JP2004221097A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2004221097A
JP2004221097A JP2003002891A JP2003002891A JP2004221097A JP 2004221097 A JP2004221097 A JP 2004221097A JP 2003002891 A JP2003002891 A JP 2003002891A JP 2003002891 A JP2003002891 A JP 2003002891A JP 2004221097 A JP2004221097 A JP 2004221097A
Authority
JP
Japan
Prior art keywords
trench
polysilicon
reaction chamber
substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003002891A
Other languages
Japanese (ja)
Inventor
Masaaki Ogino
正明 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003002891A priority Critical patent/JP2004221097A/en
Publication of JP2004221097A publication Critical patent/JP2004221097A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the variations of the recessing amount caused by etched back polysilicon filling the trench and to accordingly reduce the variations of the threshold voltages in a trenched semiconductor device. <P>SOLUTION: A substrate 1 where the trench 3 is formed is put in the reaction chamber of a low pressure CVD device. The trench is filled with polysilicon 6 by a low pressure CVD method. Thermal treatment is performed at 550°C to 600°C while the reaction chamber is continuously purged with nitrogen gas. The trench is filled with polysilicon 6 whose crystal grain size is small. Then, dispersion of the subsiding amount of polysilicon in the trench by etching back of polysilicon 6 is made small. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、トレンチ構造を有する半導体装置の製造方法に関し、特にトレンチ内をゲートポリシリコンで埋めた構造のトレンチ型MOS半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、IGBT(絶縁ゲート型バイポーラトランジスタ)やMOSFET(MOSゲート電界効果トランジスタ)やMOSサイリスタ(MOSゲートサイリスタ)などにおいて、オン特性やオン抵抗を改善するため、トレンチゲート構造が採用されることがある。従来のトレンチゲート構造部の形成手順について説明する。図9〜図12は、従来のトレンチゲート構造部の形成工程順に半導体装置の要部を示す断面図である。まず、シリコン基板1の表面層にpチャネル領域2を形成する。その後、トレンチ3を形成し、トレンチ底部の角をエッチングにより丸めた後、犠牲酸化およびエッチングをおこない、さらにトレンチ内面およびトレンチ周囲の基板表面にわたってゲート酸化膜4を形成する(図9を参照)。
【0003】
つづいて、減圧CVD装置を用いて、基板表面およびトレンチ3内に、n型不純物またはp型不純物をドープしたポリシリコン(ドープトポリシリコン)5を堆積する。これによって、トレンチ3はポリシリコン5により埋められる(図10を参照)。つづいて、減圧CVD装置の反応室内をおおよそ1時間ほど通常温度(550℃)で窒素ガスを流してパージした後、基板1を取り出し、熱処理炉を用いて900℃程度の高温で15分間熱処理をおこなう。この熱処理によって、ポリシリコン5中のドーパントが電気的に活性化されるとともに、ポリシリコン5の結晶粒51が成長する(図11を参照)。図11では、ポリシリコン5の一部について結晶粒51を誇張して示しているが、本発明者が調べたところ、この結晶粒51の平均粒径は200〜300nmであった。
【0004】
つづいて、フォトリソグラフィによってパターニングをおこない、トレンチ周囲の基板表面を覆うゲート酸化膜4が露出するまでポリシリコン5をエッチバックする。このエッチバックによりトレンチ周囲の基板表面上のポリシリコン5はなくなる。また、トレンチ3内のポリシリコン5の表面はトレンチ周囲の基板表面を覆うゲート酸化膜4の表面よりも低くなる(図12を参照)。ここで、本明細書中では、基板表面とエッチバック後のトレンチ3内のポリシリコン5の表面との高さの差をトレンチ内ポリシリコン落ち込み量と呼ぶ。
【0005】
しかる後、Asなどのイオン注入をおこなってソース領域やドレイン領域を形成し、層間絶縁膜を形成し、ソース、ドレイン、ゲートの各電極などを形成してMOSFETが完成する。以上のようにして作製されたトレンチMOSFETは、トレンチ3内のポリシリコン5、すなわちゲートポリシリコンに電気的に接続する図示しないゲート電極に適当な電圧を印加することによって、トレンチ3の内面に沿ってpチャネル領域2の表面層に反転層(チャネル)が生じ、図示しないドレイン電極とソース電極とが導通して電流が流れる。なお、ドレイン電極は基板裏面に設けられる。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来の製造方法では、完成したMOSFETのしきい値電圧がばらつくという不具合がある。この不具合の原因について説明する。ポリシリコン5のエッチバック後におこなうAsのイオン注入の際には、トレンチ内の側壁からもpチャネル領域2に微量のAsイオンが注入されるため、本来的には、図13に示すようにトレンチ内ポリシリコン落ち込み量はトレンチ内のゲート酸化膜4と接する部分で均一になるのが理想である。
【0007】
しかし、従来の製造方法にしたがうとポリシリコン5の結晶粒が大きくなるため、図14に示すように、トレンチ内においてポリシリコン5のゲート酸化膜4と接する部分の結晶粒界の高さに大きなばらつきが生じる。そのため、エッチバックの際にポリシリコン5の結晶粒が粒界に沿って欠け落ちると、図12に示すようにトレンチ内ポリシリコン落ち込み量に大きなばらつきが生じてしまう。図12の例で具体的に説明すれば、ポリシリコン5の左端の高さが右端の高さよりも低くなってしまう。本発明者が調べたところ、トレンチ内ポリシリコン落ち込み量のばらつきが20%を超える場合があるということがわかった。
【0008】
このようにトレンチ内ポリシリコン落ち込み量がばらつくと、pチャネル領域2に注入されるAsの深さにばらつきが生じる。それによって、nソース領域の深さがばらつくことになる。pチャネル領域2の濃度は基板表面側から基板内部側へ向かって傾斜しているため、nソース領域が深くなるとpチャネル領域2の最大濃度が低くなってしまう。つまり、トレンチ内ポリシリコン落ち込み量のばらつきによって、nソース領域の深さがばらつき、pチャネル領域2の最大濃度がばらつくことになる。
【0009】
pチャネル領域2の濃度のばらつきとMOSFETのしきい値電圧のばらつきとの関係について説明する。一般に、MOSFETのしきい値電圧Vthはつぎの(1)式で表される。ただし、εはシリコンの比誘電率、εは真空中の誘電率、qは電荷素量、Nはpチャネル領域2の最大濃度、Cは酸化膜の容量、φは基板のフェルミポテンシャル、φMSはゲート電極と基板との仕事関数差、Qssは界面準位である。
【数1】

Figure 2004221097
【0010】
簡素化するため界面準位Qssがばらつかないと仮定すると、しきい値電圧のばらつきΔVthはつぎの(2)式で表される。ただし、kはボルツマン定数、Tは絶対温度、ΔNはpチャネル領域2の最大濃度のばらつき、toxは酸化膜厚、Δtoxは酸化膜厚のばらつきである。
【数2】
Figure 2004221097
【0011】
上記(2)式において、酸化膜厚toxをおおよそ1100オングストローム(1.1×10−7m)、pチャネル領域2の最大濃度Nをおおよそ1×1017cm−3とすると、ΔVthはつぎの(3)式となる。
【数3】
Figure 2004221097
【0012】
上記(3)式より、しきい値電圧のばらつきΔVthはpチャネル領域2の最大濃度のばらつきΔNと酸化膜厚のばらつきΔtoxとにより決定されることになる。酸化膜厚のばらつきΔtoxについては、たとえば縦型拡散炉を用い、酸化処理中にウエハを保持する石英ボートを1rpm程度で回転させることによって1%以内に抑えることが可能である。pチャネル領域2の最大濃度のばらつきについては、上述したようにトレンチ内ポリシリコン落ち込み量がばらつくため、解消することができない。したがって、しきい値電圧がばらつくことになる。
【0013】
図15に、本発明者が調べたトレンチ内ポリシリコン落ち込み量としきい値電圧との関係を示す。上述したように、トレンチ内ポリシリコン落ち込み量のばらつきは20%を超えることがわかっている。図15より、トレンチ内ポリシリコン落ち込み量のばらつきをたとえば23%とすると、しきい値のばらつきは10%となり、したがって従来は良品率が低かった。
【0014】
本発明は、上記問題点に鑑みてなされたものであって、トレンチ内に充填されるポリシリコンのエッチバックによる落ち込み量のばらつきを低く抑え、それによってしきい値電圧のばらつきの小さいトレンチ型半導体装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかる半導体装置の製造方法は、トレンチが刻まれた基板を減圧CVD装置の反応室内に入れ、減圧CVD法によりトレンチ内をポリシリコンで埋めた後、そのまま連続して反応室内を窒素ガスでパージしながら550℃以上600℃以下の温度で熱処理をおこなうことを特徴とする。この発明によれば、減圧CVD装置の反応室内でポリシリコンの成膜に連続して比較的低温で熱処理がおこなわれるため、トレンチ内が結晶粒径の小さいポリシリコンで充填される。したがって、ポリシリコンのエッチバックによるトレンチ内ポリシリコン落ち込み量のばらつきが小さくなり、ソース領域を形成するためのAsイオンの注入深さのばらつきが小さくなり、pチャネル領域の濃度のばらつきが抑えられる。
【0016】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。図1〜図8は、本発明にかかる製造方法の形成工程順にMOSFETの要部を示す断面図であり、これらの図にしたがって本発明方法を説明する。なお、本発明方法により製造されるMOSFETは、各図に示す要部以外に、主に周縁領域に耐圧を分担する構造を有しているが、その構造および製造プロセスに関しては本発明の趣旨からはずれるので、ここでは説明を省略する。
【0017】
まず、シリコン基板1の表面層にpチャネル領域2を形成し(図1を参照)、ついでトレンチ3を形成し(図2を参照)、トレンチ底部の角を丸め、犠牲酸化等をおこなった後、ゲート酸化膜4を形成する(図3を参照)。つづいて、減圧CVD装置の反応室内に基板1を入れ、成膜温度550℃、圧力100Paの条件で、SiHガスを原料として基板表面およびトレンチ3内に、ドーパントとしてPH3をドープしたポリシリコン(ドープトポリシリコン)6を8000オングストロームの厚さまで堆積する。ここまでは従来方法と同様である。
【0018】
つづいて、おおよそ1時間ほど反応室内に窒素ガスを流してパージをおこなう。その際、反応室内の温度を550〜600℃の範囲内の温度に上げて熱処理を同時におこなう。つまり、ポリシリコン6の成膜とその熱処理を、減圧CVD装置の反応室内に基板1を入れたまま連続しておこなう。パージ終了後、すなわち熱処理終了後、反応室内から基板1を取り出す(図4を参照)。この後、従来方法と同様に、ポリシリコン6をエッチバックし(図5を参照)、基板表面にマスク7を形成してAsのイオン注入をおこなう(図6を参照)。つづいて、マスク7の除去およびAsドライブによるソース領域8の形成をおこない(図7を参照)、層間絶縁膜9を形成し、コンタクト孔を開けて金属配線10などを形成する(図8を参照)。さらに、図示しないが、基板裏面にドレイン電極を形成してMOSFETが完成する。
【0019】
ここで、ポリシリコン6の成膜および熱処理が済んで減圧CVD装置の反応室から取り出した基板1について、本発明者がX線回折および断面のTEM観察をおこなったところ、ポリシリコン6の平均粒径は30〜100nmであった。これは、従来方法による平均粒径(200〜300nm)よりも著しく小さい。その様子を図4に模式的に示すが、同図ではポリシリコン6の一部について結晶粒61を誇張して示している。
【0020】
比較として、ポリシリコンの成膜後に減圧CVD装置の反応室内の温度を650℃以上にして窒素パージ中に熱処理をおこなったところ、ポリシリコンの平均粒径は100nm以上であり、熱処理温度を550〜600℃とする場合ほどには結晶粒は小さくならなかった。また、650℃以上の場合には、反応室の内面に付着したポリシリコン膜が熱収縮によって剥がれ落ちてパーティクル発生原因となり、製造歩留まりが低下することがあった。したがって、このときの熱処理温度は550℃以上650℃未満、好ましくは600℃以下の温度であるのがよい。
【0021】
また、ポリシリコン6をエッチバックした後に断面SEM観察によりトレンチ内ポリシリコン落ち込み量を測定したところ、本発明方法によればそのばらつきは10%であった。これは、従来方法によるばらつき(20%以上)の半分以下である。また、しきい値電圧のばらつきを求めたところ、本発明にかかる方法によれば3%であり、従来方法でのばらつき10%に対して著しく改善されている。
【0022】
上述した実施の形態によれば、トレンチ3が刻まれた基板1を減圧CVD装置の反応室内に入れ、減圧CVD法によりトレンチ内をポリシリコン6で埋めた後、そのまま連続して反応室内を窒素ガスでパージしながら550℃以上600℃以下の温度で熱処理をおこなうため、トレンチ内が結晶粒径の小さいポリシリコン6で充填される。したがって、ポリシリコン6のエッチバックによるトレンチ内ポリシリコン落ち込み量のばらつきが小さくなり、ソース領域8を形成するためのAsイオンの注入深さのばらつきが小さくなり、pチャネル領域2の濃度のばらつきが抑えられる。したがって、しきい値電圧のばらつきが小さくなり、完成した半導体装置の良品率が向上する。
【0023】
また、上述した実施の形態によれば、減圧CVD装置の反応室内を窒素ガスでパージしながらその反応室内で熱処理をおこなうので、従来方法と比べて工程を短縮することができるという利点がある。
【0024】
以上において本発明は種々変更可能である。たとえば、p型およびn型の導電タイプを逆転させてもよい。また、本発明はMOSFET以外にもIGBTやMOSサイリスタなどのトレンチゲート構造を有する半導体装置に適用することができる。また、成膜に連続しておこなう熱処理によって結晶粒を成長させる対象は、ゲート電極となるポリシリコンに限らず、トレンチ内に充填された後にエッチバックされるものであればよい。また、ポリシリコン6の成膜後、一旦減圧CVD装置の反応室から基板1を取り出してから550〜600℃で熱処理をおこなう構成としてもよいのはもちろんである。
【0025】
【発明の効果】
本発明によれば、減圧CVD装置の反応室内でポリシリコンの成膜に連続して比較的低温で熱処理がおこなわれるため、トレンチ内が結晶粒径の小さいポリシリコンで充填されることになり、ポリシリコンのエッチバックによるトレンチ内ポリシリコン落ち込み量のばらつきが小さくなる。それによって、ソース領域を形成するためのAsイオンの注入深さのばらつきが小さくなるので、pチャネル領域の濃度のばらつきが抑えられる。したがって、しきい値電圧のばらつきが小さくなり、完成した半導体装置の良品率が向上する。
【図面の簡単な説明】
【図1】本発明にかかる製造方法の形成工程順に半導体装置の要部を示す断面図である。
【図2】本発明にかかる製造方法の形成工程順に半導体装置の要部を示す断面図である。
【図3】本発明にかかる製造方法の形成工程順に半導体装置の要部を示す断面図である。
【図4】本発明にかかる製造方法の形成工程順に半導体装置の要部を示す断面図である。
【図5】本発明にかかる製造方法の形成工程順に半導体装置の要部を示す断面図である。
【図6】本発明にかかる製造方法の形成工程順に半導体装置の要部を示す断面図である。
【図7】本発明にかかる製造方法の形成工程順に半導体装置の要部を示す断面図である。
【図8】本発明にかかる製造方法の形成工程順に半導体装置の要部を示す断面図である。
【図9】従来のトレンチゲート構造部の形成工程順に半導体装置の要部を示す断面図である。
【図10】従来のトレンチゲート構造部の形成工程順に半導体装置の要部を示す断面図である。
【図11】従来のトレンチゲート構造部の形成工程順に半導体装置の要部を示す断面図である。
【図12】従来のトレンチゲート構造部の形成工程順に半導体装置の要部を示す断面図である。
【図13】従来の製造方法による不具合を説明するために半導体装置の要部を示す断面図である。
【図14】従来の製造方法による不具合を説明するために半導体装置の要部を示す断面図である。
【図15】従来の製造方法による不具合を説明するためにトレンチ内ポリシリコン落ち込み量としきい値電圧との関係を示す特性図である。
【符号の説明】
1 基板
3 トレンチ
6 ポリシリコン(電極となる膜)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device having a trench structure, and more particularly to a method for manufacturing a trench type MOS semiconductor device having a structure in which a trench is filled with gate polysilicon.
[0002]
[Prior art]
In recent years, a trench gate structure may be adopted in IGBTs (insulated gate bipolar transistors), MOSFETs (MOS gate field effect transistors), MOS thyristors (MOS gate thyristors), and the like in order to improve the ON characteristics and ON resistance. . A conventional procedure for forming a trench gate structure will be described. 9 to 12 are cross-sectional views showing main parts of a semiconductor device in the order of steps of forming a conventional trench gate structure. First, a p-channel region 2 is formed on a surface layer of a silicon substrate 1. Thereafter, a trench 3 is formed, the corner of the bottom of the trench is rounded by etching, sacrificial oxidation and etching are performed, and a gate oxide film 4 is formed over the inner surface of the trench and the substrate surface around the trench (see FIG. 9).
[0003]
Subsequently, polysilicon (doped polysilicon) 5 doped with an n-type impurity or a p-type impurity is deposited on the surface of the substrate and in the trench 3 using a low-pressure CVD apparatus. As a result, the trench 3 is filled with the polysilicon 5 (see FIG. 10). Subsequently, after purging by flowing a nitrogen gas at a normal temperature (550 ° C.) for about 1 hour in the reaction chamber of the reduced pressure CVD apparatus, the substrate 1 is taken out, and heat treated at a high temperature of about 900 ° C. for 15 minutes using a heat treatment furnace. Do it. By this heat treatment, the dopant in the polysilicon 5 is electrically activated, and the crystal grains 51 of the polysilicon 5 grow (see FIG. 11). In FIG. 11, the crystal grains 51 are exaggerated for a part of the polysilicon 5. However, when the present inventors investigated, the average grain size of the crystal grains 51 was 200 to 300 nm.
[0004]
Subsequently, patterning is performed by photolithography, and the polysilicon 5 is etched back until the gate oxide film 4 covering the substrate surface around the trench is exposed. Due to this etch back, the polysilicon 5 on the substrate surface around the trench disappears. The surface of the polysilicon 5 in the trench 3 is lower than the surface of the gate oxide film 4 covering the substrate surface around the trench (see FIG. 12). Here, in this specification, the difference in height between the substrate surface and the surface of the polysilicon 5 in the trench 3 after the etch-back is referred to as a trench polysilicon drop amount.
[0005]
Thereafter, ion implantation of As or the like is performed to form a source region and a drain region, an interlayer insulating film is formed, and respective electrodes of a source, a drain, and a gate are formed, thereby completing a MOSFET. The trench MOSFET manufactured as described above is formed along the inner surface of the trench 3 by applying an appropriate voltage to the polysilicon 5 in the trench 3, that is, a gate electrode (not shown) electrically connected to the gate polysilicon. As a result, an inversion layer (channel) is generated in the surface layer of the p-channel region 2, and a current flows due to conduction between a drain electrode and a source electrode (not shown). Note that the drain electrode is provided on the back surface of the substrate.
[0006]
[Problems to be solved by the invention]
However, the conventional manufacturing method described above has a disadvantage that the threshold voltage of the completed MOSFET varies. The cause of this defect will be described. At the time of As ion implantation performed after the polysilicon 5 is etched back, a small amount of As ions are implanted into the p-channel region 2 also from the side walls in the trench. Ideally, the amount of depression of the inner polysilicon becomes uniform at a portion in contact with the gate oxide film 4 in the trench.
[0007]
However, according to the conventional manufacturing method, the crystal grains of the polysilicon 5 become large. Therefore, as shown in FIG. 14, the height of the crystal grain boundary at the portion in contact with the gate oxide film 4 of the polysilicon 5 in the trench is large. Variations occur. For this reason, if the crystal grains of the polysilicon 5 are chipped off along the grain boundaries during the etch back, a large variation occurs in the polysilicon drop amount in the trench as shown in FIG. Specifically, referring to the example of FIG. 12, the height of the left end of the polysilicon 5 is lower than the height of the right end. Investigations by the present inventor have revealed that the variation in the amount of polysilicon drop in the trench may exceed 20%.
[0008]
When the amount of polysilicon drop in the trench varies, the depth of As implanted into p channel region 2 varies. As a result, the depth of the n source region varies. Since the concentration of the p-channel region 2 is inclined from the substrate surface side toward the inside of the substrate, the maximum concentration of the p-channel region 2 decreases as the n-source region becomes deeper. In other words, the depth of the n source region varies due to the variation in the polysilicon drop amount in the trench, and the maximum concentration of the p channel region 2 varies.
[0009]
The relationship between the variation in the concentration of the p-channel region 2 and the variation in the threshold voltage of the MOSFET will be described. Generally, the threshold voltage Vth of a MOSFET is expressed by the following equation (1). However, epsilon s is the dielectric constant of silicon, epsilon 0 is the dielectric constant in vacuum, q is the elementary charge, the maximum concentration of N A p-channel region 2, C 0 is the capacitance of the oxide film, phi f is the substrate Fermi potential, φ MS is a work function difference between the gate electrode and the substrate, and Q ss is an interface state.
(Equation 1)
Figure 2004221097
[0010]
Assuming that the not vary interface state Q ss order to simplify, it is expressed by equation (2) of the variation [Delta] V th Hatsugi threshold voltage. Here, k is the Boltzmann constant, T is the absolute temperature, .DELTA.N A is variation in the maximum concentration of the p-channel region 2, t ox is the oxide film thickness, Delta] t ox is a variation in oxide thickness.
(Equation 2)
Figure 2004221097
[0011]
In the above (2), approximately 1100 angstroms oxide thickness t ox (1.1 × 10 -7 m ), when approximately 1 × 10 17 cm -3 or up to a concentration N A of the p channel region 2, [Delta] V th Is given by the following equation (3).
[Equation 3]
Figure 2004221097
[0012]
From equation (3), the variation [Delta] V th of the threshold voltage will be determined by the variation .DELTA.N A and variation Delta] t ox of the oxide film thickness of the maximum concentration of the p-channel region 2. The variation Δt ox in the oxide film thickness can be suppressed to within 1% by, for example, using a vertical diffusion furnace and rotating the quartz boat holding the wafer during the oxidation process at about 1 rpm. The variation in the maximum concentration of the p-channel region 2 cannot be eliminated because the amount of polysilicon drop in the trench varies as described above. Therefore, the threshold voltage varies.
[0013]
FIG. 15 shows the relationship between the amount of polysilicon drop in the trench and the threshold voltage examined by the present inventors. As described above, it has been found that the variation in the polysilicon drop amount in the trench exceeds 20%. As shown in FIG. 15, when the variation in the amount of polysilicon drop in the trench is, for example, 23%, the variation in the threshold value is 10%, and thus the non-defective rate is low in the related art.
[0014]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and suppresses variation in the amount of drop due to etch back of polysilicon filled in a trench, thereby reducing the variation in threshold voltage. It is intended to provide a device.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention includes the steps of: placing a substrate having a trench formed therein in a reaction chamber of a low-pressure CVD apparatus; filling the trench with polysilicon by a low-pressure CVD method; Then, the heat treatment is performed at a temperature of 550 ° C. or more and 600 ° C. or less while purging the reaction chamber with nitrogen gas. According to the present invention, since the heat treatment is performed at a relatively low temperature in the reaction chamber of the low-pressure CVD apparatus in succession to the formation of polysilicon, the trench is filled with polysilicon having a small crystal grain size. Therefore, the variation in the polysilicon drop amount in the trench due to the polysilicon etch back is reduced, the variation in the implantation depth of As ions for forming the source region is reduced, and the variation in the concentration in the p-channel region is suppressed.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 to 8 are cross-sectional views showing the main parts of a MOSFET in the order of the steps of the manufacturing method according to the present invention, and the method of the present invention will be described with reference to these drawings. In addition, the MOSFET manufactured by the method of the present invention has a structure in which the peripheral region is mainly responsible for the breakdown voltage in addition to the main part shown in each drawing. The description is omitted here.
[0017]
First, a p-channel region 2 is formed in a surface layer of a silicon substrate 1 (see FIG. 1), a trench 3 is formed (see FIG. 2), a corner of the bottom of the trench is rounded, and sacrificial oxidation is performed. Then, a gate oxide film 4 is formed (see FIG. 3). Subsequently, the substrate was placed 1 in a reaction chamber of the low pressure CVD apparatus, a film forming temperature 550 ° C., under a pressure of 100 Pa, a SiH 4 gas substrate surface and the trench 3 as a raw material, polysilicon doped with PH3 as a dopant ( (Doped polysilicon) 6 is deposited to a thickness of 8000 Å. Up to this point, it is the same as the conventional method.
[0018]
Subsequently, purging is performed by flowing nitrogen gas into the reaction chamber for about one hour. At that time, the temperature in the reaction chamber is raised to a temperature in the range of 550 to 600 ° C., and the heat treatment is performed simultaneously. That is, the deposition of the polysilicon 6 and the heat treatment thereof are continuously performed while the substrate 1 is placed in the reaction chamber of the low pressure CVD apparatus. After the purging, that is, after the heat treatment, the substrate 1 is taken out of the reaction chamber (see FIG. 4). Thereafter, as in the conventional method, the polysilicon 6 is etched back (see FIG. 5), a mask 7 is formed on the substrate surface, and As ions are implanted (see FIG. 6). Subsequently, the mask 7 is removed and the source region 8 is formed by As drive (see FIG. 7), an interlayer insulating film 9 is formed, a contact hole is formed, and a metal wiring 10 and the like are formed (see FIG. 8). ). Further, although not shown, a drain electrode is formed on the back surface of the substrate to complete the MOSFET.
[0019]
Here, when the present inventor performed X-ray diffraction and TEM observation of the cross section of the substrate 1 taken out of the reaction chamber of the reduced pressure CVD apparatus after the formation of the polysilicon 6 and the heat treatment, the average grain size of the polysilicon 6 was determined. The diameter was 30-100 nm. This is significantly smaller than the average particle size (200-300 nm) according to the conventional method. FIG. 4 schematically shows the state, in which the crystal grains 61 are exaggerated for a part of the polysilicon 6.
[0020]
As a comparison, when the temperature in the reaction chamber of the reduced pressure CVD apparatus was increased to 650 ° C. or higher and the heat treatment was performed during the nitrogen purge after forming the polysilicon, the average grain size of the polysilicon was 100 nm or higher. The crystal grains did not become as small as at 600 ° C. If the temperature is 650 ° C. or higher, the polysilicon film adhered to the inner surface of the reaction chamber may be peeled off due to heat shrinkage, causing particles to be generated, and the production yield may be reduced. Therefore, the heat treatment temperature at this time is preferably 550 ° C. or more and less than 650 ° C., and more preferably 600 ° C. or less.
[0021]
When the polysilicon 6 was etched back, the amount of polysilicon drop in the trench was measured by cross-sectional SEM observation. According to the method of the present invention, the variation was 10%. This is less than half the variation (20% or more) by the conventional method. Further, when the variation of the threshold voltage was determined, it was 3% according to the method according to the present invention, which is remarkably improved from 10% according to the conventional method.
[0022]
According to the above-described embodiment, the substrate 1 in which the trench 3 is cut is put into the reaction chamber of the low-pressure CVD apparatus, and the inside of the trench is filled with the polysilicon 6 by the low-pressure CVD method. Since the heat treatment is performed at a temperature of 550 ° C. or more and 600 ° C. or less while purging with a gas, the inside of the trench is filled with polysilicon 6 having a small crystal grain size. Therefore, the variation in the polysilicon drop amount in the trench due to the etch back of the polysilicon 6 is reduced, the variation in the implantation depth of As ions for forming the source region 8 is reduced, and the variation in the concentration of the p-channel region 2 is reduced. Can be suppressed. Therefore, variation in threshold voltage is reduced, and the yield of completed semiconductor devices is improved.
[0023]
Further, according to the above-described embodiment, since the heat treatment is performed in the reaction chamber of the low pressure CVD apparatus while purging the reaction chamber with nitrogen gas, there is an advantage that the process can be shortened as compared with the conventional method.
[0024]
In the above, the present invention can be variously modified. For example, the p-type and n-type conductivity types may be reversed. Further, the present invention can be applied to a semiconductor device having a trench gate structure such as an IGBT or a MOS thyristor other than the MOSFET. The target for growing crystal grains by the heat treatment performed successively after the film formation is not limited to polysilicon serving as a gate electrode, but may be any material that is etched back after filling in a trench. In addition, after the polysilicon 6 is formed, the substrate 1 may be taken out of the reaction chamber of the low-pressure CVD apparatus and then heat-treated at 550 to 600 ° C.
[0025]
【The invention's effect】
According to the present invention, since the heat treatment is performed at a relatively low temperature in the reaction chamber of the low pressure CVD apparatus in succession to the deposition of polysilicon, the trench is filled with polysilicon having a small crystal grain size, Variations in the amount of polysilicon drop in the trench due to polysilicon etchback are reduced. This reduces the variation in the implantation depth of As ions for forming the source region, thereby suppressing the variation in the concentration of the p-channel region. Therefore, variation in threshold voltage is reduced, and the yield of completed semiconductor devices is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of a semiconductor device in the order of a forming step of a manufacturing method according to the present invention.
FIG. 2 is a cross-sectional view showing a main part of the semiconductor device in the order of the forming steps of the manufacturing method according to the present invention.
FIG. 3 is a cross-sectional view showing a main part of the semiconductor device in the order of the forming steps of the manufacturing method according to the present invention.
FIG. 4 is a cross-sectional view showing the main part of the semiconductor device in the order of the forming steps of the manufacturing method according to the present invention.
FIG. 5 is a cross-sectional view showing the main part of the semiconductor device in the order of the forming steps of the manufacturing method according to the present invention.
FIG. 6 is a cross-sectional view showing the main part of the semiconductor device in the order of the forming steps of the manufacturing method according to the present invention.
FIG. 7 is a cross-sectional view showing the main part of the semiconductor device in the order of the forming steps of the manufacturing method according to the present invention.
FIG. 8 is a cross-sectional view showing the main part of the semiconductor device in the order of the forming steps of the manufacturing method according to the present invention.
FIG. 9 is a cross-sectional view showing a main part of a semiconductor device in the order of steps of forming a conventional trench gate structure.
FIG. 10 is a cross-sectional view showing a main part of a semiconductor device in the order of steps of forming a conventional trench gate structure.
FIG. 11 is a cross-sectional view showing a main part of a semiconductor device in the order of steps of forming a conventional trench gate structure.
FIG. 12 is a cross-sectional view showing a main part of a semiconductor device in the order of steps of forming a conventional trench gate structure.
FIG. 13 is a cross-sectional view showing a main part of a semiconductor device for describing a defect due to a conventional manufacturing method.
FIG. 14 is a cross-sectional view showing a main part of a semiconductor device for describing a defect due to a conventional manufacturing method.
FIG. 15 is a characteristic diagram showing a relationship between a polysilicon drop amount in a trench and a threshold voltage in order to explain a problem caused by a conventional manufacturing method.
[Explanation of symbols]
1 substrate 3 trench 6 polysilicon (film to be an electrode)

Claims (4)

トレンチ構造を有する半導体装置を製造するにあたって、
基板の表面領域にトレンチを形成する工程と、
前記トレンチが形成された基板を減圧CVD装置の反応室内に入れ、減圧CVD法により前記トレンチ内を電極となる膜で埋める工程と、
前記反応室内に基板を入れたまま減圧CVDに連続して熱処理をおこなう工程と、
前記反応室内から基板を取り出し、前記膜をエッチバックする工程と、
を含むことを特徴とする半導体装置の製造方法。
In manufacturing a semiconductor device having a trench structure,
Forming a trench in the surface region of the substrate;
Placing the substrate in which the trench is formed in a reaction chamber of a low-pressure CVD apparatus, and filling the inside of the trench with a film serving as an electrode by a low-pressure CVD method;
Performing a heat treatment continuously with reduced pressure CVD while the substrate is placed in the reaction chamber;
Removing the substrate from the reaction chamber, and etching back the film;
A method for manufacturing a semiconductor device, comprising:
前記膜は、SiHガスを原料として気相成長したポリシリコン膜であることを特徴とする請求項1に記載の半導体装置の製造方法。The method according to claim 1, wherein the film is a polysilicon film grown by vapor deposition using SiH 4 gas as a raw material. 前記反応室内を窒素ガスでパージしながら、熱処理をおこなうことを特徴とする請求項2に記載の半導体装置の製造方法。3. The method according to claim 2, wherein the heat treatment is performed while purging the reaction chamber with nitrogen gas. 前記熱処理は550℃以上600℃以下の温度でおこなうことを特徴とする請求項3に記載の半導体装置の製造方法。The method according to claim 3, wherein the heat treatment is performed at a temperature of 550 ° C. or more and 600 ° C. or less.
JP2003002891A 2003-01-09 2003-01-09 Method for manufacturing semiconductor device Pending JP2004221097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002891A JP2004221097A (en) 2003-01-09 2003-01-09 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003002891A JP2004221097A (en) 2003-01-09 2003-01-09 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2004221097A true JP2004221097A (en) 2004-08-05

Family

ID=32894312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002891A Pending JP2004221097A (en) 2003-01-09 2003-01-09 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2004221097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705426B2 (en) 2006-11-10 2010-04-27 International Business Machines Corporation Integration of a SiGe- or SiGeC-based HBT with a SiGe- or SiGeC-strapped semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705426B2 (en) 2006-11-10 2010-04-27 International Business Machines Corporation Integration of a SiGe- or SiGeC-based HBT with a SiGe- or SiGeC-strapped semiconductor device

Similar Documents

Publication Publication Date Title
US7781316B2 (en) Methods of manufacturing metal-silicide features
US6512265B2 (en) Method of fabricating semiconductor device
TWI447913B (en) Replacement metal gate transistors with reduced gate oxide leakage
JP4907828B2 (en) Method of manufacturing trench double diffused metal oxide semiconductor with low threshold voltage
US20090283842A1 (en) Semiconductor device and method of fabricating the same
US9583595B2 (en) Methods of forming low noise semiconductor devices
TW201137985A (en) Multi-gate semiconductor device with self-aligned epitaxial source and drain
KR20100100585A (en) Method of producing semiconductor device and semiconductor device
JP2006066439A (en) Semiconductor device and its manufacturing method
JP4842527B2 (en) Manufacturing method of semiconductor device
JP2012104735A (en) Semiconductor device and manufacturing method thereof
JP2010034481A (en) Method of manufacturing semiconductor device, and semiconductor device
TW201203385A (en) Silicon carbide semiconductor device manufacturing method
JP5092385B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4434080B2 (en) Insulated gate semiconductor device and manufacturing method thereof
TW201237960A (en) Production method for semiconductor device
JP2003069013A (en) Semiconductor device and method of manufacturing the same
JP2004221097A (en) Method for manufacturing semiconductor device
JP2010093170A (en) Method of manufacturing semiconductor device
JP2005005556A (en) Semiconductor device and its manufacturing method
JP4048159B2 (en) Semiconductor device and manufacturing method thereof
JP2003124233A (en) Method for manufacturing semiconductor device
JP2006156973A (en) Manufacturing method of metal insulator semiconductor device
KR20060077546A (en) Method for manufacturing semiconductor device
JPH0243771A (en) Manufacture of insulated gate type semiconductor element