JP2004226647A - ビーム整形レンズ - Google Patents

ビーム整形レンズ Download PDF

Info

Publication number
JP2004226647A
JP2004226647A JP2003013859A JP2003013859A JP2004226647A JP 2004226647 A JP2004226647 A JP 2004226647A JP 2003013859 A JP2003013859 A JP 2003013859A JP 2003013859 A JP2003013859 A JP 2003013859A JP 2004226647 A JP2004226647 A JP 2004226647A
Authority
JP
Japan
Prior art keywords
optical fiber
laser light
lens
beam shaping
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003013859A
Other languages
English (en)
Inventor
Shoichi Kyotani
昇一 京谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003013859A priority Critical patent/JP2004226647A/ja
Publication of JP2004226647A publication Critical patent/JP2004226647A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】断面楕円形状のレーザ光を断面略円形状のレーザ光に整形すると共に、非点隔差の発生を抑え高効率のビーム整形結合が可能であり、かつその位置調整も容易なビーム整形レンズを提供する。
【解決手段】楕円の断面形状を持つレーザ光を略円形の断面形状を持つレーザ光に整形して光ファイバに出射するビーム整形レンズにおいて、
平板状のレンズ基部11を有し、該レンズ基部11の出射面は光ファイバ端面21aに当接すると共に、入射面には上記光ファイバ21の延長上に略半円筒状のビーム補正部12を有し、
該ビーム補正部12はその長手方向がレーザ光のビーム補正部への入射位置における短軸の方向と略一致するように配置され、レーザ光をビーム補正部への入射位置における長軸の方向に縮小する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ通信において光ファイバに入射するレーザ光を整形するビーム整形レンズに関し、より詳細には半導体レーザからの楕円形放射光の断面形状をもつレーザ光の強度分布を略円形の断面形状の強度分布のレーザ光に整形するビーム整形レンズに関する。
【0002】
【従来の技術】
光ファイバ通信において、光源や光ファイバアンプに用いられる半導体レーザから発せられるレーザ光は、半導体レーザの接合面に対して垂直方向(θ⊥方向)の広がり角と、水平方向(θ//方向)の広がり角が異なる楕円形であることが知られている。このことから、図8に示すように、半導体レーザ30から出射されたレーザ光を、そのまま結合レンズ40で光ファイバ21(図中22は光ファイバを保持するフェルール)の端面に集光すると、光ファイバ21に入射するレーザ光は、結合レンズ40によって長軸と短軸が入れ替わるものの、やはり断面楕円形であり、そのままでは結合効率の低下を招く。このような問題を解決する方法としては、断面が楕円形のレーザ光を、ビーム整形レンズによって略円形に整形して光ファイバに入射させる方法が採られている。
【0003】
このようなビーム整形レンズとしては例えば、特許文献1に記載されたビーム整形レンズがある。本先行例では、光源たる半導体レーザと光ファイバの中間に、半導体レーザ側に結合レンズ、光ファイバ側にビーム整形レンズを配置している。半導体レーザから発せられた発散光のレーザ光を、垂直方向では結合レンズによって収束光にしてそのまま光ファイバに入射させ、水平方向では結合レンズでレーザ光を平行光にして、この平行光をビーム整形レンズで集光することにより、光ファイバに略円形のレーザ光が入射するようにしている。
