の端子は、パッドに半田付けすることができる。
【0037】
フェライトビーズインダクタ101と金属ブロック102との接続は、フェライトビーズインダクタ101の一方の端子に半田クリーム111を塗布して、V字溝を有する接続治具131に載せる。フェライトビーズインダクタ101の一方の端子と金属ブロック102の他方の面122とを対向させて載せる(図12(a)参照)。さらに、接続治具131の上から抑え板132により、フェライトビーズインダクタ101と金属ブロック102とを固定し(図12(b)参照)、接続治具131を加熱して両者を接続する。
【0038】
また、表面を金メッキした金属ブロック102を、フェライトビーズインダクタ101の一方の端子に接続してもよい。
【0039】
図13は、本発明の第2の実施形態にかかるフェライトビーズインダクタの製造方法を説明するための図である。ダイボンダーを使用して、フェライトビーズインダクタ101の端子に、表面を金メッキした金属ブロック141aを取り付ける(図13(a))。フェライトビーズインダクタ101をダイボンダーのコレット152に、真空吸着させて固定し、金属ブロック141aをダイボンダーのステージ151に固定する。予め320℃程度に昇温したステージ151上に、半田ペレット142を搭載した金属ブロック141aを載置する。ステージ151を昇温してあるので、半田ペレット142は直ぐに溶融するが、雰囲気を窒素雰囲気に保つことで、半田の酸化を防ぐことができる。
【0040】
コレット152に吸着されたフェライトビーズインダクタ101を、金属ブロック141aに押しつけた状態で、ステージ151を降温することで、フェライトビーズインダクタ101と金属ブロック141aとを接着する。同様にして、フェライトビーズインダクタ101の他方の端子にも、金属ブロック141bを接着する(図13(b))。
【0041】
このようにして、フェライトビーズインダクタの端子に、金属ブロック141を接着することにより、端子が金以外の金属であっても、ボンディングワイヤを接続することができる。また、フェライトビーズインダクタの他方の端子にも金属ブロックを接着することにより、フェライトビーズインダクタと基板上のパッドとの接続に、半田ペーストまたは導電性樹脂を用いることができる。なお、金属ブロックは、表面を金メッキしたコバールまたは銅などの一般的な金属を用いることができる。
【0042】
なお、本実施形態では、フェライトビーズインダクタを用いたが、他のチップ部品を用いてもよい。一般的なチップ部品の端子は、半田接続を行うために半田メッキ、いわゆるSn/Pbメッキが付されている。また、Pbフリー化のためにSnメッキが付されていることもある。従って、上述した方法により、金属ブロックを取り付けてもよいし、金メッキ端子または銀パラジウム端子を有するチップ部品を使用してもよい。また、結線部材であるボンディングワイヤは、金ワイヤに限らず、アルミワイヤ、銅線でも構わないし、ボンディングリボンであっても構わない。
【0043】
さらに、機能ICは、光伝送システムの光受信器に用いられる前置増幅器、主増幅器などのほか、進行波型増幅器などにも適用できる。その他、上述したバイアスT回路と同様に、インダクタを介して直流を供給する回路であれば、いずれにも適用できる。
【0044】
【発明の効果】
以上説明したように、本発明によれば、インダクタンス素子の2つの端子のうち、一方の端子には、パッドを設ける必要がなく、パッドによる容量成分が生じないので、高周波特性を改善することが可能となる。
【0045】
また、本発明によれば、上述したインダクタンス素子を用いて、LCフィルタ、ICの電源供給回路、またはバイアスT回路を構成することにより、これら回路の高周波特性を改善することが可能となる。
【0046】
さらに、本発明によれば、上述したインダクタンス素子を用いて、光モジュールを構成することにより、高周波領域における変調特性を改善することが可能となる。
【図面の簡単な説明】
【図1】従来のMMICの構成を示す図である。
【図2】従来の光送信器の構成を示す図である。
【図3】従来のフェライトビーズインダクタを使用したMMICの構成を示す図である。
【図4】従来のフェライトビーズインダクタを使用した光送信器の構成を示す図である。
【図5】本発明の一実施形態にかかるMMICの構成を示す実装図である。
【図6】機能ICとして構成された増幅器の入出力特性を示す図である。
【図7】本発明の一実施形態にかかるMMICの応用例を示す実装図である。
【図8】本発明の第1の実施形態にかかる光送信器の構成を示す実装図である。
【図9】本発明の一実施形態にかかる発光素子モジュールの構成を示す図である。
【図10】光送信器の出力特性を示す図である。
【図11】本発明の第2の実施形態にかかる光送信器の構成を示す実装図である。
【図12】本発明の第1の実施形態にかかるフェライトビーズインダクタの製造方法を説明するための図である。
【図13】本発明の第2の実施形態にかかるフェライトビーズインダクタの製造方法を説明するための図である。
【符号の説明】
11 機能IC
12,21,31 実装基板
13,22,23,32,41,54,61,62 パッド
14,33,55,56,63,64 ボンディングワイヤ
51 発光素子
52 駆動回路
53 ヒートシンク
101 フェライトビーズインダクタ
102,141 金属ブロック
111 半田クリーム
131 接続治具
132 抑え板
142 半田
151 ステージ
152 コレット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical module that operates in a high-speed and wide band used in an optical transmission system or the like.
[0002]
[Prior art]
In recent years, an optical transmission system using an optical fiber as a transmission medium has an increased transmission capacity, and high-speed broadband circuits such as an optical transceiver used in the system have been promoted. For example, a circuit used in a 40 Gb / s optical transmission system is required to operate in a wide band of about several tens of kHz to 50 GHz. As such a circuit, an MMIC (Microwave Monolithically Integrated Circuit) in which active elements, passive elements, and transmission lines are integrated on a semiconductor substrate and a circuit having a plurality of functions is integrated is known. An optical module in which an optical element such as a light-emitting element or a light-receiving element and an MMIC in which a drive circuit or an amplifier circuit is integrated is housed in one housing is known (for example, see Patent Document 1).
[0003]
FIG. 1 shows a configuration of a conventional MMIC. FIG. 1A is a schematic circuit diagram of the MMIC. A power supply Vdd is connected to the function IC 11. A bypass capacitor C1 for removing power supply noise is connected to the power supply Vdd. The function IC 11 is a preamplifier in an optical receiver, for example, and operates in a high frequency region. In the MMIC, an LC filter is formed in the power supply line in order to prevent the high frequency signal in the functional IC 11 from entering the power supply line as noise.
[0004]
FIG. 1B is a schematic mounting diagram of the MMIC. The inductance element forming the LC filter is generally expensive and has a large area as compared with the MMIC. Therefore, the bonding wire 14 from the pad 13 of the mounting substrate 12 for the power supply Vdd to the functional IC 11 is lengthened to make the inductance component L1 a significant value.
[0005]
FIG. 2 shows a configuration of a conventional optical transmitter. FIG. 2A is a schematic circuit diagram of the optical transmitter. The drive circuit 52 supplies a bias current to the light emitting element 51 via the inductance component L1, and supplies a modulation current corresponding to the electric signal input to the light emitting element 51 via the inductance component L2. The inductance component L1 must be increased so that the alternating current component of the modulation current supplied from the drive circuit 52 to the light emitting element 51 does not affect the bias current supply circuit of the drive circuit 52.
[0006]
FIG. 2B is a schematic mounting diagram of the optical transmitter. Inductance elements are generally expensive and have a large occupied area compared to light emitting elements. Therefore, the inductance component L1 is increased by lengthening the bonding current 55 for supplying bias current from the pad 54 of the heat sink 53 on which the light emitting element 51 is mounted to the drive circuit 52.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-270942 (FIG. 1)
[0008]
[Problems to be solved by the invention]
However, in order to obtain the inductance component L1, there are problems that the length of the bonding wires 14 and 55 is several centimeters and a mounting space is required, and the reliability is inferior such as disconnection due to insufficient strength of the wires. Further, in the optical transmitter, since the bonding wire 56 for supplying the modulation current becomes long, there is a problem that the modulation characteristic in the high frequency region is deteriorated.
[0009]
Therefore, a method using a ferrite bead inductor is known. FIG. 3 shows the configuration of an MMIC using a conventional ferrite bead inductor. FIG. 3A is a schematic mounting diagram of the MMIC. An LC filter is configured on the mounting substrate 21 for the power supply Vdd by the bypass capacitor C1 and the ferrite bead inductor L2. FIG. 3B is an equivalent circuit of the power supply line. The pads 21 and 23 for mounting components on the mounting substrate 21 have capacitance components C22 and C23 on the back-grounded ceramic substrate. For example, in a ceramic substrate having a relative dielectric constant of 9, a substrate thickness of 200 μm, and a pad area of 500 × 2000 μm, the capacitance components C22 and C23 are each about 0.4 pF.
[0010]
Due to such capacitance components C22 and C23, resonance occurs with the ferrite bead inductor L2, which is reflected in the output of the functional IC 11 through the power supply line. If the function IC 11 is an amplifier, it appears as a gain dip, and there is a problem that jitter of the output waveform increases.
[0011]
FIG. 4 shows a configuration of an optical transmitter using a conventional ferrite bead inductor. FIG. 4A is a schematic mounting diagram of an optical transmitter. Instead of the bias current supply bonding wire 55 shown in FIG. 2B, the light emitting element 51 and the drive circuit 52 are connected via a ferrite bead inductor L11. FIG. 4B is an equivalent circuit of the bias line. The pads 61 and 62 for mounting the ferrite bead inductor L11 have capacitance components C61 and C62 in the ceramic substrate with the back ground.
[0012]
There is also a problem that resonance occurs between the capacitance components C61 and C62, the inductance components L63 and L64 of the bonding wires 63 and 64, and the ferrite bead inductor L11, and the modulation characteristics in the high frequency region deteriorate.
[0013]
The present invention has been made in view of such problems, and an object of the present invention is to provide an optical module for reducing high-frequency characteristics by reducing capacitance components due to pads.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a light emitting element having an electrode to which a bias current is supplied and a wiring pattern for supplying the bias current are formed. An inductor component having a wiring board, one terminal connected to the electrode by a connecting member, and the other terminal connected to the wiring pattern is provided.
[0015]
According to this configuration, the area of the pad connecting the inductor component can be reduced, the capacitance component due to the pad is reduced, and it is not necessary to provide a pad at one terminal, and the capacitance component due to the pad does not occur. High frequency characteristics can be improved.
[0016]
According to a second aspect of the present invention, there is provided a drive circuit that is connected to the wiring pattern according to the first aspect and supplies the bias current to the light emitting element.
[0017]
According to a third aspect of the present invention, the drive circuit according to the second aspect includes a bias current supply circuit that supplies the bias current and a modulation current supply circuit that supplies a modulation current to the light emitting element, and the bias The current supply circuit is connected to the wiring pattern, and the modulation current supply circuit is connected to the electrode without passing through the inductor component.
[0018]
A fourth aspect of the invention is characterized in that the connecting member according to the first, second, or third aspect is a bonding wire or a bonding ribbon.
[0019]
The invention according to claim 5 is characterized in that the one terminal according to any one of claims 1 to 4 is gold-plated.
[0020]
According to a sixth aspect of the present invention, the inductor component according to any one of the first to fourth aspects includes a first metal block to which gold plating is applied, a first terminal to which the first metal block is connected, and a first terminal. And an inductance element having two terminals.
[0021]
The invention described in claim 7 is characterized in that at least one of solder plating, tin plating and gold plating is applied to the first terminal and the second terminal according to claim 6.
[0022]
According to an eighth aspect of the present invention, the inductor component according to the sixth or seventh aspect includes a second metal block to which gold plating is applied, and the second metal block is connected to the second terminal. It is characterized by that.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 5 shows a mounting configuration of the MMIC according to an embodiment of the present invention. FIG. 5A is a schematic mounting plan view of the MMIC. An LC filter is configured by the bypass capacitor C1 and the ferrite bead inductor L3 on the mounting substrate 31 for the power supply Vdd. The ferrite bead inductor L3 is mounted upright on the pad 32. FIG. 5B shows a side view of the MMIC. One terminal of the ferrite bead inductor L3 is connected to the functional IC 11 by a bonding wire 33, and the other terminal is soldered to the pad 32. Details of the ferrite bead inductor L3 will be described later with reference to FIG.
[0024]
With such a configuration, it is not necessary to provide a pad at one terminal of the ferrite bead inductor L3, so that no capacitive component is generated by the pad.
[0025]
FIG. 6 shows input / output characteristics of an amplifier configured as a functional IC. The functional IC 11 is an amplifier used in the 40 Gb / s optical transmission system, and is a result of measuring the S parameter S21. FIG. 6A shows input / output characteristics of the amplifier of the MMIC shown in FIG. 2, and a large gain dip is recognized near the frequency of 2 GHz. FIG. 6B shows input / output characteristics of the amplifier of the MMIC shown in FIG. 5, and it can be seen that the gain dip in the vicinity of the frequency of 2 GHz is improved. Since one terminal of the ferrite bead inductor L3 has no capacitance component due to the pad, resonance is suppressed and the gain dip is reduced. In the 40 Gb / s optical transmission system, the gain dip is required to be 2 dB or less, and this requirement can be satisfied by this embodiment.
[0026]
FIG. 7 shows an application example of the MMIC according to an embodiment of the present invention. Although described as an LC filter inserted into a power supply line of a functional IC, the present invention can also be applied to the following application examples. FIG. 7A is a mounting plan view applied to a bias T circuit provided at the output terminal of the functional IC 11. The bias T circuit is a circuit for setting the DC potential of the output terminal of the function IC 11 to a predetermined potential, and is given a potential from the power supply Vdd via the ferrite bead inductor L3. The capacitive element C42 blocks the direct current component and outputs only the alternating current component from the output terminal of the function IC 11.
[0027]
FIG. 7B is a mounting plan view applied to a bias T circuit provided at the input terminal of the functional IC 11. The bias T circuit has a function similar to that in the case of FIG. The ferrite bead inductor L3 is mounted upright on the pad 41, and since there is no capacitance component due to the pad of one terminal, the gain dip can be improved.
[0028]
FIG. 8 shows the configuration of the optical transmitter according to the first embodiment of the present invention. FIG. 8A is a schematic mounting plan view of the optical transmitter. The light emitting element 51 and the drive circuit 52 are connected via the ferrite bead inductor L12. The ferrite bead inductor L12 is mounted upright on the pad 71. FIG. 8B shows a side view of the optical transmitter. One terminal of the ferrite bead inductor L12 is connected to the light emitting element 51 by a bonding wire 72, and the other terminal is soldered to the pad 71. With such a configuration, the drive circuit 52 supplies a bias current to the light emitting element 51 via the bonding wire 73, the ferrite bead inductor L 12, and the bonding wire 72. Since it is not necessary to provide a pad at one terminal of the ferrite bead inductor L12, a capacitance component due to the pad does not occur, so that modulation characteristics in a high frequency region can be improved. Further, since the inductance component of the ferrite bead inductor is much larger than the inductance component of the bonding wire, the AC component of the modulation current supplied to the light emitting element 51 via the bonding wire 56 is supplied to the bias current supply circuit of the drive circuit 52. There is no impact.
[0029]
FIG. 9 shows a configuration of a light emitting element module according to an embodiment of the present invention. FIG. 9A is a schematic mounting diagram of the light emitting element module. The light emitting element 51 and the drive circuit are connected via wiring patterns 74 and 75. The ferrite bead inductor L12 is mounted upright on the pad 71. One terminal of the ferrite bead inductor L12 is connected to the light emitting element 51 via the pad 54 by the bonding wire 72, and the other terminal is soldered to the pad 71 and connected to the wiring pattern 75 via the bonding wire 73. Has been. The wiring pattern 74 is connected to the light emitting element 51 through the pad 54. The drive circuit supplies a modulation current to the light emitting element 51 via the wiring pattern 74 and supplies a bias current via the wiring pattern 75.
[0030]
FIG. 9B is an equivalent circuit of the bias line. The pad 71 on which the ferrite bead inductor L12 is mounted has a capacitance component C71 in the back-grounded ceramic substrate. Since it is not necessary to provide a pad at one terminal of the ferrite bead inductor L12, no capacitance component is generated by the pad.
[0031]
Here, high frequency noise can be blocked by the inductance component L72 by the bonding wire 72 for bias and the ferrite bead inductor L12, and there is no capacitance component between the light emitting element 51 and the ferrite bead inductor L12. Therefore, the modulation characteristic in the high frequency region can be improved.
[0032]
FIG. 10 shows the output characteristics of the optical transmitter. 10 (a) shows the output characteristics of the optical transmitter shown in FIG. 2 (b) for comparison, and FIG. 10 (b) shows the output characteristics of the optical transmitter shown in FIG. 8 (a). is there. FIG. 10B shows that the eye pattern opening is larger than that in FIG. 10A, and the modulation characteristics in the high frequency region are improved.
[0033]
FIG. 11 shows a configuration of an optical transmitter according to the second embodiment of the present invention. FIG. 11A is a schematic mounting plan view of the optical transmitter. The optical transmitter includes a heat sink 53 on which the light emitting element 51 is mounted, and a wiring board 81 on which a drive circuit IC 82 is mounted. The light emitting element 51 and the bias current supply circuit of the drive circuit IC 82 are connected via a bonding wire 83 and a ferrite bead inductor L12. The ferrite bead inductor L12 is mounted upright on the pad 84. On the other hand, the light emitting element 51 and the modulation current supply circuit of the drive circuit IC 82 are connected via a bonding wire 86 and a pad 85.
[0034]
FIG. 11B shows a side view of the optical transmitter. One terminal of the ferrite bead inductor L12 is connected to the electrode of the light emitting element 51 via a pad 54 by a bonding wire 83, and the other terminal is connected to a pad 84 which is a wiring pattern formed on the wiring board 81. Soldered. With such a configuration, the drive circuit IC 82 supplies a bias current to the light emitting element 51. Since it is not necessary to provide a pad at one terminal of the ferrite bead inductor L12, a capacitance component due to the pad does not occur, so that modulation characteristics in a high frequency region can be improved.
[0035]
On the other hand, since the modulation current for the light emitting element 51 is supplied via the bonding wire 86 and the pad 85, the length of the bonding wire 86 can be shortened. Further, by reducing the area of the pad 85, the capacitance formed between the wiring substrate 81 and the back surface ground can be reduced, so that the high frequency characteristics are not impaired.
[0036]
FIG. 12 is a view for explaining the method of manufacturing the ferrite bead inductor according to the first embodiment of the present invention. The terminals of the ferrite bead inductor 101 are solder-plated for solder connection. Since the bonding wire cannot be connected as it is, the metal block 102 having one surface 121 plated with gold and the other surface 122 solder-plated is connected to one terminal of the ferrite bead inductor 101. In this way, one terminal of the ferrite bead inductor can be connected to the bonding wire via the metal block 102, and the other terminal can be soldered to the pad.
[0037]
The ferrite bead inductor 101 and the metal block 102 are connected by applying the solder cream 111 to one terminal of the ferrite bead inductor 101 and placing it on the connection jig 131 having a V-shaped groove. One terminal of the ferrite bead inductor 101 and the other surface 122 of the metal block 102 are placed facing each other (see FIG. 12A). Further, the ferrite bead inductor 101 and the metal block 102 are fixed by the holding plate 132 from above the connection jig 131 (see FIG. 12B), and the connection jig 131 is heated to connect them.
[0038]
Further, the metal block 102 whose surface is gold-plated may be connected to one terminal of the ferrite bead inductor 101.
[0039]
FIG. 13 is a diagram for explaining a method of manufacturing a ferrite bead inductor according to the second embodiment of the present invention. A metal block 141a whose surface is gold-plated is attached to the terminal of the ferrite bead inductor 101 using a die bonder (FIG. 13A). The ferrite bead inductor 101 is fixed to the collet 152 of the die bonder by vacuum suction, and the metal block 141a is fixed to the stage 151 of the die bonder. A metal block 141 a on which solder pellets 142 are mounted is placed on a stage 151 that has been heated to about 320 ° C. in advance. Since the temperature of the stage 151 has been raised, the solder pellet 142 is immediately melted, but by maintaining the atmosphere in a nitrogen atmosphere, the solder can be prevented from being oxidized.
[0040]
With the ferrite bead inductor 101 adsorbed by the collet 152 pressed against the metal block 141a, the temperature of the stage 151 is lowered to bond the ferrite bead inductor 101 and the metal block 141a. Similarly, the metal block 141b is bonded to the other terminal of the ferrite bead inductor 101 (FIG. 13B).
[0041]
Thus, by bonding the metal block 141 to the terminal of the ferrite bead inductor, the bonding wire can be connected even if the terminal is a metal other than gold. Further, by bonding a metal block to the other terminal of the ferrite bead inductor, a solder paste or a conductive resin can be used to connect the ferrite bead inductor and the pad on the substrate. For the metal block, a general metal such as Kovar or copper whose surface is gold-plated can be used.
[0042]
In this embodiment, the ferrite bead inductor is used, but other chip components may be used. Terminals of general chip parts are subjected to solder plating, so-called Sn / Pb plating, for solder connection. In addition, Sn plating may be applied to make Pb free. Therefore, a metal block may be attached by the method described above, or a chip component having a gold plated terminal or a silver palladium terminal may be used. Further, the bonding wire as the connecting member is not limited to the gold wire, and may be an aluminum wire, a copper wire, or a bonding ribbon.
[0043]
Furthermore, the functional IC can be applied to a traveling wave amplifier as well as a preamplifier and a main amplifier used in an optical receiver of an optical transmission system. In addition, as with the above-described bias T circuit, any circuit that supplies direct current via an inductor can be applied.
[0044]
【The invention's effect】
As described above, according to the present invention, one of the two terminals of the inductance element does not need to be provided with a pad, and no capacitive component is generated by the pad, so that high frequency characteristics can be improved. It becomes possible.
[0045]
Further, according to the present invention, the high frequency characteristics of these circuits can be improved by configuring an LC filter, an IC power supply circuit, or a bias T circuit using the above-described inductance element.
[0046]
Furthermore, according to the present invention, it is possible to improve modulation characteristics in a high frequency region by configuring an optical module using the above-described inductance element.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a conventional MMIC.
FIG. 2 is a diagram illustrating a configuration of a conventional optical transmitter.
FIG. 3 is a diagram showing a configuration of an MMIC using a conventional ferrite bead inductor.
FIG. 4 is a diagram showing a configuration of an optical transmitter using a conventional ferrite bead inductor.
FIG. 5 is a mounting diagram showing a configuration of an MMIC according to an embodiment of the present invention.
FIG. 6 is a diagram showing input / output characteristics of an amplifier configured as a functional IC.
FIG. 7 is a mounting diagram showing an application example of the MMIC according to the embodiment of the present invention.
FIG. 8 is a mounting diagram showing the configuration of the optical transmitter according to the first embodiment of the present invention;
FIG. 9 is a diagram showing a configuration of a light emitting element module according to an embodiment of the present invention.
FIG. 10 is a diagram illustrating output characteristics of an optical transmitter.
FIG. 11 is a mounting diagram showing a configuration of an optical transmitter according to a second embodiment of the present invention.
FIG. 12 is a drawing for explaining the manufacturing method of the ferrite bead inductor according to the first embodiment of the present invention.
FIG. 13 is a drawing for explaining the manufacturing method of the ferrite bead inductor according to the second embodiment of the present invention.
[Explanation of symbols]
11 Function IC
12, 21, 31 Mounting substrate 13, 22, 23, 32, 41, 54, 61, 62 Pad 14, 33, 55, 56, 63, 64 Bonding wire 51 Light emitting element 52 Drive circuit 53 Heat sink 101 Ferrite bead inductor 102, 141 Metal Block 111 Solder Cream 131 Connection Jig 132 Holding Plate 142 Solder 151 Stage 152 Collet

Claims (8)

バイアス電流が供給される電極を有する発光素子と、
前記バイアス電流を供給するための配線パターンが形成された配線基板と、
結線部材により前記電極と接続された一方の端子と、前記配線パターンに接続された他方の端子とを有するインダクタ部品とを備えたことを特徴とする光モジュール。
A light emitting element having an electrode to which a bias current is supplied;
A wiring board on which a wiring pattern for supplying the bias current is formed;
An optical module comprising an inductor component having one terminal connected to the electrode by a connecting member and the other terminal connected to the wiring pattern.
前記配線パターンに接続され、前記発光素子に前記バイアス電流を供給する駆動回路をさらに備えたことを特徴とする請求項1に記載の光モジュール。The optical module according to claim 1, further comprising a drive circuit connected to the wiring pattern and configured to supply the bias current to the light emitting element. 前記駆動回路は、前記バイアス電流を供給するバイアス電流供給回路と前記発光素子に変調電流を供給する変調電流供給回路とを含み、
前記バイアス電流供給回路は、前記配線パターンに接続され、
前記変調電流供給回路は、前記インダクタ部品を介さずに前記電極と接続されていることを特徴とする請求項2に記載の光モジュール。
The drive circuit includes a bias current supply circuit that supplies the bias current and a modulation current supply circuit that supplies a modulation current to the light emitting element,
The bias current supply circuit is connected to the wiring pattern,
The optical module according to claim 2, wherein the modulation current supply circuit is connected to the electrode without passing through the inductor component.
前記結線部材は、ボンディングワイヤまたはボンディングリボンであることを特徴とする請求項1、2または3に記載の光モジュール。The optical module according to claim 1, wherein the connecting member is a bonding wire or a bonding ribbon. 前記一方の端子は、金メッキが付されていることを特徴とする請求項1ないし4のいずれかに記載の光モジュール。5. The optical module according to claim 1, wherein the one terminal is plated with gold. 前記インダクタ部品は、
金メッキが付された第1金属ブロックと、
該第1金属ブロックが接続された第1端子および第2端子を有するインダクタンス素子とを含むことを特徴とする請求項1ないし4のいずれかに記載の光モジュール。
The inductor component is
A first metal block with gold plating;
The optical module according to claim 1, further comprising an inductance element having a first terminal and a second terminal to which the first metal block is connected.
前記第1端子および第2端子は、少なくとも半田メッキ、錫メッキおよび金メッキのいずれかが付されていることを特徴とする請求項6に記載の光モジュール。The optical module according to claim 6, wherein at least one of solder plating, tin plating, and gold plating is applied to the first terminal and the second terminal. 前記インダクタ部品は、金メッキが付された第2金属ブロックを含み、該第2金属ブロックは、前記第2端子に接続されていることを特徴とする請求項6または7に記載の光モジュール。8. The optical module according to claim 6, wherein the inductor component includes a second metal block to which gold plating is applied, and the second metal block is connected to the second terminal. 9.
JP2003153390A 2002-06-03 2003-05-29 Optical module Expired - Fee Related JP4479168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153390A JP4479168B2 (en) 2002-06-03 2003-05-29 Optical module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002161958 2002-06-03
JP2002345953 2002-11-28
JP2003153390A JP4479168B2 (en) 2002-06-03 2003-05-29 Optical module

Publications (2)

Publication Number Publication Date
JP2004228552A true JP2004228552A (en) 2004-08-12
JP4479168B2 JP4479168B2 (en) 2010-06-09

Family

ID=32912792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153390A Expired - Fee Related JP4479168B2 (en) 2002-06-03 2003-05-29 Optical module

Country Status (1)

Country Link
JP (1) JP4479168B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077639A1 (en) * 2005-01-20 2006-07-27 Fujitsu Limited Optical module
JP2007096272A (en) * 2005-09-02 2007-04-12 Sanyo Electric Co Ltd Electric device and electric circuit
US8027146B2 (en) 2005-12-26 2011-09-27 Sanyo Electric Co., Ltd. Electric circuit device enabling impedance reduction
JP2017524267A (en) * 2014-07-03 2017-08-24 トランスフォーム インコーポレーテッド Switching circuit with ferrite beads

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077639A1 (en) * 2005-01-20 2006-07-27 Fujitsu Limited Optical module
JPWO2006077639A1 (en) * 2005-01-20 2008-06-12 富士通株式会社 Optical module
US7720393B2 (en) 2005-01-20 2010-05-18 Fujitsu Limited Optical module
JP4540680B2 (en) * 2005-01-20 2010-09-08 富士通オプティカルコンポーネンツ株式会社 Optical module
JP2007096272A (en) * 2005-09-02 2007-04-12 Sanyo Electric Co Ltd Electric device and electric circuit
US7898363B2 (en) 2005-09-02 2011-03-01 Sanyo Electric Co., Ltd. Electric element and electric circuit
US8027146B2 (en) 2005-12-26 2011-09-27 Sanyo Electric Co., Ltd. Electric circuit device enabling impedance reduction
JP2017524267A (en) * 2014-07-03 2017-08-24 トランスフォーム インコーポレーテッド Switching circuit with ferrite beads

Also Published As

Publication number Publication date
JP4479168B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP3803596B2 (en) Package type semiconductor device
US6124636A (en) MMIC package
US7260285B2 (en) Optical module with flexible substrate
US7355491B2 (en) Interconnecting a port of a microwave circuit package and a microwave component mounted in the microwave circuit package
US20030156608A1 (en) Laser-diode module, optical transceiver and fiber transmission system
JPH11231173A (en) Optical device capable of fast operation
JP4159778B2 (en) IC package, optical transmitter and optical receiver
US8008761B2 (en) Optical semiconductor apparatus
JP4479168B2 (en) Optical module
JPH09172221A (en) Mounting structure of optical semiconductor device
US6791159B2 (en) Optical module
US6465858B2 (en) Semiconductor device package for optical communication device
JP3916072B2 (en) AC coupling circuit
JP2004363360A (en) Optical transmitting and receiving module
JP4393187B2 (en) Chip carrier for semiconductor optical device, optical module, and optical transceiver
JP2012145743A (en) Optical module
JPS62124780A (en) Optical semiconductor module
US20220069143A1 (en) Optical receiver module
JP4734310B2 (en) Chip carrier for semiconductor optical device, optical module, and optical transceiver
JPH05218461A (en) Optical receiving module
US6753615B2 (en) Optical element module
JP2970703B2 (en) Semiconductor laser module
CN113690729A (en) Packaging structure and optical module
JPH07321150A (en) Semiconductor integrated circuit device and manufacture thereof
JP2003078065A (en) Substrate for packaging semiconductor device and package for housing optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees