JP2004204169A - Liquid epoxy resin composition for sealing semiconductor, and semiconductor device - Google Patents

Liquid epoxy resin composition for sealing semiconductor, and semiconductor device Download PDF

Info

Publication number
JP2004204169A
JP2004204169A JP2002377604A JP2002377604A JP2004204169A JP 2004204169 A JP2004204169 A JP 2004204169A JP 2002377604 A JP2002377604 A JP 2002377604A JP 2002377604 A JP2002377604 A JP 2002377604A JP 2004204169 A JP2004204169 A JP 2004204169A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
liquid epoxy
semiconductor
semiconductor encapsulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002377604A
Other languages
Japanese (ja)
Other versions
JP3968302B2 (en
Inventor
Yoshiaki Okabe
義昭 岡部
Toshiaki Ishii
利昭 石井
Shinsuke Hagiwara
伸介 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002377604A priority Critical patent/JP3968302B2/en
Publication of JP2004204169A publication Critical patent/JP2004204169A/en
Application granted granted Critical
Publication of JP3968302B2 publication Critical patent/JP3968302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an epoxy resin composition good in moistureproofness, adhesivity and storing stability, and suitable for sealing a semiconductor device. <P>SOLUTION: The liquid epoxy resin composition for sealing the semiconductor comprises a liquid epoxy resin (c) and a compound (a) represented by formula (1). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は高信頼性が要求される半導体装置に好適な半導体封止用液状エポキシ樹脂組成物に関する。
【0002】
【従来の技術】
近年、半導体装置はICの高密度実装化、高集積化に伴い配線長が短く、高周波用、多ピン化に向いているフリップチップ実装方式の形態が多くなっている。この方式は実装面積がチップサイズとほぼ同じの大きさであること、プリント基板にチップを直接搭載できることから、小型、軽量、薄型化の点で有利である。このフリップチップ実装型の半導体を封止する封止材には液状タイプとフィルムタイプの封止材があるが液状タイプが多い。その材質はエポキシ樹脂が主流となっている。理由は電気特性、耐熱性、機械的特性、接着性、コスト面にバランスが取れているためである。
【0003】
液状エポキシ樹脂による半導体封止法はセラミックによる気密封止法に比べ信頼性の点で劣る。しかしながら、例えば、チップを基板に直接熱などで圧着接続した接続部周辺をキャピラリーフロー方式で樹脂封止し半導体装置を得る方法は、工程が短く、コスト的に有利な方法のひとつである。
【0004】
このようにして得られる半導体装置の最重要課題は信頼性である。半導体装置の信頼性を評価する試験としては、例えば、耐湿性を評価するためのプレッシャークッカーテスト(以下、PCTと略称する)や、耐熱衝撃性、耐熱性を評価するための温度サイクル試験や高温放置試験等がある。
【0005】
半導体装置の信頼性と半導体封止用液状エポキシ樹脂組成物の特性(耐湿性や接着性)とは関連があり、半導体装置の高信頼性化のため、半導体封止用液状エポキシ樹脂組成物には高耐湿性化や高接着性化が求められている。半導体封止用液状エポキシ樹脂組成物には酸無水物硬化、アミン硬化や自己重合タイプ等とがあるが、耐湿性や接着性の点からアミン硬化タイプが有利である。しかし、アミン硬化タイプは保存安定性が悪いという問題がある。
【0006】
また、半導体封止用液状エポキシ樹脂組成物の接着性を向上させるために、N-ブチルゴムやフッ素ゴム、アクリロニトリル-ブタジエンゴム等のゴム成分を配合したりエポキシ樹脂に結合させることなどが行われている。しかしながら、各種ゴム系を配合すると耐熱性が低下するという問題がある。
【0007】
【特許文献1】
特開平10−158366号公報(特許請求の範囲)
【0008】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決し、耐湿性、接着性及び保存安定性が良好な半導体封止用に適したエポキシ樹脂組成物を提供することを目的とする。
【0009】
【課題を解決するための手段】
そこで本発明者らは半導体装置の信頼性向上を目的に、液状エポキシ樹脂材料の耐湿性、接着性を改良するため鋭意検討した結果、液状エポキシ樹脂と特定のアミン系硬化剤とを必須成分とする液状エポキシ樹脂組成物を用いて半導体を封止して製造された半導体装置は、PCTや温度サイクル試験等のストレス付与試験においても信頼性を大幅に向上できることを見出し、本発明を完成することにいたった。
【0010】
即ち、本発明は以下の発明を包含する。
(1)液状エポキシ樹脂(c)と一般式(1):
【0011】
【化2】

Figure 2004204169
で示される化合物(a)とを含有する半導体封止用液状エポキシ樹脂組成物。
(2)25℃において粘度が10Pa・s以下の芳香族アミン化合物(b)をさらに含有する前記(1)記載の半導体封止用液状エポキシ樹脂組成物。
【0012】
(3)前記化合物(a)と前記化合物(b)との当量比が、(a):(b)=99:1〜30:70である前記(1)又は(2)記載の半導体封止用液状エポキシ樹脂組成物。
(4)前記液状エポキシ樹脂(c)と前記化合物(a)及び(b)との当量比が、(c):((a)+(b))=100:80〜100:115である前記(2)記載の半導体封止用液状エポキシ樹脂組成物。
【0013】
(5)前記化合物(b)が2,5-ジアミノ-4,6-ジエチルトルエン又は3,3'-ジエチル-4,4'-ジアミノジフェニルメタンである前記(1)〜(4)のいずれかに記載の半導体封止用液状エポキシ樹脂組成物。
(6)前記(1)〜(5)のいずれかに記載の半導体封止用液状エポキシ樹脂組成物で封止した素子を備えた半導体装置。
【0014】
【発明の実施の形態】
本発明で用いられるエポキシ樹脂(c)は室温で液状であることが必要である。エポキシ樹脂が室温で液状でないと、半導体封止用液状エポキシ樹脂組成物の粘度が高くなる。エポキシ樹脂組成物の粘度が高いと、例えば、フリップチップ実装したチップと基板の隙間に半導体封止用液状エポキシ樹脂組成物をキャピラリーフローで注入封止する際、気泡を巻き込んだり、コーナー端部への充填不良が発生し、半導体装置の信頼性低下に繋がり好ましくない。この条件を満たすエポキシ樹脂であれば、特に限定されるものではないが、具体例を挙げるとビスフェノールAジグリシジルエーテル型エポキシ、ビスフェノールFジグリシジルエーテル型エポキシ、ビスフェノールSジグリシジルエーテル型エポキシ、ビスフェノールADジグリシジルエーテル型エポキシ、水添ビスフェノールAジグリシジルエーテル型エポキシ、フェノールノボラック型エポキシ、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンとの反応により得られるグリシジルエステル型エポキシ、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ、オレフィン結合を過酢酸等の過酸により酸化して得られる脂肪エポキシ、脂環族エポキシ等がある。これらは単独でも、2種以上を混合してもさしつかえない。本発明の半導体封止用液状エポキシ樹脂組成物には、本発明の効果を達成する範囲内であれば、室温で固形のエポキシ樹脂も配合することができる。また、信頼性に優れた半導体封止用液状エポキシ樹脂組成物を得るため、エポキシ樹脂にはNa+、Cl-などのイオン性不純物はできるだけ少ないものが好ましく、500ppm以下であることが好ましい。
【0015】
本発明に用いられる一般式(1)で示されるアミン化合物(a)は3つのベンゼン環を有し、硬化剤として作用する。
本発明に用いられる一般式(1)で示されるアミン化合物(a)は、具体的には、2つのアミノフェノキシ基がベンゼンに結合した化合物であり、アミノ基はフェノキシ基のどの位置に置換していてもよいが、3位又は4位が好ましく、また、アミノフェノキシ基はベンゼンのどの位置に置換していてもよいが、1,3-置換体又は1,4-置換体が好ましい。このような化合物の具体例としては、例えば、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェモキシ)ベンゼンなどが挙げられる。
【0016】
一般式(1)で示されるアミン化合物を配合した半導体封止用エポキシ樹脂組成物は接着性に優れるため、有機プリント配線基板を用いたフリップチップ実装型半導体装置の信頼性を大幅に向上させることができる。
一般式(1)に示すアミン化合物は芳香環をつなぐ結合基が電子吸引性のエーテル(-O-)基であるためアミノ基の窒素原子の電子密度が低い。即ちアミノ基の求核性が低くなり、室温付近ではエポキシ基との反応性が低下する。その結果、半導体封止用エポキシ樹脂組成物の室温での粘度変化が小さく、優れた保存安定性を示す。芳香環以外のアミン系硬化剤は耐熱性に乏しく、室温以下でも反応性に富むため、半導体封止用エポキシ樹脂組成物の耐熱性や保存安定性に劣る欠点があり、本発明には適さない。
【0017】
フリップチップ実装した素子と基板との隙間に半導体封止用液状エポキシ樹脂組成物をキャピラリーフロー封入する場合、基板を加熱すると一般的な封止用エポキシ樹脂組成物は粘度が室温(25℃)の約1/100〜1/300に低下するので、短時間で封入することができる。従って、封入時間を短くすることができる粘度の低い封止用エポキシ樹脂組成物ほど有利である。
【0018】
一般式(1)に示す芳香環が3つからなるアミン化合物(a)は室温で固体である。そのため液状エポキシ樹脂と混合した場合にアミン化合物(a)のエポキシ樹脂への溶解性が十分でなく、かつ半導体封止用エポキシ樹脂組成物の粘度が高まる傾向にある。本発明に用いられるアミン化合物(a)を液状エポキシ樹脂に混合して得られる半導体封止用液状エポキシ樹脂組成物の室温時の粘度は上昇するが、しかしながら、100℃の雰囲気下では室温時の粘度の約1/1000と大きく低下する。この大きく低下する理由は解明されてないが、一般式(1)に示すアミン系硬化剤の芳香環の数と骨格の影響と予想される。
【0019】
本発明においては、室温でのアミン化合物(a)の液状エポキシ樹脂に対する溶解性の向上、及び得られる半導体封止用エポキシ樹脂組成物の粘度を低下させる目的で、低粘度の液状芳香族アミン化合物(b)を一般式(1)に示すアミン系硬化剤(a)とともに用いてもよい。低粘度の液状芳香族アミン化合物(b)としては、25℃で10Pa・s以下の粘度を有する液状芳香族アミン化合物であることが必要である。このような低粘度の液状芳香族アミンとしては、例えば、3,3'-ジエチル-4,4'-ジアミノジフェニルメタン、2,5-ジアミノ-4,6-ジエチルトルエン等が挙げられる。
【0020】
上記液状芳香族アミン化合物(b)と一般式(1)に示す芳香環を3つ含むアミン化合物(a)との混合物をエポキシ樹脂と組み合わせることによって、溶解性が改善され、また流動性に優れた半導体封止用液状エポキシ樹脂組成物を提供することができる。液状アミン化合物を用いる場合、一般式(1)に示すアミン化合物(a)と芳香族アミン化合物(b)との当量比は(a):(b)=99:1〜30:70とすることが好ましい。化合物(a)と化合物(b)との全量に関して、化合物(a)が当量比で30%未満の場合、芳香族アミン化合物(b)が過剰になるため保存安定性が低下する傾向にある。信頼性に優れた半導体封止用液状エポキシ樹脂組成物を得るため、一般式(1)で示される芳香族アミン化合物(a)及び(b)はNa+、Cl-などのイオン性不純物はできるだけ少ないものが好ましく、500ppm以下が好ましい。
【0021】
主剤である液状エポキシ樹脂(c)と、アミン化合物(a)及びアミン化合物(b)との当量比は(c):((a)+(b))=100:80〜100:115とすることが好ましい。液状エポキシ樹脂(c)の当量に対するアミン化合物(a)及びアミン化合物(b)の当量比が1.15(100:115)を超えると、硬化剤としてのアミン化合物が過剰となって多くのアミノ基が存在するため耐湿性が低下する傾向にある。液状エポキシ樹脂(c)の当量に対するアミン化合物(a)及びアミン化合物(b)の当量比が0.80(100:80)未満の場合は、エポキシ基が多くなるため樹脂の硬化が不十分となり、硬化物の耐熱性が低下する傾向にある。(c):((a)+(b))=100:80〜100:115の範囲外の当量比の樹脂を用いた場合はいずれも半導体装置の信頼性の向上効果が不十分となる傾向にある。
【0022】
本発明の半導体封止用液状エポキシ樹脂組成物は、一般的に用いられる無機充填剤を含有していてもよい。無機充填剤は吸湿性、熱膨張係数低減、熱伝導性の向上及び機械強度向上のため、エポキシ樹脂組成物に配合されるものである。具体的には溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又これらを球形化したビーズ、ガラス繊維等が挙げられる。さらに難燃効果のある無機充填剤としては水酸化アルミニウム、水酸化マグネシウム、珪酸亜鉛、モリブデン酸亜鉛などが挙げられる。これらの無機充填剤は単体でも二種類以上を組み合わせてもよい。
【0023】
この無機充填剤の中で、熱膨張係数低減の観点からは溶融シリカが、高熱伝導性の点から結晶シリカ及びアルミナが好ましい。無機充填剤の粒子形状は、微細間隙への流動性、浸透性の点から球状が好ましく、その平均粒径は0.1〜20μmが好ましい。平均粒径0.1μm未満では液状樹脂への分散性が劣る傾向にある。また、液状封止用エポキシ樹脂組成物にチキソトロピック性が付与され流動性が劣る傾向がある。平均粒径20μmを超えるとフィラ沈降がおきやすくなり、キャピラリーフローにより、フリップチップ実装した素子と基板の隙間に液状封止用エポキシ樹脂組成物を封入する場合、微細間隔への流動性、浸透性が劣る傾向にある。無機充填剤の配合割合は、本発明のエポキシ組成物に対して0〜90重量%の範囲で調整可能である。特に30〜85重量%の範囲が好ましく、40〜80重量%がさらに好ましい。無機充填剤の配合割合が30重量%未満では熱膨張係数低減効果が小さい傾向にあるが、無機充填剤の配合割合0重量%の場合でもチップサイズ、接続方法、接続用電極の種類やその形状及び大きさや素子を搭載する基板やレジストの材質等により実用上十分な信頼性を確保できる場合もある。無機充填剤の配合割合が90重量%を超えると半導体封止用液状エポキシ樹脂組成物が高粘度化して、封入時の流動性が大きく低下する傾向にある。
【0024】
また、本発明の半導体封止用液状エポキシ樹脂組成物には、シクロアミジン化合物、3級アミン類、イミダゾール類、有機ホスフィン類等のリン化合物、及びこれらの誘導体、又はそれらのテトラフェニルボロン塩など、一般的に使用されている公知の硬化促進剤を、単体または二種類以上を組み合わせて、必要に応じて配合することができる。硬化促進剤の配合量は硬化促進効果が達成される量であれば特に限定されるものではない。
【0025】
本発明の半導体封止用液状エポキシ樹脂組成物には、エポキシシラン、アミノシラン、ウレイドシラン、ビニルシラン、アルキルシラン、有機チタネート、アルミニウムアルキレート等の公知のカップリング剤を、単独、あるいは二種類以上組み合わせて、必要に応じて配合することができる。また、赤燐、燐酸エステル、メラミン、メラミン誘導体、トリアジン環を有する化合物、シアヌル酸誘導体、イソシアヌル酸誘導体の窒素含有化合物、シクロホスファゼン等の燐窒素含有化合物、酸化亜鉛、酸化鉄、酸化モリブデン、フェロセン等の金属化合物、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等の酸化アンチモン、ブロム化エポキシ樹脂等の難燃剤を、単独あるいは二種以上を組み合わせて配合することができる。
【0026】
本発明の半導体封止用液状エポキシ樹脂組成物には、半導体素子の耐湿性、高温放置特性を向上させる、イオントラッパー剤も配合することができる。イオントラッパー剤としては特に制限はなく、これまで公知のものを用いることができる。具体的にはハイドロタルサイト類、マグネシウム、アルミニウム、チタン、ジルコニウム、ビスマス等の元素の含水酸化物などが挙げられる。これらを、単独あるいは二種以上を組み合わせて配合することができる。
さらに本発明の半導体封止用液状エポキシ樹脂組成物には、その他の添加剤として、シリコーンゴム粉末等の応力緩和剤、染料、カーボンブラック等の着色剤、レベリング剤、消泡剤等を必要に応じて配合することができる。
【0027】
本発明の半導体封止用液状エポキシ樹脂組成物は上記各種成分を均一に分散混合できるものであればいかなる手法を用いても調整できる。一般的には所定量を秤量した後、三本ロールや真空らいかい機、ハイブリッドミキサー(KEYENCE社製、MH-500型)等によって分散混合をおこなう方法が挙げられる。
本発明の半導体封止用液状エポキシ樹脂組成物を用いて素子を封止する方法としては、ディスペンス方式、注型方式、印刷方式等がある。
本発明で得られる半導体封止用液状エポキシ樹脂組成物により素子を封止して得られる半導体装置としては、例えば以下のものが挙げられる。
【0028】
裏面に配線板接続用の端子を形成した有機基板又は無機基板の表面に素子を搭載し、バンプやワイヤボンディングにより素子と有機基板に形成された配線を接続した後、本発明の半導体封止用液状エポキシ樹脂組成物で素子を封止したBGA、CSP(チップサイズパッケージ)等が挙げられる。さらに具体的には、素子の回路形成面と素子を搭載する有機又は無機基板の回路形成面を対向させ、素子の電極と基板の回路をバンプを介して電気的に接続し、素子と基板の隙間に本発明の半導体封止用エポキシ樹脂組成物を含浸させたフリップチップ実装型半導体装置等が挙げられる。
【0029】
【実施例】
次に実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。まず、実施例及び比較例で用いた樹脂類を示す。これらは以後商品名又は略号で示す。
【0030】
イ) 液状エポキシ樹脂=ビスフェノールFエポキシ樹脂(ジャパンエポキシ株式会社製、エポキシ当量160、略号BF)
ロ) 液状エポキシ樹脂=ビスフェノールAエポキシ樹脂(ジャパンエポキシ株式会社製、商品名=エピコート828、エポキシ当量195、略号BA)
ハ) 硬化剤=1,3-ビス(3-アミノフェノキシ)ベンゼン(三井化学株会社製、略号APB)
ニ) 硬化剤=1,4-ビス(4-アミノフェノキシ)ベンゼン( 和歌山精化式会社製、略号APOB)
ホ) 硬化剤=3,3'-ジエチル-4,4'-ジアミノジフェニルメタン(日本化薬株式会社製、商品名=カヤハードA-A、略号A-A、25℃での粘度=3.0 Pa・s)
ヘ) 硬化剤=2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン(Aldrich社製、略号BAPP、m.p.=127℃)
ト) 硬化剤=4,4'-ジアミノジフェニルメタン(和光純薬株式会社製、略号DDM、m.p.=90℃)
チ) カップリング剤=3-グリシドキシプロピル-トリメトキシシラン(信越化学株式会社製、商品名=KBM403)
リ) 無機充填剤 =平均粒径4.4μmの球状溶融シリカ(略号E)
【0031】
これらを用いて表1に示す組成で配合し、三本ロールで混合分散した後、真空らいかい機で混合脱気を行い、実施例1〜6及び比較例1〜4の半導体封止用液状エポキシ樹脂組成物を作製した。
半導体封止用液状エポキシ樹脂組成物で封止する素子を備えた半導体装置の一例として、フリップチップ実装型のBGAを下記(3)の方法で作製した。これを100℃のホットプレートに置き、実施例1〜6及び比較例1〜4の半導体封止用液状エポキシ樹脂組成物をディスペンサを用いてチップの一端辺に滴下し、毛細管現象(キャピラリーフロー)により素子と基板の隙間に封入し、更に160℃で2時間硬化して樹脂封止したフリップチップ実装型のBGAを得た。それぞれの実施例及び比較例について10個ずつ作製した。
【0032】
本発明の半導体封止用液状エポキシ樹脂組成物の保存安定性や素子のパッシベーション膜(ポリイミド)とのせん断接着力評価、本発明の材料を用いて素子を封止した半導体装置の耐熱衝撃性や耐湿性等を以下の試験により評価した。
(1)保存安定性
本発明の半導体封止用液状エポキシ樹脂組成物と比較例のエポキシ樹脂成形材料のそれぞれについて、25℃における初期粘度と20時間後の25℃における粘度から粘度増加率を求めた。粘度増加率の低いものほど保存安定性に優れる。粘度は、測定は回転粘度計(HAKKE社製、RS100型)で25℃、ずり速度10(1/s)の値を示す。その結果を表1に示す。
【0033】
(2)ポリイミドとのせん断接着力評価
シリコンウエハ上にパッシベーション膜としてネガ型感光性ポリイミド(日立化成デュポンマイクロシステムズ株式会社製、PL-H708)を日立化成デュポンマイクロシステムズ推奨のパターン形成プロセス法に従い、スピンコート、プリベーク、フォトマスクを用いずにi線露光、露光後加熱を行い、現像液(日立化成デュポンマイクロシステムズ株式会社製、PL-2N)で現像、水でリンスを行った後、窒素雰囲気下の温風乾燥機で350℃で60分加熱し、 本発明の液状封止用エポキシ樹脂成形材料とのせん断接着力を評価するポリイミド膜を塗布したシリコンウエハを得た。ポリイミドは膜厚約10μmである。このシリコンウエハをサイズ2cm×2cmに切断し、4mm×4mm四方の穴を開けた厚さ約1mmのシリコンゴムシート(サイズ2cm×2cm)を重ね、更に4mm×4mmの穴を開けた厚さ約1mmのテトラフルオロエチレンシート(サイズ2cm×2cm)を重ね、四方よりクリップで挟み固定した。シリコンゴムシートとテトラフルオロエチレンシートに開けた4mm×4mm四方の穴の中に本発明の半導体封止用液状エポキシ樹脂組成物を、気泡を巻き込まないようにディスペンサーを用いて厚さ約0.5〜1mm入れ、温風乾燥機で160℃で2時間加熱硬化した。その後、シリコンゴムシート、テトラフルオロエチレンシートをポリイミド膜を塗布したシリコンウエハからはずし、ポリイミド塗布シリコンウエハ上に4mm×4mm×約0.5〜1mmの硬化物を有するサンプルを得た。これを万能ボンドテスター(デイジ社製、PC2400型)を用いてポリイミドと本発明の半導体封止用液状エポキシ樹脂組成物から成る硬化物とのせん断接着強さを測定し、接着性を評価した。せん断強度の大きいものほど接着性に優れる。測定条件は硬化物ブロックにせん断治具を用いてポリイミドから50μmの高さを300μm/秒の速度で歪を加えながら測定した。実施例では初期値と耐湿試験の一環としてPCT試験による168時間後の値を示した。その結果を表1に示す。
【0034】
【表1】
Figure 2004204169
【0035】
(3)フリップチップ実装型BGAの作製
図1に示すように複数の接続用電極部(金メッキ)2が設けられた配線回路基板1に接続用電極部(金バンプ)3が設けられた半導体素子4を配置し、2と3とを接続位置に配置し、1と4とを加圧及び加熱(260℃)することにより両接続用電極部2と3とを当接して、ボンダーを用いて電気的接続を行い、本発明の半導体封止用液状エポキシ樹脂組成物が未封入のフリップチップ実装型のBGAを作製した。ギャップは60μmである。用いたBGAはデイジーチェーン回路であるので、両末端端子間の接続抵抗をテスターで測定し初期値とした。各種試験後も測定し、それぞれの抵抗値の変化からアンダーフィル材の信頼性を評価した。
【0036】
(4)ストレス付与試験
上記(3)に従って製造したフリップチップ実装型のBGAの素子と基板の隙間に本発明の半導体封止用液状エポキシ樹脂組成物6を注入して素子を封止した。封止したBGA全てに初期導通試験を25℃で行い、さらにその半導体装置を各5個ずつ用いて、耐熱衝撃性評価試験の一環として温度サイクル試験を500サイクル行った。温度サイクル試験の1サイクルは-55℃×5分次いで125℃×5分である。その後、再度、通電試験及び半導体装置のクラックの有無検査を行った。その結果を表2に示す。
【0037】
また、上記温度サイクル試験を行わなかった各5個の半導体装置について耐湿試験としてPCTを168時間行った。PCTは圧力容器中で半導体装置を121℃、2気圧、100%RHの環境下に曝すものである。その後、再度通電試験を行った。その結果を表2に示す。
【0038】
【表2】
Figure 2004204169
【0039】
以上、実施例と比較例に示したように、本発明の半導体封止用液状エポキシ樹脂組成物は接着性、耐湿性、及び保存安定性に優れている。また、本発明の液状封止用エポキシ樹脂組成物を封入した半導体装置は、初期通電試験や温度サイクル試験及びPCTのストレス付与試験に対して安定した通電を確保しており、信頼性の高い半導体装置が得られる。
【0040】
【発明の効果】
本発明の半導体封止用液状エポキシ樹脂組成物は、一般式(1)に示す芳香族アミンを用いているためPCTによるせん断強度の低下もなく、また粘度増加率も小さい。そのため複数の接続用電極部を介して接続された配線回路基板と半導体素子の空隙に、キャピラリーフローにより封入された本発明の半導体封止用液状エポキシ樹脂組成物によって樹脂封止層が形成された半導体装置は初期通電試験や温度サイクル試験及びPCTのストレス付与試験に対して安定した通電を確保する。
【図面の簡単な説明】
【図1】実施例で用いたBGAの模式断面図である。
【符号の説明】
1… 配線回路基板
2… 接続用電極部(金メッキ)
3… 接続用電極部(金バンプ)
4… 半導体素子
5… はんだボール
6… 半導体封止用エポキシ樹脂組成物[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid epoxy resin composition for semiconductor encapsulation suitable for a semiconductor device requiring high reliability.
[0002]
[Prior art]
2. Description of the Related Art In recent years, flip-chip mounting schemes for semiconductor devices, which have short wiring lengths and are suitable for high-frequency use and multi-pin, have been increasingly used with high-density mounting and high integration of ICs. This method is advantageous in terms of small size, light weight, and thinness because the mounting area is almost the same as the chip size and the chip can be directly mounted on the printed circuit board. As a sealing material for sealing the flip-chip mounting type semiconductor, there are a liquid type sealing material and a film type sealing material, but there are many liquid type sealing materials. The main material is epoxy resin. The reason is that electrical characteristics, heat resistance, mechanical characteristics, adhesiveness, and cost are well balanced.
[0003]
The semiconductor sealing method using a liquid epoxy resin is inferior in reliability to the hermetic sealing method using a ceramic. However, for example, a method of obtaining a semiconductor device by resin-sealing the periphery of a connection part where a chip is directly connected to a substrate by pressure bonding with heat or the like by a capillary flow method is one of the methods which is short in cost and advantageous in cost.
[0004]
The most important issue of the semiconductor device obtained in this way is reliability. Examples of tests for evaluating the reliability of a semiconductor device include a pressure cooker test (hereinafter abbreviated as PCT) for evaluating moisture resistance, a temperature cycle test for evaluating thermal shock resistance and heat resistance, and a high temperature test. There are standing tests.
[0005]
There is a relationship between the reliability of the semiconductor device and the properties (moisture resistance and adhesiveness) of the liquid epoxy resin composition for semiconductor encapsulation. Are required to have high moisture resistance and high adhesiveness. Liquid epoxy resin compositions for semiconductor encapsulation include acid anhydride curing, amine curing and self-polymerization types, and amine curing types are advantageous from the viewpoint of moisture resistance and adhesion. However, the amine curing type has a problem that storage stability is poor.
[0006]
Further, in order to improve the adhesiveness of the liquid epoxy resin composition for semiconductor encapsulation, rubber components such as N-butyl rubber, fluorine rubber, acrylonitrile-butadiene rubber, etc. are blended or bonded to the epoxy resin. I have. However, there is a problem that heat resistance is reduced when various rubbers are blended.
[0007]
[Patent Document 1]
JP-A-10-158366 (Claims)
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems and to provide an epoxy resin composition having good moisture resistance, adhesiveness and storage stability suitable for semiconductor encapsulation.
[0009]
[Means for Solving the Problems]
Accordingly, the present inventors have conducted intensive studies to improve the moisture resistance and adhesiveness of the liquid epoxy resin material with the aim of improving the reliability of the semiconductor device, and as a result, the liquid epoxy resin and a specific amine-based curing agent as essential components. It has been found that a semiconductor device manufactured by encapsulating a semiconductor using a liquid epoxy resin composition that can be used can greatly improve reliability even in a stress application test such as a PCT or a temperature cycle test, and complete the present invention. I came to.
[0010]
That is, the present invention includes the following inventions.
(1) Liquid epoxy resin (c) and general formula (1):
[0011]
Embedded image
Figure 2004204169
A liquid epoxy resin composition for encapsulating a semiconductor, comprising a compound (a) represented by the formula:
(2) The liquid epoxy resin composition for semiconductor encapsulation according to the above (1), further containing an aromatic amine compound (b) having a viscosity of 10 Pa · s or less at 25 ° C.
[0012]
(3) The semiconductor encapsulation according to (1) or (2), wherein the equivalent ratio of the compound (a) to the compound (b) is (a) :( b) = 99: 1 to 30:70. Liquid epoxy resin composition for use.
(4) The equivalent ratio of the liquid epoxy resin (c) to the compounds (a) and (b) is (c): ((a) + (b)) = 100: 80 to 100: 115. The liquid epoxy resin composition for semiconductor encapsulation according to (2).
[0013]
(5) The compound according to any one of the above (1) to (4), wherein the compound (b) is 2,5-diamino-4,6-diethyltoluene or 3,3′-diethyl-4,4′-diaminodiphenylmethane. The liquid epoxy resin composition for semiconductor encapsulation according to the above.
(6) A semiconductor device comprising an element encapsulated with the liquid epoxy resin composition for semiconductor encapsulation according to any one of (1) to (5).
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The epoxy resin (c) used in the present invention needs to be liquid at room temperature. If the epoxy resin is not liquid at room temperature, the viscosity of the liquid epoxy resin composition for semiconductor encapsulation will increase. When the viscosity of the epoxy resin composition is high, for example, when injecting and sealing a liquid epoxy resin composition for semiconductor encapsulation in a gap between a chip mounted with a flip chip and a substrate by a capillary flow, air bubbles may be entrained, or to a corner end. Is not preferable because it leads to a decrease in the reliability of the semiconductor device. As long as the epoxy resin satisfies this condition, it is not particularly limited, but specific examples include bisphenol A diglycidyl ether epoxy, bisphenol F diglycidyl ether epoxy, bisphenol S diglycidyl ether epoxy, and bisphenol AD. Diglycidyl ether type epoxy, hydrogenated bisphenol A diglycidyl ether type epoxy, phenol novolak type epoxy, glycidyl ester type epoxy, diaminodiphenylmethane, isocyanuric acid, etc. obtained by reaction of epichlorohydrin with polybasic acids such as phthalic acid and dimer acid Glycidylamine type epoxy obtained by the reaction of polyamine with epichlorohydrin, fatty epoxy obtained by oxidizing an olefin bond with a peracid such as peracetic acid, alicyclic epoxy, etc. That. These may be used alone or in combination of two or more. The liquid epoxy resin composition for semiconductor encapsulation of the present invention may contain a solid epoxy resin at room temperature as long as the effects of the present invention are achieved. In order to obtain a highly reliable liquid epoxy resin composition for semiconductor encapsulation, the epoxy resin preferably contains as little ionic impurities as possible, such as Na + and Cl −, and preferably 500 ppm or less.
[0015]
The amine compound (a) represented by the general formula (1) used in the present invention has three benzene rings and acts as a curing agent.
The amine compound (a) represented by the general formula (1) used in the present invention is specifically a compound in which two aminophenoxy groups are bonded to benzene, and the amino group is substituted at any position of the phenoxy group. The 3- or 4-position may be preferred, and the aminophenoxy group may be substituted at any position of benzene, but the 1,3-substituted or 1,4-substituted is preferred. Specific examples of such compounds include, for example, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) Benzene is exemplified.
[0016]
Since the epoxy resin composition for semiconductor encapsulation containing the amine compound represented by the general formula (1) has excellent adhesiveness, the reliability of a flip-chip mounting type semiconductor device using an organic printed wiring board is greatly improved. Can be.
In the amine compound represented by the general formula (1), the electron density of the nitrogen atom of the amino group is low because the bonding group connecting the aromatic rings is an electron-withdrawing ether (-O-) group. That is, the nucleophilicity of the amino group decreases, and the reactivity with the epoxy group decreases at around room temperature. As a result, the epoxy resin composition for semiconductor encapsulation has a small change in viscosity at room temperature and exhibits excellent storage stability. Amine-based curing agents other than aromatic rings have poor heat resistance and are highly reactive even at room temperature or lower, and therefore have the disadvantage of inferior heat resistance and storage stability of the epoxy resin composition for semiconductor encapsulation and are not suitable for the present invention. .
[0017]
When the liquid epoxy resin composition for semiconductor encapsulation is filled in the gap between the flip-chip mounted device and the substrate by capillary flow, the general epoxy resin composition for encapsulation has a viscosity of room temperature (25 ° C) when the substrate is heated. Since it is reduced to about 1/100 to 1/300, it can be encapsulated in a short time. Therefore, the lower the viscosity of the epoxy resin composition for encapsulation, the shorter the encapsulation time is, the more advantageous it is.
[0018]
The amine compound (a) having three aromatic rings represented by the general formula (1) is a solid at room temperature. Therefore, when mixed with a liquid epoxy resin, the solubility of the amine compound (a) in the epoxy resin is not sufficient, and the viscosity of the epoxy resin composition for semiconductor encapsulation tends to increase. The viscosity at room temperature of the liquid epoxy resin composition for semiconductor encapsulation obtained by mixing the amine compound (a) used in the present invention with a liquid epoxy resin increases, however, at 100 ° C., the viscosity at room temperature increases. It is greatly reduced to about 1/1000 of the viscosity. Although the reason for the large decrease has not been elucidated, it is expected that the number and the skeleton of the aromatic ring of the amine-based curing agent represented by the general formula (1) are affected.
[0019]
In the present invention, a low-viscosity liquid aromatic amine compound is used for the purpose of improving the solubility of the amine compound (a) in a liquid epoxy resin at room temperature and reducing the viscosity of the obtained epoxy resin composition for semiconductor encapsulation. (B) may be used together with the amine curing agent (a) represented by the general formula (1). The low-viscosity liquid aromatic amine compound (b) needs to be a liquid aromatic amine compound having a viscosity of 10 Pa · s or less at 25 ° C. Such low-viscosity liquid aromatic amines include, for example, 3,3′-diethyl-4,4′-diaminodiphenylmethane, 2,5-diamino-4,6-diethyltoluene and the like.
[0020]
By combining a mixture of the liquid aromatic amine compound (b) and the amine compound (a) having three aromatic rings represented by the general formula (1) with an epoxy resin, the solubility is improved and the fluidity is excellent. And a liquid epoxy resin composition for semiconductor encapsulation. When a liquid amine compound is used, the equivalent ratio of the amine compound (a) shown in the general formula (1) to the aromatic amine compound (b) should be (a) :( b) = 99: 1 to 30:70. Is preferred. With respect to the total amount of the compound (a) and the compound (b), when the equivalent ratio of the compound (a) is less than 30%, the aromatic amine compound (b) becomes excessive and the storage stability tends to decrease. In order to obtain a highly reliable liquid epoxy resin composition for semiconductor encapsulation, the aromatic amine compounds (a) and (b) represented by the general formula (1) contain as little as possible ionic impurities such as Na + and Cl −. A small amount is preferable, and 500 ppm or less is preferable.
[0021]
The equivalent ratio of the liquid epoxy resin (c) as the main agent to the amine compound (a) and the amine compound (b) is (c): ((a) + (b)) = 100: 80 to 100: 115. Is preferred. When the equivalent ratio of the amine compound (a) and the amine compound (b) to the equivalent of the liquid epoxy resin (c) exceeds 1.15 (100: 115), the amount of the amine compound as a curing agent becomes excessive, and Due to the presence of the group, the moisture resistance tends to decrease. When the equivalent ratio of the amine compound (a) and the amine compound (b) to the equivalent of the liquid epoxy resin (c) is less than 0.80 (100: 80), the epoxy group increases and the curing of the resin becomes insufficient. In addition, the heat resistance of the cured product tends to decrease. (c): When a resin having an equivalent ratio outside the range of ((a) + (b)) = 100: 80 to 100: 115 is used, the effect of improving the reliability of the semiconductor device tends to be insufficient. It is in.
[0022]
The liquid epoxy resin composition for semiconductor encapsulation of the present invention may contain a commonly used inorganic filler. The inorganic filler is added to the epoxy resin composition for the purpose of absorbing moisture, reducing the coefficient of thermal expansion, improving thermal conductivity, and improving mechanical strength. Specifically, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Powders of mullite, titania, etc., and spherical beads or glass fibers thereof may be used. Further, examples of the inorganic filler having a flame-retardant effect include aluminum hydroxide, magnesium hydroxide, zinc silicate, zinc molybdate and the like. These inorganic fillers may be used alone or in combination of two or more.
[0023]
Among these inorganic fillers, fused silica is preferred from the viewpoint of reducing the thermal expansion coefficient, and crystalline silica and alumina are preferred from the viewpoint of high thermal conductivity. The particle shape of the inorganic filler is preferably spherical from the viewpoint of fluidity and permeability into the fine gap, and the average particle size is preferably 0.1 to 20 μm. If the average particle size is less than 0.1 μm, the dispersibility in the liquid resin tends to be poor. In addition, the epoxy resin composition for liquid encapsulation tends to have thixotropy and has poor fluidity. When the average particle diameter exceeds 20 μm, filler sedimentation is likely to occur, and when the epoxy resin composition for liquid sealing is sealed in the gap between the flip-chip mounted element and the substrate by capillary flow, fluidity and permeability to fine spaces Tend to be inferior. The mixing ratio of the inorganic filler can be adjusted within the range of 0 to 90% by weight based on the epoxy composition of the present invention. In particular, the range is preferably 30 to 85% by weight, and more preferably 40 to 80% by weight. When the blending ratio of the inorganic filler is less than 30% by weight, the effect of reducing the coefficient of thermal expansion tends to be small. However, even when the blending ratio of the inorganic filler is 0% by weight, the chip size, the connection method, the type of the connection electrode and the shape thereof. In some cases, practically sufficient reliability can be ensured depending on the size, the substrate on which the element is mounted, the material of the resist, and the like. When the compounding ratio of the inorganic filler exceeds 90% by weight, the viscosity of the liquid epoxy resin composition for semiconductor encapsulation tends to be high, and the fluidity at the time of encapsulation tends to be greatly reduced.
[0024]
Further, the liquid epoxy resin composition for semiconductor encapsulation of the present invention includes a phosphorus compound such as a cycloamidine compound, a tertiary amine, an imidazole, or an organic phosphine, and a derivative thereof, or a tetraphenylboron salt thereof. Known curing accelerators that are generally used can be used alone or in combination of two or more kinds, if necessary. The amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is achieved.
[0025]
The liquid epoxy resin composition for semiconductor encapsulation of the present invention, epoxy silane, amino silane, ureido silane, vinyl silane, alkyl silane, organic titanate, known coupling agents such as aluminum alkylate, alone or in combination of two or more And can be blended as needed. In addition, red phosphorus, phosphate, melamine, melamine derivatives, compounds having a triazine ring, nitrogen-containing compounds of cyanuric acid derivatives, isocyanuric acid derivatives, phosphorus-nitrogen-containing compounds such as cyclophosphazene, zinc oxide, iron oxide, molybdenum oxide, ferrocene Metal compounds such as antimony trioxide, antimony tetroxide and antimony pentoxide, and flame retardants such as brominated epoxy resins can be used alone or in combination of two or more.
[0026]
The liquid epoxy resin composition for semiconductor encapsulation of the present invention may also contain an ion trapper agent for improving the moisture resistance and high-temperature storage characteristics of the semiconductor element. There is no particular limitation on the ion trapper agent, and a conventionally known ion trapper agent can be used. Specific examples include hydrotalcites, hydrated oxides of elements such as magnesium, aluminum, titanium, zirconium, and bismuth. These can be used alone or in combination of two or more.
Further, the liquid epoxy resin composition for semiconductor encapsulation of the present invention requires, as other additives, a stress relaxation agent such as silicone rubber powder, a dye, a coloring agent such as carbon black, a leveling agent, an antifoaming agent, and the like. It can be blended accordingly.
[0027]
The liquid epoxy resin composition for semiconductor encapsulation of the present invention can be adjusted by any method as long as the above various components can be uniformly dispersed and mixed. In general, a method in which a predetermined amount is weighed and then dispersed and mixed using a three-roll mill, a vacuum grinder, a hybrid mixer (manufactured by KEYENCE, Model MH-500) or the like can be used.
Examples of a method for sealing an element using the liquid epoxy resin composition for semiconductor sealing of the present invention include a dispense method, a casting method, and a printing method.
Examples of the semiconductor device obtained by sealing the element with the liquid epoxy resin composition for semiconductor sealing obtained in the present invention include the following.
[0028]
After mounting the element on the surface of an organic or inorganic substrate having terminals for wiring board connection formed on the back surface and connecting the element and the wiring formed on the organic substrate by bumps or wire bonding, the semiconductor sealing of the present invention is used. Examples include BGA and CSP (chip size package) in which the element is sealed with a liquid epoxy resin composition. More specifically, the circuit-forming surface of the element and the circuit-forming surface of the organic or inorganic substrate on which the element is mounted face each other, and the electrodes of the element and the circuit of the substrate are electrically connected via bumps. A flip-chip mounted semiconductor device in which a gap is impregnated with the epoxy resin composition for semiconductor encapsulation of the present invention is exemplified.
[0029]
【Example】
Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited to these examples. First, resins used in Examples and Comparative Examples will be described. These are hereinafter indicated by trade names or abbreviations.
[0030]
B) Liquid epoxy resin = bisphenol F epoxy resin (manufactured by Japan Epoxy Co., epoxy equivalent 160, abbreviation BF)
B) Liquid epoxy resin = bisphenol A epoxy resin (manufactured by Japan Epoxy Co., Ltd., trade name = Epicoat 828, epoxy equivalent 195, abbreviation BA)
C) Curing agent = 1,3-bis (3-aminophenoxy) benzene (APB, Mitsui Chemicals, Inc.)
D) Curing agent = 1,4-bis (4-aminophenoxy) benzene (APOB, manufactured by Wakayama Seika Chemical Co., Ltd.)
E) Curing agent = 3,3'-diethyl-4,4'-diaminodiphenylmethane (manufactured by Nippon Kayaku Co., Ltd., trade name = Kayahard AA, abbreviation AA, viscosity at 25 ° C = 3.0 Pa · s)
F) Curing agent = 2,2-bis (4- (4-aminophenoxy) phenyl) propane (manufactured by Aldrich, abbreviation BAPP, mp = 127 ° C.)
G) Curing agent = 4,4'-diaminodiphenylmethane (manufactured by Wako Pure Chemical Industries, Ltd., abbreviation DDM, mp = 90 ° C)
H) Coupling agent = 3-glycidoxypropyl-trimethoxysilane (Shin-Etsu Chemical Co., Ltd., trade name = KBM403)
I) Inorganic filler = spherical fused silica with an average particle size of 4.4 µm (abbreviation E)
[0031]
After blending them in the composition shown in Table 1 and mixing and dispersing them with three rolls, mixing and deaeration were performed with a vacuum grinder, and the liquids for sealing semiconductors of Examples 1 to 6 and Comparative Examples 1 to 4 were used. An epoxy resin composition was prepared.
As an example of a semiconductor device provided with an element sealed with a liquid epoxy resin composition for semiconductor sealing, a flip-chip mounted BGA was manufactured by the following method (3). This was placed on a hot plate at 100 ° C., and the liquid epoxy resin compositions for semiconductor encapsulation of Examples 1 to 6 and Comparative Examples 1 to 4 were dropped on one end of a chip using a dispenser, thereby causing a capillary phenomenon (capillary flow). To fill the gap between the element and the substrate, and then cured at 160 ° C. for 2 hours to obtain a resin-sealed flip-chip mounted BGA. Ten pieces were produced for each example and comparative example.
[0032]
The storage stability of the liquid epoxy resin composition for semiconductor encapsulation of the present invention, the evaluation of the shear adhesion to the passivation film (polyimide) of the element, the thermal shock resistance of the semiconductor device in which the element is encapsulated using the material of the present invention, The moisture resistance and the like were evaluated by the following tests.
(1) Storage stability For each of the liquid epoxy resin composition for semiconductor encapsulation of the present invention and the epoxy resin molding material of the comparative example, the viscosity increase rate was determined from the initial viscosity at 25 ° C and the viscosity at 25 ° C after 20 hours. Was. The lower the viscosity increase rate, the better the storage stability. The viscosity is measured at 25 ° C. with a rotational viscometer (RS100, manufactured by HAKKE) at a shear rate of 10 (1 / s). Table 1 shows the results.
[0033]
(2) Evaluation of shear adhesion to polyimide A negative photosensitive polyimide (PL-H708, manufactured by Hitachi Chemical DuPont Microsystems Co., Ltd.) was used as a passivation film on a silicon wafer according to the pattern formation process method recommended by Hitachi Chemical DuPont Microsystems. Spin coating, pre-baking, i-line exposure without using a photomask, heating after exposure, developing with a developer (Hitachi Chemical DuPont Microsystems Co., Ltd., PL-2N), rinsing with water, nitrogen atmosphere Heating was performed at 350 ° C. for 60 minutes using a lower hot air drier to obtain a silicon wafer coated with a polyimide film for evaluating the shear adhesive strength with the epoxy resin molding material for liquid sealing of the present invention. Polyimide has a thickness of about 10 μm. This silicon wafer is cut into a size of 2cm x 2cm, a silicon rubber sheet (size 2cm x 2cm) with a hole of 4mm x 4mm and a hole of 4mm x 4mm is stacked, and a thickness of about 4mm x 4mm A 1 mm tetrafluoroethylene sheet (size 2 cm x 2 cm) was stacked, and was fixed by clipping from all sides. The liquid epoxy resin composition for semiconductor encapsulation of the present invention is placed in a 4 mm × 4 mm square hole formed in a silicon rubber sheet and a tetrafluoroethylene sheet using a dispenser so as to prevent air bubbles from being caught. Then, the mixture was heated and cured at 160 ° C. for 2 hours using a hot air drier. Thereafter, the silicon rubber sheet and the tetrafluoroethylene sheet were removed from the silicon wafer coated with the polyimide film to obtain a sample having a cured product of 4 mm × 4 mm × about 0.5 to 1 mm on the polyimide coated silicon wafer. Using a universal bond tester (PC2400, manufactured by Dage), the shear bond strength between the polyimide and the cured product of the liquid epoxy resin composition for semiconductor encapsulation of the present invention was measured to evaluate the adhesiveness. The higher the shear strength, the better the adhesion. The measurement was carried out by applying a shear jig to the cured product block at a height of 50 μm from the polyimide while applying strain at a speed of 300 μm / sec. In the example, the initial value and the value after 168 hours by the PCT test as a part of the moisture resistance test were shown. Table 1 shows the results.
[0034]
[Table 1]
Figure 2004204169
[0035]
(3) Fabrication of Flip-Chip Mounting Type BGA As shown in FIG. 1, a semiconductor element in which connection electrode portions (gold bumps) 3 are provided on a printed circuit board 1 on which a plurality of connection electrode portions (gold plating) 2 are provided. 4 is arranged, 2 and 3 are arranged at the connection position, and 1 and 4 are pressed and heated (260 ° C.) to bring the two connection electrode portions 2 and 3 into contact with each other, and use a bonder. Electrical connection was made to prepare a flip-chip mounted BGA in which the liquid epoxy resin composition for semiconductor encapsulation of the present invention was not encapsulated. The gap is 60 μm. Since the BGA used was a daisy chain circuit, the connection resistance between both terminal terminals was measured with a tester and used as an initial value. Measurements were also made after various tests, and the reliability of the underfill material was evaluated from changes in the respective resistance values.
[0036]
(4) Stress Application Test The liquid epoxy resin composition 6 for semiconductor encapsulation of the present invention was injected into the gap between the flip-chip mounting type BGA element manufactured according to the above (3) and the substrate to seal the element. An initial conduction test was performed on all the sealed BGAs at 25 ° C., and a temperature cycle test was performed 500 times as a part of a thermal shock resistance evaluation test using five of the semiconductor devices. One cycle of the temperature cycle test is -55 ° C x 5 minutes, then 125 ° C x 5 minutes. After that, an energization test and a crack inspection of the semiconductor device were again performed. Table 2 shows the results.
[0037]
PCT was performed for 168 hours as a moisture resistance test on each of the five semiconductor devices not subjected to the temperature cycle test. PCT exposes a semiconductor device to an environment of 121 ° C., 2 atm, and 100% RH in a pressure vessel. After that, an energization test was performed again. Table 2 shows the results.
[0038]
[Table 2]
Figure 2004204169
[0039]
As described above, as shown in Examples and Comparative Examples, the liquid epoxy resin composition for semiconductor encapsulation of the present invention is excellent in adhesiveness, moisture resistance, and storage stability. In addition, the semiconductor device in which the epoxy resin composition for liquid encapsulation of the present invention is encapsulated ensures a stable energization for an initial energization test, a temperature cycle test, and a PCT stress application test. A device is obtained.
[0040]
【The invention's effect】
Since the liquid epoxy resin composition for semiconductor encapsulation of the present invention uses the aromatic amine represented by the general formula (1), there is no decrease in shear strength due to PCT and the rate of increase in viscosity is small. Therefore, a resin sealing layer was formed by the liquid epoxy resin composition for semiconductor encapsulation of the present invention sealed by a capillary flow in a gap between the printed circuit board and the semiconductor element connected via the plurality of connection electrode portions. The semiconductor device secures stable energization for an initial energization test, a temperature cycle test, and a PCT stress application test.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a BGA used in an example.
[Explanation of symbols]
1: Wiring circuit board 2: Connection electrode part (gold plating)
3 ... Connection electrode part (gold bump)
4 Semiconductor element 5 Solder ball 6 Epoxy resin composition for semiconductor encapsulation

Claims (6)

液状エポキシ樹脂(c)と一般式(1):
Figure 2004204169
で示される化合物(a)とを含有する半導体封止用液状エポキシ樹脂組成物。
Liquid epoxy resin (c) and general formula (1):
Figure 2004204169
And a compound (a) represented by the formula:
25℃において粘度が10Pa・s以下の芳香族アミン化合物(b)をさらに含有する請求項1記載の半導体封止用液状エポキシ樹脂組成物。The liquid epoxy resin composition for semiconductor encapsulation according to claim 1, further comprising an aromatic amine compound (b) having a viscosity of 10 Pa · s or less at 25 ° C. 前記化合物(a)と前記化合物(b)との当量比が、(a):(b)=99:1〜30:70である請求項1又は2記載の半導体封止用液状エポキシ樹脂組成物。The liquid epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein an equivalent ratio of the compound (a) and the compound (b) is (a) :( b) = 99: 1 to 30:70. . 前記液状エポキシ樹脂(c)と前記化合物(a)及び(b)との当量比が、(c):((a)+(b))=100:80〜100:115である請求項2記載の半導体封止用液状エポキシ樹脂組成物。The equivalent ratio of the liquid epoxy resin (c) and the compounds (a) and (b) is (c): ((a) + (b)) = 100: 80 to 100: 115. Liquid epoxy resin composition for semiconductor encapsulation. 前記化合物(b)が2,5-ジアミノ-4,6-ジエチルトルエン又は3,3'-ジエチル-4,4'-ジアミノジフェニルメタンである請求項1〜4のいずれか1項に記載の半導体封止用液状エポキシ樹脂組成物。The semiconductor encapsulation according to any one of claims 1 to 4, wherein the compound (b) is 2,5-diamino-4,6-diethyltoluene or 3,3'-diethyl-4,4'-diaminodiphenylmethane. Liquid epoxy resin composition for stopping. 請求項1〜5のいずれか1項に記載の半導体封止用液状エポキシ樹脂組成物で封止した素子を備えた半導体装置。A semiconductor device comprising an element encapsulated with the liquid epoxy resin composition for semiconductor encapsulation according to claim 1.
JP2002377604A 2002-12-26 2002-12-26 Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device Expired - Fee Related JP3968302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377604A JP3968302B2 (en) 2002-12-26 2002-12-26 Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377604A JP3968302B2 (en) 2002-12-26 2002-12-26 Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004204169A true JP2004204169A (en) 2004-07-22
JP3968302B2 JP3968302B2 (en) 2007-08-29

Family

ID=32814730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377604A Expired - Fee Related JP3968302B2 (en) 2002-12-26 2002-12-26 Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device

Country Status (1)

Country Link
JP (1) JP3968302B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244279A1 (en) * 2009-03-31 2010-09-30 Namics Corporation Liquid resin composition for underfill, flip-chip mounted body and method for manufacturing the same
JP2012046634A (en) * 2010-08-26 2012-03-08 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing semiconductor, and semiconductor device using the same
JP2013185106A (en) * 2012-03-08 2013-09-19 Panasonic Corp Liquid epoxy resin composition for sealing semiconductor, and semiconductor apparatus using the same
KR102093860B1 (en) * 2018-10-18 2020-03-26 주식회사 아이에스시 Test connector and manufacturing method of the test connector
JP2020183529A (en) * 2016-07-25 2020-11-12 ザ・ボーイング・カンパニーThe Boeing Company Epoxy resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244279A1 (en) * 2009-03-31 2010-09-30 Namics Corporation Liquid resin composition for underfill, flip-chip mounted body and method for manufacturing the same
JP2012046634A (en) * 2010-08-26 2012-03-08 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing semiconductor, and semiconductor device using the same
JP2013185106A (en) * 2012-03-08 2013-09-19 Panasonic Corp Liquid epoxy resin composition for sealing semiconductor, and semiconductor apparatus using the same
JP2020183529A (en) * 2016-07-25 2020-11-12 ザ・ボーイング・カンパニーThe Boeing Company Epoxy resin
KR102093860B1 (en) * 2018-10-18 2020-03-26 주식회사 아이에스시 Test connector and manufacturing method of the test connector
WO2020080719A1 (en) * 2018-10-18 2020-04-23 주식회사 아이에스시 Inspection connector and method for manufacturing inspection connector

Also Published As

Publication number Publication date
JP3968302B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US6632881B1 (en) Encapsulant of epoxy resin and liquid aromatic amine curing agent
KR101031151B1 (en) Liquid resin composition for electronic part sealing, and electronic part apparatus utilizing the same
JP3968302B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2002241472A (en) Thermosetting resin composition and semiconductor device
JP5070789B2 (en) Liquid resin composition for underfill and semiconductor device
JP2002241469A (en) Thermosetting resin composition and semiconductor device
JP4747586B2 (en) Method for producing liquid encapsulating resin composition for semiconductor
JPH1129624A (en) Semiconductor sealing liquid epoxy resin composition
KR20020046941A (en) Novel high temperature underfilling material with low exotherm during use
JP4534280B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2006206827A (en) Liquid sealing epoxy resin composition and semiconductor device
JP2001207021A (en) Liquid epoxy resin composition and electronic part device
JP7000698B2 (en) Resin composition for underfill, manufacturing method of semiconductor device and semiconductor device
JP5862176B2 (en) Selection method and manufacturing method of liquid epoxy resin composition, and manufacturing method of electronic component device
CA2748175A1 (en) Liquid resin composition and semiconductor device
JP2001207031A (en) Resin composition for semiconductor sealing and semiconductor device
JP2006299093A (en) Liquid sealing resin composition and semiconductor device using it
JP2003034747A (en) Liquid epoxy resin composition and electronic part device
JP2000327884A (en) Underfill material for flip-chip semiconductor device
JP6332488B2 (en) Selection method and manufacturing method of liquid epoxy resin composition, electronic component device and manufacturing method thereof
JP4729873B2 (en) Assembling method of semiconductor element
JP6686433B2 (en) Underfill resin composition, electronic component device, and method for manufacturing electronic component device
KR980012311A (en) Epoxy Resin Liquid Composition for Semiconductor Encapsulation
JP2004256646A (en) Resin composition for underfilling, and semiconductor device
JP4858431B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3968302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees