JP2004212600A - レーザ走査型顕微鏡 - Google Patents

レーザ走査型顕微鏡 Download PDF

Info

Publication number
JP2004212600A
JP2004212600A JP2002381490A JP2002381490A JP2004212600A JP 2004212600 A JP2004212600 A JP 2004212600A JP 2002381490 A JP2002381490 A JP 2002381490A JP 2002381490 A JP2002381490 A JP 2002381490A JP 2004212600 A JP2004212600 A JP 2004212600A
Authority
JP
Japan
Prior art keywords
wavelength
light
laser scanning
scanning microscope
microscope according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002381490A
Other languages
English (en)
Other versions
JP4311936B2 (ja
JP2004212600A5 (ja
Inventor
Tatsuo Nakada
竜男 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002381490A priority Critical patent/JP4311936B2/ja
Publication of JP2004212600A publication Critical patent/JP2004212600A/ja
Publication of JP2004212600A5 publication Critical patent/JP2004212600A5/ja
Application granted granted Critical
Publication of JP4311936B2 publication Critical patent/JP4311936B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

【課題】正確で安定した分光測定を可能にしたレーザ走査型顕微鏡を提供する。
【解決手段】標本8からの光を平面回折格子21により波長ごとに分光し、これら分光された光のうち、所望する光の波長中心を平面回折格子21を回転させることで選択するとともに、この選択された波長中心の光の強度を光電変換素子26で検出するようになっていて、平面回折格子21の回転角度からエンコーダ23を介して制御部28により、選択された光の波長中心を検出するとともに、この検出された光の波長中心に基づいて補正値を求め、この補正値により光電変換素子26より出力される検出信号を補正する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、蛍光色素や蛍光タンパクで識別された試料に励起光を照射して、試料からの蛍光を検出するレーザ走査型顕微鏡に関するものである。
【0002】
【従来の技術】
従来、この種の共焦点顕微鏡として、試料から取得した光についてスペクトルごとの輝度をとって、波長ごとのスペクトルデータを検出するようにしたものが知られている。
【0003】
このような光のスペクトルデータを検出する方法として、特許文献1に開示されるように、蛍光物体から放射される蛍光光をミラーを介して光のスペクトル分解のためのプリズムに入射する。そして、ミラーを回転させてプリズムに入射する光の角度を変化させて、プリズムによりスペクトル分解された光線と検出器の間の相対的位置を変化させることにより、スペクトル分解された波長ごとの光を検出するようにしたものがある。
【0004】
【特許文献1】
特開2002−122787号公報
【0005】
【発明が解決しようとする課題】
ところが、特許文献1に開示されるように、光のスペクトル分解のためのプリズムを用いた場合、プリズムの分散の波長依存性により、図11に示す波長と分光の振れ角度の関係で表わされる分光特性は、波長が長くなるほど振れが鈍くなる非線型を呈するようになる。このため、プリズムによりスペクトル分解された光線と検出器の間の相対的位置を単純に変化させただけでは、波長の変化に伴う分光の振れ角度の変化に対応することが難しく、正確な分光測定ができないという問題を生じる。
【0006】
本発明は上記事情に鑑みてなされたもので、正確で安定した分光測定を行うことができるレーザ走査型顕微鏡を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1記載の発明は、レーザ光源からの光を走査手段と対物レンズを介して標本に照射して得られる光を検出するレーザ走査型顕微鏡において、前記標本から得られる光をスペクトル分解する分散素子と、前記分散素子により生成されたスペクトル列から所望の波長範囲を選択する手段と、前記波長範囲を選択する手段より選択された波長範囲を検出する光検出器とを備え、前記波長範囲を選択する手段は、前記光検出器で検出する光の波長中心を調整する波長中心選択手段と、前記光検出器で検出する光の波長幅を調整する波長幅選択手段とを個別に有することを特徴としている。
【0008】
請求項2記載の発明は、請求項1記載の発明において、レーザ走査は、ポイントスキャン型であることを特徴としている。
【0009】
請求項3記載の発明は、請求項1記載の発明において、ピンホールまたはスリットが多数形成されたディスクを用いてレーザ走査を行うことをことを特徴としている。
【0010】
請求項4記載の発明は、請求項1乃至3のいずれかに記載の発明において、前記波長幅選択手段は、前記光検出器で検出する光の波長幅を調整する可変開口であることを特徴としている。
【0011】
請求項5記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記波長中心選択手段は、前記分散素子を回転させる手段であることを特徴としている。
【0012】
請求項6記載の発明は、請求項5記載の発明において、前記分散素子は、反射グレーティングであることを特徴としている。
【0013】
請求項7記載の発明は、請求項6記載の発明において、前記反射グレーティングは、平面回折格子または凹面回折格子であることを特徴としている。
【0014】
請求項8記載の発明は、請求項6または7記載の発明において、前記反射グレーティングの角度を検出する手段と、前記光検出器から得た出力値を前記反射グレーティングの角度に基づいて補正する補正手段とを備えたことを特徴としている。
【0015】
請求項9記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記分散素子から出射した光を前記光検出器に向けて偏向させる反射部材をさらに備え、前記波長幅選択手段は、前記反射部材を回転させる手段であることを特徴としている。
【0016】
請求項10記載の発明は、請求項9記載の発明において、前記分散素子は、プリズムであることを特徴としている。
【0017】
請求項11記載の発明は、請求項10記載の発明において、前記反射部材の角度を検出する手段と、前記波長幅選択手段における単位波長幅あたりの開度を前記反射部材の角度に基づいて補正する補正手段とを備えたことを特徴としている。
【0018】
請求項12記載の発明は、請求項9記載の発明において、前記分散素子は、透過型直視分散素子であることを特徴としている。
【0019】
請求項13記載の発明は、請求項12記載の発明において、前記分散素子は、グリズムであることを特徴としている。
【0020】
請求項14記載の発明は、請求項13記載の発明において、前記反射部材の角度を検出する手段と、前記光検出器から得られた出力値を前記反射部材の角度に基づいて補正する補正手段とを備えたことを特徴としている。
【0021】
請求項15記載の発明は、請求項9記載の発明において、前記分散素子は、プリズムグレーティングプリズムであることを特徴としている。
【0022】
請求項16記載の発明は、請求項1乃至15のいずれかに記載の発明において、前記標本から得られる光を所定の波長で分割する波長分割手段を、前記分散素子の手前側に配置したことを特徴としている。
【0023】
請求項17記載の発明は、請求項1乃至15のいずれかに記載の発明において、前記標本から得られる光を偏光方向に応じて分割する偏光分割手段を、前記分散素子の手前側に配置したことを特徴としている。
【0024】
請求項18記載の発明は、請求項1乃至15のいずれかに記載の発明において、前記標本から得られる光を所定の波長で分割する波長分割手段と、前記標本から得られる光を偏光方向に応じて分割する偏光分割手段と、前記波長分割手段及び前記偏光分割手段の一方を光路中に切換え挿入する切換え機構とを備えることを特徴としている。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従い説明する。
【0026】
(第1の実施の形態)
第1の実施の形態は、分散素子として反射回折格子を用い、この反射回折格子を回動させることにより検出する波長帯域の中心を選択するようにしたものである。さらに、本実施の形態では、反射回折格子の回折効率の波長依存性を考慮した輝度値補正も行うようにしているが、この輝度値の補正を省略したものも本発明に含まれる。
【0027】
図1は、本発明が適用されるレーザ走査顕微鏡の概略構成を示している。
【0028】
図において、1はレーザ光源で、このレーザ光源1から出力されるコヒーレント光の光路上には、ビーム径可変機構部2と走査光学ユニット3が配置されている。ビーム径可変機構部2は、コヒーレント光の光束径を可変するものである。走査光学ユニット3は、走査ミラー3a、3bを有し、これら走査ミラー3a、3bにより光束径を可変されたコヒーレント光を偏向するようにしている。
【0029】
走査光学ユニット3により偏向された光の光路には、リレーレンズ4、ミラー5が配置されている。また、ミラー5の反射光路には、結像レンズ6および対物レンズ7が配置されている。
【0030】
ミラー5で反射し結像レンズ6を通ったコヒーレント光は、対物レンズ7の瞳上で結像し、ステージ9に載置された標本8上に照射する。この場合、結像レンズ6により対物レンズ7の瞳に結像された光は、ビーム径可変機構部2で可変された光束径で標本8の断面8a上に集光される。
【0031】
なお、標本8の断面8a上に照射される光は、走査ミラー3a、3bの動きにより断面8a上の所定の範囲で走査させたり、停止させてスポット的に照射させてもよく、さらには、走査ミラー3a、3bを瞬間的にスキップ動作させることで、瞬時に任意の位置にスポット的に照射させてもよい。
【0032】
標本8は、光が照射されると、蛍光指示薬が励起され、蛍光を発するようになっている。
【0033】
標本8から発せられた蛍光は、先の光路と逆方向に、対物レンズ7、結像レンズ6、ミラー5、リレーレンズ4、走査光学ユニット3を通ってダイクロイックミラー10に入射する。このダイクロイックミラー10は、ビーム径可変機構部2と走査光学ユニット3との間の光路に配置されており、ビーム径可変機構部2から入射するコヒーレント光を透過し、走査光学ユニット3より入射する蛍光を反射するような特性を有している。
【0034】
ダイクロイックミラー10で90度曲げられた反射光路には、測光フィルタ11および第1の検出部12が配置されている。
【0035】
測光フィルタ11は、標本8から発せられた蛍光の波長のみを透過するものである。第1の検出部12は、結像レンズ13、共焦点ピンホール14および光検出手段として光電変換素子15を有している。測光フィルタ11より出た蛍光は、結像レンズ13を通って共焦点ピンホール14面で結像する。また、共焦点ピンホール14を通過した蛍光は、光電変換素子15で検出される。
【0036】
一方、レーザ光源1としてIRパルスレーザを使用した場合、2光子吸収による蛍光画像を取得することができる。
【0037】
この場合、結像レンズ6と対物レンズ7との間の光路には、ダイクロイックミラー16が配置されている。このダイクロイックミラー16は、ミラー5から入射するIRパルスレーザ光を透過し、対物レンズ7より入射する可視蛍光を反射するような短波長反射の特性を有している。
【0038】
ダイクロイックミラー16で90度曲げられた反射光路には、第2の検出部17が配置されている。この場合、第2の検出部17は、論理的に共焦点ピンホールは不要となる。
【0039】
第2の検出部17は、ダイクロイックミラー16からの反射光路に沿って結像レンズ18、ピンホール19、コリメートレンズ20および分散素子として反射グレーティングの平面回折格子21が配置されている。
【0040】
この場合、ダイクロイックミラー16で反射した蛍光は、結像レンズ18を通ってピンホール19面で結像する。ピンホール19を通った蛍光は、コリメートレンズ20で平行光になって平面回折格子21に入射する。
【0041】
平面回折格子21は、入射光を分光して波長ごとに異なる角度に光束を反射するもので、その反射効率は、上述した図11に示すように、中心波長(λ0)をピークとして、その両側の効率が低下するような波長特性、つまり、分光された光の強度が波長によって変動するような波長特性を有している。
【0042】
平面回折格子21には、駆動手段としてモータ22が設けられている。このモータ22は、平面回折格子21を図示矢印方向に回転させるもので、平面回折格子21で分光された光のうち、所望する光の波長中心を選択するための波長中心選択手段を平面回折格子21とともに構成している。
【0043】
