JP2004213620A - 3次元情報検出システム、3次元情報検出装置及び3次元情報検出用入力装置 - Google Patents
3次元情報検出システム、3次元情報検出装置及び3次元情報検出用入力装置 Download PDFInfo
- Publication number
- JP2004213620A JP2004213620A JP2003384282A JP2003384282A JP2004213620A JP 2004213620 A JP2004213620 A JP 2004213620A JP 2003384282 A JP2003384282 A JP 2003384282A JP 2003384282 A JP2003384282 A JP 2003384282A JP 2004213620 A JP2004213620 A JP 2004213620A
- Authority
- JP
- Japan
- Prior art keywords
- input
- signal
- dimensional information
- coil
- coils
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
【課題】 廉価で高精度な検出が可能なモーションキャプチャシステムを提供すること。
【解決手段】 モーションキャプチャ用検出装置112のセンサコイル113を制御部210によって順次選択すると共に、モーションキャプチャ用入力装置101の各入力要素102、103、104の入力コイル105、106、107とセンサコイル113との間で電磁結合によって信号の送受信を行い、選択したセンサコイルで受信した信号を検出部202で検出し、検出部202で検出した検出信号から、各入力要素102、103、104が連続するように、3次元空間における各入力要素102、103、104の座標及び方向を制御部210で算出する。
【選択図】 図2
【解決手段】 モーションキャプチャ用検出装置112のセンサコイル113を制御部210によって順次選択すると共に、モーションキャプチャ用入力装置101の各入力要素102、103、104の入力コイル105、106、107とセンサコイル113との間で電磁結合によって信号の送受信を行い、選択したセンサコイルで受信した信号を検出部202で検出し、検出部202で検出した検出信号から、各入力要素102、103、104が連続するように、3次元空間における各入力要素102、103、104の座標及び方向を制御部210で算出する。
【選択図】 図2
Description
本発明は、3次元空間における入力装置の位置や向き等の3次元情報を検出する3次元情報検出システム、前記3次元情報検出システムにおいて前記入力装置の3次元情報を検出する3次元情報検出装置、及び、前記3次元情報検出システムにおいて3次元情報を入力するための3次元情報検出用入力装置に関する。3次元情報システムとしては、例えば、連結された複数の入力要素の位置情報を検出するためのモーションキャプチャシステムがあり、この場合、モーションキャプチャ用検出装置が3次元情報検出装置に該当し又、モーションキャプチャ用入力装置が3次元情報検出用入力装置に該当する。
従来から、医療、スポーツ、ゲームをはじめとする種々の分野に応用すべく、人の動作等をデジタル的に取り込んでコンピュータ上で動かすモーションキャプチャシステム等の3次元情報検出システムが開発されている(例えば、特許文献1〜3参照)。
モーションキャプチャシステムとしては、光学式や機械式のものが利用されている。
例えば、光学式のモーションキャプチャシステムは、人の関節に鏡等の光反射物を取付け、暗室内で人が動いたときに生じる前記光反射物からの反射光をセンサで検出することにより、人の動きを読み取るようにしている。また、機械式のモーションキャプチャシステムは、複数のロータリエンコーダを用いて人の動きを検出して動きを読み取るようにしている。
モーションキャプチャシステムとしては、光学式や機械式のものが利用されている。
例えば、光学式のモーションキャプチャシステムは、人の関節に鏡等の光反射物を取付け、暗室内で人が動いたときに生じる前記光反射物からの反射光をセンサで検出することにより、人の動きを読み取るようにしている。また、機械式のモーションキャプチャシステムは、複数のロータリエンコーダを用いて人の動きを検出して動きを読み取るようにしている。
前記モーションキャプチャシステムの出力をコンピュータに入力することにより、人の動作に応じてコンピュータに表示された画像を動かしたり、あるいは人の動作の観察等を行うことが可能になる。
特開2000−132323号公報
特開2000−231638号公報
特開2000−321044号公報
前記光学式のモーションキャプチャシステムでは、暗室等が必要となるためシステムが大がかりになり高価になるという問題がある。
また、前記機械式のモーションキャプチャシステムでは、多数のロータリエンコーダ等を必要とするため、構成が複雑で高価になると共に壊れやすくなるという問題がある。
本発明は、廉価で高精度な検出が可能な3次元情報検出システムを提供することを課題としている。
また、本発明は、廉価で高精度な検出が可能な3次元情報検出装置を提供することを課題としている。
また、本発明は、廉価で高精度な検出が可能な3次元情報検出システムに適した3次元情報検出用入力装置を提供することを課題としている。
また、前記機械式のモーションキャプチャシステムでは、多数のロータリエンコーダ等を必要とするため、構成が複雑で高価になると共に壊れやすくなるという問題がある。
本発明は、廉価で高精度な検出が可能な3次元情報検出システムを提供することを課題としている。
また、本発明は、廉価で高精度な検出が可能な3次元情報検出装置を提供することを課題としている。
また、本発明は、廉価で高精度な検出が可能な3次元情報検出システムに適した3次元情報検出用入力装置を提供することを課題としている。
本発明によれば、少なくとも1つの入力コイルを有し、相対的に可動な状態で連結された複数の入力手段と、相互に交差するように検出面にそって配設され前記各入力コイルと電磁的に結合する複数のセンサコイルと、前記センサコイルを切り換え選択する選択手段と、前記各入力コイルと選択された前記センサコイル間で電磁的結合により送受する信号を発生する信号発生手段と、前記選択されたセンサコイル又は前記入力コイルで受信した信号を検出する信号検出手段と、前記信号検出手段によって検出した検出信号に基づいて、3次元空間における前記複数の入力手段の座標及び方向を算出する算出手段とを備えて成ることを特徴とする3次元情報検出システムが提供される。
相互に交差するように検出面にそって配設された複数のセンサコイルは入力手段の入力コイルと電磁的に結合する。選択手段はセンサコイルを切り換え選択する。信号発生手段は前記各入力コイルと選択された前記センサコイル間で電磁的結合により送受する信号を発生する。信号検出手段は前記選択されたセンサコイル又は前記入力コイルで受信した信号を検出する。算出手段は前記信号検出手段によって検出した検出信号に基づいて前記複数の入力手段の3次元座標及び方向を算出する。
ここで、前記算出手段は、前記検出手段で検出した前記各入力手段に対応する検出信号中のピーク値近傍の少なくとも3点の信号に基づいて、前記各入力手段のX軸座標及びY軸座標を算出すると共に、前記検出信号の所定レベル値における信号分布の幅から前記各入力手段の高さを得るように構成してもよい。
また、前記算出手段は、前記検出手段で検出した前記各入力手段に対応する検出信号の関係から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、前記各入力手段に対応する検出信号のサブ信号比から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、前記各入力手段に対応する検出信号の左右片側幅の比から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、前記検出手段で検出した前記各入力手段に対応する検出信号の関係から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、前記各入力手段に対応する検出信号のサブ信号比から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、前記各入力手段に対応する検出信号の左右片側幅の比から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、算出した各入力手段のX軸座標、Y軸座標及び高さを、得られた各入力手段の傾き角θと方位角φを用いて補正するように構成してもよい。
また、前記算出手段は、前記複数の入力手段のうちのいずれかの入力手段の座標に基づいて他の入力手段の座標を算出するように構成してもよい。
また、前記算出手段は、前記いずれかの入力手段の端部の座標を該入力手段に連結された他の入力手段の端部の座標とするように構成してもよい。
また、相互に交差すると共に、前記センサコイルに交差するように配設された複数の斜めセンサコイルを備えて成るように構成してもよい。
また、前記算出手段は、前記複数の入力手段のうちのいずれかの入力手段の座標に基づいて他の入力手段の座標を算出するように構成してもよい。
また、前記算出手段は、前記いずれかの入力手段の端部の座標を該入力手段に連結された他の入力手段の端部の座標とするように構成してもよい。
また、相互に交差すると共に、前記センサコイルに交差するように配設された複数の斜めセンサコイルを備えて成るように構成してもよい。
また、前記入力手段は、1つの入力コイルを有するように構成してもよい。
また、前記入力手段は、複数の入力コイルを有しているように構成してもよい。
また、前記複数の入力コイルの中心軸は相互に直交するように配設されているように構成してもよい。
また、前記複数の入力コイルの中心位置が同一になるように配設されているように構成してもよい。
また、前記複数の入力コイルの中の少なくとも一つの入力コイルの中心位置は他の入力コイルの中心位置からずれて配設されているように構成してもよい。
また、前記入力手段は、複数の入力コイルを有しているように構成してもよい。
また、前記複数の入力コイルの中心軸は相互に直交するように配設されているように構成してもよい。
また、前記複数の入力コイルの中心位置が同一になるように配設されているように構成してもよい。
また、前記複数の入力コイルの中の少なくとも一つの入力コイルの中心位置は他の入力コイルの中心位置からずれて配設されているように構成してもよい。
また、少なくとも1つの前記各入力手段は球体を有し、前記入力コイルは前記球体内に配設されているように構成してもよい。
また、前記入力コイルのうちの少なくとも一つは磁性材料に巻回されているように構成してもよい。
また、前記信号発生手段は前記入力コイルに対応する複数の周波数の信号を発生し、前記各入力コイルと前記選択されたセンサコイルとの間では異なる周波数の信号を送受信するように構成してもよい。
また、前記信号発生手段から前記入力コイルに電流を供給することによって前記入力コイルから信号を送信し、前記検出手段は前記センサコイルで生じた信号を検出するように構成してもよい。
また、前記入力コイルのうちの少なくとも一つは磁性材料に巻回されているように構成してもよい。
また、前記信号発生手段は前記入力コイルに対応する複数の周波数の信号を発生し、前記各入力コイルと前記選択されたセンサコイルとの間では異なる周波数の信号を送受信するように構成してもよい。
また、前記信号発生手段から前記入力コイルに電流を供給することによって前記入力コイルから信号を送信し、前記検出手段は前記センサコイルで生じた信号を検出するように構成してもよい。
また、前記信号発生手段から前記センサコイルに電流を供給することによって前記センサコイルから信号を送信し、前記検出手段は前記入力コイルで生じた信号を検出するように構成してもよい。
また、前記信号発生手段から前記センサコイルに電流を供給することによって前記センサコイルから信号を送信し、前記入力コイルは前記信号を受信した後に前記センサコイルに返送し、前記検出手段は前記センサコイルで受信した信号を検出するように構成してもよい。
また、前記信号発生手段から前記センサコイルに電流を供給することによって前記センサコイルから信号を送信し、前記入力コイルは前記信号を受信した後に前記センサコイルに返送し、前記検出手段は前記センサコイルで受信した信号を検出するように構成してもよい。
また、本発明によれば、相互に交差するように検出面にそって配設され複数の入力手段の入力コイルと電磁的に結合する複数のセンサコイルと、前記センサコイルを切り換え選択する選択手段と、前記各入力コイルと選択された前記センサコイル間で電磁的結合により送受する信号を発生する信号発生手段と、前記選択されたセンサコイル又は前記入力コイルで受信した前記信号発生手段からの信号を検出する信号検出手段と、前記信号検出手段によって検出した信号に基づいて、3次元空間における前記各入力手段の座標及び方向を算出する算出手段とを備えて成ることを特徴とする3次元情報検出装置が提供される。
相互に交差するように検出面にそって配設された複数のセンサコイルは入力手段の入力コイルと電磁的に結合する。選択手段はセンサコイルを切り換え選択する。信号発生手段は前記各入力コイルと選択された前記センサコイル間で電磁的結合により送受する信号を発生する。信号検出手段は前記選択されたセンサコイル又は前記入力コイルで受信した信号を検出する。算出手段は前記信号検出手段によって検出した検出信号に基づいて前記複数の入力手段の3次元座標及び方向を算出する。
ここで、前記算出手段は、前記検出手段で検出した前記各入力手段に対応する検出信号中のピーク値近傍の少なくとも3点の信号に基づいて、前記各入力手段のX軸座標及びY軸座標を算出すると共に、前記検出信号の所定レベル値における信号分布の幅から前記各入力手段の高さを得るように構成してもよい。
また、前記算出手段は、前記検出手段で検出した前記各入力手段に対応する検出信号の関係から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、前記各入力手段に対応する検出信号のサブ信号比から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、前記検出手段で検出した前記各入力手段に対応する検出信号の関係から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、前記各入力手段に対応する検出信号のサブ信号比から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、前記各入力手段に対応する検出信号の左右片側幅の比から前記各入力手段の傾き角θ及び方位角φを得るように構成してもよい。
また、前記算出手段は、算出した各入力手段のX軸座標、Y軸座標及び高さを、得られた各入力手段の傾き角θと方位角φを用いて補正するように構成してもよい。
また、前記算出手段は、前記複数の入力手段のうちのいずれかの入力手段の座標に基づいて他の入力手段の座標を算出するように構成してもよい。
また、前記算出手段は、前記いずれかの入力手段の端部の座標を該入力手段に連結された他の入力手段の端部の座標とするように構成してもよい。
また、相互に交差すると共に、前記センサコイルに交差するように配設された複数の斜めセンサコイルを備えて成るように構成してもよい。
また、前記算出手段は、算出した各入力手段のX軸座標、Y軸座標及び高さを、得られた各入力手段の傾き角θと方位角φを用いて補正するように構成してもよい。
また、前記算出手段は、前記複数の入力手段のうちのいずれかの入力手段の座標に基づいて他の入力手段の座標を算出するように構成してもよい。
また、前記算出手段は、前記いずれかの入力手段の端部の座標を該入力手段に連結された他の入力手段の端部の座標とするように構成してもよい。
また、相互に交差すると共に、前記センサコイルに交差するように配設された複数の斜めセンサコイルを備えて成るように構成してもよい。
また、本発明によれば、複数のセンサコイルとの間で電磁結合により信号の受け渡しを行う入力コイルを有すると共に相対的に可動な状態で連結された複数の入力要素を備えて成ることを特徴とする3次元情報検出用入力装置が提供される。
複数の入力要素は、複数のセンサコイルとの間で電磁結合により信号の受け渡しを行う入力コイルを有すると共に相対的に可動な状態で連結されている。
複数の入力要素は、複数のセンサコイルとの間で電磁結合により信号の受け渡しを行う入力コイルを有すると共に相対的に可動な状態で連結されている。
ここで、前記入力要素は、1つの入力コイルを有するように構成してもよい。
また、前記入力要素は、複数の入力コイルを有するように構成してもよい。
また、前記複数の入力コイルの中心軸は相互に直交するように配設されているように構成してもよい。
また、前記複数の入力コイルの中心位置が同一になるように配設されているように構成してもよい。
また、前記複数の入力コイルの中の少なくとも一つの入力コイルの中心位置は他の入力コイルの中心位置からずれて配設されているように構成してもよい。
また、少なくとも1つの前記入力要素は球体を有し、前記入力コイルは前記球体内に配設されているように構成してもよい。
また、前記入力要素は、複数の入力コイルを有するように構成してもよい。
また、前記複数の入力コイルの中心軸は相互に直交するように配設されているように構成してもよい。
また、前記複数の入力コイルの中心位置が同一になるように配設されているように構成してもよい。
また、前記複数の入力コイルの中の少なくとも一つの入力コイルの中心位置は他の入力コイルの中心位置からずれて配設されているように構成してもよい。
また、少なくとも1つの前記入力要素は球体を有し、前記入力コイルは前記球体内に配設されているように構成してもよい。
また、前記各入力コイルは磁性材料に巻回されているように構成してもよい。
また、前記各入力コイルに接続されて各々異なる周波数の共振回路を構成する複数の共振用コンデンサを備えて成るように構成してもよい。
また、前記各共振回路に直列接続され対応する共振回路と同一の共振周波数を有する複数の直列共振回路を備えて成るように構成してもよい。
また、送信信号発生回路を備え、前記発振回路の出力信号を、前記直列共振回路を介して、前記直列共振回路に対応する入力コイルから出力するように構成してもよい。
また、前記送信信号発生回路に駆動電力を供給する電池を備えて成るように構成してもよい。
また、前記各入力コイルに接続されて各々異なる周波数の共振回路を構成する複数の共振用コンデンサを備えて成るように構成してもよい。
また、前記各共振回路に直列接続され対応する共振回路と同一の共振周波数を有する複数の直列共振回路を備えて成るように構成してもよい。
また、送信信号発生回路を備え、前記発振回路の出力信号を、前記直列共振回路を介して、前記直列共振回路に対応する入力コイルから出力するように構成してもよい。
また、前記送信信号発生回路に駆動電力を供給する電池を備えて成るように構成してもよい。
本発明に係る3次元情報検出システムによれば、廉価で高精度な検出が可能になる。
また、本発明に係る3次元情報検出装置によれば、廉価で高精度な検出が可能な3次元情報検出システムを構築することが可能になる。
また、本発明に係る3次元情報検出用入力装置によれば、廉価で高精度な検出が可能な3次元情報検出システムを構築することが可能になる。
また、本発明に係る3次元情報検出装置によれば、廉価で高精度な検出が可能な3次元情報検出システムを構築することが可能になる。
また、本発明に係る3次元情報検出用入力装置によれば、廉価で高精度な検出が可能な3次元情報検出システムを構築することが可能になる。
以下、本発明の実施の形態に係る3次元情報検出システム、3次元情報検出装置及び3次元情報検出用入力装置について、図面を用いて説明する。尚、以下説明する実施の形態では、3次元情報検出システム、3次元情報検出装置、3次元情報検出用入力装置の例として、各々、モーションキャプチャシステム、モーションキャプチャ用検出装置、モーションキャプチャ用入力装置を説明している。また、各図において、同一部分には同一符号を付している。また、以下の実施の形態で使用する数式等における記号は表記の便宜上、アンダーバーを付けたものと付けないものの両方の記号を用いているが、アンダーバー以外の表記が同一の記号は、アンダーバーの有無に関係なく同一の記号として用いている。また、3次元空間における前記複数の入力要素の座標及び方向を算出する際に参照する各種参照データ(特性データ及び補正用データ)はメモリ204に予め記憶されている。
図1は、本発明の第1の実施の形態に係るモーションキャプチャシステムの構成を概念的に示す斜視図である。
本第1の実施の形態に係るモーションキャプチャシステム100は、人の動き等の情報を入力するためのモーションキャプチャ用入力装置101及びモーションキャプチャ用入力装置101を構成する複数の入力要素の3次元空間における座標及び方向を検出するためのモーションキャプチャ用検出装置112を備えている。
モーションキャプチャ用入力装置101は、入力手段としての複数のモーションキャプチャ用入力要素を備えている。モーションキャプチャ用入力装置101は、連結された複数の入力要素の3次元空間における座標及び方向を入力するための装置である。本第1の実施の形態では3つの入力要素102〜104を備えた例を示しているが、使用用途等に応じて2つ以上(複数)の入力要素を適宜使用することができる。各入力要素102〜104の端部は、例えばボールジョイント等の連結部材によって、相対的に可動な状態で連結されており又、相互に連結された入力要素の端部は同一位置になるように連結されている。また、複数の入力要素102〜104は鎖状に連結されている。尚、図1及び後述する図2では、説明の都合上、相互に離れた状態に描いている。
本第1の実施の形態に係るモーションキャプチャシステム100は、人の動き等の情報を入力するためのモーションキャプチャ用入力装置101及びモーションキャプチャ用入力装置101を構成する複数の入力要素の3次元空間における座標及び方向を検出するためのモーションキャプチャ用検出装置112を備えている。
モーションキャプチャ用入力装置101は、入力手段としての複数のモーションキャプチャ用入力要素を備えている。モーションキャプチャ用入力装置101は、連結された複数の入力要素の3次元空間における座標及び方向を入力するための装置である。本第1の実施の形態では3つの入力要素102〜104を備えた例を示しているが、使用用途等に応じて2つ以上(複数)の入力要素を適宜使用することができる。各入力要素102〜104の端部は、例えばボールジョイント等の連結部材によって、相対的に可動な状態で連結されており又、相互に連結された入力要素の端部は同一位置になるように連結されている。また、複数の入力要素102〜104は鎖状に連結されている。尚、図1及び後述する図2では、説明の都合上、相互に離れた状態に描いている。
入力要素102は磁性材料によって構成されたコア108及びコア108に巻回された1つの入力コイル105を有し、入力要素103は磁性材料によって構成されたコア109及びコア109に巻回された1つの入力コイル106を有し、又、入力要素104は磁性材料によって構成されたコア110及びコア110に巻回された1つの入力コイル107を有している。尚、以下、必要に応じて入力コイル105〜107をペンコイルと称し又、入力コイル105〜107から受信して得られた検出信号を必要に応じてペン信号と称する。
入力コイル105〜107は各々入力要素102〜104の中央部(重心位置)を中心にしてコア108〜110に巻回されており、後述するように、信号ケーブル111を介してモーションキャプチャ用検出装置112に接続されている。
一方、モーションキャプチャ用検出装置112は、検出装置112の平坦な上面である検出面(入力装置101側の面)の略全域にわたって、相互に直交するよう(本第1の実施の形態ではX軸方向及びY軸方向)に配設された第2のコイルとしての複数のセンサコイル113を備えている。
入力コイル105〜107は各々入力要素102〜104の中央部(重心位置)を中心にしてコア108〜110に巻回されており、後述するように、信号ケーブル111を介してモーションキャプチャ用検出装置112に接続されている。
一方、モーションキャプチャ用検出装置112は、検出装置112の平坦な上面である検出面(入力装置101側の面)の略全域にわたって、相互に直交するよう(本第1の実施の形態ではX軸方向及びY軸方向)に配設された第2のコイルとしての複数のセンサコイル113を備えている。
図2は、図1に示したモーションキャプチャシステム100のブロック図である。
図2において、複数のセンサコイル113は、X軸方向に並設された複数のセンサコイル(Xセンサコイル)とY軸方向に並設された複数のセンサコイル(Yセンサコイル)とから構成されており、増幅回路を有する受信回路201を介して、信号検出手段を構成する検出部202に接続されている。
検出部202は、受信した信号を検波するための複数種類の周波数信号(本第1の実施の形態では周波数fu、fv、fw)を検波する検波回路203を備えている。
図2において、複数のセンサコイル113は、X軸方向に並設された複数のセンサコイル(Xセンサコイル)とY軸方向に並設された複数のセンサコイル(Yセンサコイル)とから構成されており、増幅回路を有する受信回路201を介して、信号検出手段を構成する検出部202に接続されている。
検出部202は、受信した信号を検波するための複数種類の周波数信号(本第1の実施の形態では周波数fu、fv、fw)を検波する検波回路203を備えている。
信号発生手段を構成する送信制御部206は、複数種類の周波数信号(本第1の実施の形態では周波数fu、fv、fw)を生成する送信信号発生回路207、送信信号発生回路207で生成した信号を所定タイミングで選択的に切り換えて送信回路209に出力するセレクタ回路208を備えている。送信回路209は増幅回路を有し、その出力部は各々、複数の信号ケーブルによって構成された信号ケーブル111を介して入力装置101の対応するコイル105〜107に接続されている。
尚、周波数fu、fv、fwの3種類の信号を同時に送信するように構成してもよい。周波数fu、fv、fwの3種類の信号を同時に送信するように構成した場合、検出部202で受信した信号に対して高速フーリエ変換(FFT)等の処理を施すことによって、各周波数fu、fv、fw成分の信号強度を算出することができる。また、周波数fu、fv、fwの3種類の信号を同時に送信するように構成した場合、後述する図4における走査(スキャン)時間が1周波数の走査時間で済み、走査時間を短縮することが可能になる。
検出部202と送信制御部206は同期をとるために接続されている。また、検出部202及び送信制御部206は、これらを制御するための制御部210に接続されている。
尚、周波数fu、fv、fwの3種類の信号を同時に送信するように構成してもよい。周波数fu、fv、fwの3種類の信号を同時に送信するように構成した場合、検出部202で受信した信号に対して高速フーリエ変換(FFT)等の処理を施すことによって、各周波数fu、fv、fw成分の信号強度を算出することができる。また、周波数fu、fv、fwの3種類の信号を同時に送信するように構成した場合、後述する図4における走査(スキャン)時間が1周波数の走査時間で済み、走査時間を短縮することが可能になる。
検出部202と送信制御部206は同期をとるために接続されている。また、検出部202及び送信制御部206は、これらを制御するための制御部210に接続されている。
制御部210は、後述するような各種テーブルや処理プログラムを予め記憶したメモリ204、メモリ204に記憶したプログラムを実行することにより、検出部202で検出した信号に基づいて前記テーブルを参照して入力装置101の3次元座標や方向の算出処理、センサコイル113の選択制御処理、検出部202及び送信制御部206の同期制御処理等の各種処理を行う中央処理装置(CPU)205を備えている。センサコイル113、受信回路201、検出部202、送信制御部206、送信回路209及び制御部210は検出装置112に備えられている。
ここで、制御部210は処理手段を構成し、メモリ204は記憶手段を構成し、CPU205はセンサコイル113の選択制御処理を行う選択手段、入力装置101の3次元座標や方向(3次元情報)を算出する算出手段、検出部202及び送信制御部206の同期制御を行う同期制御手段を構成している。
ここで、制御部210は処理手段を構成し、メモリ204は記憶手段を構成し、CPU205はセンサコイル113の選択制御処理を行う選択手段、入力装置101の3次元座標や方向(3次元情報)を算出する算出手段、検出部202及び送信制御部206の同期制御を行う同期制御手段を構成している。
図3は、入力装置101の構成を示すブロック図で、図1及び図2と同一部分には同一符号を付している。
入力装置101の入力要素102〜104は、各々、入力コイル105〜107が含まれる信号出力回路306〜308を備えている。信号出力回路306〜308は信号ケーブル111を介して送信回路209に接続されている。
信号出力回路306について説明すると、磁性材料のコア108に巻回された入力コイル105に対して並列にコンデンサ301が接続されている。入力コイル105とコンデンサ301は、共振周波数fuの並列共振回路を構成している。入力コイル105とコンデンサ301から成る並列共振回路には、信号ケーブル111を介して送信回路209の送信信号出力回路309が直列に接続されている。送信信号出力回路309は、コイル302とコンデンサ303によって構成された共振周波数fuの直列共振回路304、及び、モーションキャプチャ用入力装置101から信号を送信するための送信信号出力用のバッファ回路305を有している。
入力装置101の入力要素102〜104は、各々、入力コイル105〜107が含まれる信号出力回路306〜308を備えている。信号出力回路306〜308は信号ケーブル111を介して送信回路209に接続されている。
信号出力回路306について説明すると、磁性材料のコア108に巻回された入力コイル105に対して並列にコンデンサ301が接続されている。入力コイル105とコンデンサ301は、共振周波数fuの並列共振回路を構成している。入力コイル105とコンデンサ301から成る並列共振回路には、信号ケーブル111を介して送信回路209の送信信号出力回路309が直列に接続されている。送信信号出力回路309は、コイル302とコンデンサ303によって構成された共振周波数fuの直列共振回路304、及び、モーションキャプチャ用入力装置101から信号を送信するための送信信号出力用のバッファ回路305を有している。
尚、コイル105及びコンデンサ301によって並列共振回路を構成した目的は、送信信号強度または受信信号強度を上げるためであり、コンデンサ301は必ずしも必要ではなく、コイル105のみでも良い。但し、センサコイル側から信号を送信して、入力装置101側で前記信号を受信した後に返信し、再びセンサコイル側で前記信号を検出する方式の場合には、入力装置101側に並列共振回路を構成する必要性が生じるため、コイル及び該コイルに並列接続したコンデンサが必要になる。
また、直列共振回路304は、フィルタとしての機能を有しており、送信信号出力バッファ回路305の出力信号の歪みの低減と直流成分の除去を行い、入力装置101へ無駄な電流(送信信号出力バッファ回路305の出力信号の歪み又は電圧オフセットによる電流)を送信しないために用いるものであるため、送信信号の歪みが小さい場合には、直列共振回路304は必ずしも必要ではなくなり、せいぜい、コイル302を省いて直流成分を除去するためのカップリング用コンデンサ303のみを用いるようにしてもよい。また、送信信号に直流成分も少ない場合には、カップリング用コンデンサ303も省略しても良い。
信号出力回路307、308は、信号出力回路306と同様の構成であるが、入力コイル106を有する信号出力回路307においては、共振周波数fvの並列共振回路を構成するように入力コイル106に対して並列にコンデンサ(図示せず)が接続されている点で信号出力回路306と相違している。また、入力コイル107を有する信号出力回路308においては、共振周波数fwの並列共振回路を構成するように入力コイル107に対して並列にコンデンサ(図示せず)が接続されている点で信号出力回路306と相違している。
また、直列共振回路304は、フィルタとしての機能を有しており、送信信号出力バッファ回路305の出力信号の歪みの低減と直流成分の除去を行い、入力装置101へ無駄な電流(送信信号出力バッファ回路305の出力信号の歪み又は電圧オフセットによる電流)を送信しないために用いるものであるため、送信信号の歪みが小さい場合には、直列共振回路304は必ずしも必要ではなくなり、せいぜい、コイル302を省いて直流成分を除去するためのカップリング用コンデンサ303のみを用いるようにしてもよい。また、送信信号に直流成分も少ない場合には、カップリング用コンデンサ303も省略しても良い。
信号出力回路307、308は、信号出力回路306と同様の構成であるが、入力コイル106を有する信号出力回路307においては、共振周波数fvの並列共振回路を構成するように入力コイル106に対して並列にコンデンサ(図示せず)が接続されている点で信号出力回路306と相違している。また、入力コイル107を有する信号出力回路308においては、共振周波数fwの並列共振回路を構成するように入力コイル107に対して並列にコンデンサ(図示せず)が接続されている点で信号出力回路306と相違している。
また、送信信号出力回路310、311は送信信号出力回路309と同様の構成であるが、送信信号出力回路310は共振周波数fvの直列共振回路を有する点で送信信号出力回路309と相違しており又、送信信号出力回路311は共振周波数fwの直列共振回路を有する点で送信信号出力回路309と相違している。
尚、本実施の形態では、送信信号出力回路309〜311は各々、送信回路209に含まれるように構成しているが、各々、信号出力回路306〜308に含まれるように構成してもよい。
尚、本実施の形態では、送信信号出力回路309〜311は各々、送信回路209に含まれるように構成しているが、各々、信号出力回路306〜308に含まれるように構成してもよい。
図4は、本第1の実施の形態の動作を説明するためのタイミング図である。尚、図4では、センサコイル113が、X軸方向に並設した103本のXセンサコイル、及び、これらに直交するY軸方向に並設した78本のYセンサコイルを有する例を示している。また、前記Xセンサコイル、Yセンサコイルに対して所定角度回転して配設した斜めセンサコイル(第3のコイル)のタイミングも併記しているが、前記斜めセンサコイルの動作については、後述する他の実施の形態の動作で説明するものとし、本第1の実施の形態においては前記斜めセンサコイルは存在しないものとして説明する。
先ず、図4における動作の概要を説明すると、モーションキャプチャ用検出装置112は、モーションキャプチャ用入力装置101の構成要素である入力要素102〜104の3次元空間における座標(位置)及び方向を検出するために、各入力要素102〜104の共振周波数fu、fv、fwに対応する周波数fu、fv、fwの信号を送信信号発生回路207で生成し、セレクタ回路208によって所定タイミングで切り換え選択して、送信回路209及び信号ケーブル111を介して前記周波数fu、fv、fwに対応する信号出力回路306〜308に出力する。
これにより、入力装置101では、各入力コイル105〜107に対して、各入力コイル105〜107が有する共振回路の共振周波数に対応する信号が供給され、当該入力コイルを有する入力要素から対応する周波数の信号が出力される。
周波数がfuの場合には入力コイル105を有する入力要素102から信号が出力され、周波数がfvの場合には入力コイル106を有する入力要素103から信号が出力され、周波数がfwの場合には入力コイル107を有する入力要素104から信号が出力される。
周波数がfuの場合には入力コイル105を有する入力要素102から信号が出力され、周波数がfvの場合には入力コイル106を有する入力要素103から信号が出力され、周波数がfwの場合には入力コイル107を有する入力要素104から信号が出力される。
各入力要素102〜104から信号が出力されると、電磁結合により、センサコイル113に信号が発生する。前記送信期間内における受信期間において、センサコイル113のXセンサコイル及びYセンサコイルを制御部210によって所定タイミングで走査することにより、入力装置101に近いセンサコイルからは大きな検出信号が得られ、入力装置101から遠いセンサコイルほど小さな検出信号が得られる。
前記動作を図4に従って説明すると、図4(a)に示すように、先ず送信期間において、送信制御部206から、送信回路209及び信号ケーブル111を介して、共振周波数fuに対応する周波数fuの信号を入力装置101に送出する。入力装置101では、共振周波数fuの共振回路を構成する入力コイル105を有する入力要素102から信号が出力される。
尚、本実施の形態では、前記送信は前記受信期間も含めて前記送信期間全体にわたって行われるが、前記受信期間以外では、検出装置112は受信動作を行わない(送受信タイミング401参照)。但し、この場合でも、送受信タイミングを送受信タイミング402のように、送信期間と受信期間が別になるように構成することは可能である。センサコイル113側から信号を送信し、入力装置101で前記信号を受信した後に返信し、入力装置101からの前記信号をセンサコイルで再び受信する方式の場合には、送受信タイミングは送受信タイミング402のようになる。
尚、本実施の形態では、前記送信は前記受信期間も含めて前記送信期間全体にわたって行われるが、前記受信期間以外では、検出装置112は受信動作を行わない(送受信タイミング401参照)。但し、この場合でも、送受信タイミングを送受信タイミング402のように、送信期間と受信期間が別になるように構成することは可能である。センサコイル113側から信号を送信し、入力装置101で前記信号を受信した後に返信し、入力装置101からの前記信号をセンサコイルで再び受信する方式の場合には、送受信タイミングは送受信タイミング402のようになる。
次に、前記受信期間において、電磁結合によって、入力要素102から出力された信号を、制御部210の選択制御によって選択したXセンサコイル中の1つのセンサコイルで受信する。前記センサコイルで受信した信号は受信回路201で増幅された後、検出部202で検波されて信号レベルの検出が行われる。前記送信動作及び受信動作を、1つのXセンサコイルあたり4回分を繰り返して行って(図4(b))、得られた各検出信号レベルを図示しないバッファメモリに一旦記憶し、その合計値を当該センサコイルで検出した検出信号レベルとし、前記検出信号レベルのデータを前記検出したセンサコイルに対応付けてメモリ204に記憶する。尚、本実施の形態では、前記送信動作及び受信動作を複数回繰り返すことでノイズ低減をはかることが可能になり又、従来からのデジタイジング動作のシーケンスと同様にするために、前記送信動作及び受信動作を、1つのXセンサコイルあたり4回分を繰り返して行うようにしたが、必ずしも4回分行う必要はなく、得られる信号の精度等に応じて、種々の回数分に設定することが可能である。
前記動作を、周波数fuに関して、全てのXセンサコイル(本実施の形態では103本)及び全てのYセンサコイル(本実施の形態では78本)について行う(図4(c))。
前記動作に続いて、周波数fv、fwの信号に関しても前記同様の動作を行う。この場合、入力装置101では、周波数fvの信号は入力コイル106を有する入力要素103から出力され又、周波数fwの信号は入力コイル107を有する入力要素104から出力されることになる。
前述のようにして、周波数fu、fv、fwに関する動作を行うことにより、一サイクルの動作が完了する(図4(d))。
前記動作に続いて、周波数fv、fwの信号に関しても前記同様の動作を行う。この場合、入力装置101では、周波数fvの信号は入力コイル106を有する入力要素103から出力され又、周波数fwの信号は入力コイル107を有する入力要素104から出力されることになる。
前述のようにして、周波数fu、fv、fwに関する動作を行うことにより、一サイクルの動作が完了する(図4(d))。
尚、本実施の形態では、入力装置101から送信期間全体にわたって信号の送信を行うと共に、前記送信期間内における受信期間に、検出装置112で受信するように構成しているが、入力装置101に共振回路を設け、検出装置112からの信号送信を完了した後に入力装置101からの返送された信号を検出装置112で受信動作を行うように構成して、送信動作と検出装置112での受信動作を交互に行うようにしてもよい。
また、検出装置112(センサコイル113)から信号を送信し、入力装置101で前記信号を受信し、3次元空間における入力装置101の座標及び方向を得るように構成することも可能である。この場合にも、検出装置112から送信期間全体にわたって信号の送信を行うと共に、前記送信期間内における受信期間に、入力装置101で受信するように構成することが可能であり、又、検出装置112が信号送信を完了した後に、検出装置112からの信号を入力装置101で受信動作を行うように構成して、検出装置112の送信動作と入力装置101の受信動作を交互に行うようにしてもよい。
また、検出装置112(センサコイル113)から信号を送信し、入力装置101で前記信号を受信し、3次元空間における入力装置101の座標及び方向を得るように構成することも可能である。この場合にも、検出装置112から送信期間全体にわたって信号の送信を行うと共に、前記送信期間内における受信期間に、入力装置101で受信するように構成することが可能であり、又、検出装置112が信号送信を完了した後に、検出装置112からの信号を入力装置101で受信動作を行うように構成して、検出装置112の送信動作と入力装置101の受信動作を交互に行うようにしてもよい。
図5〜図7は、本第1の実施の形態に係るモーションキャプチャシステムにおける処理を示すフローチャートである。
また、図8は、本第1の実施の形態の動作を説明するための模式図で、入力装置101のXYZ座標及び方向(鉛直線からの傾き角θ及びX軸を基準とする方位角φ)を示す図である。
以下、図1乃至図8を用いて、本第1の実施の形態の動作を説明する。
先ず、制御部210のメモリ204、CPU205、送信制御部206、制御部210及び検出部202内に設けられたバッファメモリの初期化処理を行う(図5のステップS11)。
また、図8は、本第1の実施の形態の動作を説明するための模式図で、入力装置101のXYZ座標及び方向(鉛直線からの傾き角θ及びX軸を基準とする方位角φ)を示す図である。
以下、図1乃至図8を用いて、本第1の実施の形態の動作を説明する。
先ず、制御部210のメモリ204、CPU205、送信制御部206、制御部210及び検出部202内に設けられたバッファメモリの初期化処理を行う(図5のステップS11)。
次に、図4で説明したように、入力装置101側から検出装置112側へ所定タイミングで周波数の異なる信号を順次送信すると共に、検出装置112側で電磁結合によって、入力装置101からの信号を受信し検出する処理を行う。
即ち、先ず、送信制御部206のセレクタ208を切り換えることにより、入力装置101に送信する信号の周波数を選択する(ステップS12)。前記周波数の選択は、図4(d)に示すように、所定タイミングで、周波数fu、fv、fwの順で繰り返し行うため、先ず周波数fuの信号を出力するようにセレクタ208の接続が選択される。
次に、入力装置101からの信号を電磁結合で受信するセンサコイル113を切換えて選択する(ステップS13)。
即ち、先ず、送信制御部206のセレクタ208を切り換えることにより、入力装置101に送信する信号の周波数を選択する(ステップS12)。前記周波数の選択は、図4(d)に示すように、所定タイミングで、周波数fu、fv、fwの順で繰り返し行うため、先ず周波数fuの信号を出力するようにセレクタ208の接続が選択される。
次に、入力装置101からの信号を電磁結合で受信するセンサコイル113を切換えて選択する(ステップS13)。
この状態で、送信制御部206から周波数fuの信号を入力装置101に出力し、前記選択したセンサコイル113で受信し、検出部202でレベル検出を行う。センサコイル113の全Xセンサコイル及び全Yセンサコイルを所定タイミングで順次選択することにより、前記検出動作(グローバルスキャン)を行う(ステップS14)。
3種類の周波数fu、fv、fwの信号について前記動作を行ったか否かを判断し、周波数fu、fv、fwの信号全てについて前記動作が完了していないと判断した場合にはステップS12へ戻り、周波数fu、fv、fwの信号全てについての動作が完了したと判断した場合、即ち、全ての入力要素102〜104からの信号を検出する処理を完了したと判断した場合には、ステップS16に移行する(ステップS15)。
3種類の周波数fu、fv、fwの信号について前記動作を行ったか否かを判断し、周波数fu、fv、fwの信号全てについて前記動作が完了していないと判断した場合にはステップS12へ戻り、周波数fu、fv、fwの信号全てについての動作が完了したと判断した場合、即ち、全ての入力要素102〜104からの信号を検出する処理を完了したと判断した場合には、ステップS16に移行する(ステップS15)。
上記処理により、入力装置101から受信した信号の検出レベル及び該検出レベルに対応するセンサコイルのデータを、各周波数fu、fv、fw毎に、メモリ204に記憶する。即ち、入力要素102〜104から受信した信号の検出レベル及び該検出レベルに対応するセンサコイルのデータがメモリ204に記憶される。
ステップS16では、メモリ204に予め記憶した受信レベルに関するテーブルを参照して、センサコイル113の受信レベルに対して、ステップS12〜S15におけるセンサコイル113の受信レベルの感度バラツキを補正する(ステップS16)。前記レベル補正は、各入力要素102〜104について、即ち、全ての周波数信号fu、fv、fwについて行う。また、ステップS16では、各入力要素毎に、Yセンサコイルで検出した信号レベルのピークを、Xコイルセンサで検出した信号レベルのピークに一致するように補正する。
ステップS16では、メモリ204に予め記憶した受信レベルに関するテーブルを参照して、センサコイル113の受信レベルに対して、ステップS12〜S15におけるセンサコイル113の受信レベルの感度バラツキを補正する(ステップS16)。前記レベル補正は、各入力要素102〜104について、即ち、全ての周波数信号fu、fv、fwについて行う。また、ステップS16では、各入力要素毎に、Yセンサコイルで検出した信号レベルのピークを、Xコイルセンサで検出した信号レベルのピークに一致するように補正する。
図9〜図12は、ステップS16におけるレベル補正を説明するための特性図であり、メモリ204に予め記憶されたレベル補正テーブルの補正データを示す図である。また、図13は、Xセンサコイルで検出した入力要素102からの検出信号LUxを示す図で、LUxmはメイン信号のピーク値、Xmはピーク値LUxmが得られたときのX軸座標、LUxs1は左側サブ信号のピーク値、Xs1は信号LUxs1が得られたときのX軸座標、LUxs2は右側サブ信号のピーク値、Xs2は信号LUxs2が得られたときのX軸座標、XGは入力コイル105の重心位置のX軸座標である。
尚、Yセンサコイルで検出した信号についても同様に表すことができ、Yセンサコイルで検出した信号については、以下の説明では、記号Xの代わりに記号Yを用いて表している。また、入力要素103、104についても図13と同様に表される。
尚、Yセンサコイルで検出した信号についても同様に表すことができ、Yセンサコイルで検出した信号については、以下の説明では、記号Xの代わりに記号Yを用いて表している。また、入力要素103、104についても図13と同様に表される。
図9は、入力装置101の端部A(図8参照)が前記検出面から所定距離離間した位置(本実施の形態では前記検出面の上方100mmの位置)にすると共に入力装置101を垂直(傾き角θ=0度)にした状態で、一端のXセンサコイルから他端のXセンサコイルまでX軸方向に移動させながら、各Xセンサコイル及び各Yセンサコイルで検出した信号レベルのメイン信号LUxm、LUymをプロットした図である。尚、図9縦軸のペン信号とは、ペンコイル105から出力された信号を各センサコイル113で検出した信号のレベルであることを意味している。
図10は、前記の如くして検出した各メイン信号LUxm、LUymを原点(検出面の中央部)付近のメイン信号のレベルに一致させて検出レベルを平坦化するために、各メイン信号LUxm、LUymに掛け合わせるための補正係数(X軸方向補正係数)を示す図である。尚、図10に示したX軸方向補正係数は、補正係数テーブルとして、予めメモリ204に記憶されている。
図11は、入力装置101の端部Aが前記検出面から所定距離離間した位置(本実施の形態では前記検出面の上方100mmの位置)にすると共に入力装置101を垂直(傾き角θ=0度)にした状態で、一端のYセンサコイルから他端のYセンサコイルまでY軸方向に移動させながら、各Xセンサコイル及び各Yセンサコイルで検出した信号レベルのメイン信号LUxm、LUymをプロットした図である。
図11は、入力装置101の端部Aが前記検出面から所定距離離間した位置(本実施の形態では前記検出面の上方100mmの位置)にすると共に入力装置101を垂直(傾き角θ=0度)にした状態で、一端のYセンサコイルから他端のYセンサコイルまでY軸方向に移動させながら、各Xセンサコイル及び各Yセンサコイルで検出した信号レベルのメイン信号LUxm、LUymをプロットした図である。
図12は、前記の如くして検出した各メイン信号LUxm、LUymを原点(検出面の中央部)付近のメイン信号のレベルに一致させて検出レベルを平坦化するために、各メイン信号LUxm、LUymに掛け合わせるための補正係数(Y軸方向補正係数)を示す図である。尚、図12に示したY軸方向補正係数は、補正係数テーブルとして、予めメモリ204に記憶されている。
ステップS16では、周波数信号fu、fv、fwについて(即ち、入力コイル105〜107について)、前記補正係数テーブル(図10、図12参照)を参照して、センサコイル113の受信レベルのバラツキを補正し又、Yセンサコイルで検出した信号レベルのピークを、Xコイルセンサで検出した信号レベルのピークに一致するように、各入力要素102〜104毎に補正する。
前記補正処理によって、センサコイル113を構成する各センサコイルの感度のバラツキを補正し、以降の検出処理において正確な検出処理が行われるようにする。
ステップS16では、周波数信号fu、fv、fwについて(即ち、入力コイル105〜107について)、前記補正係数テーブル(図10、図12参照)を参照して、センサコイル113の受信レベルのバラツキを補正し又、Yセンサコイルで検出した信号レベルのピークを、Xコイルセンサで検出した信号レベルのピークに一致するように、各入力要素102〜104毎に補正する。
前記補正処理によって、センサコイル113を構成する各センサコイルの感度のバラツキを補正し、以降の検出処理において正確な検出処理が行われるようにする。
次に、CPU205は、入力コイル105から受信して検出した検出信号(ペン信号fu)の中の最大の検出信号レベルと、前記最大の検出信号レベル点の両側近傍の2点の検出信号レベルとに基づいて、放物線近似を用いた周知の方法により、最大信号レベル点のX座標Xm及び該座標におけるレベルを最大信号レベルLUxmとして算出し又、Y軸方向における最大レベル点のY座標Ym及び該Y座標点のレベルを最大信号レベルLUymとして算出する(ステップS17)。ステップS17の処理は全ての入力要素102〜104について行う。
次に、CPU205は、ペン信号fuの最大信号レベルのX方向半値幅Xwidth(あるいはY方向Ywidth)を算出する(ステップS18)。ステップS18の処理を全ての入力要素102〜104について行う。
次に、CPU205は、ペン信号fuの最大信号レベルのX方向半値幅Xwidth(あるいはY方向Ywidth)を算出する(ステップS18)。ステップS18の処理を全ての入力要素102〜104について行う。
次に、CPU205は、図14に示す高さテーブルを参照して、該半値幅に対応する高さ(Z軸座標)を算出する(ステップS19)。図14は、入力要素の高さと前記半値幅Xwidthとの関係を表す高さテーブルで、予めメモリ204に記憶されている。また、Y軸成分についても、図14と同様に、入力要素の高さと半値幅Ywidthとの関係を表す高さテーブルが予めメモリ204に記憶されている。尚、本実施の形態では高さを算出する際に半値幅を用いているが、必ずしも半値幅である必要はなく、検出信号の予め定めた所定レベル値における座標の幅から高さを得るようにすればよく、例えば、予め定めた半値幅付近の所定幅であればよい。
X軸成分とY軸成分の検出信号のうち、レベルの大きい方の信号に基づいて半値幅XwidthあるいはYwidthを算出し、算出した半値幅XwidthあるいはYwidthに基づいて、前記高さテーブルを参照して入力要素の高さ(Z軸座標)を算出する。これにより、レベルの大きい信号の方がより正確な検出データとなるため、レベルの大きい信号を使用して高さを求めることにより、高さの検出精度が向上する。ステップS19の処理を全ての入力要素102〜104について行う。
X軸成分とY軸成分の検出信号のうち、レベルの大きい方の信号に基づいて半値幅XwidthあるいはYwidthを算出し、算出した半値幅XwidthあるいはYwidthに基づいて、前記高さテーブルを参照して入力要素の高さ(Z軸座標)を算出する。これにより、レベルの大きい信号の方がより正確な検出データとなるため、レベルの大きい信号を使用して高さを求めることにより、高さの検出精度が向上する。ステップS19の処理を全ての入力要素102〜104について行う。
次に、CPU205は、検出信号のメイン信号のピーク値と、該ピーク値のX座標及びY座標を再計算して入力要素102の重心座標を算出する(ステップS20)。図13に示すピーク値のX軸、Y軸座標(Xm,Ym)、Xセンサコイルで受信した信号のメイン信号(X軸のメイン信号)LUxm、Yセンサコイルで受信した信号のメイン信号(Y軸のメイン信号)LUym、左側サブ信号のピーク値X座標Xs1、Y軸の左側サブ信号のピーク値Y座標Ys1、前記左側サブ信号のピーク信号値LUxs1、前記Y軸左側サブ信号のピーク信号値LUys1、X軸の右側サブ信号のピーク値X座標Xs2、Y軸の右側サブ信号のピーク値Y座標Ys2、X軸の右側サブ信号のピーク信号値LUxs2、Y軸の右側サブ信号のピーク信号値Y軸成分LUys2をともに検出し、下記式を用いて入力コイル105の重心座標即ち入力要素102の重心座標(XG,YG)を算出する(ステップS20)。
XG=(LUxs1*Xs1+LUxm*Xm+LUxs2*Xs2)/(LUxs1+LUxm+LUxs2)
YG=(LUys1*Ys1+LUym*Ym+LUys2*Ys2)/(LUys1+LUym+LUys2)
尚、高さ方向(Z軸)の重心座標ZGは、ZG=Zである。
ステップ20の処理を全ての入力要素102〜104について行う。これにより、各入力要素の3次元空間における座標が一応求められる。
XG=(LUxs1*Xs1+LUxm*Xm+LUxs2*Xs2)/(LUxs1+LUxm+LUxs2)
YG=(LUys1*Ys1+LUym*Ym+LUys2*Ys2)/(LUys1+LUym+LUys2)
尚、高さ方向(Z軸)の重心座標ZGは、ZG=Zである。
ステップ20の処理を全ての入力要素102〜104について行う。これにより、各入力要素の3次元空間における座標が一応求められる。
次に、得られた重心座標からの偏差ΔX=(Xm−XG)、ΔY=(Ym−YG)、X軸のメイン信号LUxm、Y軸のメイン信号LUymから、次式を用いて、重み付き偏差ΔXwei、ΔYweiを求める(ステップS21)。
ΔXwei=ΔX*LUxm/√(LUxm2+LUym2)
ΔYwei=ΔY*LUym/√(LUxm2+LUym2)
入力要素102〜104の傾いた方向に偏差ΔX、ΔYが大きくなると共に、検出信号のピーク値の比も相対的に大きくなる、即ち、偏差ΔX、ΔYの値自体が傾き角θの大きさによって変動を受けるので、正確な傾き角θを求めるために、偏差ΔX、ΔYの代わりに重み付き偏差ΔXwei、ΔYweiを用いて、次式により傾き角θを求める。
θ=Ct*√(ΔXwei2+ΔYwei2)
ここで、Ctは予め定めた所定の比例定数である。
ステップS21の処理を全ての入力要素102〜104について行う。
ΔXwei=ΔX*LUxm/√(LUxm2+LUym2)
ΔYwei=ΔY*LUym/√(LUxm2+LUym2)
入力要素102〜104の傾いた方向に偏差ΔX、ΔYが大きくなると共に、検出信号のピーク値の比も相対的に大きくなる、即ち、偏差ΔX、ΔYの値自体が傾き角θの大きさによって変動を受けるので、正確な傾き角θを求めるために、偏差ΔX、ΔYの代わりに重み付き偏差ΔXwei、ΔYweiを用いて、次式により傾き角θを求める。
θ=Ct*√(ΔXwei2+ΔYwei2)
ここで、Ctは予め定めた所定の比例定数である。
ステップS21の処理を全ての入力要素102〜104について行う。
次に、次式により、方位角φを暫定的に第一象限で代表させた暫定方位角φ0を算出する(ステップS22)。
φ0=Tan−1(ABS(ΔYwei/ΔXwei))*180/π (度)
但し、ABS(ΔYwei/ΔXwei)は、(ΔYwei/ΔXwei)の絶対値であることを表す記号である。
ステップS22の処理を全ての入力要素102〜104について行う。
ここで、検出信号の極性も検出することが可能な場合(例えば、入力装置101と検出装置112間で送受信する信号と検出部202における検出タイミングとの同期がとれている場合)には、次のようにして、一般の方位角φを算出する(ステップS23)。
図15はセンサコイルで検出した信号を示す図で、同図(a)はX座標成分の検出信号、同図(b)はY軸座標成分の検出信号を示している。図15に示すように、検出信号のレベルとともに極性が検出されて、正の検出信号及び負の検出信号が得られている。図16は、3次元空間における象限を定義した図で、図中の数字が象限を表している。また、図17は、図16のように定義した象限と検出信号の符号の関係を表す象限テーブルで、予めメモリ204に記憶している。
φ0=Tan−1(ABS(ΔYwei/ΔXwei))*180/π (度)
但し、ABS(ΔYwei/ΔXwei)は、(ΔYwei/ΔXwei)の絶対値であることを表す記号である。
ステップS22の処理を全ての入力要素102〜104について行う。
ここで、検出信号の極性も検出することが可能な場合(例えば、入力装置101と検出装置112間で送受信する信号と検出部202における検出タイミングとの同期がとれている場合)には、次のようにして、一般の方位角φを算出する(ステップS23)。
図15はセンサコイルで検出した信号を示す図で、同図(a)はX座標成分の検出信号、同図(b)はY軸座標成分の検出信号を示している。図15に示すように、検出信号のレベルとともに極性が検出されて、正の検出信号及び負の検出信号が得られている。図16は、3次元空間における象限を定義した図で、図中の数字が象限を表している。また、図17は、図16のように定義した象限と検出信号の符号の関係を表す象限テーブルで、予めメモリ204に記憶している。
ここで、検出信号の極性も検出できる場合(検出信号のレベルのみならず、検出信号の正負の極性検出もできる場合)は、検出したX成分信号及びY成分信号の山か谷の絶対値の大きい2つの信号値LUx1、LUx2、LUy1、LUy2を選択し、信号値LUx1、LUy1、(LUx1+LUx2)の符号から象限を判定し、一般の方位角φを求める。
符号と大小関係から第1〜第8象限までの象限を判定することにより(図15〜17参照)、鏡像は消滅して実像(正しい方向の方位角φ)を得ることができる。
符号と大小関係から第1〜第8象限までの象限を判定することにより(図15〜17参照)、鏡像は消滅して実像(正しい方向の方位角φ)を得ることができる。
一方、検出信号の極性を検出できない場合は、偏差ΔX、ΔYの符号から象限を判定し、0〜360度までの一般方位角φを求める。ここで、方位角φは、ΔX及びΔYともに負の場合には第1象限、ΔXが正でΔYが負の場合には第2象限、ΔX及びΔYともに正の場合には第3象限、ΔXが負でΔYが正の場合には第4象限となる。
前記処理を全ての入力要素102〜104について行う。
前記処理によって、各入力要素102〜104の方位角φが求められる。
前記処理を全ての入力要素102〜104について行う。
前記処理によって、各入力要素102〜104の方位角φが求められる。
次に、検出信号の極性を検出できない場合(検出信号のレベルのみが検出可能で、検出信号の正負の極性検出ができない場合)は、入力要素102のX軸方向の傾き角θx(傾き角θのX軸成分)とY軸方向の傾き角θy(傾き角θのY軸成分)を、左右のサブ信号の比から次式により求めた後に、傾き角θを算出する(ステップS24)。
θx=ABS((LUxs1−LUxs2)/(LUxm−LUxsmin))*90(度)
θy=ABS((LUys1−LUys2)/(LUym−LUysmin))*90(度)
ここで、記号「ABS」は絶対値を意味し、又、LUxsminはXセンサコイルで受信した信号のサブ信号の小さい方のピーク値、LUysminはYセンサコイルで受信した信号のサブ信号の小さい方のピーク値である。
θx=ABS((LUxs1−LUxs2)/(LUxm−LUxsmin))*90(度)
θy=ABS((LUys1−LUys2)/(LUym−LUysmin))*90(度)
ここで、記号「ABS」は絶対値を意味し、又、LUxsminはXセンサコイルで受信した信号のサブ信号の小さい方のピーク値、LUysminはYセンサコイルで受信した信号のサブ信号の小さい方のピーク値である。
ここで、X軸とY軸のうち、入力要素102〜104を傾けた方向に近い向きの軸の傾きが大きくなるため、合成傾き角θは、θxとθyのうちの大きい方を採用する。即ち、
θ=MAX(θx,θy)
である。ここで、記号「MAX」は、大きい方の数値を採用することを表す記号である。
ステップS24の処理を全ての入力要素102〜104について行う。これにより、各入力要素102〜104の傾き角θが求められる。
θ=MAX(θx,θy)
である。ここで、記号「MAX」は、大きい方の数値を採用することを表す記号である。
ステップS24の処理を全ての入力要素102〜104について行う。これにより、各入力要素102〜104の傾き角θが求められる。
次に、入力要素102のX軸方向の方位ベクトル成分Ux、Y軸方向の方位ベクトル成分Uy、Z軸方向の方位ベクトル成分Uzを、次式を用いて求める(ステップS25)。
Ux=sinθcosφ、Uy=sinθsinφ、Uz=cosθ
ステップS25の処理を全ての入力要素102〜104について行う。
但し、φ=45度、θ=45度等の斜めの方向は、実際の合成傾き角θに比べて、合成傾き角θが小さ目にでるので、次式で得られた傾き角θを用いて補正する(ステップS26)。尚、下記式は、正確な傾き角θが得られるように、実験に基づいて定めた式である。
θ=θ+ABS(Ux*Uy*Uz)*60 (度)
但し、記号「ABS」は絶対値を意味する記号である。
即ち、このようにして得た傾き角θを用いて、入力要素102の方位ベクトル成分(Ux,Uy,Uz)を求め直し、これを最終的な方位ベクトルとする。この処理も全ての入力要素102〜104について行う。これにより、各入力要素102〜104の方位ベクトル成分が求められる。
Ux=sinθcosφ、Uy=sinθsinφ、Uz=cosθ
ステップS25の処理を全ての入力要素102〜104について行う。
但し、φ=45度、θ=45度等の斜めの方向は、実際の合成傾き角θに比べて、合成傾き角θが小さ目にでるので、次式で得られた傾き角θを用いて補正する(ステップS26)。尚、下記式は、正確な傾き角θが得られるように、実験に基づいて定めた式である。
θ=θ+ABS(Ux*Uy*Uz)*60 (度)
但し、記号「ABS」は絶対値を意味する記号である。
即ち、このようにして得た傾き角θを用いて、入力要素102の方位ベクトル成分(Ux,Uy,Uz)を求め直し、これを最終的な方位ベクトルとする。この処理も全ての入力要素102〜104について行う。これにより、各入力要素102〜104の方位ベクトル成分が求められる。
次に、高さZを傾き角θにより補正する。例えば、所定高さ(例えば、高さ100mm)において方位角φ=0度方向に傾けた場合に、傾き角θの傾きが大きくなるに従って、X信号の半値幅Xwidthは大きくなる。
前記X信号の半値幅Xwidthを、傾き角θ=0度の半値幅Xwidthで割ることによって得られる半値幅比は、傾き角θ=0度のとき1.0であり、傾き角θが増加するに連れて単調増加し、傾き角θ=90度のときの半値幅比は1.13となる。この関係を使用して、任意の傾き角θの半値幅Xwidthを補正する。即ち、傾き角=0度の場合の半値幅Xwidthを推定する。
前記補正した半値幅Xwidthを、高さZを求める式に代入して、高さを補正する。
次に、入力要素102の重心位置の3次元(3D)座標(XG,YG,ZG)を算出する。
この場合、ZGの値は、高さZの値をそのまま使用する。また、検出信号のピーク値と、前記ピーク値の左右のサブ信号の2点、合計3点の座標及び信号値を使用する方法で各座標X,Y及び信号値を検出する。図13に示したように、ピーク信号の座標Xm、Ym、ピーク信号値LUxm、LUym、左右サイドローブの座標Xs1、Xs2、Ys1、Ys2とサブ信号値LUxs1、LUxs2、LUys1、LUys2をともに検出し、次式を用いて、入力要素102の座標(XG,YG,ZG)を算出する。尚、次式のような重み平均をとることにより、入力要素の高さや方向による検出誤差を小さく抑える。
XG=(LUxs1*Xs1+LUxm*Xm+LUxs2*Xs2)/(LUxs1+LUxm +LUxs2)
YG=(LUys1*Ys1+LUym*Ym+LUys2*Ys2)/(LUys1+LUym +LUys2)
ZG=Z
入力要素103、104についても前記同様の処理を行い、入力要素103、104の方位ベクトル成分(Vx,Vy,Vz)、(Wx,Wy,Wz)及び入力要素103、104の重心位置の3次元座標(Xv,Yv,Zv)、(Xw,Yw,Zw)を算出する(ステップS27)。
前記処理により、3次元空間における入力要素102のより正確な座標が求められる。
前記X信号の半値幅Xwidthを、傾き角θ=0度の半値幅Xwidthで割ることによって得られる半値幅比は、傾き角θ=0度のとき1.0であり、傾き角θが増加するに連れて単調増加し、傾き角θ=90度のときの半値幅比は1.13となる。この関係を使用して、任意の傾き角θの半値幅Xwidthを補正する。即ち、傾き角=0度の場合の半値幅Xwidthを推定する。
前記補正した半値幅Xwidthを、高さZを求める式に代入して、高さを補正する。
次に、入力要素102の重心位置の3次元(3D)座標(XG,YG,ZG)を算出する。
この場合、ZGの値は、高さZの値をそのまま使用する。また、検出信号のピーク値と、前記ピーク値の左右のサブ信号の2点、合計3点の座標及び信号値を使用する方法で各座標X,Y及び信号値を検出する。図13に示したように、ピーク信号の座標Xm、Ym、ピーク信号値LUxm、LUym、左右サイドローブの座標Xs1、Xs2、Ys1、Ys2とサブ信号値LUxs1、LUxs2、LUys1、LUys2をともに検出し、次式を用いて、入力要素102の座標(XG,YG,ZG)を算出する。尚、次式のような重み平均をとることにより、入力要素の高さや方向による検出誤差を小さく抑える。
XG=(LUxs1*Xs1+LUxm*Xm+LUxs2*Xs2)/(LUxs1+LUxm +LUxs2)
YG=(LUys1*Ys1+LUym*Ym+LUys2*Ys2)/(LUys1+LUym +LUys2)
ZG=Z
入力要素103、104についても前記同様の処理を行い、入力要素103、104の方位ベクトル成分(Vx,Vy,Vz)、(Wx,Wy,Wz)及び入力要素103、104の重心位置の3次元座標(Xv,Yv,Zv)、(Xw,Yw,Zw)を算出する(ステップS27)。
前記処理により、3次元空間における入力要素102のより正確な座標が求められる。
次に、Xセンサ及びYセンサともに負信号も検出することができる場合(検出信号のレベルのみならず、検出信号の正負の極性検出が可能な場合)に、傾き角θ及び方位角φを求める方法について説明する。
Xセンサ及びYセンサともに負信号も検出することができる場合には、負信号も検出し、正負の極性を含めて、絶対値が最大値である検出信号(メイン信号)の左右にある信号をサブ信号として選定する。その後、Xセンサコイルで検出した信号から、最大値LUxm、中間値LUxmed、最小値LUxminを算出する。Yセンサコイルで検出した信号も同様に、最大値LUym、中間値LUymed、最小値LUyminを算出する。
すると、次式
ratio_x=(LUxmed−LUxmin)/(LUxm−LUxmin)
は、図18に示すように、X軸方向の傾きに略比例して0〜1まで増加するので、図18の傾き角依存性テーブルを参照して、X軸方向の傾き角θxを検出できる。ここで、図18はメイン信号とサブ信号との比の傾き角依存性を表す傾き依存テーブルであり、予めメモリ204に記憶している。
同様にしてY軸方向について、次式
ratio_y=(LUymed−LUymin)/(LUym−LUymin)
はY軸方向の傾き角θyに略比例して0〜1まで増加するので、予めメモリ204に記憶したY軸に関する傾き角依存テーブルを参照して、Y軸方向傾き角θyを検出できる。尚、前記Y軸に関する傾き角依存テーブルも図18と同様の特性を有している。
Xセンサ及びYセンサともに負信号も検出することができる場合には、負信号も検出し、正負の極性を含めて、絶対値が最大値である検出信号(メイン信号)の左右にある信号をサブ信号として選定する。その後、Xセンサコイルで検出した信号から、最大値LUxm、中間値LUxmed、最小値LUxminを算出する。Yセンサコイルで検出した信号も同様に、最大値LUym、中間値LUymed、最小値LUyminを算出する。
すると、次式
ratio_x=(LUxmed−LUxmin)/(LUxm−LUxmin)
は、図18に示すように、X軸方向の傾きに略比例して0〜1まで増加するので、図18の傾き角依存性テーブルを参照して、X軸方向の傾き角θxを検出できる。ここで、図18はメイン信号とサブ信号との比の傾き角依存性を表す傾き依存テーブルであり、予めメモリ204に記憶している。
同様にしてY軸方向について、次式
ratio_y=(LUymed−LUymin)/(LUym−LUymin)
はY軸方向の傾き角θyに略比例して0〜1まで増加するので、予めメモリ204に記憶したY軸に関する傾き角依存テーブルを参照して、Y軸方向傾き角θyを検出できる。尚、前記Y軸に関する傾き角依存テーブルも図18と同様の特性を有している。
また、図19に示すように、LUxm*ratio_x及びLUym*ratio_y同様に、X軸信号比ratio_x及びY軸信号比ratio_yは方位角φに依存して変化するため、傾き角θx、θyともに方位角φに依存して変化するが、X軸とY軸のうち、入力要素102〜104を傾けた方向に近い向きの軸の傾きが大きくなるため、合成傾き角θは、次式のようにθxとθyのうちの大きい方を選ぶと安定する。即ち、
θ=MAX(θx,θy)
θ=MAX(θx,θy)
尚、前記の傾き角θ算出方法において、次式を用いて信号比ratio_x、ratio_yの重み平均をとることにより傾き角θが求まる。図20に示すように合成信号比ratioは方位角φに略依存しないため、傾き角θの方位角φ依存性は略無くなる。
ratio=√(((LUxm*ratio_x)2+(LUym*ratio_y)2)/(LUxm2+LUym2))
但し、0≦θ≦90度である。
ratio=1−√(((LUxm*(1−ratio_x))2+(LUym*(1−ratio_y))2)/(LUxm2+LUym2))
但し、90≦θ≦180度である。
また、このratioは、傾き角θに対して直線に近い増加特性を有し、0〜1まで変化するため、図21の方位角依存性テーブルを参照して、合成信号比ratioに基づいて傾き角θを算出できる。
次に、図19に示すように、次式より、方位角φを暫定的に第一象限で代表させた暫定方位角φ0を算出する。
φ0=Tan−1((LUym*ratio_y)/(LUxm*ratio_x))*180/π(度)
ratio=√(((LUxm*ratio_x)2+(LUym*ratio_y)2)/(LUxm2+LUym2))
但し、0≦θ≦90度である。
ratio=1−√(((LUxm*(1−ratio_x))2+(LUym*(1−ratio_y))2)/(LUxm2+LUym2))
但し、90≦θ≦180度である。
また、このratioは、傾き角θに対して直線に近い増加特性を有し、0〜1まで変化するため、図21の方位角依存性テーブルを参照して、合成信号比ratioに基づいて傾き角θを算出できる。
次に、図19に示すように、次式より、方位角φを暫定的に第一象限で代表させた暫定方位角φ0を算出する。
φ0=Tan−1((LUym*ratio_y)/(LUxm*ratio_x))*180/π(度)
ここで、入力装置101の位置が高くてサブ信号が1つしか検出できないときは、図22のサブ信号/メイン信号比傾き角テーブルを参照して、片方(ピーク値が大きい方)のサブ信号とメイン信号のピーク値の比から傾き角θを算出する。方位角φも図22と同様のサブ信号/メイン信号比方位角テーブルを参照し、片方(ピーク値が大きい方)のサブ信号とメイン信号のメイン信号の比から算出する。X座標及びY座標は、傾き角θと方位角φにより補正する。
また、入力装置101が検出装置112からさらに高い位置にあってサブ信号が1つも検出できないときは、入力コイル105のメイン信号中の所定レベルにおける左右片の幅の比率、例えば、メイン信号の左右の半値幅の比率、又は25%値幅の比率から傾き角θと方位角φを検出し、X座標及びY座標は傾き角θと方位角φにより補正する。これにより、より正確な傾き角θ及び方位角φを求めることができる。
また、入力装置101が検出装置112からさらに高い位置にあってサブ信号が1つも検出できないときは、入力コイル105のメイン信号中の所定レベルにおける左右片の幅の比率、例えば、メイン信号の左右の半値幅の比率、又は25%値幅の比率から傾き角θと方位角φを検出し、X座標及びY座標は傾き角θと方位角φにより補正する。これにより、より正確な傾き角θ及び方位角φを求めることができる。
図23はこれを説明するための特性図で、検出信号のメイン信号における25%値幅の比(メイン信号のピーク値の25%における左片幅と右片幅の比)から、傾き角θと方位角φの算出する際の処理を説明する図である。また、図24は、半値幅比と傾き角θの関係および25%値幅比と傾き角θの関係を示す図(左右片幅比の角度依存性テーブル)で、予めメモリ204に記憶している。メイン信号の所定レベルにおける左右片幅の比を算出し、前記左右幅片比の角度依存性テーブルを参照して傾き角θ及び方位角φを算出することができる。得られた傾き角θと方位角φを用いて、X座標及びY座標を補正して正確なX座標及びY座標を得る。
一方、入力要素が検出装置112の検出面に対して平行(傾き角θ=90度)でX軸又はY軸に平行になるとき(方位角φ=0度、90度、180度または270度)では、X軸成分又はY軸成分の何れか一方の検出信号分布が平坦になるため、座標が不定になる。
図25及び図26は、この現象を説明するための図である。尚、図26において、各入力要素102〜104は説明の都合上、相互に離間したように示しているが、実際には各入力要素の端部が一致するように相互に連結されている。
図25において、θ=90度、φ=90度の場合のXセンサコイル検出信号(同図(a))、Yセンサコイル検出信号(同図(b))を示している。図示するように、Y軸成分の検出信号は、メイン信号の谷底値LUymin及び右側サブ信号LUys2が検出されているが、X軸成分の検出信号は山や谷が検出されずに平坦になっている。したがって、図26に示すように、検出した座標軸のずれが生じて、各入力要素102〜103の座標や方向が連続するような検出が行われなかったり、座標が不定になってしまう。
この場合も、3つの入力要素102〜104のうちのどれかの3次元座標及び方向が適正に検出できていれば、X軸座標、Y軸座標、Z軸座標(高さ)を各々の信号の大きさで重み平均して各入力要素102〜104が連続するように繋ぐことができる。
図25及び図26は、この現象を説明するための図である。尚、図26において、各入力要素102〜104は説明の都合上、相互に離間したように示しているが、実際には各入力要素の端部が一致するように相互に連結されている。
図25において、θ=90度、φ=90度の場合のXセンサコイル検出信号(同図(a))、Yセンサコイル検出信号(同図(b))を示している。図示するように、Y軸成分の検出信号は、メイン信号の谷底値LUymin及び右側サブ信号LUys2が検出されているが、X軸成分の検出信号は山や谷が検出されずに平坦になっている。したがって、図26に示すように、検出した座標軸のずれが生じて、各入力要素102〜103の座標や方向が連続するような検出が行われなかったり、座標が不定になってしまう。
この場合も、3つの入力要素102〜104のうちのどれかの3次元座標及び方向が適正に検出できていれば、X軸座標、Y軸座標、Z軸座標(高さ)を各々の信号の大きさで重み平均して各入力要素102〜104が連続するように繋ぐことができる。
図27は、各入力要素102〜104の座標が連続するように繋ぐ処理を行う場合の説明図である。尚、図27において、各入力要素102〜104は説明の都合上、相互に離間したように示しているが、実際には相互に連結されている。即ち、相互に連結された複数の入力要素の端部は一致するように構成されており、入力要素102の他方の端部U2は入力要素103の一方の端部V1に一致し、入力要素103の他方の端部V2は入力要素104の一方の端部W1に一致している。また、各入力要素102〜104の長さは各々異なる長さに構成することが可能であるが、本実施の形態では、所定長の同一長さに形成されている。
各入力要素102〜104を繋ぐための処理について、入力要素102、103を例にとって説明すると、先ず、各入力要素102、103の向きが同じ向きであることを確認した後、図27において、入力要素102、103が相互に連結されている端部(入力要素102の端部U2、入力要素103の端部V1)の座標から、重み付けした平均位置座標(重み平均位置)UV1を算出する。尚、入力要素103、104の連結された端部V2と端部W1についても同様に重み平均位置VW1が求められる。
更に入力要素103の中央の重み平均重心点VGを算出する。
その後は、前記処理を行った経路とは逆に遡って処理を行うことにより各座標の算出を行い、即ち、入力要素の長さの半分をベクトル的に加算して行き、端部V1と端部U2等の連結点(関節)は一致させ、最後に入力要素102、104の端部U1と端部W2の3次元座標を得る。
更に入力要素103の中央の重み平均重心点VGを算出する。
その後は、前記処理を行った経路とは逆に遡って処理を行うことにより各座標の算出を行い、即ち、入力要素の長さの半分をベクトル的に加算して行き、端部V1と端部U2等の連結点(関節)は一致させ、最後に入力要素102、104の端部U1と端部W2の3次元座標を得る。
前記処理を詳細に説明すると、入力要素102〜104のZ座標が大きい場合(入力要素102〜104が検出装置112から高い位置にある場合)、検出信号が揺らいでジッタが生じて正確な検出信号が得られ難く、座標が不安定になるおそれがある。座標が不安定になることを防止するために、下記式を用いてZ座標の重み平均をとることによって、各入力要素102〜104のZ座標(高さ成分)の重み(高さ重み)Zu_wei、Zv_wei、Zw_weiを算出する。
Zu_wei=(1−Zu/250)2
Zv_wei=(1−Zv/250)2
Zw_wei=(1−Zw/250)2
Zu_wei=(1−Zu/250)2
Zv_wei=(1−Zv/250)2
Zw_wei=(1−Zw/250)2
次に、各入力要素102〜104がX、Yセンサコイルと平行に近くなった場合には検出信号が小さくなり、検出精度が劣化するおそれがある(完全に平行になった場合には座標の検出ができなくなる(座標不定))ため、入力要素の方向や高さに応じて検出信号に重み付けをすることにより検出精度を向上させる。
即ち、各入力要素102〜104の方位ベクトル成分(X成分Ux、Vx、Wx:Y成分Uy、Vy、Wy:Z成分Uz、Vz、Wz)による重み付け要素Uxz0、Uyz0、Vxz0、Vyz0、Wxz0、Wyz0を算出する。
Uxz0=Ux2+Uz2:Uyz0=Uy2+Uz2
Vxz0=Vx2+Vz2:Vyz0=Vy2+Vz2
Wxz0=Wx2+Wz2:Wyz0=Wy2+Wz2
次に、重み付け要素Uxz0、Uyz0、Vxz0、Vyz0、Wxz0、Wyz0に高さ重みを乗じることにより、Uxz、Uyz、Vxz、Vyz、Wxz、Wyzを算出する。
Uxz=Uxz0*Zu_wei:Uyz=Uyz0*Zu_wei
Vxz=Vxz0*Zv_wei:Vyz=Vyz0*Zv_wei
Wxz=Wxz0*Zw_wei:Wyz=Wyz0*Zw_wei
即ち、各入力要素102〜104の方位ベクトル成分(X成分Ux、Vx、Wx:Y成分Uy、Vy、Wy:Z成分Uz、Vz、Wz)による重み付け要素Uxz0、Uyz0、Vxz0、Vyz0、Wxz0、Wyz0を算出する。
Uxz0=Ux2+Uz2:Uyz0=Uy2+Uz2
Vxz0=Vx2+Vz2:Vyz0=Vy2+Vz2
Wxz0=Wx2+Wz2:Wyz0=Wy2+Wz2
次に、重み付け要素Uxz0、Uyz0、Vxz0、Vyz0、Wxz0、Wyz0に高さ重みを乗じることにより、Uxz、Uyz、Vxz、Vyz、Wxz、Wyzを算出する。
Uxz=Uxz0*Zu_wei:Uyz=Uyz0*Zu_wei
Vxz=Vxz0*Zv_wei:Vyz=Vyz0*Zv_wei
Wxz=Wxz0*Zw_wei:Wyz=Wyz0*Zw_wei
次に、相互に連結された入力要素102〜104の端部の重み平均を算出する。例えば、入力要素102、103が連結される端部の各重み平均XGuv1、YGuv1、ZGuv1は次のようになる。尚、入力要素103、104が連結される端部についても同様である。
XGuv1=(Uxz*Xu2+Vxz*Xv1)/(Uxz+Vxz)
YGuv1=(Uyz*Yu2+Vyz*Yv1)/(Uyz+Vyz)
ZGuv1=(Zu_wei*Zu2+Zv_wei*Zv1)/(Zu_wei+Zv_wei)
XGuv1=(Uxz*Xu2+Vxz*Xv1)/(Uxz+Vxz)
YGuv1=(Uyz*Yu2+Vyz*Yv1)/(Uyz+Vyz)
ZGuv1=(Zu_wei*Zu2+Zv_wei*Zv1)/(Zu_wei+Zv_wei)
重み平均により、入力要素103の中心の重心VG(XGv,YGv,ZGv)を下記式で算出する。
XGv=((Uxz+Vxz)*XGuv1+(Vxz+Wxz)*XGvw1)/(Uxz+ 2*Vxz+Wxz)
YGv=((Uyz+Vyz)*YGuv1+(Vyz+Wyz)*YGvw1)/(Uyz+ 2*Vyz+Wyz)
ZGv=((Zu_wei+Zv_wei)*ZGuv1+(Zv_wei+Zw_wei)*ZGvw1) /(Zu_wei+2*Zv_wei+Zw_wei)
XGv=((Uxz+Vxz)*XGuv1+(Vxz+Wxz)*XGvw1)/(Uxz+ 2*Vxz+Wxz)
YGv=((Uyz+Vyz)*YGuv1+(Vyz+Wyz)*YGvw1)/(Uyz+ 2*Vyz+Wyz)
ZGv=((Zu_wei+Zv_wei)*ZGuv1+(Zv_wei+Zw_wei)*ZGvw1) /(Zu_wei+2*Zv_wei+Zw_wei)
その後、前記処理を行った経路とは逆に遡って各座標の算出処理を行い、即ち、入力要素103の中心座標VGを基準として、各入力要素102〜104の長さの半分をベクトル的に加算して行き、端部V1と端部U2等の連結点(関節)は一致させ、最後に入力要素102、104の端部U1と端部W2の3次元座標を得る。
即ち、入力要素103の中心座標を基準として、入力要素103の半分の長さをベクトル的に加算することにより入力要素103の両端部V1、V2の座標が求められる。ここで、入力要素103の一方の端部V1の座標は入力要素102の他方の端部U2に等しく又、他方の端部V2の座標は入力要素104の一方の端部W1に等しい。
即ち、入力要素103の中心座標を基準として、入力要素103の半分の長さをベクトル的に加算することにより入力要素103の両端部V1、V2の座標が求められる。ここで、入力要素103の一方の端部V1の座標は入力要素102の他方の端部U2に等しく又、他方の端部V2の座標は入力要素104の一方の端部W1に等しい。
また、入力要素103の一方の端部V1の座標(入力要素102の他方の端部U2の座標)に入力要素102の半分の長さをベクトル的に加算することによって入力要素102の中心の座標が求められ、入力要素102の前記中心の座標に入力要素102の半分の長さをベクトル的に加算することによって入力要素102の一方の端部U1の座標が求められる。
同様に、入力要素103の他方の端部V2の座標(入力要素104の一方の端部W1の座標)に入力要素104の半分の長さをベクトル的に加算することによって入力要素104の中心の座標が求められ、入力要素104の前記中心の座標に入力要素104の半分の長さをベクトル的に加算することによって入力要素104の他方の端部W2の座標が求められる。
前記処理により、鎖状に連結された複数の入力要素102〜103の座標や方向が連続するように決定することが可能になる。
以後、前記各処理を所定時間毎に行うことにより、時々刻々変化する各入力要素102〜104の座標及び方向を検出することが可能になり、その結果、入力装置101の動きや、入力装置101を装着した人体の動作等を検出することが可能になる。
同様に、入力要素103の他方の端部V2の座標(入力要素104の一方の端部W1の座標)に入力要素104の半分の長さをベクトル的に加算することによって入力要素104の中心の座標が求められ、入力要素104の前記中心の座標に入力要素104の半分の長さをベクトル的に加算することによって入力要素104の他方の端部W2の座標が求められる。
前記処理により、鎖状に連結された複数の入力要素102〜103の座標や方向が連続するように決定することが可能になる。
以後、前記各処理を所定時間毎に行うことにより、時々刻々変化する各入力要素102〜104の座標及び方向を検出することが可能になり、その結果、入力装置101の動きや、入力装置101を装着した人体の動作等を検出することが可能になる。
次に、本発明の第2の実施の形態について説明する。入力装置が単一の入力コイルしか有しない場合等は、入力装置が水平(前記検出面と平行)に位置すると共にXセンサコイル又はYセンサコイルと平行に位置した場合、入力装置と平行になったXセンサコイル又はYセンサコイルは入力コイルと電磁結合できないため検出信号を得ることができず、座標の検出が不可(座標不定)になる恐れがある(前記第1の実施の形態参照)。本第2の実施の形態は、かかる問題が発生しないようにした例である。
図28は、本第2の実施の形態に係るモーションキャプチャシステムのブロック図で、図2と同一機能を有する部分には同一符号を付している。
図28は、本第2の実施の形態に係るモーションキャプチャシステムのブロック図で、図2と同一機能を有する部分には同一符号を付している。
図28と図2のモーションキャプチャシステムの主な相違点は、センサコイル113と同一構成のセンサコイルを検出面内で所定角度(本実施の形態では45度)回転させた斜めセンサコイル2001を、センサコイル113に重ねて配設している点である。
センサコイル113はX軸方向(φ=0度)に並設された複数のXセンサコイル及びY軸方向(φ=90度)に並設された複数のYセンサコイルを備え、又、斜めセンサコイル2001は、前記X軸方向から45度回転したX’軸方向(φ=45度)に並設された複数のX’センサコイル及びX’センサコイルに直交するY’軸方向(φ=135度)に並設された複数のY’センサコイルを備えている。
センサコイル113はX軸方向(φ=0度)に並設された複数のXセンサコイル及びY軸方向(φ=90度)に並設された複数のYセンサコイルを備え、又、斜めセンサコイル2001は、前記X軸方向から45度回転したX’軸方向(φ=45度)に並設された複数のX’センサコイル及びX’センサコイルに直交するY’軸方向(φ=135度)に並設された複数のY’センサコイルを備えている。
図29及び図30は、本第2の実施の形態に係るモーションキャプチャシステムにおける処理を示すフローチャートである。
以下、図28〜図30を用いて、本第2の実施の形態の動作を説明する。尚、説明の便宜上、主として入力要素102に関する処理について説明するが、他の入力要素103、104についても、入力要素102に対する処理と同一の処理が行われ、全ての入力要素102〜104の3次元座標及び方向が検出されるものである。
以下、図28〜図30を用いて、本第2の実施の形態の動作を説明する。尚、説明の便宜上、主として入力要素102に関する処理について説明するが、他の入力要素103、104についても、入力要素102に対する処理と同一の処理が行われ、全ての入力要素102〜104の3次元座標及び方向が検出されるものである。
先ず、検出装置112の制御部210に設けられたメモリ204及びCPU205、送信制御部206、制御部210及び検出部202内に設けられたバッファメモリの初期化処理を行う(図29のステップS211)。
次に、検出装置112側から入力装置101側へ周波数fuの信号を送信すると共に、検出装置112側で電磁結合によって、入力装置101からの信号を受信し検出する処理を行う。
即ち、先ず、送信制御部206のセレクタ208を切り換えることにより、入力装置101に送信する信号の周波数を選択する(ステップS212)。
次に、検出装置112側から入力装置101側へ周波数fuの信号を送信すると共に、検出装置112側で電磁結合によって、入力装置101からの信号を受信し検出する処理を行う。
即ち、先ず、送信制御部206のセレクタ208を切り換えることにより、入力装置101に送信する信号の周波数を選択する(ステップS212)。
次に、図4に関して説明したように、入力装置101からの信号を電磁結合で受信するセンサコイル113及び斜めセンサコイル2001を、制御部210によって順次切換えて選択する(ステップS213)。
この状態で、入力装置101から出力される信号をセンサコイル113及び斜めセンサコイル2001で順次受信してレベル検出を行うグローバルスキャンを行う(ステップS214)。
前記グローバルスキャンでは、送信制御部206は周波数fuの信号を送信回路209に出力する。送信回路209は送信制御部206から入力された周波数fuの信号を、信号ケーブル111を介して入力装置101に供給する。選択されたセンサコイル113及び斜めセンサコイル2001は、電磁結合により入力装置101からの信号を受信する。検出部202は受信回路201を介して、前記センサコイル113及び斜めセンサコイル2001で受信した信号を受信し、前記信号のレベルを検出し、入力装置101から受信した信号の検出レベル及び該検出レベルに対応するセンサコイル113、2001のデータをメモリ204に記憶する。
この状態で、入力装置101から出力される信号をセンサコイル113及び斜めセンサコイル2001で順次受信してレベル検出を行うグローバルスキャンを行う(ステップS214)。
前記グローバルスキャンでは、送信制御部206は周波数fuの信号を送信回路209に出力する。送信回路209は送信制御部206から入力された周波数fuの信号を、信号ケーブル111を介して入力装置101に供給する。選択されたセンサコイル113及び斜めセンサコイル2001は、電磁結合により入力装置101からの信号を受信する。検出部202は受信回路201を介して、前記センサコイル113及び斜めセンサコイル2001で受信した信号を受信し、前記信号のレベルを検出し、入力装置101から受信した信号の検出レベル及び該検出レベルに対応するセンサコイル113、2001のデータをメモリ204に記憶する。
次に、全てのセンサコイル113及び斜めセンサコイル2001について前記動作を行ったか否かを判断し、全てのセンサコイル113、2001について前記動作が完了していなければステップS212へ戻り、全てのセンサコイル113、2001についての動作が完了したと判断した場合には、ステップS216に移行する(ステップS215)。
前記各処理を全ての入力要素102〜104について行う。尚、入力要素103、104に関する処理では前記第1の実施の形態と同様に、各々、セレクタ回路208を切り換えることにより周波数fv、fwの信号を使用して行う。
前記各処理を全ての入力要素102〜104について行う。尚、入力要素103、104に関する処理では前記第1の実施の形態と同様に、各々、セレクタ回路208を切り換えることにより周波数fv、fwの信号を使用して行う。
次に、ステップS216では、前記第1の実施の形態において図9〜図12のテーブルを使用してセンサコイルのレベル補正を行ったのと同様にして、メモリ204に予め記憶したレベル補正テーブルを参照して、センサコイル113のXセンサコイル及びYセンサコイル、斜めセンサコイル2001のX’センサコイル及びY’センサコイルの受信レベルの感度バラツキを補正する(ステップS216)。また、ステップS216では、傾き角θ=0度の状態で、Yセンサコイル、X’センサコイル、Y’センサコイルで検出した信号レベルのピーク値を、Xコイルセンサで検出した信号レベルのピーク値に一致するように補正する。
次に、Xセンサコイル、Yセンサコイル、X’センサコイル、Y’センサコイルの各々について、各センサコイルの検出信号の最大レベル点の検出信号レベルと前記最大レベル点の両側近傍の2点の検出信号レベルとに基づいて、放物線近似を用いた周知の方法により、Xセンサコイルにおける最大レベル点のX座標Xm及び該座標における最大信号レベルLUxmとして算出し又、Yセンサコイルにおける最大レベル点のY座標Ym及び該座標における最大信号レベルLUymとして算出し、X’センサコイルにおける最大レベル点のX’座標X’m及び該座標における最大信号レベルLUx'mとして算出し又、Y’センサコイルにおける最大レベル点のY’座標Y’m及び該座標における最大信号レベルLUy'mとして算出する(ステップS217)。図31は、前記動作によりXセンサコイルで検出した信号の特性を示す図であり、負信号の検出(正負の極性検出)を行える場合の例である。
次に、ペン信号fuの最大信号値の半値幅を算出する(ステップS218)。
次に、下記の如くして、Xセンサコイル、Yセンサコイル、X’センサコイル、Y’センサコイルにより検出した座標から、各センサコイルの信号強度による重み平均をとって重心座標を求め、正確な重心座標を得る(ステップS219)。このとき、Xセンサコイル、Yセンサコイル、X’センサコイル、Y’センサコイルのうち、3つのセンサコイルから独立に同じX座標(又はY座標)を得ることができるが、これらの3つの信号は信号強度が異なる。信号強度が小さいほど信号ジッタ等による誤差が大きくなり、信号強度が大きいほど信頼性の高いデータが得られるため、単純平均よりも、信号強度に応じて重み平均をとることにより正確な重心座標を得るようにしている。
次に、下記の如くして、Xセンサコイル、Yセンサコイル、X’センサコイル、Y’センサコイルにより検出した座標から、各センサコイルの信号強度による重み平均をとって重心座標を求め、正確な重心座標を得る(ステップS219)。このとき、Xセンサコイル、Yセンサコイル、X’センサコイル、Y’センサコイルのうち、3つのセンサコイルから独立に同じX座標(又はY座標)を得ることができるが、これらの3つの信号は信号強度が異なる。信号強度が小さいほど信号ジッタ等による誤差が大きくなり、信号強度が大きいほど信頼性の高いデータが得られるため、単純平均よりも、信号強度に応じて重み平均をとることにより正確な重心座標を得るようにしている。
例えば、図31のように、負信号の検出ができる場合(正負の極性検出できる場合)で、しかも、メイン信号の符号が正の場合には、先ず、常にサブ信号の大きい方の絶対値の信号の座標が必要なため|LUxs1|<|LUxs2|の場合には、右サイドローブの座標Xs2を検出する。次に、各Yセンサコイル、X’センサコイル及びY’センサコイルで検出した信号レベルに所定の係数をかけて、Xセンサコイルの信号レベルに合わせる。尚、前記所定の係数は、例えば、検出装置102の検出面中央部で、高さ100mm、傾き角θ=0度でデータをとり、各Yセンサコイル、X’センサコイル及びY’センサコイルの検出信号レベルがXセンサコイルの信号レベルに合致するような係数を予め得ておくようにする。前記所定の係数としては、例えば、LUx=1*LUx、LUx’=1.455*LUx’、LUy=1.123*LUy、LUy’=1.325*LUy’のように選定する。
次に、大小判定して、LUx_med及びLUx_minを得る。LUx_medは、LUxs1、LUxm及びLUxs2の中の中間の大きさの値(LUx_med=Median(LUxs1,LUxm,LUxs2))、又は、LUxs1及びLUxs2の中の大きい方の値(LUx_med=Max(LUxs1,LUxs2))である。また、LUx_minは、LUxs1、LUxm及びLUxs2の中の最小の値(LUx_min=Min(LUxs1,LUxm,LUxs2))、又は、LUxs1及びLUxs2の中の小さい方の値(LUx_min=Min(LUxs1,LUxs2))である。すなわち、LUxs1及びLUxs2のうち、大きい方をLUx_med、小さい方をLUxminにする。
次に、Xセンサ(φ=0度)上の座標を次式から求める。
XG=((LUxm−LUx_min)*Xm+(LUx_med−LUx_min)*X_min)/(LUxm−2*LUx_min+LUx_med)
同様にして、X’センサ(φ=45度)上の座標を次式から求める。
X’G=((LUx'm−LUx'_min)*X’m+(LUx'_med−LUx'_min)*X’_min)/(LUx'm−2*LUx'_min+LUx'_med)
次に、Yセンサ(φ=90度)上の座標を次式から求める。
YG=((LUym−LUy_min)*Ym+(LUy_med−LUy_min)*Y_min)/(LUym−2*LUy_min+LUy_med)
最後にY’センサ(φ=135度)上の座標を次式から求める。
Y’G=((LUy'm−LUy'_min)*Y’m+(LUy'_med−LUy'_min)*Y’_min)/(LUy'm−2*LUy'_min+LUy'_med)
XG=((LUxm−LUx_min)*Xm+(LUx_med−LUx_min)*X_min)/(LUxm−2*LUx_min+LUx_med)
同様にして、X’センサ(φ=45度)上の座標を次式から求める。
X’G=((LUx'm−LUx'_min)*X’m+(LUx'_med−LUx'_min)*X’_min)/(LUx'm−2*LUx'_min+LUx'_med)
次に、Yセンサ(φ=90度)上の座標を次式から求める。
YG=((LUym−LUy_min)*Ym+(LUy_med−LUy_min)*Y_min)/(LUym−2*LUy_min+LUy_med)
最後にY’センサ(φ=135度)上の座標を次式から求める。
Y’G=((LUy'm−LUy'_min)*Y’m+(LUy'_med−LUy'_min)*Y’_min)/(LUy'm−2*LUy'_min+LUy'_med)
各X、X’、Y、Y’センサコイルの原点(本実施の形態では、センサコイル113及び斜めセンサコイル2001の中央部)を、XO、X’O、YO、Y’Oとすると、重み平均で、コイル重心座標(XGG,YGG)は下記のようになる。
ΔXG=XG−XO
ΔX’G=X’G−X’O
ΔYG=YG−YO
ΔY’G=Y’G−Y’O
XGG=XO+(LUxm*ΔXG+LUx’m*(ΔX’G/√2)−LUy’m*(ΔY’G/√2))/(LUxm+LUx'm+LUy'm)
YGG=YO+(LUx'm*(ΔX’G/√2)+LUym*ΔYG+LUy'm*(ΔY’G/√2))/(LUx'm+LUym+LUy'm)
ΔXG=XG−XO
ΔX’G=X’G−X’O
ΔYG=YG−YO
ΔY’G=Y’G−Y’O
XGG=XO+(LUxm*ΔXG+LUx’m*(ΔX’G/√2)−LUy’m*(ΔY’G/√2))/(LUxm+LUx'm+LUy'm)
YGG=YO+(LUx'm*(ΔX’G/√2)+LUym*ΔYG+LUy'm*(ΔY’G/√2))/(LUx'm+LUym+LUy'm)
次に、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルで検出した検出信号の最小信号レベルLUxminなどと、中間信号レベルLUxmedなどを判定する(ステップS220)。
次に、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルで検出した検出信号のメイン信号レベルの平均値LUm_av、最小信号レベルの平均値LUmin_av、中間信号レベルの平均値LUmed_avを下記式から求める(ステップS221)。
LUm_av=(LUxm+LUx'm+LUym+LUy'm)/4
LUmin_av=(LUxmin+LUx'min+LUymin+LUy'min)/4
LUmed_av=(LUxmed+LUx'med+LUymed+LUy'med)/4
ここで、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルのメイン信号レベルをLUxm、LUx'm、LUym、LUy'm、最小信号レベルをLUxmin、LUx'min、LUymin、LUym、中間信号レベルをLUxmed、LUx'med、LUymed、LUy'medで表している。
次に、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルで検出した検出信号のメイン信号レベルの平均値LUm_av、最小信号レベルの平均値LUmin_av、中間信号レベルの平均値LUmed_avを下記式から求める(ステップS221)。
LUm_av=(LUxm+LUx'm+LUym+LUy'm)/4
LUmin_av=(LUxmin+LUx'min+LUymin+LUy'min)/4
LUmed_av=(LUxmed+LUx'med+LUymed+LUy'med)/4
ここで、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルのメイン信号レベルをLUxm、LUx'm、LUym、LUy'm、最小信号レベルをLUxmin、LUx'min、LUymin、LUym、中間信号レベルをLUxmed、LUx'med、LUymed、LUy'medで表している。
次に、下記式を用いて、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルで検出した検出信号のメイン信号レベル、最小信号レベル、中間信号レベルの前記各平均値からの偏差を算出する(ステップS222)。
LUxm_dev=LUxm−LUm_av
LUx'm_dev=LUx'm−LUm_av
LUym_dev=LUym−LUm_av
LUy'm_dev=LUy'm−LUm_av
ここで、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルの最大値信号レベルの偏差を各々、LUxm_dev、LUx'm_dev、LUym_dev、LUy'm_devで表している。
LUxm_dev=LUxm−LUm_av
LUx'm_dev=LUx'm−LUm_av
LUym_dev=LUym−LUm_av
LUy'm_dev=LUy'm−LUm_av
ここで、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルの最大値信号レベルの偏差を各々、LUxm_dev、LUx'm_dev、LUym_dev、LUy'm_devで表している。
また、
LUxmin_dev=LUxmin−LUmin_av
LUx'min_dev=LUx'min−LUmin_av
LUymin_dev=LUymin−LUmin_av
LUy'min_dev=LUy'min−LUmin_av
ここで、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルの最小値信号レベルの偏差を各々、LUxmin_dev、LUx'min_dev、LUymin_dev、LUy'min_devで表している。
また、
LUxmed_dev=LUxmed−LUmed_av
LUx'med_dev=LUx'med−LUmed_av
LUymed_dev=LUymed−LUmed_av
LUy'med_dev=LUy'med−LUmed_av
ここで、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルの中間値信号レベルの偏差を各々、LUxmed_dev、LUx'med_dev、LUymed_dev、LUy'med_devで表している。
LUxmin_dev=LUxmin−LUmin_av
LUx'min_dev=LUx'min−LUmin_av
LUymin_dev=LUymin−LUmin_av
LUy'min_dev=LUy'min−LUmin_av
ここで、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルの最小値信号レベルの偏差を各々、LUxmin_dev、LUx'min_dev、LUymin_dev、LUy'min_devで表している。
また、
LUxmed_dev=LUxmed−LUmed_av
LUx'med_dev=LUx'med−LUmed_av
LUymed_dev=LUymed−LUmed_av
LUy'med_dev=LUy'med−LUmed_av
ここで、Xセンサコイル、X’センサコイル、Yセンサコイル、Y’センサコイルの中間値信号レベルの偏差を各々、LUxmed_dev、LUx'med_dev、LUymed_dev、LUy'med_devで表している。
次に、下記式を用いて、前記各偏差の2乗和平方根を算出する(ステップS223)。
LUm_am=√((LUxm_dev2+LUx'm_dev2+LUym_dev2+LUy'm_dev2)/2)
LUmin_am=√((LUxmin_dev2+LUx'min_dev2+LUymin_dev2+LUy'min_dev2)/2)
LUmed_am=√((LUxmed_dev2+LUx'med_dev2+LUymed_dev2+LUy'med_dev2)/2)
ここで、メイン信号、最小信号、中間信号の偏差の2乗和平方根を各々、LUm_am、LUmin_am、LUmed_amで表している。
LUm_am=√((LUxm_dev2+LUx'm_dev2+LUym_dev2+LUy'm_dev2)/2)
LUmin_am=√((LUxmin_dev2+LUx'min_dev2+LUymin_dev2+LUy'min_dev2)/2)
LUmed_am=√((LUxmed_dev2+LUx'med_dev2+LUymed_dev2+LUy'med_dev2)/2)
ここで、メイン信号、最小信号、中間信号の偏差の2乗和平方根を各々、LUm_am、LUmin_am、LUmed_amで表している。
次に、下記式を用いて、メイン信号、最小信号、中間信号の包絡線を求める(ステップS224)。
LUm_en=LUm_av+LUm_am
LUmin_en=LUmin_av−LUmin_am
LUmed_en=LUmed_av−LUmed_am
ここで、メイン信号、最小信号、中間信号の包絡線を各々、LUm_en、LUmin_en、LUmed_enで表している。
LUm_en=LUm_av+LUm_am
LUmin_en=LUmin_av−LUmin_am
LUmed_en=LUmed_av−LUmed_am
ここで、メイン信号、最小信号、中間信号の包絡線を各々、LUm_en、LUmin_en、LUmed_enで表している。
次に、下記式を用いて、包絡線比から傾き角θを算出する(ステップS225)。
ratio=(LUmed_en−LUmin_en)/(LUm_en−LUmin_en)
θ=ratio*180 (度)
次に下記式を用いて、メイン信号、cos(2φ)、sin(2φ)から、ディスクリートフーリエ変換(DFT(Discrete Fourier Transformation))により、暫定的方位角φ0(−90度≦φ0≦90度の範囲で代表させた暫定的な方位角φの値)を算出する(ステップS226)。
(LUxm*sin(2*0°)+LUx'm*sin(2*45°)+LUym*sin(2*90°)+LUy'm*sin(2*135°))/(LUxm*cos(2*0°)+LUx'm*cos(2*45°)+LUym*cos(2*90°)+LUy'm*cos(2*135°))
=(LUxm*0+LUx'm*1+LUym*0+LUy'm*(−1))/(LUxm*1+LUx'm*0+LUym*(−1)十LUy'm*0)
=(LUx'm−LUy'm)/(LUxm−LUym)
ratio=(LUmed_en−LUmin_en)/(LUm_en−LUmin_en)
θ=ratio*180 (度)
次に下記式を用いて、メイン信号、cos(2φ)、sin(2φ)から、ディスクリートフーリエ変換(DFT(Discrete Fourier Transformation))により、暫定的方位角φ0(−90度≦φ0≦90度の範囲で代表させた暫定的な方位角φの値)を算出する(ステップS226)。
(LUxm*sin(2*0°)+LUx'm*sin(2*45°)+LUym*sin(2*90°)+LUy'm*sin(2*135°))/(LUxm*cos(2*0°)+LUx'm*cos(2*45°)+LUym*cos(2*90°)+LUy'm*cos(2*135°))
=(LUxm*0+LUx'm*1+LUym*0+LUy'm*(−1))/(LUxm*1+LUx'm*0+LUym*(−1)十LUy'm*0)
=(LUx'm−LUy'm)/(LUxm−LUym)
例えば、LUx'm=26074、LUy'm=20691、LUxm=23552、LUym=24149とすると、
(LUx'm−LUy'm)/(LUxm−LUym)
=5383/(−597)=−9.01675
となる。したがって、暫定的方位角φ0は、
φ0=(1/2)*tan−1((LUx'm−LUy'm)/(LUxm−LUym))*180/π(度)
=(1/2)*tan−1(−9.01675)*180/π(度)
=(1/2)*(−1.46034)*180/π(度)
=0.73017*180/π(度)
=−41.8(度)
となる。
(LUx'm−LUy'm)/(LUxm−LUym)
=5383/(−597)=−9.01675
となる。したがって、暫定的方位角φ0は、
φ0=(1/2)*tan−1((LUx'm−LUy'm)/(LUxm−LUym))*180/π(度)
=(1/2)*tan−1(−9.01675)*180/π(度)
=(1/2)*(−1.46034)*180/π(度)
=0.73017*180/π(度)
=−41.8(度)
となる。
また、信号の右側サブ信号LUs2の3点近似法によるメイン信号の方向で象限を判定し、暫定的方位角φ0から正しい方位角φを算出する(ステップS227)。図32は、方位角φを算出するための方位角テーブルを示す図であり、メモリ204に予め記憶されている。図33及び図34は、前記方位角テーブルで使用している記号を説明するための図である。尚、図32において、LUx's1、LUx's2、LUy's1、LUy's2は、斜めセンサコイル2001のサブ信号のピーク値を意味している。
前記方位角テーブルから、方位領域が2であることが得られる。例えば、図33のような信号が得られる場合には、一般の方位角φは、
φ=φ0+90(度)=−41.8+90(度)=48.2(度)
となる。
前記処理を繰り返すことにより、入力装置2001の3次元空間におけるXYZ座標、方位角φ及び傾き角θを検出することが可能になる。
以上のようにして、検出信号のサブ信号比(LUx'm−LUy'm)/(LUxm−LUym)から傾き角θ及び方位角φを得ることが可能になる。
前記方位角テーブルから、方位領域が2であることが得られる。例えば、図33のような信号が得られる場合には、一般の方位角φは、
φ=φ0+90(度)=−41.8+90(度)=48.2(度)
となる。
前記処理を繰り返すことにより、入力装置2001の3次元空間におけるXYZ座標、方位角φ及び傾き角θを検出することが可能になる。
以上のようにして、検出信号のサブ信号比(LUx'm−LUy'm)/(LUxm−LUym)から傾き角θ及び方位角φを得ることが可能になる。
尚、本第2の実施の形態においても、図6のステップ20と同様にして、XYZ座標の補正処理を行うようにしてもよい。
前記各処理(ステップS211〜S227)を入力要素103、104についても行うことにより、全ての入力要素102〜104の3次元座標及び方向を検出することが可能になる。各入力要素102〜104を滑らかに繋ぐための処理は、前記第1の実施の形態と同様にして行うことができる。
以上のように、本第2の実施の形態によれば、斜めセンサコイル2001を設けているので、座標の検出が不可(座標不定)になることを防止することができる。
尚、センサコイル113と斜めセンサコイル2001の交差角度は45度が演算処理等の点から好ましいが、必ずしも45度である必要はなく他の交差角度でもよい。また、本第2の実施の形態と後述する第3の実施の形態とを組み合わせることにより、斜めセンサ2001を複数のX’センサコイルのみ、あるいは、複数のY’センサコイルのみとすることも可能である。
前記各処理(ステップS211〜S227)を入力要素103、104についても行うことにより、全ての入力要素102〜104の3次元座標及び方向を検出することが可能になる。各入力要素102〜104を滑らかに繋ぐための処理は、前記第1の実施の形態と同様にして行うことができる。
以上のように、本第2の実施の形態によれば、斜めセンサコイル2001を設けているので、座標の検出が不可(座標不定)になることを防止することができる。
尚、センサコイル113と斜めセンサコイル2001の交差角度は45度が演算処理等の点から好ましいが、必ずしも45度である必要はなく他の交差角度でもよい。また、本第2の実施の形態と後述する第3の実施の形態とを組み合わせることにより、斜めセンサ2001を複数のX’センサコイルのみ、あるいは、複数のY’センサコイルのみとすることも可能である。
次に、傾き角θ及び方位角φを検出するための他の例として、検出信号の左右片の比から傾き角θ及びφ方位角を検出する方法を、第3の実施の形態として説明する。本第3の実施の形態に係る3次元情報検出装置と前記第1の実施の形態との相違点は、CPU205による傾き角θ及び方位角φの算出方法が異なる点であり、それ以外の構成は前記第1の実施の形態と同一である。以下、主として傾き角θ及び方位角φの算出方法について説明する。
図35は、Xセンサコイルで検出した入力要素105からのメイン信号LUxを示す図である。
図35に示すように、検出信号のメイン信号の山のピーク値のX座標Xmを境にして、メイン信号の左の片側半値幅をXwidth50_left、右の片側半値幅をXwidth50_rightとする。また、メイン信号の左の片側25%値幅をXwidth25_left、右の片側25%値幅をXwidth25_rightとする。
尚、本実施の形態では半値幅と25%値幅を用いているが、必ずしもこれらの幅である必要はなく、これら付近で予め定めた所定幅であればよい。
図35は、Xセンサコイルで検出した入力要素105からのメイン信号LUxを示す図である。
図35に示すように、検出信号のメイン信号の山のピーク値のX座標Xmを境にして、メイン信号の左の片側半値幅をXwidth50_left、右の片側半値幅をXwidth50_rightとする。また、メイン信号の左の片側25%値幅をXwidth25_left、右の片側25%値幅をXwidth25_rightとする。
尚、本実施の形態では半値幅と25%値幅を用いているが、必ずしもこれらの幅である必要はなく、これら付近で予め定めた所定幅であればよい。
先ず、各幅と各比率を算出する場合、50%値片側幅Xwidth50_left、Xwidth50_rightを算出する。次に、25%値片側幅Xwidth25_left,Xwidth25_rightを算出する。次に、50%値左右片側幅比Xwidth50_left/right=Xwidth50_left/Xwidth50_rightを算出する。次に、25%値左右片側幅比Xwidth25_left/right=Xwidth25_left/Xwidth25_rightを算出する。
次に、傾斜角θの検出を行う。Xセンサコイルの50%値左右片側幅比と25%値左右片側幅比を、方位角φ=0度方向に傾けたとき、傾斜角θに対してプロットすると、図36に示す特性のようになる。図36に示す片側幅比率の傾斜角依存性テーブルは予めメモリ204に記憶されている。
25%値左右片側幅比の方が滑らかに変化しているので、25%値左右片側幅比を使用する。図36の片側幅比率の傾斜角依存性テーブルを用いて、このグラフの縦軸((Xwidth25_left/right)−1)が解れば、傾き角θを検出できる。
次に、傾斜角θの検出を行う。Xセンサコイルの50%値左右片側幅比と25%値左右片側幅比を、方位角φ=0度方向に傾けたとき、傾斜角θに対してプロットすると、図36に示す特性のようになる。図36に示す片側幅比率の傾斜角依存性テーブルは予めメモリ204に記憶されている。
25%値左右片側幅比の方が滑らかに変化しているので、25%値左右片側幅比を使用する。図36の片側幅比率の傾斜角依存性テーブルを用いて、このグラフの縦軸((Xwidth25_left/right)−1)が解れば、傾き角θを検出できる。
次に、方位角φの検出を行う。この場合、先ず、Yセンサコイルの25%値左右片側幅比の算出を行う。Yセンサコイルの検出信号LUyも使用し、同様にして、25%値左右片側幅比((Ywidth25_left/right)−1)を算出する。例えば、傾斜角θ=45度のまま、方位角φを1回転(0〜360度)させて、XとYの25%値左右片側幅比を方位角φに関してプロットすると、図37ようになる。尚、図37に示す25%値の片側幅比率の傾斜角依存性テーブルは予めメモリ204に記憶されている。
次に、方位角φの算出を行う場合、先ず、暫定的な方位角φ0を次式で算出する。
φ0=tan−1(((Ywidth25_left/right)−1)/((Xwidth25_left/right)−1))*180/π(度)
次に、方位角φの算出を行う場合、先ず、暫定的な方位角φ0を次式で算出する。
φ0=tan−1(((Ywidth25_left/right)−1)/((Xwidth25_left/right)−1))*180/π(度)
この暫定的な方位角φ0を、方位角φに対してデータを取ると、図38の表のようになる。図38は、(メイン信号の25%値の左右の片側幅の比率−1)、((Xwidth25_left/right)−1)の符号sign((Xwidth25_left/right)−1)および((Ywidth25_left/right)−1)の符号sign((Ywidth25_left/right)−1)から象限を判定して、一般方位角φを求めた例(高さ100mm、傾斜角φ=45度)である。尚、図38に示す象限判定テーブルは予めメモリ204に記憶されている。Xセンサコイルの検出信号LUxとYセンサコイルの検出信号LUyの左側サブ信号及び右側サブ信号の大小関係から、一般の方位角φを算出する。
以上のようにして、検出信号の左右片側幅の比から入力要素の傾き角θ及び方位角φを得ることが可能になる。
以上のようにして、検出信号の左右片側幅の比から入力要素の傾き角θ及び方位角φを得ることが可能になる。
次に、モーションキャプチャ用入力装置の他実施の形態について説明する。図39〜図47は、本発明の他の実施の形態に係るモーションキャプチャ用入力装置の入力要素を示す図である。モーションキャプチャ用入力装置は、図8、図39〜図47に示した入力要素を複数組み合わせて、相互に可動な状態で連結することにより構成される。組み合わせは、同一種類の入力要素のみを複数組み合わせるようにしてもよく又、異なる種類の入力要素を複数組み合わせるようにしてもよく、使用目的等に応じて適宜選定することが可能である。また、図示した入力要素を所定の収容体内に収容し、前記収容体に収容した状態の入力要素を複数連結するようにしてもよい。
前記第1の実施の形態に示したモーションキャプチャ用入力装置も含めて、各入力要素は、大別して、複数の入力コイルを有するもの(図39〜図46)と、単一の入力コイルを有するもの(図8、図47)に分けられる。また、複数の入力コイルを有する入力要素は、少なくとも一つの入力コイルの中心位置が他の入力コイルの中心位置からずれて配設された構成のもの(図39〜図42)と、複数の入力コイルが全て同一中心位置に配設された構成のもの(図43〜図46)とに分けられる。
図39〜図42に示す入力要素は、複数の入力コイルを有し、その少なくとも一つの入力コイルの中心位置が他の入力コイルの中心位置からずれて配設されると共に、前記各入力コイルの中心軸が直交して配設された入力要素の例である。入力コイルの中心位置がずれて配設されているため、検出装置と入力装置間の信号の同期をとらなくとも、入力要素の表裏検出(入力要素が検出装置側を向いているのか検出装置の反対側を向いているのかの検出)が可能になる。
図39において、入力要素は、磁性材料によって構成した複数の円柱形のコア2604〜2606に各々複数の入力コイル2601〜2603を巻回した構成となっており、各入力コイル2601〜2603は中心位置がずれると共に中心軸が直交するように配設されている。
図39において、入力要素は、磁性材料によって構成した複数の円柱形のコア2604〜2606に各々複数の入力コイル2601〜2603を巻回した構成となっており、各入力コイル2601〜2603は中心位置がずれると共に中心軸が直交するように配設されている。
図40において、入力要素は、磁性材料によって構成した単一の円柱形のコア2703の両端に複数(2つ)の入力コイル2701、2702を巻回した構成となっており、各入力コイル2701、2702は中心位置がずれると共に中心軸が一致するように配設されている。
図41において、入力要素は、磁性材料によって構成した小径円柱形のコア2803、磁性材料によって構成した大径円柱形のコア2804に各々1つの入力コイル2801、2802を巻回した構成となっており、各入力コイル2801、2802は中心位置がずれると共に中心軸が直交するように配設されている。
図41において、入力要素は、磁性材料によって構成した小径円柱形のコア2803、磁性材料によって構成した大径円柱形のコア2804に各々1つの入力コイル2801、2802を巻回した構成となっており、各入力コイル2801、2802は中心位置がずれると共に中心軸が直交するように配設されている。
図42において、入力要素は、磁性材料によって構成した小径円柱形のコア4104、磁性材料によって構成した大径円柱形のコア4105を有している。コア4104には1つの入力コイル4101が巻回されている。コア4105には2つの入力コイル4102、4103が巻回されている。入力コイル4102、4103は、中心位置が同一で中心軸が相互に直交するように配設されている。入力コイル4101は、中心位置が入力コイル4102、4103の中心位置からずれた位置に配設されている。また、入力コイル4101〜4103は、中心軸が相互に直交するように配設されている。
図43〜図46に示す入力要素は、複数の入力コイルを有し、全ての入力コイルの中心位置が同一位置に配設されると共に、各入力コイルの中心軸が直交して配設された入力要素の例である。各入力コイルの中心位置が同一位置に配設されているため、検出装置と入力装置間の信号の同期をとらない場合には、入力装置の表裏検出ができない。
図43において、入力要素は、磁性材料によって構成した円柱形のコア2904に複数(3つ)の入力コイル2901〜2903を巻回した構成となっており、各入力コイル2901〜2903は中心位置が一致すると共に中心軸が直交するように配設されている。
図43において、入力要素は、磁性材料によって構成した円柱形のコア2904に複数(3つ)の入力コイル2901〜2903を巻回した構成となっており、各入力コイル2901〜2903は中心位置が一致すると共に中心軸が直交するように配設されている。
図44において、入力要素は、球体3004内に複数の入力コイル3001〜3003を巻回した構成となっており、各入力コイル3001〜3003は中心位置が一致すると共に中心軸が直交するように配設されている。
図45において、入力要素は、磁性材料によって構成した単一の円柱形のコア3103に複数(2つ)の入力コイル3101、3102を巻回した構成となっており、各入力コイル3101、3102は中心位置が一致すると共に中心軸が直交するように配設されている。
図46において、入力要素は、球体3203内に複数(2つ)の入力コイル3201、3202を巻回した構成となっており、各入力コイル3201、3202は中心位置が一致すると共に中心軸が直交するように配設されている。
図45において、入力要素は、磁性材料によって構成した単一の円柱形のコア3103に複数(2つ)の入力コイル3101、3102を巻回した構成となっており、各入力コイル3101、3102は中心位置が一致すると共に中心軸が直交するように配設されている。
図46において、入力要素は、球体3203内に複数(2つ)の入力コイル3201、3202を巻回した構成となっており、各入力コイル3201、3202は中心位置が一致すると共に中心軸が直交するように配設されている。
図47に示す入力要素は、単一の入力コイルを有する入力要素の例である。単一の入力コイルしか有していないため、検出装置と入力装置間の信号の同期をとらない場合には、入力装置の表裏検出ができない。
図47において、入力要素は、球体3402内に単一の入力コイル3401を巻回した構成となっており、入力コイル3401の中心位置が球体3402の中心に一致するように配設されている。
図47において、入力要素は、球体3402内に単一の入力コイル3401を巻回した構成となっており、入力コイル3401の中心位置が球体3402の中心に一致するように配設されている。
尚、前記各実施の形態では、座標や方位角φあるいは傾き角θを算出する場合に、メモリ204に予め記憶したテーブルを参照することにより行ったが、予めメモリ204に、座標、方位角φ、傾き角θを算出するための計算式(近似式)をプログラムとして記憶しておき、前記計算式をCPU205で実行するように構成してもよい。
また、前記各実施の形態では、モーションキャプチャ用検出装置のセンサコイルから発生した信号をモーションキャプチャ用入力装置で受信し、モーションキャプチャ用入力装置からモーションキャプチャ検出装置に信号を返送し、モーションキャプチャ入力装置に信号を送信したセンサコイルと同一のセンサコイルでモーションキャプチャ用入力装置からの信号を受信し、モーションキャプチャ用検出装置側で入力要素の位置や方向を検出するようにしたが、信号の送信、受信を異なるセンサコイルによって行うことが可能である。
また、前記各実施の形態では、モーションキャプチャ用検出装置のセンサコイルから発生した信号をモーションキャプチャ用入力装置で受信し、モーションキャプチャ用入力装置からモーションキャプチャ検出装置に信号を返送し、モーションキャプチャ入力装置に信号を送信したセンサコイルと同一のセンサコイルでモーションキャプチャ用入力装置からの信号を受信し、モーションキャプチャ用検出装置側で入力要素の位置や方向を検出するようにしたが、信号の送信、受信を異なるセンサコイルによって行うことが可能である。
また、モーションキャプチャ用入力装置の入力コイル及びモーションキャプチャ用検出装置のセンサコイルが発振回路を構成し、入力装置が存在するとき検出装置が自己発振するような方式とすることも可能である。
さらに、モーションキャプチャ用入力装置内に電源あるいは他から電源供給を受ける電源回路を設けると共に、モーションキャプチャ用検出装置との間で送受信するための信号を発生する信号発生回路を設けるようにしてもよい。
また、モーションキャプチャ用入力装置側に、電源若しくは他から電源供給を受ける電源回路、送受信するための信号を発生する信号発生回路、前記信号の送受信回路、算出部及び算出結果を赤外線や電波等の無線で送信する送信回路を内蔵させ、その一方、モーションキャプチャ用検出装置側に、共振回路を構成する複数のコイルを平面的に配設するように構成し、入力装置側から送信した信号を検出装置側で受信して返送し、これを入力装置の送受信回路で受信して、前記算出部により各入力要素の3次元情報(3次元座標及び方向)を算出し、該算出結果を前記送信回路で上位装置等の他の装置に送信するように構成してもよい。
さらに、モーションキャプチャ用入力装置内に電源あるいは他から電源供給を受ける電源回路を設けると共に、モーションキャプチャ用検出装置との間で送受信するための信号を発生する信号発生回路を設けるようにしてもよい。
また、モーションキャプチャ用入力装置側に、電源若しくは他から電源供給を受ける電源回路、送受信するための信号を発生する信号発生回路、前記信号の送受信回路、算出部及び算出結果を赤外線や電波等の無線で送信する送信回路を内蔵させ、その一方、モーションキャプチャ用検出装置側に、共振回路を構成する複数のコイルを平面的に配設するように構成し、入力装置側から送信した信号を検出装置側で受信して返送し、これを入力装置の送受信回路で受信して、前記算出部により各入力要素の3次元情報(3次元座標及び方向)を算出し、該算出結果を前記送信回路で上位装置等の他の装置に送信するように構成してもよい。
また、モーションキャプチャ用入力装置側に、電源若しくは他から電源供給を受ける電源回路、送受信するための信号を発生する信号発生回路、前記信号の送受信部、受信信号を所定の送信フォーマットに処理する信号処理部、前記信号処理結果を赤外線や電波等の無線で送信する送信回路を内蔵させ、その一方、モーションキャプチャ用検出装置側に、共振回路を構成する複数のセンサコイルを平面的または曲面的に配設すると共に前記送信回路からの信号を受けて入力装置の位置や方向を算出する算出部を設けるようにしてもよい。
また、モーションキャプチャ用入力装置側に、電源若しくは他から電源供給を受ける電源回路、信号の受信部、受信信号を所定の送信フォーマットに処理する信号処理部、前記信号処理結果を赤外線や電波等の無線で送信する送信回路を内蔵させ、その一方、モーションキャプチャ用検出装置側に、共振回路を構成する複数のセンサコイル、前記センサコイルを切替選択する選択回路、送受信するための信号を発生する信号発生回路、前記送信回路からの信号を受けて各入力要素の3次元情報を算出する算出部を設けるようにしても良い。
また、モーションキャプチャ用入力装置側に、電源若しくは他から電源供給を受ける電源回路、信号の受信部、受信信号を所定の送信フォーマットに処理する信号処理部、前記信号処理結果を赤外線や電波等の無線で送信する送信回路を内蔵させ、その一方、モーションキャプチャ用検出装置側に、共振回路を構成する複数のセンサコイル、前記センサコイルを切替選択する選択回路、送受信するための信号を発生する信号発生回路、前記送信回路からの信号を受けて各入力要素の3次元情報を算出する算出部を設けるようにしても良い。
また、モーションキャプチャ用入力装置側に、電源若しくは他から電源供給を受ける電源回路、信号の受信部、3次元情報算出部及び算出結果を赤外線や電波等の無線で送信する送信回路を内蔵させ、その一方、モーションキャプチャ用検出装置側に、共振回路を構成する複数のセンサコイル及び信号発生回路を配設し、前記センサコイルを切替選択しながら前記信号発生回路からの信号を前記入力装置に送信し、前記入力装置側で3次元情報を算出して、上位装置等の他の装置に無線送信するように構成してもよい。
また、各入力要素の外形を円柱体、球体、楕円体等、種々の形状に構成することができる。
また、各入力要素の外形を円柱体、球体、楕円体等、種々の形状に構成することができる。
また、モーションキャプチャ用入力装置側に発振回路を設けるような構成とした場合は、入力コイルは共振回路を形成しないように構成することが可能である。
また、モーションキャプチャ用検出装置側に発振回路を設けるような構成とした場合には、センサコイルは共振回路を形成しないように構成することが可能である。
さらにまた、入力コイルやモーションキャプチャ用検出装置が共振回路を構成する場合において、送受信する信号は必ずしも前記共振回路の共振周波数に完全に一致させる必要はなく、実質的な受信信号が得られる程度の相違を有する範囲内の信号、即ち、前記共振周波数に関連する信号であればよい。
また、モーションキャプチャ用検出装置側に発振回路を設けるような構成とした場合には、センサコイルは共振回路を形成しないように構成することが可能である。
さらにまた、入力コイルやモーションキャプチャ用検出装置が共振回路を構成する場合において、送受信する信号は必ずしも前記共振回路の共振周波数に完全に一致させる必要はなく、実質的な受信信号が得られる程度の相違を有する範囲内の信号、即ち、前記共振周波数に関連する信号であればよい。
以上述べたように、本発明の実施の形態に係るモーションキャプチャシステムは、特に、少なくとも1つの入力コイルを有し、相対的に可動な状態で連結された複数の入力要素と、相互に交差するように検出面にそって配設され前記各入力コイルと電磁的に結合する複数のセンサコイルと、前記センサコイルを切り換え選択する選択手段と、前記各入力コイルと選択された前記センサコイル間で電磁的結合により送受する信号を発生する信号発生手段と、前記選択されたセンサコイル又は前記入力コイルで受信した信号を検出する信号検出手段と、前記信号検出手段によって検出した検出信号に基づいて、3次元空間における前記複数の入力要素の座標(X座標、Y座標、Z座標(高さ))が連続するように、3次元空間における前記複数の入力手段の座標及び方向を算出する算出手段とを備えて成ることを特徴としている。
例えば、前記算出手段は、前記複数の入力要素のうちのいずれかの入力要素の座標に基づいて他の入力要素の座標を算出することを特徴としている。また、前記複数の入力要素の端部が相互に可動な状態で直結されている場合、前記算出手段は、前記いずれかの入力要素の端部の座標を該入力要素に連結された他の入力要素の端部の座標とすることを特徴としている。尚、前記複数の入力要素の端部が、紐等の媒介物を介して相互に可動な状態で連結されている場合には、前記算出手段は、前記いずれかの入力要素の端部の座標に基づいて、前記媒介物の長さを考慮して該入力要素に連結された他の入力要素の端部の座標を算出するように構成すればよい。
また、3次元空間における前記複数の入力要素の座標及び方向を算出する際に参照する参照データを記憶したメモリ204を備え、前記算出手段は、前記信号検出手段によって検出した検出信号に基づいて、前記メモリ204に記憶した参照データを参照して、3次元空間における前記複数の入力手段の座標及び方向を算出するように構成している。ここで、前記参照データは、前記信号検出手段によって検出した検出信号に基づいて前記複数の入力要素の座標及び方向を算出するために使用するデータである。また、前記参照データは、前記信号検出手段によって検出した検出信号に基づいて前記複数の入力要素の座標及び方向を算出するための特性データ及び検出誤差の発生を抑制するための補正データから構成されている。
また、3次元空間における前記複数の入力要素の座標及び方向を算出する際に使用する式を記憶したメモリ204を備え、前記算出手段は、前記信号検出手段によって検出した検出信号に基づいて、前記メモリ204に記憶した式を使用して、3次元空間における前記複数の入力手段の座標及び方向を算出するように構成している。
したがって、本発明の実施の形態に係るモーションキャプチャシステムは、廉価で高精度な検出が可能になる。
したがって、本発明の実施の形態に係るモーションキャプチャシステムは、廉価で高精度な検出が可能になる。
また、本発明の実施の形態に係るモーションキャプチャ用検出装置は、特に、相互に交差するように検出面にそって配設され複数の入力手段の入力コイルと電磁的に結合する複数のセンサコイルと、前記センサコイルを切り換え選択する選択手段と、前記各入力コイルと選択された前記センサコイル間で電磁的結合により送受する信号を発生する信号発生手段と、前記選択されたセンサコイル又は前記入力コイルで受信した前記信号発生手段からの信号を検出する信号検出手段と、前記信号検出手段によって検出した信号に基づいて、3次元空間における前記各入力手段の座標及び方向を算出する算出手段とを備えて成ることを特徴としている。
また、3次元空間における前記複数の入力要素の座標及び方向を算出する際に参照する参照データを記憶したメモリ204を備え、前記算出手段は、前記信号検出手段によって検出した検出信号に基づいて、前記メモリ204に記憶した参照データを参照して、3次元空間における前記複数の入力手段の座標及び方向を算出するように構成している。ここで、前記参照データは、前記信号検出手段によって検出した検出信号に基づいて前記複数の入力要素の座標及び方向を算出するために使用するデータである。また、前記参照データは、前記信号検出手段によって検出した検出信号に基づいて前記複数の入力要素の座標及び方向を算出するための特性データ及び検出誤差の発生を抑制するための補正データから構成されている。
また、3次元空間における前記複数の入力要素の座標及び方向を算出する際に使用する式を記憶したメモリ204を備え、前記算出手段は、前記信号検出手段によって検出した検出信号に基づいて、前記メモリ204に記憶した式を使用して、3次元空間における前記複数の入力手段の座標及び方向を算出するように構成している。
したがって、本発明の実施の形態に係るモーションキャプチャ用検出装置によれば、廉価で高精度な検出が可能なモーションキャプチャシステムを構築することが可能になる。
したがって、本発明の実施の形態に係るモーションキャプチャ用検出装置によれば、廉価で高精度な検出が可能なモーションキャプチャシステムを構築することが可能になる。
また、本発明の実施の形態に係るモーションキャプチャ用入力装置は、特に、複数のセンサコイルとの間で電磁結合により信号の受け渡しを行う入力コイルを有すると共に相対的に可動な状態で連結された複数の入力要素を備えて成ることを特徴としている。
したがって、本発明の実施の形態に係るモーションキャプチャ用入力装置によれば、廉価で高精度な検出が可能なモーションキャプチャシステムを構築することが可能になる。
したがって、本発明の実施の形態に係るモーションキャプチャ用入力装置によれば、廉価で高精度な検出が可能なモーションキャプチャシステムを構築することが可能になる。
モーションキャプチャシステム以外にも、入力装置を用いて3次元空間における位置や向き等の3次元情報を入力し、3次元情報検出装置を用いて該入力装置の3次元情報を検出するようにした各種の3次元情報検出システム、3次元情報検出装置、3次元情報検出用入力装置に利用可能である。
100・・・モーションキャプチャシステム
101・・・モーションキャプチャ用入力装置
102〜104・・・入力手段としての入力要素
105〜107、2601〜2603、2701、2702、2801、2802、2901〜2903、3001〜3003、3101、3102、3201、3202、3401、4101〜4103・・・入力コイル
108〜110、2604〜2606、2703、2803、2804、2904、3103、4104、4105・・・コア
111・・・信号ケーブル
112・・・モーションキャプチャ用検出装置
113・・・センサコイル
201・・・受信回路
202・・・信号検出手段を構成する検出部
203・・・検波回路
204・・・記憶手段を構成するメモリ
205・・・選択手段、算出手段及び同期制御手段を構成するCPU
206・・・信号発生手段を構成する送信制御部
207・・・送信信号発生回路
208・・・セレクタ回路
209・・・送信回路
210・・・制御部
2001・・・斜めセンサコイル
306〜308・・・信号出力回路
3004、3203、3402・・・球体
101・・・モーションキャプチャ用入力装置
102〜104・・・入力手段としての入力要素
105〜107、2601〜2603、2701、2702、2801、2802、2901〜2903、3001〜3003、3101、3102、3201、3202、3401、4101〜4103・・・入力コイル
108〜110、2604〜2606、2703、2803、2804、2904、3103、4104、4105・・・コア
111・・・信号ケーブル
112・・・モーションキャプチャ用検出装置
113・・・センサコイル
201・・・受信回路
202・・・信号検出手段を構成する検出部
203・・・検波回路
204・・・記憶手段を構成するメモリ
205・・・選択手段、算出手段及び同期制御手段を構成するCPU
206・・・信号発生手段を構成する送信制御部
207・・・送信信号発生回路
208・・・セレクタ回路
209・・・送信回路
210・・・制御部
2001・・・斜めセンサコイル
306〜308・・・信号出力回路
3004、3203、3402・・・球体
Claims (41)
- 少なくとも1つの入力コイルを有し、相対的に可動な状態で連結された複数の入力手段と、
相互に交差するように検出面にそって配設され前記各入力コイルと電磁的に結合する複数のセンサコイルと、
前記センサコイルを切り換え選択する選択手段と、
前記各入力コイルと選択された前記センサコイル間で電磁的結合により送受する信号を発生する信号発生手段と、
前記選択されたセンサコイル又は前記入力コイルで受信した信号を検出する信号検出手段と、
前記信号検出手段によって検出した検出信号に基づいて、3次元空間における前記複数の入力手段の座標及び方向を算出する算出手段とを備えて成ることを特徴とする3次元情報検出システム。 - 前記算出手段は、前記検出手段で検出した前記各入力手段に対応する検出信号中のピーク値近傍の少なくとも3点の信号に基づいて、前記各入力手段のX軸座標及びY軸座標を算出すると共に、前記検出信号の所定レベル値における信号分布の幅から前記各入力手段の高さを得ることを特徴とする請求項1記載の3次元情報検出システム。
- 前記算出手段は、前記検出手段で検出した前記各入力手段に対応する検出信号の関係から前記各入力手段の傾き角θ及び方位角φを得ることを特徴とする請求項1又は2記載の3次元情報検出システム。
- 前記算出手段は、前記各入力手段に対応する検出信号のサブ信号比から前記各入力手段の傾き角θ及び方位角φを得ることを特徴とする請求項3記載の3次元情報検出システム。
- 前記算出手段は、前記各入力手段に対応する検出信号の左右片側幅の比から前記各入力手段の傾き角θ及び方位角φを得ることを特徴とする請求項3記載の3次元情報検出システム。
- 前記算出手段は、算出した各入力手段のX軸座標、Y軸座標及び高さを、得られた各入力手段の傾き角θと方位角φを用いて補正することを特徴とする請求項3乃至5のいずれか一に記載の3次元情報検出システム。
- 前記算出手段は、前記複数の入力手段のうちのいずれかの入力手段の座標に基づいて他の入力手段の座標を算出することを特徴とする請求項1乃至6のいずれか一に記載の3次元情報検出システム。
- 前記算出手段は、前記いずれかの入力手段の端部の座標を該入力手段に連結された他の入力手段の端部の座標とすることを特徴とする請求項7記載の3次元情報検出システム。
- 相互に交差すると共に、前記センサコイルに交差するように配設された複数の斜めセンサコイルを備えて成ることを特徴とする請求項1乃至8のいずれか一に記載の3次元情報検出システム。
- 前記入力手段は、1つの入力コイルを有することを特徴とする請求項1乃至9のいずれか一に記載の3次元情報検出システム。
- 前記入力手段は、複数の入力コイルを有していることを特徴とする請求項1乃至9のいずれか一に記載の3次元情報検出システム。
- 前記複数の入力コイルの中心軸は相互に直交するように配設されていることを特徴とする請求項11記載の3次元情報検出システム。
- 前記複数の入力コイルの中心位置が同一になるように配設されていることを特徴とする請求項12記載の3次元情報検出システム。
- 前記複数の入力コイルの中の少なくとも一つの入力コイルの中心位置は他の入力コイルの中心位置からずれて配設されていることを特徴とする請求項12記載の3次元情報検出システム。
- 少なくとも1つの前記入力手段は球体を有し、前記入力コイルは前記球体内に配設されていることを特徴とする請求項1乃至14のいずれか一に記載の3次元情報検出システム。
- 前記入力コイルのうちの少なくとも一つは磁性材料に巻回されていることを特徴とする請求項1乃至15のいずれか一に記載の3次元情報検出システム。
- 前記信号発生手段は前記入力コイルに対応する複数の周波数の信号を発生し、前記各入力コイルと前記選択されたセンサコイルとの間では異なる周波数の信号を送受信することを特徴とする請求項1乃至16のいずれか一に記載の3次元情報検出システム。
- 前記信号発生手段から前記入力コイルに電流を供給することによって前記入力コイルから信号を送信し、前記検出手段は前記センサコイルで生じた信号を検出することを特徴とする請求項1乃至17のいずれか一に記載の3次元情報検出システム。
- 前記信号発生手段から前記センサコイルに電流を供給することによって前記センサコイルから信号を送信し、前記検出手段は前記入力コイルで生じた信号を検出することを特徴とする請求項1乃至17のいずれか一に記載の3次元情報検出システム。
- 前記信号発生手段から前記センサコイルに電流を供給することによって前記センサコイルから信号を送信し、前記入力コイルは前記信号を受信した後に前記センサコイルに返送し、前記検出手段は前記センサコイルで受信した信号を検出することを特徴とする請求項1乃至17のいずれか一に記載の3次元情報検出システム。
- 相互に交差するように検出面にそって配設され複数の入力手段の入力コイルと電磁的に結合する複数のセンサコイルと、
前記センサコイルを切り換え選択する選択手段と、
前記各入力コイルと選択された前記センサコイル間で電磁的結合により送受する信号を発生する信号発生手段と、
前記選択されたセンサコイル又は前記入力コイルで受信した前記信号発生手段からの信号を検出する信号検出手段と、
前記信号検出手段によって検出した信号に基づいて、3次元空間における前記各入力手段の座標及び方向を算出する算出手段とを備えて成ることを特徴とする3次元情報検出装置。 - 前記算出手段は、前記検出手段で検出した前記各入力手段に対応する検出信号中のピーク値近傍の少なくとも3点の信号に基づいて、前記各入力手段のX軸座標及びY軸座標を算出すると共に、前記検出信号の所定レベル値における信号分布の幅から前記各入力手段の高さを得ることを特徴とする請求項21記載の3次元情報検出装置。
- 前記算出手段は、前記検出手段で検出した前記各入力手段に対応する検出信号の関係から前記各入力手段の傾き角θ及び方位角φを得ることを特徴とする請求項21又は22記載の3次元情報検出装置。
- 前記算出手段は、前記各入力手段に対応する検出信号のサブ信号比から前記各入力手段の傾き角θ及び方位角φを得ることを特徴とする請求項23記載の3次元情報検出装置。
- 前記算出手段は、前記各入力手段に対応する検出信号の左右片側幅の比から前記各入力手段の傾き角θ及び方位角φを得ることを特徴とする請求項23記載の3次元情報検出装置。
- 前記算出手段は、算出した各入力手段のX軸座標、Y軸座標及び高さを、得られた各入力手段の傾き角θと方位角φを用いて補正することを特徴とする請求項21乃至25のいずれか一に記載の3次元情報検出装置。
- 前記算出手段は、前記複数の入力手段のうちのいずれかの入力手段の座標に基づいて他の入力手段の座標を算出することを特徴とする請求項21乃至26のいずれか一に記載の3次元情報検出装置。
- 前記算出手段は、前記いずれかの入力手段の端部の座標を該入力手段に連結された他の入力手段の端部の座標とすることを特徴とする請求項27記載の3次元情報検出装置。
- 相互に交差すると共に、前記センサコイルに交差するように配設された複数の斜めセンサコイルを備えて成ることを特徴とする請求項21乃至28のいずれか一に記載の3次元情報検出装置。
- 複数のセンサコイルとの間で電磁結合により信号の受け渡しを行う入力コイルを有すると共に相対的に可動な状態で連結された複数の入力要素を備えて成ることを特徴とする3次元情報検出用入力装置。
- 前記入力要素は、1つの入力コイルを有することを特徴とする請求項30記載の3次元情報検出用入力装置。
- 前記入力要素は、複数の入力コイルを有することを特徴とする請求項30記載の3次元情報検出用入力装置。
- 前記複数の入力コイルの中心軸は相互に直交するように配設されていることを特徴とする請求項32記載の3次元情報検出用入力装置。
- 前記複数の入力コイルの中心位置が同一になるように配設されていることを特徴とする請求項33記載の3次元情報検出用入力装置。
- 前記複数の入力コイルの中の少なくとも一つの入力コイルの中心位置は他の入力コイルの中心位置からずれて配設されていることを特徴とする請求項33記載の3次元情報検出用入力装置。
- 少なくとも1つの前記入力要素は球体を有し、前記入力コイルは前記球体内に配設されていることを特徴とする請求項30乃至35のいずれか一に記載の3次元情報検出用入力装置。
- 前記各入力コイルは磁性材料に巻回されていることを特徴とする請求項30乃至36のいずれか一に記載の3次元情報検出用入力装置。
- 前記各入力コイルに接続されて各々異なる周波数の共振回路を構成する複数の共振用コンデンサを備えて成ることを特徴とする請求項32乃至37のいずれか一に記載の3次元情報検出用入力装置。
- 前記各共振回路に直列接続され対応する共振回路と同一の共振周波数を有する複数の直列共振回路を備えて成ることを特徴とする請求項38記載の3次元情報検出用入力装置。
- 送信信号発生回路を備え、前記発振回路の出力信号を、前記直列共振回路を介して、前記直列共振回路に対応する入力コイルから出力することを特徴とする請求項39記載の3次元情報検出用入力装置。
- 前記送信信号発生回路に駆動電力を供給する電池を備えて成ることを特徴とする請求項40記載の3次元情報検出用入力装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003384282A JP2004213620A (ja) | 2002-12-18 | 2003-11-13 | 3次元情報検出システム、3次元情報検出装置及び3次元情報検出用入力装置 |
EP04003807A EP1548553A3 (en) | 2003-11-13 | 2004-02-19 | Three-dimensional information detecting system, three-dimensional information detecting device and input device for three-dimensional information detecting system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002366386 | 2002-12-18 | ||
JP2003384282A JP2004213620A (ja) | 2002-12-18 | 2003-11-13 | 3次元情報検出システム、3次元情報検出装置及び3次元情報検出用入力装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004213620A true JP2004213620A (ja) | 2004-07-29 |
Family
ID=32828759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003384282A Pending JP2004213620A (ja) | 2002-12-18 | 2003-11-13 | 3次元情報検出システム、3次元情報検出装置及び3次元情報検出用入力装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004213620A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006118885A (ja) * | 2004-10-19 | 2006-05-11 | Wacom Co Ltd | 3次元情報検出システム及び3次元情報入力装置 |
JP2021079527A (ja) * | 2019-11-19 | 2021-05-27 | 財團法人資訊工業策進會 | ロボットアームの位置決め精度の測定システムおよび方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59218539A (ja) * | 1983-05-13 | 1984-12-08 | カイザー アエロスペース アンド エレクトロニクス コーポレイション | 電磁的結合を有する3次元デジタイザ |
JPS6232304A (ja) * | 1985-08-06 | 1987-02-12 | Anpuru Software Kk | 三次元位置検出装置 |
JPH0447319A (ja) * | 1990-06-12 | 1992-02-17 | Seiko Instr Inc | 座標読取装置およびその高さ情報算出方式 |
JPH062441U (ja) * | 1992-05-28 | 1994-01-14 | グラフテック株式会社 | デジタイザ |
JPH0713684A (ja) * | 1993-06-22 | 1995-01-17 | Wacom Co Ltd | 位置検出装置および位置検出方法 |
JPH09305306A (ja) * | 1996-03-12 | 1997-11-28 | Toho Business Kanri Center:Kk | 位置入力装置、位置入力処理装置およびその方法 |
JP2000099259A (ja) * | 1998-09-21 | 2000-04-07 | Wacom Co Ltd | 姿勢検出装置、姿勢検出方法、姿勢検出センサ装置及び姿勢指示装置 |
JP2002508060A (ja) * | 1997-06-17 | 2002-03-12 | シナプティクス(ユーケー)リミテッド | 位置検出装置 |
JP2002297303A (ja) * | 2001-03-30 | 2002-10-11 | Brother Ind Ltd | 座標読取装置 |
-
2003
- 2003-11-13 JP JP2003384282A patent/JP2004213620A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59218539A (ja) * | 1983-05-13 | 1984-12-08 | カイザー アエロスペース アンド エレクトロニクス コーポレイション | 電磁的結合を有する3次元デジタイザ |
JPS6232304A (ja) * | 1985-08-06 | 1987-02-12 | Anpuru Software Kk | 三次元位置検出装置 |
JPH0447319A (ja) * | 1990-06-12 | 1992-02-17 | Seiko Instr Inc | 座標読取装置およびその高さ情報算出方式 |
JPH062441U (ja) * | 1992-05-28 | 1994-01-14 | グラフテック株式会社 | デジタイザ |
JPH0713684A (ja) * | 1993-06-22 | 1995-01-17 | Wacom Co Ltd | 位置検出装置および位置検出方法 |
JPH09305306A (ja) * | 1996-03-12 | 1997-11-28 | Toho Business Kanri Center:Kk | 位置入力装置、位置入力処理装置およびその方法 |
JP2002508060A (ja) * | 1997-06-17 | 2002-03-12 | シナプティクス(ユーケー)リミテッド | 位置検出装置 |
JP2000099259A (ja) * | 1998-09-21 | 2000-04-07 | Wacom Co Ltd | 姿勢検出装置、姿勢検出方法、姿勢検出センサ装置及び姿勢指示装置 |
JP2002297303A (ja) * | 2001-03-30 | 2002-10-11 | Brother Ind Ltd | 座標読取装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006118885A (ja) * | 2004-10-19 | 2006-05-11 | Wacom Co Ltd | 3次元情報検出システム及び3次元情報入力装置 |
JP4508820B2 (ja) * | 2004-10-19 | 2010-07-21 | 株式会社ワコム | 3次元情報検出システム及び3次元情報入力装置 |
JP2021079527A (ja) * | 2019-11-19 | 2021-05-27 | 財團法人資訊工業策進會 | ロボットアームの位置決め精度の測定システムおよび方法 |
JP7116108B2 (ja) | 2019-11-19 | 2022-08-09 | 財團法人資訊工業策進會 | ロボットアームの位置決め精度の測定システム |
US11433551B2 (en) | 2019-11-19 | 2022-09-06 | Institute For Information Industry | Measurement system and method for positioning accuracy of a robotic arm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1333367A2 (en) | Three-dimensional information detecting device, three-dimensional information detecting sensor device, and three-dimensional information indicating device | |
US20220067965A1 (en) | Systems and methods for augmented reality | |
US11432879B2 (en) | Method and apparatus for wide area multi-body 6D pose tracking system | |
Foxlin | Motion tracking requirements and technologies | |
JP4708581B2 (ja) | 座標入力装置、座標入力指示具及びコンピュータプログラム | |
EP1650641B1 (en) | Three-dimensional-information detecting system and three-dimensional-information inputting device | |
Welch et al. | Motion tracking: No silver bullet, but a respectable arsenal | |
US9210404B2 (en) | Calibration and registration of camera arrays using a single circular grid optical target | |
US7131732B2 (en) | Projector apparatus, inclination angle obtaining method, and projection image correction method | |
US7733404B2 (en) | Fast imaging system calibration | |
KR101637990B1 (ko) | 임의의 위치들을 가지는 디스플레이 구성 요소들 상에 3차원 콘텐츠의 공간적으로 상호 연관된 렌더링 | |
CN116300091A (zh) | 用于使用位置向量解析半球模糊度的方法和系统 | |
US9589317B2 (en) | Image processing apparatus, image processing method, and program | |
JP2019532392A (ja) | 深層学習センサを有する拡張現実ディスプレイデバイス | |
KR20220049045A (ko) | 증강 현실 시스템들을 사용한 전자기 추적 | |
US10432902B2 (en) | Information processing device and information processing method | |
CN103577789B (zh) | 检测方法和装置 | |
CN107205719B (zh) | 一种校正超音波扫描器的方法 | |
EP3577893A1 (en) | Imaging apparatus | |
JPH10198506A (ja) | 座標検出システム | |
Arakawa et al. | MI-Poser: Human Body Pose Tracking Using Magnetic and Inertial Sensor Fusion with Metal Interference Mitigation | |
JP2004213620A (ja) | 3次元情報検出システム、3次元情報検出装置及び3次元情報検出用入力装置 | |
US6928383B2 (en) | Three-dimensional information detecting system, three-dimensional information detecting device and input device for three-dimensional information detecting system | |
EP1548553A2 (en) | Three-dimensional information detecting system, three-dimensional information detecting device and input device for three-dimensional information detecting system | |
WO2022044806A1 (ja) | 情報処理装置および方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090630 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090820 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091117 |