【0004】
【特許文献1】
特開平10―300989号公報
【0005】
【発明が解決しようとする課題】
ところで、このような、光源と光ファイバの中間に配置されたビーム整形レンズによって光を整形すると、光源と結合レンズとの距離がわずかにずれただけで、レーザ光の楕円の長軸方向と短軸方向での焦点位置のずれ(非点隔差)が発生し、結合効率が低下する。具体的には、光源と結合レンズとの距離が±2μmずれると、約0.5dB効率が下がることがわかっている。このような距離の誤差は、結合レンズの取付けの際に十分に起こり得る。さらに、上記の構成ではビーム整形レンズの位置を調整することは難しく、ビーム整形レンズにおいて非点隔差を補正することは困難である。
【0006】
本発明は以上の問題点を鑑みてなされたものであり、断面楕円形状のレーザ光を断面略円形状のレーザ光に整形すると共に、非点隔差の発生を抑え高効率のビーム整形結合が可能であり、かつその位置調整も容易なビーム整形レンズを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため本発明は、楕円の断面形状を持つレーザ光を略円形の断面形状を持つレーザ光に整形して光ファイバに出射するビーム整形レンズにおいて、平板状のレンズ基部を有し、該レンズ基部の出射面は光ファイバ近傍において光ファイバ端面に対向すると共に、入射面には上記光ファイバの延長上に略半円筒状のビーム補正部を有し、該ビーム補正部はその長手方向がレーザ光のビーム補正部への入射位置における短軸の方向と略一致するように配置され、レーザ光をビーム補正部への入射位置における長軸の方向に縮小することを特徴として構成されている。
【0008】
本発明によれば、断面楕円形状のレーザ光を断面略円形状のレーザ光に整形できるともに、ビームウェスト近傍に配置されることから非点隔差の発生を抑えることができ、また位置調整が容易となる。
【0009】
また本発明は、上記レンズ基部の出射面は上記光ファイバ端面に当接することを特徴として構成されている。
【0010】
本発明によれば、光ファイバとビーム整形レンズとの間に隙間がなくなり、レーザ光の屈折に関する設計が容易となる。
【0011】
また本発明は、上記レンズ基部の周縁部に上記光ファイバを保持するフェルールを覆って係合する略円筒形状の係合部を有することを特徴として構成されている。
【0012】
本発明によれば、ビーム整形レンズをフェルールに係合させて、光ファイバの位置調整と同時にビーム整形レンズの位置調整を行うことができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ詳細に説明する。なお、図面の説明において、Aは光源たる半導体レーザの接合面に対して垂直方向(θ⊥方向)の断面図、Bは半導体レーザの接合面に対して水平方向(θ//方向)の断面図とする。図1は本発明の実施形態におけるビーム整形レンズの斜視図、図2は本発明の実施形態におけるビーム整形レンズの側面図、図3は本発明の実施形態におけるビーム整形レンズを用いたビーム整形の模式図、図4はビームウェスト近傍におけるビーム整形の模式図である。
【0014】
ビーム整形レンズ10は図1に示すように、略円形の薄板状のレンズ基部11を有し、このレンズ基部11の光ファイバ21側の面、すなわち光ファイバ21に対してレーザ光を出射する出射面11aは、図2に示すように、フェルール22によって保持された光ファイバ21の光ファイバ端面21aに当接する。また、他の一面、すなわちレーザ光が入射する入射面11bの光ファイバ21の延長上には、略半円筒状の凸状のビーム補正部12が形成されている。このビーム補正部12は、一般にシリンドリカルレンズと呼ばれるものであり、θ//方向の断面には曲率を持っているので光は曲げられるが、θ⊥方向の断面には曲率がないために平行平面ガラスを光が通過するのと同じように、方向が少し変化するだけで入射した光は素通りする。
なお、ここではレンズ基部11の形状を略円形の薄板状とした。しかしレンズ基部11の形状はこれに限られるものではなく、例えば方形状など、他の形状であってもよく、またレンズ基部11の厚さはその屈折率や必要な性能によって変化する。また、レンズ基部11の出射面11aは必ずしも光ファイバ21の光ファイバ端面21aに当接している必要はなく、間隔が空いていてもよい。
【0015】
またこのレンズ基部11は、出射面11aの周縁部に、光ファイバ21を保持するためのフェルール22と係合する係合部13を有する。係合部13は略円筒形状であり、フェルール22を覆うようにして係合させる。このようなビーム整形レンズ10は、プラスティック等の樹脂またはガラスによって一体成形される。なお本実施形態においては、図1、図2に示すように、係合部13はフェルール22の一部を覆うように形成されている。しかし、フェルール22全体を覆うように形成してもよい。
【0016】
ここで図3に示すような、光源たる半導体レーザ30から出射された発散光であるレーザ光を集光するための結合レンズ40は、レーザ溶接等によって強固に装着される。しかしこのとき、半導体レーザ30と結合レンズ40の距離が、所定の距離からずれてしまうことがあり、これによって非点隔差が生じる場合がある。しかし、本発明におけるビーム整形レンズ10は、光ファイバ21に当接、またフェルール22に係合させることにより、ビーム整形レンズ10の位置調整を、光ファイバ21の位置調整と同時に行うことができ、従って、ビームウェスト近傍でこのような非点隔差を容易に補正することが可能なる。
【0017】
次に、このようなビーム整形レンズ10を用いたビーム整形について説明する。図3に示すように、光源たる半導体レーザ30から出射されるレーザ光は、θ⊥方向とθ//方向では発散角が異なり、その断面形状は楕円形である。本実施形態では、θ⊥方向とθ//方向のビーム広がり比が3:1であるものとする。すなわち、θ⊥方向が長軸、θ//方向が短軸となる。ただし、本発明におけるビーム整形レンズは、その他のビーム広がり比であっても適用可能である。
【0018】
レーザ光は発散光であるため、まず結合レンズ40によって収束光とされ、フェルール22に取付けられたビーム整形レンズ10に集光される。ここでレーザ光は結合レンズ40によって収束光にされることにより、ビームウェスト近傍では断面の楕円の長軸と短軸が入れ替わっている。すなわち、ビーム整形レンズ10に入射するレーザ光はθ⊥方向とθ//方向のビーム広がり比が1:3となっており、θ⊥方向が短軸、θ//方向が長軸となる。このような断面楕円状のレーザ光を、ビーム整形レンズ10によって長軸方向、即ちθ//方向に縮小することにより、断面略円形状のレーザ光に整形する。
【0019】
なおここでは、理解を容易にするため、図4に示すように、光ファイバ21からレーザ光が出射される場合について考える。すなわち、光ファイバ21から出射された断面円形状のレーザ光が、ビーム整形レンズ10を通過した際にθ//方向に3倍拡大され、θ⊥方向とθ//方向のビーム広がり比が1:3の断面楕円形状となるようになっていれば、半導体レーザ30側からのθ⊥方向とθ//方向のビーム広がり比が1:3の断面楕円形状のレーザ光は、断面円形に整形されて光ファイバ21に入射することになる。ビーム整形レンズ10は、ビーム補正部12の長手方向とレーザ光の短軸方向、即ちビーム補正部12の長手方向とθ⊥方向とが略一致するように、フェルール22に取付けられる。
【0020】
このように光ファイバ21からレーザ光が出射される場合について考えた場合、θ//方向のレーザ光の焦点位置からビーム補正部12の先端までの距離d、θ⊥方向のレーザ光の焦点位置からビーム補正部12の先端までの距離d’ とすると、θ⊥方向のレーザ光の焦点位置とθ//方向のレーザ光の焦点位置のずれ、すなわち非点隔差dはd=d+d’と表される。また、光ファイバ端面21aにおけるレーザ光のθ⊥方向のビーム半径をw、θ//方向のレーザ光の焦点位置におけるビーム半径wとすると、ビーム整形倍率をMbはMb=w/wと表される。
【0021】
本実施形態においては、空気の屈折率nを1.0、ビーム整形レンズ10の屈折率nを1.45、使用するレーザ光の波長を980nmとする。またこれらの値から、ビーム整形倍率Mbとレンズ厚d、及びビーム補正部12の曲率半径Rの関係は図5のグラフのように、また、非点隔差dとレンズ厚d、及びビーム補正部12の曲率半径Rの関係は図6のように、さらに、結合効率ηとレンズ厚d、及びビーム補正部12の曲率半径Rの関係は図7のようになる。
【0022】
ここで、光ファイバ21から出射された断面円形状のレーザ光が、ビーム整形レンズ10を通過した後にはθ⊥方向とθ//方向のビーム広がり比が1:3の断面楕円形状のレーザ光となっていればよいので、必要なビーム整形倍率Mbは3ということになる。そこで図5よりビーム整形倍率Mbが3となるレンズ厚dは、曲率半径R=40μmの場合には、約120μm、約140μm、曲率半径R=50μmの場合には、約120μm、約170μm、曲率半径R=60μmの場合には、約150μm、約240μmといった様に、複数の曲率半径Rに対してビーム整形倍率Mbが3となる点が存在する。
【0023】
次に、これらの曲率半径R及びレンズ厚dを図6に対応させる。すなわち、上述のビーム整形倍率Mbが3のレンズ厚dのうち、非点隔差dが0に近いものを探す。そうすると、曲率半径R=50μmの場合の約120μm、曲率半径R=60μmの場合の約150μmが、非点隔差dが0に近いことがわかる。
これらの結果として、ビーム整形レンズ10の曲率半径Rとレンズ厚dによる結合効率の関係を示したのが図7である。例えば、ビーム整形レンズ10の曲率半径を50μmにすると、ビーム整形レンズ厚110〜120μmで高い結合効率が得られる。同様に、曲率半径60μmでレンズ厚150μmも高い結合効率が得られることがわかる。
【0024】
このようにして、必要なビーム整形倍率Mbから最適な曲率半径R、レンズ厚dを選択することにより、ビームウェスト近傍における非点隔差dの発生を抑えることができ、結合効率ηを高めることができる。
ただし、上述した数値は一例であり、必要なビーム整形倍率Mbに応じて、レンズ厚d、曲率半径Rは自由に変更可能であり、また、これらの中から非点隔差dができるだけ小さく、また結合効率ηができるだけ高いものを選ぶことができる。
【0025】
【発明の効果】
以上本発明によれば、レンズ基部の出射面は光ファイバ近傍において光ファイバ端面に対向すると共に、入射面には光ファイバの延長上に略半円筒状のビーム補正部を有し、該ビーム補正部はその長手方向がレーザ光のビーム補正部への入射位置における短軸の方向と略一致するように配置され、レーザ光をビーム補正部への入射位置における長軸の方向に縮小することにより、断面楕円形状のレーザ光を断面略円形状のレーザ光に整形できるともに、ビームウェスト近傍に配置されることから非点隔差の発生を抑えることができる。さらに、また位置調整が容易となり、光ファイバの前段が原因で発生した非点隔差を容易に補正することができ、これらのことから、光ファイバにおけるレーザ光の結合効率を高めることができる。
【0026】
また本発明によれば、レンズ基部の出射面は光ファイバ端面に当接することから、光ファイバとビーム整形レンズとの間に隙間がなくなるので、隙間における空気の屈折率を考慮する必要がなくなり、レーザ光の屈折に関する設計が容易となる。
【0027】
また本発明によれば、上記レンズ基部の周縁部に上記光ファイバを保持するフェルールを覆って係合する略円筒形状の係合部を有することから、ビーム整形レンズをフェルールに係合させて、光ファイバの位置調整と同時にビーム整形レンズの位置調整をすることができる。これにより、光ファイバの前段が原因で発生した非点隔差の補正を一層容易に行うことができる。
【図面の簡単な説明】
【図1】本発明の実施形態におけるビーム整形レンズの斜視図である。
【図2】本発明の実施形態におけるビーム整形レンズの側面図である。
【図3】本発明の実施形態におけるビーム整形レンズを用いたビーム整形の模式図である。
【図4】ビームウェスト近傍におけるビーム整形の模式図である。
【図5】ビーム整形倍率とレンズ厚、及びビーム補正部の曲率半径の関係を示すグラフである。
【図6】非点隔差とレンズ厚、及びビーム補正部の曲率半径の関係を示すグラフである。
【図7】結合効率とレンズ厚、及びビーム補正部の曲率半径の関係を示すグラフである。
【図8】従来のレーザ光集光の模式図である。
【符号の説明】
10 ビーム整形レンズ
11 レンズ基部
11a 出射面
11b 入射面
12 ビーム補正部
13 係合部
21 光ファイバ
21a 光ファイバ端面
22 フェルール
30 半導体レーザ
40 結合レンズ

Claims (3)

  1. 楕円の断面形状を持つレーザ光を略円形の断面形状を持つレーザ光に整形して光ファイバに出射するビーム整形レンズにおいて、
    平板状のレンズ基部を有し、該レンズ基部の出射面は光ファイバ近傍において光ファイバ端面に対向すると共に、入射面には上記光ファイバの延長上に略半円筒状のビーム補正部を有し、
    該ビーム補正部はその長手方向がレーザ光のビーム補正部への入射位置における短軸の方向と略一致するように配置され、レーザ光をビーム補正部への入射位置における長軸の方向に縮小することを特徴とするビーム整形レンズ。
  2. 上記レンズ基部の出射面は上記光ファイバ端面に当接することを特徴とする請求項1記載のビーム整形レンズ。
  3. 上記レンズ基部の周縁部に上記光ファイバを保持するフェルールを覆って係合する略円筒形状の係合部を有することを特徴とする請求項1又は2記載のビーム整形レンズ。
JP2003013859A 2003-01-22 2003-01-22 ビーム整形レンズ Withdrawn JP2004226647A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013859A JP2004226647A (ja) 2003-01-22 2003-01-22 ビーム整形レンズ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013859A JP2004226647A (ja) 2003-01-22 2003-01-22 ビーム整形レンズ

Publications (1)

Publication Number Publication Date
JP2004226647A true JP2004226647A (ja) 2004-08-12

Family

ID=32902076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013859A Withdrawn JP2004226647A (ja) 2003-01-22 2003-01-22 ビーム整形レンズ

Country Status (1)

Country Link
JP (1) JP2004226647A (ja)

Similar Documents

Publication Publication Date Title
US6757106B2 (en) Optical lens, optical lens unit, stacked type optical lens, optical system and semiconductor laser apparatus
US7444046B2 (en) Diode laser array coupling optic and system
JP3372785B2 (ja) 照明装置及びそれを用いた撮影装置
US6526089B1 (en) Laser marker and method of light spot adjustment therefor
JPH0627904B2 (ja) レーザービームの走査光学系
US20060061870A1 (en) Optical system for a light emitting apparatus
US20130163091A1 (en) Multiple beam combiner for laser processing apparatus
JP2009510535A (ja) Fシータ対物レンズおよびfシータ対物レンズを備えたスキャナ装置
CN107367892A (zh) 照明光学系统和具有该照明光学系统的图像投影设备
JPH10186118A (ja) 回折光学素子及びそれを有する光学機器
CN111801856B (zh) 激光模块
JP2009503593A (ja) 線焦点を作成する光学システム、この光学システムを用いる走査システム、および基板のレーザ加工方法
KR102318271B1 (ko) 펌핑 광 장치, 이를 구비한 디스크 레이저 및 레이저 활성 매체의 펌핑 방법
WO2013097479A1 (zh) 匀光元件及光源系统
JP2007531028A (ja) ビーム、例えば、レーザビーム形成用光学装置
CN112470055B (zh) 光通道及其制作方法
JP2004226647A (ja) ビーム整形レンズ
JP3930409B2 (ja) 光走査装置
US20100053739A1 (en) Laser device providing an adjusted field distribution for laser beams thereof
JPH1168197A (ja) 半導体レーザ励起固体レーザ装置
WO2020059664A1 (ja) 合波光学系
JP4633534B2 (ja) 取付基準面付きレンズ
JPH07318854A (ja) ビーム形状補正光学系
JP2004186114A (ja) 光源装置
JP7151497B2 (ja) 光源装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404