モータ22には、エンコーダ23が接続されている。このエンコーダ23は、平面回折格子21の回転角度に相当する信号を出力するものである。
【0044】
平面回折格子21の反射光路には、集光レンズ24、スリット25および光検出手器して光電変換素子26が配置されている。
【0045】
集光レンズ24は、平面回折格子21の回転角度に応じて選択された波長中心の光をスリット25面に集光するものである。スリット25は、集光レンズ24により集光された波長中心の光のみを選択する。ここで、平面回折格子21での分光特性、つまり、分光された光の波長に対する分光の振れ角度の関係は、ほぼリニアになるので、スリット25のスリット幅は一定でよい。光電変換素子26は、スリット25を通過した波長の光の輝度(強度)を検出し、輝度に応じた電気信号を出力する。
【0046】
この場合、光電変換素子26による検出信号の強度と平面回折格子21の回転角度の関係は、図2に示すようになり、上述した図11に示す波長特性に準じたものになっている。
【0047】
光電変換素子26には、信号補正手段として、補正処理部27が接続されている。補正処理部27には、波長検出手段として、制御部28が接続されている。
【0048】
制御部28には、エンコーダ23より平面回折格子21の回転角度に相当する信号が入力される。制御部28は、この信号に相当する平面回折格子21の回転角度から選択される光の波長中心を検出し、図2に示すように光電変換素子26の検出信号の強度がピーク値付近の一定値Cになるための補正値Hを求める。この場合、制御部28は、平面回折格子21の回転角度と補正値Hの関係を予め記憶したテーブルを用意しておき、このテーブルを用いて平面回折格子21の回転角度から直接補正値Hを求めるようにしてもよい。
【0049】
制御部28の補正値Hは、補正処理部27に送られる。補正処理部27は、補正値Hを用いて光電変換素子26の検出信号を嵩上げするような電気的な処理、例えば検出信号に対する増幅率を可変して、最終的に波長に対する出力特性がフラットになるような補正を行う。
【0050】
次に、このように構成した実施の形態の動作を説明する。
【0051】
まず、通常の共焦点観察を説明する。この場合、レーザ光源1からコヒーレント光が出射すると、この光は、ビーム径可変機構部2で光束径を可変され走査光学ユニット3に入射する。走査光学ユニット3に入射した光は、走査ミラー3a、3bにより偏向される。
【0052】
走査光学ユニット3で偏向された光は、リレーレンズ4、ミラー5を通って結像レンズ6に入射する。結像レンズ6を通った光は、対物レンズ7の瞳上で結像し、ステージ9に載置された標本8上に照射する。この場合、結像レンズ6により対物レンズ7の瞳に結像された光は、ビーム径可変機構部2で可変された光束径で標本8の断面8a上に集光される。
【0053】
標本8から発せられた蛍光は、先の光路と逆方向に、対物レンズ7、結像レンズ6、ミラー5、リレーレンズ4、走査光学ユニット3を通ってダイクロイックミラー10に入射する。
【0054】
ダイクロイックミラー10で90度曲げられた蛍光は、測光フィルタ11に入射する。測光フィルタ11では、標本8から発せられた蛍光の波長のみが透過し、結像レンズ13を通って共焦点ピンホール14面で結像する。そして、共焦点ピンホール14を貫いた蛍光は、光電変換素子15に入射する。光電変換素子15は、入手した蛍光の輝度を検出し、これを電気信号に変換して共焦点データとして出力する。
【0055】
次に、標本8からの蛍光について波長ごとのスペクトルデータを検出して分光測定を行う場合を説明する。
【0056】
この場合、レーザ光源1としてIRパルスレーザが使用される。また、結像レンズ6と対物レンズ7との間の光路に、ダイクロイックミラー16が配置される。
【0057】
レーザ光源1からIRパルスレーザ光が出射すると、上述したと同様にして、走査光学ユニット3で偏向された光は、リレーレンズ4、ミラー5を通って結像レンズ6に入射する。結像レンズ6を通った光は、対物レンズ7の瞳上で結像し、ステージ9に載置された標本8上に照射する。
【0058】
標本8から発せられた蛍光は、対物レンズ7を通ってダイクロイックミラー16に入射する。
【0059】
ダイクロイックミラー16で90度曲げられた蛍光は、結像レンズ18を通ってピンホール19面で結像する。ピンホール19を通った蛍光は、コリメートレンズ20で平行光になって平面回折格子21に入射する。
【0060】
平面回折格子21に入射した蛍光は、波長ごとに異なる角度に反射される。この状態で、モータ22により平面回折格子21を図示矢印方向に回転すると、平面回折格子21の回転角度に応じて各波長中心の光が集光レンズ24を通ってスリット25面に集光される。
【0061】
スリット25は、集光レンズ24により集光された波長の光のみを通過させる。そして、スリット25を通過した波長の光は、光電変換素子26で検出され、輝度に応じた電気的な検出信号として出力される。
【0062】
一方、平面回折格子21が回転すると、エンコーダ23は、平面回折格子21の回転角度に相当する信号を出力する。この信号は、制御部28に入力される。
【0063】
制御部28は、この信号に相当する平面回折格子21の回転角度からスリット25を通過される光の波長中心を検出し、図2に示すように光電変換素子26の検出信号の強度がピーク値付近の一定値Cになるための補正値Hを求める。
【0064】
制御部28の補正値Hは、補正処理部27に送られる。補正処理部27は、補正値Hを用いて光電変換素子26の検出信号を嵩上げ(増幅率の可変)するような電気的な処理を行う。
【0065】
これにより、平面回折格子21の回転角度に応じて選択される各波長中心の光に対する光電変換素子26からの検出信号について、それぞれ求められた補正値Hを用いて嵩上げ(増幅)するような電気的な処理を施すことで、最終的に分光された光の強度が波長に関わらず、ほぼ一定な波長特性を得られるような補正が行われることとなる。
【0066】
このような第1の実施の形態によれば、反射回折格子を回動させることで、検出器に導く光の波長中心を選択すると共に、スリット幅を調整することで検出される波長幅を選択することができる。波長の中心と幅をそれぞれ個別に調整することができるので、正確で安定した分光測定が可能になる。しかも、回折格子の回折光率を考慮した補正を行うようにすれば、平面回折格子21の回転角度に応じた各波長中心に対する出力特性をフラットにできるので、光電変換素子26の検出信号がピークを呈する中心波長付近での分光測定は勿論、中心波長から離れた波長域についても、常に正確で安定した分光測定を行うことができる。
【0067】
なお、上述した第1の実施の形態では、反射グレーティングとして平面回折格子21を用いたが、例えば、図1と同一部分には同符号を付した図3に示すように凹面回折格子31を用いることもできる。この場合、結像レンズ18とピンホール19を通った光は、凹面回折格子31に直接入射する。凹面回折格子31は、入射光の波長ごとに異なる角度に光束を反射するもので、図示矢印方向に回転可能に設けられ、この回転角度に応じた波長の光束を直接スリット25面に集光するようにしている。
【0068】
このようにしても、第1の実施の形態で述べたと同様にして、凹面回折格子31の回転角度に相当する信号を出力するエンコーダ23、凹面回折格子31の回転角度からスリット25で選択される光束の波長を検出して補正値Hを求める制御部28、制御部28の補正値Hを用いて光電変換素子26の検出信号を嵩上げする電気的な処理を行う補正処理部27をそれぞれ設けることにより、凹面回折格子31の回転角度に応じた各波長に対する出力特性をフラットにできるという効果を期待でき、さらに、凹面回折格子31を用いことにより、コリメートレンズ20と集光レンズ24を省略できることで、構成の簡素化も期待できる。
【0069】
また、上述した第1の実施の形態では、第2の検出部17に、平面回折格子21(凹面回折格子31)を配置して、標本8からの蛍光について分光測定を行う場合を述べたが、第1の検出部12側に平面回折格子21(凹面回折格子31)を配置して、分光測定を行うような構成も容易に得ることができる。
【0070】
(第2の実施の形態)
次に、本発明の第2の実施の形態を説明する。
【0071】
図4は、第2の実施の形態の要部の概略構成を示している。この場合、図4は、図1で述べたレーザ走査顕微鏡の第2の検出部17の概略構成のみを示すもので、その他の構成については、図1と同様なので、ここでは省略している。
【0072】
この場合、図1に示す結像レンズ6と対物レンズ7との間の光路に配置されたダイクロイックミラー16の反射光路には、図4に示すように結像レンズ41、ピンホール42、コリメートレンズ43および分光手段として透過プリズム44が配置されている。ここでは、ダイクロイックミラー16で反射した蛍光は、結像レンズ41を通ってピンホール42面で結像する。ピンホール42を通った蛍光は、コリメートレンズ43で平行光になって分光手段としてのプリズム44に入射する。
【0073】
プリズム44は、光のスペクトル分解を行うもので、波長と分光の振れ角度の関係で表わされる分光特性は、プリズムの透過率の波長依存性により、図12に示すように非線型(波長が長いほど振れが鈍くなる。)を呈している。つまり、例えば、青色の波長域λbの振れ角度Tbに対して赤色の波長域λrの振れ角度Trは、著しく小さいものとなっている。
【0074】
プリズム44の透過光路には、集光レンズ45、波長中心選択手段としてのミラー46が配置され、ミラー46の反射光路には、可変スリットとしてのスリット47および光検出手段として光電変換素子48が配置されている。
【0075】
集光レンズ45は、プリズム44によりスペクトル分解された波長中心の光をミラー46を介してスリット47面に集光するものである。
【0076】
ミラー46には、駆動手段としてモータ49が設けられている。このモータ49は、ミラー46を図示矢印方向に回転させるものである。モータ49には、エンコーダ50が接続されている。このエンコーダ50は、ミラー46の回転角度に相当する信号を出力するものである。そして、ミラー46は、モータ49による回転される角度に応じてプリズム44によりスペクトル分解された光のうち、所望する波長中心の光をスリット47面上に照射させるようになっている。
【0077】
スリット47は、光電変換素子48の光検出部の前面に配置されていて、ミラー46の回転角度に応じてスリット幅が調整され、プリズム44でスペクトル分解された光のうち、選択された波長中心の光のみを通過させるようになっている。この場合、スリット47は、図5に示すようにスリット中心47aに対してスリット片47b、47cが図示矢印S1、S2の方向、つまり光の波長帯域方向に移動自在に設けられ、スリット幅を調整できるようになっている。
【0078】
エンコーダ50には、波長検出手段として制御部51が接続されている。
【0079】
制御部51には、エンコーダ50よりミラー46の回転角度に相当する信号が入力される。制御部51は、この信号に相当するミラー46の回転角度からスリット47に入射される光の波長中心を検出し、この検出された波長中心からプリズム44でスペクトル分解された波長に対応する振れ角度を求める。この場合、制御部51は、ミラー46の回転角度と振れ角度の関係を予め記憶したテーブルを用意しておき、このテーブルを用いてミラー46の回転角度から直接振れ角度を求めるようにしてもよい。
【0080】
制御部51には、スリット幅調整手段としてスリット駆動部52が接続されている。スリット駆動部52は、図5に示すスリット47のスリット片47b、47cを図示矢印S1、S2方向へ駆動するもので、制御部51より与えられる振れ角度に応じてスリット幅を調整するようになっている。
【0081】
光電変換素子48は、スリット47で選択された波長の光の輝度を検出し、輝度に応じた電気信号を出力する。
【0082】
次に、このように構成した実施の形態の動作を説明する。
【0083】
この場合も標本8からの蛍光について波長ごとのスペクトルデータを検出して分光測定を行う場合を説明する。
【0084】
この場合、レーザ光源1としてIRパルスレーザが使用される。また、結像レンズ6と対物レンズ7との間の光路に、ダイクロイックミラー16が配置される。
【0085】
レーザ光源1からIRパルスレーザ光が出射すると、上述したと同様にして、走査光学ユニット3で偏向された光は、リレーレンズ4、ミラー5を通って結像レンズ6に入射する。結像レンズ6を通った光は、対物レンズ7の瞳上で結像し、ステージ9に載置された標本8上に照射する。
【0086】
標本8から発せられた蛍光は、対物レンズ7を通ってダイクロイックミラー16に入射する。
【0087】
ダイクロイックミラー16で90度曲げられた蛍光は、結像レンズ41を通ってピンホール42面で結像する。ピンホール42を通った蛍光は、コリメートレンズ43で平行光になってプリズム44に入射する。
【0088】
プリズム44に入射した蛍光は、スペクトル分解され、波長ごとに異なる角度に曲げられる。そして、プリズム44でスペクトル分解された光束は、集光レンズ45を通り、ミラー46で反射し、スリット47面で集光される。
【0089】
この状態で、モータ49によりミラー46を図示矢印方向に回転すると、ミラー46の回転角度により、スペクトル分解された各波長中心の光が順にスリット47面に集光される。一方、ミラー46が回転すると、エンコーダ50は、ミラー46の回転角度に相当する信号を出力する。この信号は、制御部51に入力される。
【0090】
制御部51は、この信号に相当するミラー46の回転角度からスリット47面に集光される光束の波長中心を検出し、この検出された波長からプリズム44でスペクトル分解された波長に対応する振れ角度を求める。
【0091】
制御部51で求められた振れ角度は、スリット駆動部52に送られる。スリット駆動部52は、制御部51より与えられる振れ角度に応じて、図5に示すスリット47のスリット片47b、47cを図示矢印S1、S2方向へ駆動し、スリット幅を調整する。
【0092】
スリット47を通った波長の光は、光電変換素子48で検出され、輝度に応じた電気的な検出信号として出力される。
【0093】
これにより、分光特性が非線形なプリズム44によりスペクトル分解された被測定光を角度可変のミラー46を介してスリット47に導く際に、ミラー46の回転角度の検出値により、例えば図12に示す青色の波長域λbの振れ角度Tbに対してはスリット幅を狭め、赤色の波長域λrの振れ角度Trに対してはスリット幅を広げるようなスリット調整を行うことにより、結果的にスリット47を通過する光の波長帯域幅を常に一定にすることができる。
【0094】
従って、このようにすれば、ミラー46を回動させることで光電変換素子48に導く光の波長中心を選択すると共に、スリット47の幅を調整することで検出される波長幅を選択することができる。波長の中心と幅をそれぞれ個別に調整することができるので、正確で安定した分光測定が可能になる。しかもプリズム44の分散の波長依存性(すなわち、波長に対する分光の振れ角度の非線型性)を考慮してスリット幅を調整するので、検出する波長帯域に関わらず正確な波長幅で検出を行うことができる。
【0095】
なお、第2の実施の形態では、ミラー46の回転角度の検出値により、スリット47のスリット片47b、47cを左右方向へ駆動してスリット幅を調整するようにしたが、例えばミラー46を固定し、スリット47全体を図示矢印S3方向へ直線移動させることで、プリズム44でスペクトル分解された各波長中心の光を順にスリット47面に集光させるようにすることもできる。この場合は、スリット47の移動量に応じてスリット片47b、47cを図示矢印S1、S2方向へ駆動してスリット幅を調整する。
【0096】
(第3の実施の形態)
次に、本発明の第3の実施の形態を説明する。
【0097】
図6は、第3の実施の形態の要部の概略構成を示している。この場合、図6は、図1で述べたレーザ走査顕微鏡の第2の検出部17の概略構成のみを示すもので、その他の構成については、図1と同様なので、ここでは省略している。
【0098】
この場合、図1に示す結像レンズ6と対物レンズ7との間の光路に配置されたダイクロイックミラー16の反射光路には、図6に示すように結像レンズ61、ピンホール62、コリメートレンズ63および分光手段としてプリズムグレーティングプリズム(以下、PGPと略称する。)64が配置されている。ここでは、ダイクロイックミラー16で反射した蛍光は、結像レンズ61を通ってピンホール62面で結像する。ピンホール62を通った蛍光は、コリメートレンズ63で平行光になってPGP64に入射する。
【0099】
PGP64は、光のスペクトル分解を行うもので、例えば、図7に示すように2層構造をしたグレーティング64aの両側をプリズム64b、64cで挟み込んだ構成からなっている。また、PGP64は、光の波長に対する振れ角度の関係で表わされる分光特性を図8に示すようにリニアに設計することができ、青色側の波長域の振れ角度と赤色側の波長域の振れ角度をほぼ同じにすることができる。また、分光された光の強度が波長に関わらずほぼ一定な波長特性をも得られるようになっている。ちなみに、このようなPGP64の詳細は、例えば、特開平9−127321号公報や特開平9−127322号公報に開示されている。
【0100】
PGP64の透過光路には、波長選択手段として、ミラー65が配置され、ミラー65の反射光路には、集光レンズ66、スリット67および光検出手段として光電変換素子68が配置されている。
【0101】
ミラー65には、図示しない駆動手段により図示矢印方向に回転可能になっている。集光レンズ66は、ミラー65の回転角度に応じて各波長中心の光をスリット67面に集光するものである。スリット67は、集光レンズ66により集光された波長の光束のみを通過させる。ここで、PGP64の分光特性は、リニアなので、スリット67の幅は一定でよく、この状態で、光電変換素子78は、スリット67を通った波長中心の光の輝度(強度)を検出し、輝度に応じた電気信号を出力する。
【0102】
従って、このようにしても、ミラー65を回動させることで光電変換素子68に導く光の波長中心を選択すると共に、スリット67の幅を調整することで検出される波長幅を選択することができる。波長の中心と幅をそれぞれ個別に調整することができるので、正確で安定した分光測定が可能になる。しかも、分光された光の強度が波長に関わらずほぼ一定な波長特性と、分光された光の波長に対する分光の振れ角度の関係がほぼリニアな分光特性を有するPGP64を用いることにより、ミラー65を回転角度を可変させて所望する光の波長中心を選択するだけで、正確な分光を行うことができるとともに、光電変換素子68で検出される光の輝度値も正確なものとなり、常に、正確で安定した分光測定を行うことができる。
【0103】
(第4の実施の形態)
次に、本発明の第4の実施の形態を説明する。
【0104】
図9は、第4の実施の形態の要部の概略構成を示している。この場合、図9は、図1で述べたレーザ走査顕微鏡の第2の検出部17の概略構成のみを示すもので、その他の構成については、図1と同様なので、ここでは省略している。
【0105】
この場合、図1に示す結像レンズ6と対物レンズ7との間の光路に配置されたダイクロイックミラー16の反射光路には、図6に示すように結像レンズ71、ピンホール72、コリメートレンズ73および分光手段として透過グリズム74が配置されている。ここでは、ダイクロイックミラー16で反射した蛍光は、結像レンズ71を通ってピンホール72面で結像する。ピンホール72を通った蛍光は、コリメートレンズ73で平行光になって分光手段としてのグリズム74に入射する。
【0106】
グリズム74は、光のスペクトル分解を行うもので、例えば、図10に示すようにグレーティング74aの片側にプリズム74bを接合した構成からなっている。この場合、グリズム74は、波長と分光の振れ角度の関係で表わされる分光特性を図8でに示すようにリニアになるように設計することができ、青色側の波長域の振れ角度と赤色側の波長域の振れ角度をほぼ同じにすることができる。しかし、透過率の波長特性は、上述した図11に示すように、中心波長をピークとして、その両側の効率が低下するような特性、つまり、分光された光の強度が波長によって変動するような特性を有している。
【0107】
グリズム74の透過光路には、波長選択手段としてミラー75が配置され、ミラー75の反射光路には、集光レンズ76、スリット77および光検出手段として光電変換素子78が配置されている。
【0108】
ミラー75には、駆動手段としてモータ79が設けられている。このモータ79は、ミラー75を図示矢印方向に回転させるものである。
【0109】
モータ79には、エンコーダ80が接続されている。このエンコーダ80は、ミラー75の回転角度に相当する信号を出力するものである。
【0110】
集光レンズ76は、ミラー75の回転角度に応じて波長中心ごとの光をスリット77面に集光するものである。スリット77は、集光レンズ76により集光された波長の光束のみを通過させる。ここで、グリズム74の分光特性は、ほぼリニアなので、スリット77のスリット幅は一定でよい。光電変換素子78は、スリット77で選択された波長の光の輝度(強度)を検出し、輝度に応じた電気信号を出力する。
【0111】
光電変換素子78には、信号補正手段としての補正処理部82が接続されている。補正処理部82には、波長検出手段としての制御部81が接続されている。
【0112】
制御部81には、エンコーダ80よりミラー75の回転角度に相当する信号が入力される。制御部81は、この信号に相当するミラー75の回転角度から集光レンズ76を通ってスリット77で選択される光の波長中心を検出し、光電変換素子78の検出信号の強度がピーク値付近の一定値になるための補正値を求める。この場合、制御部81は、ミラー75の回転角度と補正値の関係を予め記憶したテーブルを用意しておき、このテーブルを用いてミラー75の回転角度から直接補正値を求めるようにしてもよい。
【0113】
制御部81の補正値は、補正処理部82に送られる。補正処理部82は、補正値を用いて光電変換素子78の検出信号を嵩上げする電気的な処理、例えば検出信号に対する増幅率を可変して、最終的に波長に対する出力特性がフラットになるような補正を行う。
【0114】
従って、このようにしてもグリズム74を用いた場合も、ミラー75を回動させることで光電変換素子78に導く光の波長中心を選択すると共に、スリット77の幅を調整することで検出される波長幅を選択することができる。波長の中心と幅をそれぞれ個別に調整することができるので、正確で安定した分光測定が可能になる。しかも、ミラー75の回転角度に応じた各波長中心に対する出力特性をフラットにできるので、光電変換素子78の検出信号がピークを呈する中心波長付近での分光測定は勿論、中心波長から離れた波長域についても正確で安定した分光測定を行うことができる。
【0115】
なお、上述した実施の形態では、図1で述べたレーザ走査顕微鏡の第2の検出部17に分光測定を行う手段を設けた例を述べたが、図1で述べたレーザ走査顕微鏡の第1の検出部12側に、第1乃至第4の実施の形態で述べたような分光測定手段を設けるようにすることもできる。
【0116】
また、このような第1の検出部12に対して、図1に示すようにダイクロイックミラー10と測光フィルタ11との間の光路にダイクロイックミラー91を挿入し、このダイクロイックミラー91の反射光路に偏光板92を介して第3の検出部93を接続するようにしてもよい。この場合、第3の検出部93には、第1乃至第4の実施の形態で述べたような分光測定手段が設け、また、偏光板92によりs偏光とp偏光に分離することにより、これらs偏光とp偏光についても分光測定により波長解析を行うことができる。なお、これらダイクロイックミラー91および偏光板92は、ターレット式や水平移動可能な駆動手段により光路に対して挿脱可能に設けるようにしてもよい。
【0117】
さらに、図1の補正処理部27、図9の補正処理部82は、光電変換素子からの検出信号を電気的に補正するのではなく、検出信号をA/D変換した後の画像生成を行う過程において、ソフトウェアによって各画素の輝度値に係数を乗じて補正するといったものにしてもよい。
【0118】
その他、本発明は、上記実施の形態に限定されるものでなく、実施段階では、その要旨を変更しない範囲で種々変形することが可能である。例えば、上述した第1の実施の形態および第2の実施の形態では、ディスクに透過部、遮光部が縞上に形成されたものを用いたが、透過部分がピンホール状の形状をしたディスクを使用してもよい。
【0119】
さらに、上記実施の形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施の形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
【0120】
【発明の効果】
以上述べたように本発明によれば、正確で安定した分光測定を行うことができるレーザ走査型顕微鏡を提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態が適用されるレーザ走査顕微鏡の概略構成を示す図。
【図2】第1の実施の形態の光電変換素子による検出信号の強度と回折格子の回転角度の関係を示す図。
【図3】第1の実施の形態の変形例の要部の概略構成を示す図。
【図4】本発明の第2の実施の形態の要部の概略構成を示す図。
【図5】第2の実施の形態に用いられるスリットの概略構成を示す図。
【図6】本発明の第3の実施の形態の要部の概略構成を示す図。
【図7】第3の実施の形態に用いられるPGPの概略構成を示す図。
【図8】第3の実施の形態に用いられるPGPの分光特性を示す図。
【図9】本発明の第4の実施の形態の要部の概略構成を示す図。
【図10】第4の実施の形態に用いられるグリズムの概略構成を示す図。
【図11】一般的なプリズムの分光特性を示す図。
【符号の説明】
1…レーザ光源
2…ビーム径可変機構部
3…走査光学ユニット
3a.3b…走査ミラー
4…リレーレンズ
5…ミラー
6…結像レンズ
7…対物レンズ
8…標本
8a…断面
9…ステージ
10…ダイクロイックミラー
11…測光フィルタ
12…第1の検出部
13…結像レンズ
14…共焦点ピンホール
15…光電変換素子
16…ダイクロイックミラー
17…第2の検出部
18…結像レンズ
19…ピンホール
20…コリメートレンズ
21…平面回折格子
22…モータ
23…エンコーダ
24…集光レンズ
25…スリット
26…光電変換素子
27…信号処理部
28…制御部
31…凹面回折格子
41…結像レンズ
42…ピンホール
43…コリメートレンズ
44…プリズム
45…集光レンズ
46…ミラー
47…スリット
47a…スリット中心
47b.47c…スリット片
48…光電変換素子
49…モータ
50…エンコーダ
51…制御部
52…スリット駆動部
61…結像レンズ
62…ピンホール
63…コリメートレンズ
64…PGP
64a…グレーティング
64b.64c…プリズム
65…ミラー
66…集光レンズ
67…スリット
68…光電変換素子
71…結像レンズ
72…ピンホール
73…コリメートレンズ
74…グリズム
74a…グレーティング
74b…プリズム
75…ミラー
76…集光レンズ
77…スリット
78…光電変換素子
79…モータ
80…エンコーダ
81…制御部
82…補正処理部
91…ダイクロイックミラー
92…偏光板
93…第3の検出部

Claims (18)

  1. レーザ光源からの光を走査手段と対物レンズを介して標本に照射して得られる光を検出するレーザ走査型顕微鏡において、
    前記標本から得られる光をスペクトル分解する分散素子と、
    前記分散素子により生成されたスペクトル列から所望の波長範囲を選択する手段と、
    前記波長範囲を選択する手段より選択された波長範囲を検出する光検出器とを備え、
    前記波長範囲を選択する手段は、前記光検出器で検出する光の波長中心を調整する波長中心選択手段と、前記光検出器で検出する光の波長幅を調整する波長幅選択手段とを個別に有することを特徴とするレーザ走査型顕微鏡。
  2. レーザ走査は、ポイントスキャン型であることを特徴とする請求項1記載のレーザ走査型顕微鏡。
  3. ピンホールまたはスリットが多数形成されたディスクを用いてレーザ走査を行うことをことを特徴とする請求項1記載のレーザ走査型顕微鏡。
  4. 前記波長幅選択手段は、前記光検出器で検出する光の波長幅を調整する可変開口であることを特徴とする請求項1乃至3のいずれかに記載のレーザ走査型顕微鏡。
  5. 前記波長中心選択手段は、前記分散素子を回転させる手段であることを特徴とする請求項1乃至4のいずれかに記載のレーザ走査型顕微鏡。
  6. 前記分散素子は、反射グレーティングであることを特徴とする請求項5記載のレーザ走査型顕微鏡。
  7. 前記反射グレーティングは、平面回折格子または凹面回折格子であることを特徴とする請求項6記載のレーザ走査型顕微鏡。
  8. 前記反射グレーティングの角度を検出する手段と、
    前記光検出器から得た出力値を前記反射グレーティングの角度に基づいて補正する補正手段とを備えたことを特徴とする請求項6または7記載のレーザ走査型顕微鏡。
  9. 前記分散素子から出射した光を前記光検出器に向けて偏向させる反射部材をさらに備え、前記波長幅選択手段は、前記反射部材を回転させる手段であることを特徴とする請求項1乃至4のいずれかに記載のレーザ走査型顕微鏡。
  10. 前記分散素子は、プリズムであることを特徴とする請求項9記載のレーザ走査型顕微鏡。
  11. 前記反射部材の角度を検出する手段と、
    前記波長幅選択手段における単位波長幅あたりの開度を前記反射部材の角度に基づいて補正する補正手段とを備えたことを特徴とする請求項10記載のレーザ走査型顕微鏡。
  12. 前記分散素子は、透過型直視分散素子であることを特徴とする請求項9記載のレーザ走査型顕微鏡。
  13. 前記分散素子は、グリズムであることを特徴とする請求項12記載のレーザ走査型顕微鏡。
  14. 前記反射部材の角度を検出する手段と、
    前記光検出器から得られた出力値を前記反射部材の角度に基づいて補正する補正手段とを備えたことを特徴とする請求項13記載のレーザ走査型顕微鏡。
  15. 前記分散素子は、プリズムグレーティングプリズムであることを特徴とする請求項9記載のレーザ走査型顕微鏡。
  16. 前記標本から得られる光を所定の波長で分割する波長分割手段を、前記分散素子の手前側に配置したことを特徴とする請求項1乃至15のいずれかに記載のレーザ走査型顕微鏡。
  17. 前記標本から得られる光を偏光方向に応じて分割する偏光分割手段を、前記分散素子の手前側に配置したことを特徴とする請求項1乃至15のいずれかに記載のレーザ走査型顕微鏡。
  18. 前記標本から得られる光を所定の波長で分割する波長分割手段と、前記標本から得られる光を偏光方向に応じて分割する偏光分割手段と、前記波長分割手段及び前記偏光分割手段の一方を光路中に切換え挿入する切換え機構とを備えることを特徴とする請求項1乃至15のいずれかに記載のレーザ走査型顕微鏡。
JP2002381490A 2002-12-27 2002-12-27 レーザ走査型顕微鏡 Expired - Fee Related JP4311936B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381490A JP4311936B2 (ja) 2002-12-27 2002-12-27 レーザ走査型顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381490A JP4311936B2 (ja) 2002-12-27 2002-12-27 レーザ走査型顕微鏡

Publications (3)

Publication Number Publication Date
JP2004212600A true JP2004212600A (ja) 2004-07-29
JP2004212600A5 JP2004212600A5 (ja) 2006-02-16
JP4311936B2 JP4311936B2 (ja) 2009-08-12

Family

ID=32817389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381490A Expired - Fee Related JP4311936B2 (ja) 2002-12-27 2002-12-27 レーザ走査型顕微鏡

Country Status (1)

Country Link
JP (1) JP4311936B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171028A (ja) * 2004-12-10 2006-06-29 Olympus Corp レーザ走査顕微鏡および光検出器の感度設定方法
JP2006189741A (ja) * 2004-02-09 2006-07-20 Olympus Corp 全反射蛍光顕微鏡
JP2006195076A (ja) * 2005-01-12 2006-07-27 Olympus Corp 走査型光学装置
JP2008197178A (ja) * 2007-02-08 2008-08-28 Olympus Corp レーザー走査型顕微鏡
JP2008203301A (ja) * 2007-02-16 2008-09-04 Olympus Corp レーザー走査型顕微鏡
JP2010096913A (ja) * 2008-10-15 2010-04-30 Olympus Corp レーザ顕微鏡装置
JP2013218042A (ja) * 2012-04-06 2013-10-24 Nikon Corp 画像取得方法、画像取得装置及び走査型顕微鏡
CN107894282A (zh) * 2017-12-25 2018-04-10 苏州农业职业技术学院 一种单色仪
CN111771150A (zh) * 2018-02-28 2020-10-13 浜松光子学株式会社 光片显微镜以及试样观察方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189741A (ja) * 2004-02-09 2006-07-20 Olympus Corp 全反射蛍光顕微鏡
JP2006171028A (ja) * 2004-12-10 2006-06-29 Olympus Corp レーザ走査顕微鏡および光検出器の感度設定方法
JP2006195076A (ja) * 2005-01-12 2006-07-27 Olympus Corp 走査型光学装置
JP2008197178A (ja) * 2007-02-08 2008-08-28 Olympus Corp レーザー走査型顕微鏡
JP2008203301A (ja) * 2007-02-16 2008-09-04 Olympus Corp レーザー走査型顕微鏡
JP2010096913A (ja) * 2008-10-15 2010-04-30 Olympus Corp レーザ顕微鏡装置
JP2013218042A (ja) * 2012-04-06 2013-10-24 Nikon Corp 画像取得方法、画像取得装置及び走査型顕微鏡
CN107894282A (zh) * 2017-12-25 2018-04-10 苏州农业职业技术学院 一种单色仪
CN111771150A (zh) * 2018-02-28 2020-10-13 浜松光子学株式会社 光片显微镜以及试样观察方法
US11966035B2 (en) 2018-02-28 2024-04-23 Hamamatsu Photonics K.K. Light sheet microscope and sample observation method

Also Published As

Publication number Publication date
JP4311936B2 (ja) 2009-08-12

Similar Documents

Publication Publication Date Title
US7365842B2 (en) Light scanning type confocal microscope
JP4315794B2 (ja) 共焦点顕微鏡
US7038848B2 (en) Confocal microscope
US8792100B2 (en) System and method for optical measurement of a target
US7999935B2 (en) Laser microscope with a physically separating beam splitter
JP5945400B2 (ja) 検出光学系および走査型顕微鏡
US9442013B2 (en) Microscope spectrometer, optical axis shift correction device, spectroscope and microscope using same
WO2012029286A1 (ja) 分光測定装置、及び分光測定方法
JP5541978B2 (ja) レーザ走査型顕微鏡
JP4311936B2 (ja) レーザ走査型顕微鏡
JP4646506B2 (ja) レーザ走査型顕微鏡
JP4855009B2 (ja) 走査型蛍光顕微鏡
JP4720146B2 (ja) 分光装置および分光システム
JP4331454B2 (ja) 走査型レーザ顕微鏡
JP5371362B2 (ja) レーザ顕微鏡装置
US20060126170A1 (en) Microscope apparatus, sensitivity setting method for photo detector, control unit, and storage medium
JP2006276840A (ja) 顕微鏡装置、その制御装置、及びプログラム
JP4506436B2 (ja) 分光装置、これを備えた顕微鏡分光システム、及びデータ処理プログラム
JP5787151B2 (ja) 分光ユニット及び走査型顕微鏡
JP2006010406A (ja) 蛍光検出装置
JP2012141452A (ja) 自動合焦機構および顕微鏡装置
JP2004325431A (ja) 蛍光検出装置
JP2013200329A (ja) 顕微鏡システム
JP2006195076A (ja) 走査型光学装置
JP2008197178A (ja) レーザー走査型顕微鏡

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees