JP2004211502A - Foundation reinforcing structure - Google Patents

Foundation reinforcing structure Download PDF

Info

Publication number
JP2004211502A
JP2004211502A JP2003002343A JP2003002343A JP2004211502A JP 2004211502 A JP2004211502 A JP 2004211502A JP 2003002343 A JP2003002343 A JP 2003002343A JP 2003002343 A JP2003002343 A JP 2003002343A JP 2004211502 A JP2004211502 A JP 2004211502A
Authority
JP
Japan
Prior art keywords
foundation
ground
substructure
pile
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003002343A
Other languages
Japanese (ja)
Inventor
Norio Takeuchi
則雄 竹内
Morihito Kusafuka
守人 草深
Yasuhiro Suzuki
康大 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Kogyo Co Ltd
Original Assignee
Sato Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sato Kogyo Co Ltd filed Critical Sato Kogyo Co Ltd
Priority to JP2003002343A priority Critical patent/JP2004211502A/en
Publication of JP2004211502A publication Critical patent/JP2004211502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foundation reinforcing structure for improving limit bearing power, allowing reinforcement to initial rigidity, reducing a structural scale, and reducing an excavation quantity by reinforcing the ground itself. <P>SOLUTION: This foundation reinforcing structure is provided with shearing resistance piles 2 and 2 so as to penetrate through a sliding breakdown surface of a foundation structure 1 in a lower side ground area of an installation surface and/or an outside ground area of the installation surface of the foundation structure. Compacting reinforcing piles 3 and 3 for compacting the ground are arranged in an adjacent ground area around the foundation structure. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地盤自体を補強することにより設置ケーソン、ベタ基礎などの直接基礎形式の極限支持力の増大等を図り得る基礎の補強構造に関する。
【0002】
【従来の技術】
基礎構造は、一般的にフーチング基礎、ベタ基礎、設置ケーソンなどの浅い基礎と、ケーソン、杭基礎などの深い基礎とに大別される。土質工学的には基礎幅の根入れ深さに等しいか大きいものが浅い基礎である。
【0003】
基礎構造の選定に際しては、支持地盤が浅い場合には前者の浅い基礎が採用され、支持地盤が深い場合には支持層に先端が達するように打設された杭または周面の摩擦力により基礎を支持するようにした摩擦杭などの杭を地盤中に設け、この杭によって基礎構造物を支持する杭基礎が採用されることになる。
【0004】
【発明が解決しようとする課題】
ところで、近年施工された吊橋、斜張橋などの長大橋梁における基礎構造物(主塔基礎)では、多くの場合、支持層となる岩盤まで掘削し、海上輸送した鋼製ケーソンを沈設した後、水中コンクリートを打設する設置ケーソン工法が採られている。
【0005】
しかしながら、岩盤層が海底面から深いようなケースでは、設置ケーソンのために水中掘削を行うにしても、別途杭基礎を採用するにしても著しく施工コストが増大することになる。一方で、明石海峡大橋の主塔基礎では岩盤が海底下数十mに及ぶため、洪積層を支持層とする設置ケーソン工法が採用されたが、地盤反力の低減を図るために構造規模が大きくなるとともに、地盤強度を確保するために相当量の海底掘削を必要とするなどの問題がある。
【0006】
そこで本発明の主たる課題は、例えば岩盤よりも支持力の弱い地盤層を支持層として基礎構造物を設置する場合において、地盤自体を補強することにより極限支持力の向上、初期剛性に対する補強を成し、構造規模の低減、掘削量の減少等を図り得る基礎の補強構造を提供することにある。
【0007】
【課題を解決するための手段】
前記課題を解決するために請求項1に係る本発明として、基礎構造物の設置面の下側地盤領域及び/又は設置面の外側地盤領域において、前記基礎構造物のすべり破壊面を貫くようにせん断抵抗体を設置することを特徴とする基礎の補強構造が提供される。
【0008】
請求項2に係る本発明として、前記基礎構造物の設置面の下側地盤領域にせん断抵抗体を設置する場合において、基礎構造物の幅寸法をBとし、基礎構造物の端部からのせん断抵抗体の設置範囲をLとした時、L/B≧0.45の関係を満たすように前記せん断抵抗体を設置する請求項1記載の基礎の補強構造が提供される。
【0009】
請求項3に係る本発明として、前記基礎構造物の設置面の外側地盤領域にせん断抵抗体を設置する場合において、基礎構造物の幅寸法をBとし、基礎構造物の端部からLだけ離れた位置からすべり破壊面と地盤面との交点までの範囲を補強することとした時、L/B≧2.5の関係を満たすように前記せん断抵抗体を設置する請求項1、2いずれかに記載の基礎の補強構造が提供される。
【0010】
請求項4に係る本発明として、基礎構造物周囲の隣接地盤領域において、地盤を締固めるための締固め補強杭を設置することを特徴とする基礎の補強構造が提供される。
【0011】
請求項5に係る本発明として、前記基礎構造物の幅寸法をBとし、基礎構造物の端部からの締固め補強杭の設置範囲をLとした時、L/B≧0.6の関係を満たすように前記締固め補強杭を設置する請求項4記載の基礎の補強構造が提供される。
【0012】
請求項6に係る本発明として、前記せん断抵抗体または締固め補強杭の頭部同士を相互に結合するようにした請求項1〜5いずれかに記載の基礎の補強構造が提供される。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら詳述する。
【0014】
〔第1補強態様〕
工学的に、地盤上に基礎を設置し載荷した場合の破壊面に関し、基礎底面が滑らかな場合には、基礎直下の土は側方に動きやすく、図1(A)に示すような破壊パターンとなる。一方、基礎底面が粗い場合には、基礎と地盤との間の摩擦が十分に効き、図1(B)に示すような破壊パターンとなる。地盤内の塑性つりあい状態を考える時、基礎直下の領域は主働域と呼ばれ、弾性つりあいの状態にある。基礎からの荷重により前記主働域が横方向に拡がろうとする傾向が土と基礎底面との間の摩擦力や付着力により拘束される。従って、この主働域はあたかも基礎の一部であるかのように挙動する。隣接する塑性過渡領域は基礎端から出る放射線とこれを中心とする対数螺旋とから成り立っており、また受働域は受働ランキン帯とも呼ばれる抵抗領域である。
【0015】
以下の説明では、前者の基礎底面が滑らかな場合の例について詳述することとする。
図2に示されるように、地盤上面に基礎構造物1を設置することとした場合、本発明では、前記基礎構造物1の設置面の下側地盤領域及び/又は設置面の外側地盤領域において、前記基礎構造物1のすべり破壊面を貫くようにせん断抵抗杭2,2…を設置することにより、極限支持力に対して高い補強効果を得るとともに、初期剛性に対しても同様に高い補強効果を得るようにしたものである。従って、本発明における杭は、基礎構造物を支持する支持杭として機能するものではなく、地盤のせん断抵抗を増すために設置されるものである。
【0016】
以下、具体的にせん断抵抗杭2の設置態様について詳述すると、基礎構造物1直下の主働域に対する補強は、基礎構造物1の端部から中心側に向かってLの範囲に亘り、せん断抵抗杭2,2…を設置するようにする。前記設置範囲Lは、基礎構造物の幅寸法をBとした時、L/B≧0.45、好ましくはL/B≧0.5の関係を満たすことが望ましい。すべり破壊面を貫くせん断抵抗杭を設置する限り、無補強の場合に比べて補強効果は望めるものの、L/B≧0.45である場合には、後述の実施例に示されるように、補強効果が格段に高くなる。
【0017】
さらに基礎構造物1の離隔地盤領域、すなわち受働域に対する補強は、基礎構造物の端部からLだけ離れた位置からすべり破壊面と地盤面との交点手前若しくはその近傍範囲Sに前記せん断抵抗杭2,2…を設置するようにする。基礎構造物1からの離隔距離Lは、基礎構造物1の幅寸法をBとした時、L/B≧2.5、好ましくはL/B≧3.0の関係を満たすことが望ましい。すべり破壊面を貫くせん断抵抗杭を設置する限り、無補強の場合に比べて補強効果は望めるものの、L/B≧2.5である場合には、後述の実施例に示されるように、補強効果が格段に高くなる。
【0018】
前記せん断抵抗杭2としては、せん断抵抗を有するすべての杭を対象とすることができる。具体的には、鋼管杭、中掘り鋼管杭、コンクリート場所打ち杭、プレキャストコンクリート杭などの杭体を使用することができる。これらの杭の中でも、施工の点からは鋼管杭が最も好適である。また、杭長は図示例では一定としたが、場所毎またはグループ毎に長さを変化させるようにしてもよい。なお、設置したせん断抵抗杭2,2…はすべての杭がせん断破壊面を貫くようにするのが望ましいが、解析で想定したせん断破壊面が実際とは異なることが多々あるため、そのばらつきを考慮し、ある程度の余裕を見込んだ範囲に設置するのが望ましい。
【0019】
前記せん断抵抗杭2の施工は、図3に示されるように、鋼製リング4,4…を連結部材5,5…により相互に連結したテンプレート枠6を使用し、格子状または千鳥格子状等の任意の配列でせん断抵抗杭2,2…配置した後、前記鋼製リング4とせん断抵抗杭2の頭部とを結合することにより、せん断抵抗杭2,2…全体で抵抗させるようにするのが望ましい。
【0020】
なお、上記第1態様に係る補強の場合には、すべり破壊面を貫くせん断抵抗体が存在すれば地盤の補強効果が望めるため、前記せん断抵抗杭に代えて地中連続壁などの地下構造物をせん断抵抗体とすることができる。
【0021】
〔第2補強態様〕
次いで図4に基づいて、本発明に係る第2の地盤補強構造について詳述する。
【0022】
基礎構造物1の周囲ではせん断破壊面が深いため、せん断破壊面を貫くようにせん断抵抗杭2を設ける場合には、いきおい杭長が長くなり不経済となる。従って、基礎構造物1周囲の隣接地盤領域では、地盤を締固め地盤を改良する目的で締固め補強杭3,3…を設置するようにするのがよい。
【0023】
基礎構造物1の隣接地盤領域の補強は、基礎構造物1の端部から外側に向かってLの範囲に亘り、締固め補強杭3,3…を設置するようにする。前記設置範囲Lは、基礎構造物1の幅寸法をBとした時、L/B≧0.6、好ましくはL/B≧0.8の関係を満たすことが望ましい。締固め補強杭3,3…を設置する限り、無補強の場合に比べて補強効果は望めるものの、L/B≧0.6である場合には、後述の実施例に示されるように、補強効果が格段に高くなる。なお、本締固め補強杭3,3…は、前記せん断抵抗杭2,2…とともに設置するのが望ましい。
【0024】
以上、本発明に係る第1補強態様及び第2補強態様について詳述したが、本補強構造は、新設の基礎構造物はもちろんのこと、既設基礎構造物の外側地盤領域に対し前記せん断抵抗杭2、締固め補強杭3をする態様であれば、既設基礎構造物の補強としても活用することができる。
【0025】
【実施例】
《実験方法》
本実験では、地盤の支持力特性を明らかにするために載荷試験を行った。載荷試験は土槽に詰めた豊浦標準砂をバイブレータにより締め固め、模型地盤を作成した。模型地盤の寸法は平面ひずみ状態を仮定し1200mm×460mm×100mmとした。載荷は、底面が滑らかで載荷幅B=50mmの載荷板を用いて、荷重増分を10kPaとして、地盤が破壊するまで行った。
【0026】
本発明による補強を行った地盤では、補強効果を検討するため、支持力理論より図1(A)のように地盤のすべり破壊面を想定し、実験ケース毎に杭の挿入位置を変えて載荷試験を行った。なお、杭は5mm間隔で挿入した。以下に実験ケースの分類を説明する。
【0027】
▲1▼Case1:主働域に生じるすべり破壊面にせん断抵抗するための杭の配置
▲2▼Case2:塑性域に対して抵抗するための杭の配置
▲3▼Case3:受働域に生じるすべり破壊面にせん断抵抗するための杭の配置
以上の実験をケース毎に3回行い、その平均値により地盤の補強効果の検討を行った。
【0028】
《実験結果》
無補強地盤の極限支持力Pは143.7kPaであった。
【0029】
Case1では、図5に示すように杭を配置し、杭(せん断抵抗杭2)の範囲幅Lを変えることでさらに4ケースに分類し実験を行った。極限支持力(P)と、杭の設置範囲(L/B)の関係を図6に示す。極限支持力Pは、L/B=0.2〜0.4では150kPa程度でほぼ一定の値なのに対し、L/Bが0.45を超えると急激に上昇し、L/B=0.5になると167.3kPaと大きく向上した。これは、L/B=0.5では図7に示すように載荷板中央から載荷板端に発生するすべり破壊面を貫くように多数の杭が設置されているため、矢印で示したような地盤の挙動に対して抵抗することができ、高い補強効果を示すと考えられる。
【0030】
Case2では、図8に示すように杭(締固め補強杭3)を設置し、杭の設置範囲Lを変えることでさらに3ケースに分類し実験を行った。極限支持力(P)と、杭の設置範囲(L/B)の関係を図9に示す。L/Bが0.6を超えると極限支持力Pが急激に上昇し、L/B=1.0では無補強地盤に比べて17%向上することが確認された。これは多数の杭を挿入したために地盤が締め固められ、地盤改良効果が発揮されたためであると考えられる。
【0031】
Case3では、図10に示すように杭(せん断抵抗杭2)を設置し、杭の設置位置Lを変えることでさらに2ケースに分類し実験を行った。極限支持力(P)と、杭の設置位置(L/B)の関係を図11に示す。杭の設置位置がL/B=2.0では極限支持力は147.8kPaとあまり向上がみられなかったのに対し、杭の設置位置がL/B=2.5を超え、L/B=3.0になると極限支持力は163.7kPaとなり、無補強地盤に比べて14%向上した。これは、図12に示すように、L/B=2.0では杭がすべり破壊面を貫いていない。一方、L/B=3.0では杭が破壊面を貫くように設置されているためであり、すべり破壊面を貫くように杭を設置することで、地盤の破壊に対するせん断抵抗が増し、極限支持力に対して高い補強効果を示すことが確認された。
【0032】
次に、前記Case1〜Case3における杭の設置範囲、位置と初期剛性の関係を図13〜図15に示す。同図から明らかなように、すべての実験ケースにおいて、杭の設置範囲が広いほど初期接線係数の値は大きい値になっている。これは、杭の設置範囲、すなわち杭の挿入本数が多くなることで、より地盤が締固められ、初期接線係数が向上したと考えられる。また、L/B=0.5やL/B=3.0のときに初期接線係数は大きく向上した。このことから、すべり破壊面を貫くように杭を設置することで初期剛性に対しても高い補強効果を得ることが確認された。
【0033】
【発明の効果】
以上詳説のとおり本発明によれば、地盤のすべり破壊面を貫くようにせん断抵抗体を設置したり、及び/又は、基礎の周囲地盤領域に多数の補強杭を設置し地盤を締固めることにより、基礎構造物の極限支持力および初期剛性に対して高い補強効果が得られるようになる。
【図面の簡単な説明】
【図1】(A)及び(B)は地盤の破壊パターンを示す図である。
【図2】せん断抵抗杭2による地盤補強例図である。
【図3】テンプレート枠6の斜視図である。
【図4】締固め補強杭3による地盤補強例図である。
【図5】実施例のCase1による杭の配置を示す図である。
【図6】Case1の杭の設置範囲と極限支持力の関係図である。
【図7】主働域における杭とすべり面の関係を示す図である。
【図8】実施例のCase2による杭の配置を示す図である。
【図9】Case2の杭の設置範囲と極限支持力の関係図である。
【図10】実施例のCase3による杭の配置を示す図である。
【図11】Case3の杭の設置範囲と極限支持力の関係図である。
【図12】受働域における杭とすべり面の関係を示す図である。
【図13】Case1における杭の配置と初期剛性の関係図である。
【図14】Case2における杭の配置と初期剛性の関係図である。
【図15】Case3における杭の配置と初期剛性の関係図である。
【符号の説明】
1…基礎構造物、2…せん断抵抗杭、3…締固め補強杭、4…鋼製リング、5…連結部材、6…テンプレート枠
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a foundation reinforcing structure capable of increasing the ultimate support force of a direct foundation type such as an installed caisson or solid foundation by reinforcing the ground itself.
[0002]
[Prior art]
Generally, the foundation structure is roughly divided into a shallow foundation such as a footing foundation, a solid foundation, and an installed caisson, and a deep foundation such as a caisson and a pile foundation. In terms of geotechnical engineering, a shallow foundation is equal to or greater than the embedding depth of the foundation width.
[0003]
When selecting the foundation structure, if the supporting ground is shallow, the former shallow foundation is adopted, and if the supporting ground is deep, the foundation is formed by the frictional force of the pile or peripheral surface that is driven so that the tip reaches the supporting layer. A pile, such as a friction pile, is provided in the ground to support the pile, and a pile foundation for supporting the foundation structure is adopted by the pile.
[0004]
[Problems to be solved by the invention]
By the way, in recent years, the foundation structure (main tower foundation) of a long bridge such as a suspension bridge or a cable-stayed bridge is often excavated up to the bedrock serving as a support layer, and a steel caisson transported by sea is laid down. The installation caisson method of casting underwater concrete is adopted.
[0005]
However, in the case where the bedrock layer is deep from the sea bottom, the construction cost will be significantly increased regardless of whether underwater excavation is performed for the caisson to be installed or a separate pile foundation is adopted. On the other hand, since the bedrock of the main tower foundation of the Akashi Kaikyo Bridge spans several tens of meters below the seabed, an installation caisson method using a dip stack as a support layer has been adopted.However, the structure scale was reduced to reduce the ground reaction force. However, there is a problem that a considerable amount of seabed excavation is required to secure the ground strength.
[0006]
Therefore, the main problem of the present invention is to improve the ultimate bearing capacity and strengthen the initial rigidity by reinforcing the ground itself, for example, when installing a substructure using a ground layer having a lower supporting capacity than rock as a supporting layer. It is another object of the present invention to provide a foundation reinforcement structure capable of reducing the size of the structure and the amount of excavation.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, as the present invention according to claim 1, in a ground region below a mounting surface of a substructure and / or a ground region outside the mounting surface, a slip fracture surface of the substructure is penetrated. A foundation reinforcement structure characterized by installing a shear resistor is provided.
[0008]
As a second aspect of the present invention, in the case where a shear resistor is installed in the lower ground area below the installation surface of the substructure, the width dimension of the substructure is B, and the shear from the end of the substructure is set. when the installation range of the resistor was set to L 1, the reinforcing structure of the foundation of claim 1 wherein installing the shear resistance so as to satisfy the relationship L 1 /B≧0.45 is provided.
[0009]
As the present invention according to claim 3, in case of installing the shear resistance outside the ground area of the installation surface of the substructure, the width of the substructure and by B, only L 3 from the end portion of the substructure The shear resistor is installed so as to satisfy a relationship of L 3 /B≧2.5 when a range from a distant position to an intersection between a slip fracture surface and a ground surface is reinforced. A foundation reinforcement structure according to any of the above is provided.
[0010]
According to a fourth aspect of the present invention, there is provided a reinforcement structure for a foundation, wherein a compaction reinforcing pile for compacting the ground is installed in an adjacent ground area around a substructure.
[0011]
As the present invention according to claim 5, when the width of the substructure and B, and compaction installation range of the reinforcing pile from the edge of the substructure and the L 2, L 2 /B≧0.6 The reinforcing structure of a foundation according to claim 4, wherein the compaction reinforcing pile is installed so as to satisfy the following relationship.
[0012]
According to a sixth aspect of the present invention, there is provided a reinforcing structure for a foundation according to any one of the first to fifth aspects, wherein heads of the shear resistor or the compaction reinforcing pile are connected to each other.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014]
[First reinforcement mode]
Engineeringly, regarding the fracture surface when the foundation is installed and loaded on the ground, if the bottom surface of the foundation is smooth, the soil immediately below the foundation is easy to move to the side, and the fracture pattern as shown in FIG. It becomes. On the other hand, when the bottom surface of the foundation is rough, the friction between the foundation and the ground is sufficiently effective, resulting in a fracture pattern as shown in FIG. When considering the plastic balance state in the ground, the area immediately below the foundation is called the active area, and is in an elastic balance state. The tendency of the active region to expand in the lateral direction due to the load from the foundation is restrained by the frictional force and the adhesion between the soil and the bottom surface of the foundation. Thus, this active zone behaves as if it were part of the foundation. The adjacent plastic transition region consists of radiation emanating from the base end and a logarithmic spiral centered on it, and the passive region is a resistive region, also called the passive Rankine band.
[0015]
In the following description, the former example in which the base bottom surface is smooth will be described in detail.
As shown in FIG. 2, when the substructure 1 is to be installed on the ground upper surface, in the present invention, in the lower ground region of the installation surface of the substructure 1 and / or in the outer ground region of the installation surface. By installing the shear resistance piles 2, 2,... So as to penetrate the slip fracture surface of the substructure 1, a high reinforcing effect can be obtained with respect to the ultimate supporting force, and similarly high reinforcing can be performed with respect to the initial rigidity. The effect is obtained. Therefore, the pile according to the present invention does not function as a support pile for supporting a substructure, but is installed to increase the shear resistance of the ground.
[0016]
Hereinafter, it will be described more in detail installation mode of the specific shear resistance piles 2, reinforcement to the main働域just below substructure 1, over a range of L 1 toward the center side from the end portion of the substructure 1, Shear resistance piles 2, 2, ... are installed. The installation range L 1 is, when the width of the substructure and B, L 1 /B≧0.45, preferably, it is desirable to satisfy the relation of L 1 /B≧0.5. As long as the shear resistance pile penetrating the slip fracture surface is installed, the reinforcing effect can be expected as compared with the case of no reinforcement, but when L 1 /B≧0.45, as shown in the examples described later, The reinforcement effect is significantly higher.
[0017]
Further separation ground region of the substructure 1, i.e. reinforcement for Passive zone, the shear resistance from the position apart L 3 from the end portion of the substructure at the intersection before or its neighborhood area S of the sliding fracture surface and ground plane Install the piles 2, 2, .... Distance L 3 from the substructure 1, when the width of the substructure 1 and B, L 3 /B≧2.5, preferably satisfy the relationship of L 3 /B≧3.0 desirable. As long as the shear resistance pile penetrating the slip fracture surface is installed, the reinforcing effect can be expected as compared with the case of no reinforcement, but when L 3 /B≧2.5, as shown in the examples described later, The reinforcement effect is significantly higher.
[0018]
As the shear resistance pile 2, all piles having shear resistance can be targeted. Specifically, a pile body such as a steel pipe pile, a hollow steel pipe pile, a concrete cast-in-place pile, and a precast concrete pile can be used. Among these piles, a steel pipe pile is most preferable from the viewpoint of construction. Although the pile length is fixed in the illustrated example, the pile length may be changed for each location or for each group. It is desirable that all the piles of the shear resistance piles 2, 2 ... installed penetrate the shear fracture surface, but the shear fracture surface assumed in the analysis is often different from the actual one. Considering this, it is desirable to set up in a range that allows for some margin.
[0019]
As shown in FIG. 3, the shear resistance pile 2 is constructed by using a template frame 6 in which steel rings 4, 4,... Are interconnected by connecting members 5, 5,. After the shear resistance piles 2, 2,... Are arranged in an arbitrary arrangement, the steel ring 4 and the head of the shear resistance pile 2 are connected to each other so that the entire shear resistance piles 2, 2,. It is desirable to do.
[0020]
In the case of the reinforcement according to the first aspect, the effect of reinforcing the ground can be expected if there is a shear resistor penetrating the slip fracture surface. Therefore, in place of the shear resistance pile, an underground structure such as an underground continuous wall is used. Can be a shear resistor.
[0021]
[Second reinforcement mode]
Next, a second ground reinforcement structure according to the present invention will be described in detail with reference to FIG.
[0022]
Since the shear fracture surface is deep around the substructure 1, when the shear resistance pile 2 is provided so as to penetrate the shear fracture surface, the pile length becomes long and uneconomical. Therefore, in the adjacent ground area around the substructure 1, it is preferable to install the compaction reinforcing piles 3, 3... For the purpose of compacting the ground and improving the ground.
[0023]
Reinforcement of the adjacent ground regions of the substructure 1, over a range of L 2 from the end of the basic structure 1 towards the outside, so as to install the compaction reinforcing piles 3,3 .... The installation range L 2 is, when the width of the substructure 1 and B, L 2 /B≧0.6, preferably, it is desirable to satisfy the relationship of L 2 /B≧0.8. As long as the compaction reinforcing piles 3 are installed, the reinforcing effect can be expected as compared with the case of no reinforcement, but when L 2 /B≧0.6, as shown in the examples described later, The reinforcement effect is significantly higher. It is desirable that the compaction reinforcing piles 3, 3... Be installed together with the shear resistance piles 2, 2,.
[0024]
As described above, the first reinforcing mode and the second reinforcing mode according to the present invention have been described in detail. However, the present reinforcing structure is not limited to a new foundation structure, but also to the outer ground region of the existing foundation structure. 2. If the compaction reinforcing pile 3 is used, it can be used as reinforcement of an existing foundation structure.
[0025]
【Example】
"experimental method"
In this experiment, a loading test was performed to clarify the bearing capacity characteristics of the ground. In the loading test, Toyoura standard sand packed in an earth tank was compacted with a vibrator to create a model ground. The dimensions of the model ground were 1200 mm x 460 mm x 100 mm assuming a plane strain state. Loading was performed using a loading plate having a smooth bottom surface and a loading width B of 50 mm, with the load increment being 10 kPa, until the ground was broken.
[0026]
In the ground reinforced according to the present invention, in order to examine the reinforcing effect, a sliding fracture surface of the ground was assumed as shown in FIG. The test was performed. The piles were inserted at 5 mm intervals. The classification of the experimental cases will be described below.
[0027]
{Circle around (1)} Case 1: Arrangement of piles for shear resistance to the slip fracture surface generated in the active region. {Circle around (2)} Case 2: Arrangement of piles for resisting the plastic region. The experiments above the arrangement of piles for shear resistance to the surface were performed three times for each case, and the average value was used to examine the effect of ground reinforcement.
[0028]
"Experimental result"
The ultimate supporting force P of the unreinforced ground was 143.7 kPa.
[0029]
In case1, the stakes were arranged as shown in FIG. 5, and further classified into four cases by changing the range width L 1 of the pile (shear resistance piles 2) An experiment was conducted. FIG. 6 shows the relationship between the ultimate supporting force (P) and the installation range (L 1 / B) of the pile. Ultimate bearing capacity P, compared almost the constant value at 150kPa approximately in L 1 /B=0.2~0.4, sharply increases when L 1 / B is more than 0.45, L 1 / B = When it becomes 0.5, it is greatly improved to 167.3 kPa. This is because, as shown in FIG. 7, when L 1 /B=0.5, a large number of piles are installed so as to penetrate the sliding fracture surface generated from the center of the loading plate to the edge of the loading plate, and as shown by arrows. It is thought that it can resist the behavior of the ground, and shows high reinforcement effect.
[0030]
In case2, established the pile (compaction reinforcing piles 3) As shown in FIG. 8, and further divided into three cases by changing the installation range L 2 of pile experiments were conducted. FIG. 9 shows the relationship between the ultimate bearing capacity (P) and the installation range (L 2 / B) of the pile. When L 2 / B exceeds 0.6, the ultimate supporting force P sharply increases, and it is confirmed that when L 2 /B=1.0, the ultimate supporting force P is improved by 17% compared to the unreinforced ground. This is considered to be because the ground was compacted due to the insertion of a large number of piles, and the ground improvement effect was exhibited.
[0031]
In case3, it established the pile (shear resistance pile 2) as shown in FIG. 10, and further classified into two cases by changing the installation position L 3 of the pile experiments were conducted. FIG. 11 shows the relationship between the ultimate supporting force (P) and the installation position (L 3 / B) of the pile. When the installation position of the pile was L 3 /B=2.0, the ultimate supporting force was 147.8 kPa, which was not so much improved. However, the installation position of the pile exceeded L 3 /B=2.5, and L When 3 / B = 3.0, the ultimate bearing capacity was 163.7 kPa, which was 14% higher than the unreinforced ground. This is because the pile does not penetrate the slip fracture surface at L 3 /B=2.0, as shown in FIG. On the other hand, at L 3 /B=3.0, the piles are installed so as to penetrate the fracture surface. By installing the piles so as to penetrate the slip fracture surface, the shear resistance against the fracture of the ground increases, It was confirmed that a high reinforcing effect was exhibited for the ultimate bearing capacity.
[0032]
13 to 15 show the relationship between the installation range and position of the pile in Case 1 to Case 3 and the initial rigidity. As is clear from the figure, in all the experimental cases, the value of the initial tangent coefficient is larger as the installation range of the pile is wider. This is considered to be because the ground was compacted more and the initial tangent coefficient was improved by increasing the installation range of the pile, that is, the number of inserted piles. When L 1 /B=0.5 and L 3 /B=3.0, the initial tangent coefficient was greatly improved. From this, it was confirmed that a high reinforcing effect was also obtained for the initial rigidity by installing the pile so as to penetrate the slip fracture surface.
[0033]
【The invention's effect】
As described in detail above, according to the present invention, a shear resistor is installed so as to penetrate the slip fracture surface of the ground, and / or by installing a large number of reinforcing piles in the ground area around the foundation and compacting the ground. Thus, a high reinforcing effect can be obtained for the ultimate supporting force and the initial rigidity of the substructure.
[Brief description of the drawings]
1 (A) and 1 (B) are diagrams showing ground destruction patterns.
FIG. 2 is an example diagram of ground reinforcement by a shear resistance pile 2.
FIG. 3 is a perspective view of a template frame 6;
FIG. 4 is a diagram showing an example of ground reinforcement by a compaction reinforcing pile 3.
FIG. 5 is a diagram showing an arrangement of piles according to Case 1 of the embodiment.
FIG. 6 is a diagram showing the relationship between the installation range of the pile of Case 1 and the ultimate support force.
FIG. 7 is a diagram showing a relationship between a pile and a slip surface in a main working area.
FIG. 8 is a diagram showing an arrangement of piles according to Case 2 of the embodiment.
FIG. 9 is a diagram showing the relationship between the installation range of piles in Case 2 and the ultimate support force.
FIG. 10 is a view showing an arrangement of piles by Case 3 of the embodiment.
FIG. 11 is a diagram showing the relationship between the installation range of piles in Case 3 and the ultimate support force.
FIG. 12 is a diagram showing a relationship between a pile and a slip surface in a passive area.
FIG. 13 is a diagram showing the relationship between the arrangement of piles and the initial rigidity in Case 1.
FIG. 14 is a diagram showing the relationship between the arrangement of piles and the initial rigidity in Case 2.
FIG. 15 is a diagram showing the relationship between the arrangement of piles and the initial rigidity in Case 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Foundation structure, 2 ... Shear resistance pile, 3 ... Compaction reinforcement pile, 4 ... Steel ring, 5 ... Connecting member, 6 ... Template frame

Claims (6)

基礎構造物の設置面の下側地盤領域及び/又は設置面の外側地盤領域において、前記基礎構造物のすべり破壊面を貫くようにせん断抵抗体を設置することを特徴とする基礎の補強構造。A reinforcement structure for a foundation, wherein a shear resistor is installed so as to penetrate a slip fracture surface of the substructure in a lower ground region and / or an outer ground region of the installation surface of the substructure. 前記基礎構造物の設置面の下側地盤領域にせん断抵抗体を設置する場合において、基礎構造物の幅寸法をBとし、基礎構造物の端部からのせん断抵抗体の設置範囲をLとした時、L/B≧0.45の関係を満たすように前記せん断抵抗体を設置する請求項1記載の基礎の補強構造。In case of installing the installation surface lower ground region shear resistance of the substructure, the width of the substructure and B, and the range of setting the shear resistance from the ends of the substructure and L 1 when the reinforcing structure of the foundation of claim 1 wherein installing the shear resistance so as to satisfy the relationship L 1 /B≧0.45. 前記基礎構造物の設置面の外側地盤領域にせん断抵抗体を設置する場合において、基礎構造物の幅寸法をBとし、基礎構造物の端部からLだけ離れた位置からすべり破壊面と地盤面との交点手前若しくはその近傍の範囲を補強することとした時、L/B≧2.5の関係を満たすように前記せん断抵抗体を設置する請求項1、2いずれかに記載の基礎の補強構造。In case of installing the shear resistance outside the ground area of the installation surface of the substructure, and the width of the substructure is B, slip fracture surface from L 3 a position spaced from the end of the substructure and the ground The foundation according to any one of claims 1 and 2, wherein the shear resistor is installed so as to satisfy a relationship of L 3 /B≧2.5 when the area before or near the intersection with the surface is reinforced. Reinforcement structure. 基礎構造物周囲の隣接地盤領域において、地盤を締固めるための締固め補強杭を設置することを特徴とする基礎の補強構造。A reinforcing structure for a foundation, wherein a compaction reinforcing pile for compacting the ground is installed in an adjacent ground area around the foundation structure. 前記基礎構造物の幅寸法をBとし、基礎構造物の端部からの締固め補強杭の設置範囲をLとした時、L/B≧0.6の関係を満たすように前記締固め補強杭を設置する請求項4記載の基礎の補強構造。Wherein the width dimension of the substructure B, when the compaction installation range of the reinforcing pile from the edge of the substructure and the L 2, the compaction so as to satisfy the relationship of L 2 /B≧0.6 The reinforcing structure for a foundation according to claim 4, wherein a reinforcing pile is installed. 前記せん断抵抗体または締固め補強杭の頭部同士を相互に結合するようにした請求項1〜5いずれかに記載の基礎の補強構造。The reinforcing structure for a foundation according to any one of claims 1 to 5, wherein heads of the shear resistor or the compacted reinforcing pile are connected to each other.
JP2003002343A 2003-01-08 2003-01-08 Foundation reinforcing structure Pending JP2004211502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002343A JP2004211502A (en) 2003-01-08 2003-01-08 Foundation reinforcing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003002343A JP2004211502A (en) 2003-01-08 2003-01-08 Foundation reinforcing structure

Publications (1)

Publication Number Publication Date
JP2004211502A true JP2004211502A (en) 2004-07-29

Family

ID=32820119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002343A Pending JP2004211502A (en) 2003-01-08 2003-01-08 Foundation reinforcing structure

Country Status (1)

Country Link
JP (1) JP2004211502A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002565A (en) * 2005-06-24 2007-01-11 Kajima Corp Local part slide countermeasure work of existing structure
JP2009121136A (en) * 2007-11-15 2009-06-04 Takenaka Komuten Co Ltd Soil improving body creating method and soil improving foundation structure
JP2010209605A (en) * 2009-03-11 2010-09-24 Takenaka Komuten Co Ltd Piled-raft foundation
JP2011032815A (en) * 2009-08-05 2011-02-17 Tokyo Printing Ink Mfg Co Ltd Retaining wall and method of constructing the same
JP2019210711A (en) * 2018-06-05 2019-12-12 鹿島建設株式会社 Method for reinforcing existing structure in ground
CN112989467A (en) * 2021-03-09 2021-06-18 贵州正业工程技术投资有限公司 Simplified Bischot-based soil slope deep-buried shear pile support structure design method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002565A (en) * 2005-06-24 2007-01-11 Kajima Corp Local part slide countermeasure work of existing structure
JP2009121136A (en) * 2007-11-15 2009-06-04 Takenaka Komuten Co Ltd Soil improving body creating method and soil improving foundation structure
JP2010209605A (en) * 2009-03-11 2010-09-24 Takenaka Komuten Co Ltd Piled-raft foundation
JP2011032815A (en) * 2009-08-05 2011-02-17 Tokyo Printing Ink Mfg Co Ltd Retaining wall and method of constructing the same
JP2019210711A (en) * 2018-06-05 2019-12-12 鹿島建設株式会社 Method for reinforcing existing structure in ground
JP6993293B2 (en) 2018-06-05 2022-01-13 鹿島建設株式会社 How to reinforce existing structures in the ground
CN112989467A (en) * 2021-03-09 2021-06-18 贵州正业工程技术投资有限公司 Simplified Bischot-based soil slope deep-buried shear pile support structure design method
CN112989467B (en) * 2021-03-09 2022-11-22 贵州正业工程技术投资有限公司 Simplified Bischot-based soil slope deep-buried shear pile support structure design method

Similar Documents

Publication Publication Date Title
CN111236299B (en) Municipal road pipeline reinforcement protection system and construction method thereof
CN102653945A (en) Foundation reinforcing and replacing structure and construction method thereof
CN106869138A (en) A kind of load retaining wall Retaining Structure with Double-row Piles and its foundation ditch excavation method
JP3765000B2 (en) Ground improvement foundation method for soft ground.
JP2021063404A (en) Improvement structure and improvement method of existing quay wall
JP2004211502A (en) Foundation reinforcing structure
Long et al. Retaining walls in dublin boulder clay, Ireland
CN111764201B (en) Construction and design method of cut section ballastless track anti-bulging roadbed structure
CN111118970A (en) High-speed railway expansive rock-soil deep cutting structure and construction method
CN111021378A (en) Highway subgrade slope broken line type anchoring pile retaining structure and construction method thereof
Wood The design and construction of pile-supported embankments for the A63 Selby Bypass
CN110093933A (en) A kind of foundation pit vertically draws anchor support system and its construction method
CN214737995U (en) A contrary structure of doing for excavation road bed overline bridge pile column is under construction fast
CN212656218U (en) Heavy pile machine load underpinning structure
KR101125173B1 (en) Pile for reducing negative skin friction, foundation structure using the same and construction method thereof
CN210395379U (en) A side slope reinforcerment system for basic building engineering
KR100397536B1 (en) Lateral Movement Prevention Construction Method of Bridge Abutment for using Sheet piles
Bathurst et al. Earth retaining structures and reinforced slopes
CN206346220U (en) A kind of pile foundation barricade antidetonation retaining structure of the cushion containing EPS
AU2008201576A1 (en) A Retaining Wall for Erosion Protection
KR102690511B1 (en) Construction method of pile foundation structure and crushed stone column foundation structure
KR101089729B1 (en) The wall for the bridge post foundation construction
JPH06316941A (en) Direct foundation method
CN209066470U (en) A kind of steel tube-concrete series connection stake combination multi-column pier foundation
CN214061633U (en) Protection structure for soil excavation sidewalk in soft soil area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051207

A977 Report on retrieval

Effective date: 20071031

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080407

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A131 Notification of reasons for refusal

Effective date: 20080924

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A02