JP2000327884A - Underfill material for flip-chip semiconductor device - Google Patents

Underfill material for flip-chip semiconductor device

Info

Publication number
JP2000327884A
JP2000327884A JP2000067640A JP2000067640A JP2000327884A JP 2000327884 A JP2000327884 A JP 2000327884A JP 2000067640 A JP2000067640 A JP 2000067640A JP 2000067640 A JP2000067640 A JP 2000067640A JP 2000327884 A JP2000327884 A JP 2000327884A
Authority
JP
Japan
Prior art keywords
epoxy resin
underfill material
weight
flip
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000067640A
Other languages
Japanese (ja)
Other versions
JP3674675B2 (en
Inventor
Kunio Ito
邦雄 伊藤
Toshio Shiobara
利夫 塩原
Kazumasa Sumida
和昌 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000067640A priority Critical patent/JP3674675B2/en
Publication of JP2000327884A publication Critical patent/JP2000327884A/en
Application granted granted Critical
Publication of JP3674675B2 publication Critical patent/JP3674675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an underfill material which is excellent in preservation stabilty and penetration into gaps and gives a highly reliable cured item by incorporating a liquid epoxy resin, spherical silica prepared by heating and burning spherical polyorganosilsesquioxane particles, and a cure accelerator into the same. SOLUTION: This underfill material for flip-chip semiconductor devices contains 100 pts.wt. liquid epoxy resin; 100-300 pts.wt. spherical silica which is prepared by heating and burning spherical polyorganosilsesquioxane particles, has a max. particle size of 50 μm or lower and an average particle size of 0.5-10 μm, and contains 0.005-0.1 wt.% carbon particles on the surface; and 0.01-10 pts.wt. cure accelerator. A flip-chip semiconductor device has such a structure that a semiconductor chip 3 is mounted, via a plurality of bumps 2, on the wiring pattern face of an organic substrate 1; the gaps between the organic substrate 1 and the semiconductor chip 3 are filled with the underfill material 4; and the side is sealed with a fillet material 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フリップチップ型
半導体装置用のアンダーフィル材に関する。
The present invention relates to an underfill material for a flip-chip type semiconductor device.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】電気機
器の小型、軽量化、高機能化に伴い、半導体の実装方法
もピン挿入タイプから表面実装が主流になっている。そ
して、ベアチップ実装の一つにフリップチップ(FC)
実装がある。FC実装とは、LSIチップの配線パター
ン面に高さ10〜100μm程度のバンプといわれる電
極を数個から数千個形成し、基板の電極を導電ペースト
或いは半田等で接合する方式である。このため、FCの
保護に用いる封止材料は、基板とLSIチップのバンプ
等による数10μm程度の隙間に浸透させる必要があ
る。従来のフリップチップ用アンダーフィル材として使
用される液状エポキシ樹脂組成物は、エポキシ樹脂と硬
化剤及び無機質充填剤を配合し、信頼性を高めるために
半導体のチップや基板、バンプと線膨張係数を一致させ
るために、多量の無機質充填剤を配合する処方が主流と
なってきている。
2. Description of the Related Art With the miniaturization, weight reduction, and enhancement of functions of electric equipment, semiconductor mounting methods have become the mainstream from pin insertion type to surface mounting. And one of bare chip mounting is flip chip (FC)
There is an implementation. FC mounting is a method in which several to thousands of electrodes called bumps having a height of about 10 to 100 μm are formed on the wiring pattern surface of an LSI chip, and the electrodes on the substrate are joined by a conductive paste or solder. For this reason, it is necessary that the sealing material used to protect the FC penetrates into a gap of about several tens of μm formed by bumps or the like of the substrate and the LSI chip. The liquid epoxy resin composition used as the conventional underfill material for flip chips is composed of an epoxy resin, a hardener and an inorganic filler. In order to achieve the same, a formulation incorporating a large amount of an inorganic filler has become mainstream.

【0003】しかしながら、このような充填剤を高充填
したフリップチップ用アンダーフィル材においては、応
力特性においては何ら問題はなくなってきているが、一
方では充填剤の高充填化により粘度が高くなり、チップ
と基板の隙間に侵入する速度が著しく低下し、生産性が
非常に悪くなるといった問題点が提示されており、この
問題点の改善が望まれる。
[0003] However, in the underfill material for a flip chip in which such a filler is highly filled, there is no longer any problem in the stress characteristics, but on the other hand, the viscosity increases due to the increased filling of the filler. There is a problem that the speed of entering the gap between the chip and the substrate is remarkably reduced, and the productivity is extremely deteriorated. It is desired to improve this problem.

【0004】また、無機質充填剤を多量に充填する場
合、充填剤の粒度分布や充填剤表面の状態が最終製品の
粘度に大きく影響を及ぼすことがよく知られている。そ
のため、従来は火炎溶融で得られる球状シリカをエアー
分級や篩を用いて粗粒や微粉を除去したり、また、粒度
の異なる球状シリカを組み合わせることで最適な粒度分
布を調整していた。この方法では収率が非常に悪いため
原料価格が高くなるといった問題がある。
It is well known that when a large amount of an inorganic filler is filled, the particle size distribution of the filler and the state of the filler surface greatly affect the viscosity of the final product. Therefore, conventionally, the spherical silica obtained by flame melting has been subjected to air classification or a sieve to remove coarse particles and fine powder, or the optimum particle size distribution has been adjusted by combining spherical silica having different particle sizes. This method has a problem that the raw material price increases because the yield is very poor.

【0005】更に、従来はシリカ表面とエポキシ樹脂の
親和性や接着強度を改善するため、シランカップリング
剤のような表面改質剤を用いることが通常行われてい
る。しかし、アンダーフィル材の場合、非常に狭い間隙
で加熱硬化されることから、微量の揮発成分であっても
ボイドの原因となるといった問題が発生している。
Further, conventionally, in order to improve the affinity between the silica surface and the epoxy resin and the adhesive strength, a surface modifier such as a silane coupling agent is usually used. However, in the case of the underfill material, since it is heated and hardened in a very narrow gap, there is a problem that even a small amount of a volatile component causes a void.

【0006】本発明は、上記事情に鑑みなされたもの
で、多量の無機質充填剤を配合しても、低粘度で隙間侵
入させることが可能で、かつボイド等の発生のない信頼
性の優れた硬化物を与えるフリップチップ型半導体装置
用アンダーフィル材を提供することを目的とする。
The present invention has been made in view of the above circumstances. Even if a large amount of an inorganic filler is compounded, the viscosity can be made to penetrate into the gap with low viscosity, and excellent reliability without generation of voids or the like can be obtained. An object of the present invention is to provide an underfill material for a flip-chip type semiconductor device which gives a cured product.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を重ねた結
果、フリップチップ型半導体装置のアンダーフィル材と
して用いるエポキシ樹脂組成物において、無機質充填剤
として、ポリオルガノシルセスキオキサン球状粒子を加
熱燃焼させて得られる球状シリカ、特に最大粒径が50
μm以下、平均粒径が0.5〜10μmで、表面に炭素
原子を含有した球状シリカを使用することにより、エポ
キシ樹脂との親和性が改善され、多量の無機質充填剤
(上記球状シリカ)を配合しても狭間部への隙間侵入性
が著しく改善され、半導体装置の信頼性を高めることが
できることを見出し、本発明をなすに至った。
Means for Solving the Problems and Embodiments of the Invention The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that an epoxy resin composition used as an underfill material of a flip-chip type semiconductor device has: As an inorganic filler, spherical silica obtained by heating and burning polyorganosilsesquioxane spherical particles, particularly having a maximum particle size of 50
μm or less, the average particle size is 0.5 to 10 μm, and by using spherical silica containing carbon atoms on the surface, the affinity with the epoxy resin is improved, and a large amount of the inorganic filler (the above-mentioned spherical silica) can be used. It has been found that even if it is blended, the gap penetration into the narrow portion is remarkably improved and the reliability of the semiconductor device can be improved, and the present invention has been accomplished.

【0008】従って、本発明は、 (A)液状エポキシ樹脂:100重量部 (B)ポリオルガノシルセスキオキサン球状粒子を加熱
燃焼させることにより得られる球状シリカ:100〜3
00重量部 (C)硬化促進剤:0.01〜10重量部 を含有してなることを特徴とするフリップチップ型半導
体装置用アンダーフィル材を提供する。
Accordingly, the present invention relates to: (A) 100 parts by weight of a liquid epoxy resin; and (B) spherical silica obtained by heating and burning polyorganosilsesquioxane spherical particles: 100 to 3 parts.
The present invention provides an underfill material for a flip-chip type semiconductor device, characterized by comprising: 00 parts by weight (C) a curing accelerator: 0.01 to 10 parts by weight.

【0009】以下、本発明について更に詳しく説明す
る。本発明に用いられる上記(A)成分の液状のエポキ
シ樹脂は、一分子中に2個以上のエポキシ基があればい
かなるものでも使用可能であるが、特に、ビスフェノー
ルA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂
等のビスフェノール型エポキシ樹脂、フェノールノボラ
ック型エポキシ樹脂、クレゾールノボラック型エポキシ
樹脂等のノボラック型エポキシ樹脂、トリフェノールメ
タン型エポキシ樹脂、トリフェノールプロパン型エポキ
シ樹脂等のトリフェノールアルカン型エポキシ樹脂、ナ
フタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、
シクロペンタジエン型エポキシ樹脂などが例示される。
この中でも室温で液状のエポキシ樹脂を使用するが、特
にビスフェノールA型エポキシ樹脂、ビスフェノールF
型エポキシ樹脂等のビスフェノール型エポキシ樹脂が望
ましい。これらのエポキシ樹脂には、下記構造で示され
るエポキシ樹脂を浸入性に影響を及ぼさない範囲で添加
しても何ら問題はない。
Hereinafter, the present invention will be described in more detail. As the liquid epoxy resin of the component (A) used in the present invention, any one can be used as long as it has two or more epoxy groups in one molecule. In particular, bisphenol A epoxy resin and bisphenol F epoxy resin can be used. Bisphenol type epoxy resin such as epoxy resin, phenol novolak type epoxy resin, novolak type epoxy resin such as cresol novolak type epoxy resin, triphenol methane type epoxy resin, triphenol alkane type epoxy resin such as triphenol propane type epoxy resin, naphthalene Epoxy resin, biphenyl epoxy resin,
A cyclopentadiene type epoxy resin is exemplified.
Among these, epoxy resins that are liquid at room temperature are used, and in particular, bisphenol A epoxy resin, bisphenol F
A bisphenol type epoxy resin such as a type epoxy resin is desirable. There is no problem even if an epoxy resin having the following structure is added to these epoxy resins within a range that does not affect the infiltration property.

【0010】[0010]

【化1】 Embedded image

【0011】上記液状エポキシ樹脂中の全塩素含有量
は、1500ppm以下、望ましくは1000ppm以
下であることが好ましい。また、120℃で50%エポ
キシ樹脂濃度における20時間での抽出水塩素が5pp
m以下であることが好ましい。全塩素含有量が1500
ppmを超え、抽出水塩素が5ppmを超えると、半導
体素子の信頼性、特に耐湿性に悪影響を与えるおそれが
ある。
The total chlorine content in the liquid epoxy resin is preferably 1500 ppm or less, more preferably 1000 ppm or less. The extraction water chlorine in 20 hours at 120 ° C. and 50% epoxy resin concentration was 5 pp.
m or less. Total chlorine content is 1500
If the content exceeds 1 ppm and the amount of extracted water chlorine exceeds 5 ppm, the reliability of the semiconductor element, particularly, the moisture resistance may be adversely affected.

【0012】次に、本発明の(B)成分の球状シリカ
は、ポリオルガノシルセスキオキサン球状粒子を加熱燃
焼させることにより得られたものを使用する。この場
合、ポリオルガノシルセスキオキサンとしては、ポリメ
チルシルセスキオキサン、ポリエチルシルセスキオキサ
ン等に代表されるポリアルキルシルセスキオキサンなど
が挙げられる。これらの中で、ポリオルガノシルセスキ
オキサン球状粉末としては、特にポリオルガノシルセス
キオキサン球状粉末が好ましい。
Next, the spherical silica as the component (B) of the present invention is obtained by heating and burning polyorganosilsesquioxane spherical particles. In this case, examples of the polyorganosilsesquioxane include polyalkylsilsesquioxanes represented by polymethylsilsesquioxane, polyethylsilsesquioxane, and the like. Among these, the polyorganosilsesquioxane spherical powder is particularly preferable as the polyorganosilsesquioxane spherical powder.

【0013】ここで、本発明で使用する球状シリカの原
料であるポリオルガノシルセスキオキサンは特公平6−
33337号公報記載の方法に準じ、3官能性オルガノ
アルコキシシラン又はその部分加水分解物と有機溶剤の
混合物をアルカリ性物質を含む水溶液中で撹拌下加水分
解縮合させた後、得られた球状の樹脂を中和することで
容易に得ることができ、この方法で狭い粒度分布を有す
るポリオルガノシルセスキオキサン粒子を得ることがで
きる。この場合、3官能性オルガノアルコキシシランと
しては、メチルトリメトキシシラン、メチルトリエトキ
シシラン、メチルトリプロポキシシラン、あるいはこれ
らシランのメチル基をエチル基、プロピル基、ブチル基
等の他の低級アルキル基などの一価炭化水素基で置換し
たシランが挙げられ、中でもメチルトリアルコキシシラ
ン、エチルトリアルコキシシラン等のアルキルトリアル
コキシシランを好ましく用いることができる。
Here, polyorganosilsesquioxane which is a raw material of the spherical silica used in the present invention is disclosed in
According to the method described in JP-A-33337, a mixture of a trifunctional organoalkoxysilane or a partial hydrolyzate thereof and an organic solvent is subjected to hydrolytic condensation with stirring in an aqueous solution containing an alkaline substance. It can be easily obtained by neutralization, and polyorganosilsesquioxane particles having a narrow particle size distribution can be obtained by this method. In this case, the trifunctional organoalkoxysilane may be methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, or other lower alkyl group such as ethyl group, propyl group, butyl group, etc. And a silane substituted with a monovalent hydrocarbon group. Among them, alkyltrialkoxysilanes such as methyltrialkoxysilane and ethyltrialkoxysilane can be preferably used.

【0014】上記ポリオルガノシルセスキオキサンの粒
子は平均粒径が0.5〜10μm、特に1〜5μmのも
ので、粒子径の分布が平均粒径の±30%の範囲にある
ものの割合が80%(重量%、以下同じ)以上あること
が好ましい。このポリオルガノシルセスキオキサンを4
00〜1000℃の温度で燃焼させ、焼結させること
で、容易に実質的に原料のポリオルガノシルセスキオキ
サンと同じ粒度分布(最大粒径、平均粒径)をもった球
状のシリカを得ることができるものである。
The polyorganosilsesquioxane particles have an average particle size of 0.5 to 10 μm, particularly 1 to 5 μm, and the ratio of particles having a particle size distribution in the range of ± 30% of the average particle size is as follows. It is preferably at least 80% (% by weight, the same applies hereinafter). This polyorganosilsesquioxane is
By burning and sintering at a temperature of 00 to 1000 ° C., spherical silica having the same particle size distribution (maximum particle size, average particle size) as the raw material polyorganosilsesquioxane can be easily obtained. Is what you can do.

【0015】この場合、本発明では、更に空気中での燃
焼に際し、酸素の量をコントロールすることで珪素−炭
素結合の酸化分解を抑え、シリカ表面上に適量の炭素を
残存させることによって、液状エポキシ樹脂とフィラー
表面の親和性を高めることができる。表面に残存する炭
素としてはシリカ粒子全体に対して重量で0.005〜
0.1%、望ましくは0.01〜0.08%である。
0.005%より少ないと十分な親和性が得られない場
合があり、また、0.1%より多いとSiCの存在量が
多くなり、導電性を帯びてくるため、絶縁材料としては
適さなくなるおそれが生じる。従って、炭素が全く存在
しないものより若干でも炭素が残存したものを用いた方
が、フリップチップ型半導体装置の狭いギャップに樹脂
を短時間で侵入させることができる点でより好ましい
が、炭素が全く存在しないものでも上記方法で製造し、
粒度分布が前述の範囲のものであれば問題なく使用する
ことができる。
In this case, in the present invention, the oxidative decomposition of the silicon-carbon bond is suppressed by controlling the amount of oxygen during combustion in air, and an appropriate amount of carbon is left on the silica surface to form a liquid. The affinity between the epoxy resin and the filler surface can be increased. As carbon remaining on the surface, 0.005 to
0.1%, desirably 0.01 to 0.08%.
If the amount is less than 0.005%, sufficient affinity may not be obtained. On the other hand, if the amount is more than 0.1%, the amount of SiC increases and the film becomes conductive, and thus is not suitable as an insulating material. There is a fear. Therefore, it is more preferable to use one in which even a little carbon remains than in the case where no carbon is present, since it is possible to cause the resin to penetrate into the narrow gap of the flip-chip type semiconductor device in a short time. Even those that do not exist are manufactured by the above method,
If the particle size distribution is in the above range, it can be used without any problem.

【0016】この方法で得られた炭素を好ましくは上記
特定量含有するシリカ球状粒子を用いることで、従来よ
り少ない量のカップリング剤で従来並の硬化物特性が得
られ、かつ揮発成分が原因となるボイド不良の発生も少
なく、半導体装置としての高信頼性を確保することがで
きる。また、樹脂と充填剤の親和性が改善されることか
ら、エポキシ樹脂組成物として粘度を下げることが可能
となり、侵入性の向上と低線膨張化のための高充填化を
両立させることが可能となる。
By using the silica spherical particles containing the carbon obtained by this method, preferably containing the above-mentioned specific amount, the same cured product characteristics as those obtained by the conventional method can be obtained with a smaller amount of the coupling agent than before and the volatile components Is less likely to occur, and high reliability as a semiconductor device can be secured. In addition, since the affinity between the resin and the filler is improved, it is possible to reduce the viscosity of the epoxy resin composition, and it is possible to achieve both improved penetration and high filling for low linear expansion. Becomes

【0017】これらシリカの特性としては侵入性の向上
を図るためフリップチップギャップ幅に対して平均粒径
が約1/10以下、最大粒径が1/2以下が望ましく、
通常は最大粒径50μm以下、望ましくは25μm以
下、更に望ましくは10μm以下である。平均粒径は1
0μm以下(通常、0.5〜10μm)、望ましくは5
μm以下、より望ましくは1〜5μmである。
As for the characteristics of these silicas, the average particle size is preferably about 1/10 or less and the maximum particle size is 1/2 or less with respect to the flip chip gap width in order to improve the penetration property.
Usually, the maximum particle size is 50 μm or less, preferably 25 μm or less, more preferably 10 μm or less. Average particle size is 1
0 μm or less (usually 0.5 to 10 μm), preferably 5 μm
μm or less, more preferably 1 to 5 μm.

【0018】上記球状シリカの配合量としては液状エポ
キシ樹脂100重量部に対し100〜300重量部、特
に液状エポキシ樹脂100重量部に対し100〜250
重量部の範囲が好ましい。配合量が少ないと膨張係数が
大きく、冷熱試験においてクラックの発生を誘発させ
る。また、配合量が多いと、粘度が高くなり、薄膜侵入
性の低下をもたらす。
The amount of the spherical silica is 100 to 300 parts by weight based on 100 parts by weight of the liquid epoxy resin, and especially 100 to 250 parts by weight based on 100 parts by weight of the liquid epoxy resin.
A range of parts by weight is preferred. If the compounding amount is small, the expansion coefficient is large, and the generation of cracks is induced in the thermal test. On the other hand, if the compounding amount is large, the viscosity becomes high, and the penetration of the thin film is reduced.

【0019】なお、本発明において、上記球状シリカの
表面炭素量は、カーボン量分析装置を用い、1300℃
でシリカを加熱することで発生する炭酸ガスを定量する
ことにより測定した値であり、通常、粒子表面の炭素量
である。また、平均粒径は、例えばレーザー光回折法等
による重量平均値(又はメディアン径)等として求める
ことができる。
In the present invention, the surface carbon content of the spherical silica was measured at 1300 ° C. using a carbon content analyzer.
Is a value measured by quantifying the carbon dioxide gas generated by heating the silica in the above, and is usually the amount of carbon on the particle surface. The average particle diameter can be determined as a weight average value (or median diameter) by a laser light diffraction method or the like.

【0020】本発明のアンダーフィル材には、上記ポリ
オルガノシルセスキオキサンを加熱焼成して得られる球
状シリカに加えて、他の無機質充填剤を配合することが
できる。この無機質充填剤としては、球状又は破砕状の
溶融シリカ、結晶シリカ、ゾル−ゲル法により得られる
球状シリカ等のシリカ微粉末、アルミナ、ボロンナイト
ライド、チッ化アルミ、チッ化珪素、マグネシア、マグ
ネシウムシリケート等を挙げることができ、中でも球状
溶融シリカが好ましい。この場合、上記任意成分として
の無機質充填剤も、(B)成分の球状シリカと同様に、
最大粒径が50μm以下、望ましくは25μm以下、更
に望ましくは10μm以下であり、平均粒径が10μm
以下、通常0.5〜10μm、望ましくは1〜5μm程
度のものを使用することが好ましい。
The underfill material of the present invention may contain other inorganic fillers in addition to the spherical silica obtained by heating and firing the above polyorganosilsesquioxane. Examples of the inorganic filler include spherical or crushed fused silica, crystalline silica, silica fine powder such as spherical silica obtained by a sol-gel method, alumina, boron nitride, aluminum nitride, silicon nitride, magnesia, magnesium. Silicates and the like can be mentioned, and among them, spherical fused silica is preferable. In this case, the inorganic filler as the optional component is also similar to the spherical silica of the component (B),
The maximum particle size is 50 μm or less, preferably 25 μm or less, more preferably 10 μm or less, and the average particle size is 10 μm.
In the following, it is preferable to use those having a thickness of usually 0.5 to 10 μm, preferably about 1 to 5 μm.

【0021】上記(B)成分の球状シリカに任意成分の
無機質充填剤を併用する場合には、(B)成分を含めた
無機質充填剤全体に対する(B)成分の配合割合は、6
0重量%以上(即ち、60〜100重量%)、特に65
〜99重量%、とりわけ80〜99重量%とすることが
好ましい。
When the inorganic filler of the optional component is used in combination with the spherical silica of the component (B), the mixing ratio of the component (B) to the entire inorganic filler including the component (B) is 6
0% by weight or more (that is, 60 to 100% by weight), particularly 65% by weight.
It is preferable that the content be in the range of from 99 to 99% by weight, especially 80 to 99% by weight.

【0022】本発明の(C)成分は硬化促進剤であり、
硬化促進剤としては公知のものを使用することができ
る。具体的には、イミダゾール化合物及び3級アミン化
合物、有機リン系化合物から選ばれる1種又は2種以上
を配合することができる。ここで、イミダゾール化合物
としては、2−メチルイミダゾール、2−エチルイミダ
ゾール、4−メチルイミダゾール、4−エチルイミダゾ
ール、2−フェニルイミダゾール、2−フェニル−4−
メチルイミダゾール、2−フェニル−4−ヒドロキシメ
チルイミダゾール、2−エチル−4−メチルイミダゾー
ル、1−シアノエチル−2−メチルイミダゾール、2−
フェニル−4−メチル−5−ヒドロキシメチルイミダゾ
ール、2−フェニル−4,5−ジヒドロキシメチルイミ
ダゾール等が挙げられる。また、3級アミン化合物とし
ては、トリエチルアミン、ベンジルトリメチルアミン、
α−メチルベンジルジメチルアミン等の窒素原子に結合
する置換基としてアルキル基やアラルキル基を有するア
ミン化合物、1,8−ジアザヒシクロ[5.4.0]ウ
ンデセン−7及びそのフェノール塩、オクチル酸塩、オ
レイン酸塩などのシクロアミジン化合物やその有機酸と
の塩、或いは下記式の化合物などのシクロアミジン化合
物と4級ホウ素化合物との塩又は錯塩などが挙げられ
る。
The component (C) of the present invention is a curing accelerator,
Known curing accelerators can be used. Specifically, one or two or more selected from an imidazole compound, a tertiary amine compound, and an organic phosphorus compound can be blended. Here, as the imidazole compound, 2-methylimidazole, 2-ethylimidazole, 4-methylimidazole, 4-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-imidazole
Methylimidazole, 2-phenyl-4-hydroxymethylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 2-
Phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and the like. Further, as the tertiary amine compound, triethylamine, benzyltrimethylamine,
amine compounds having an alkyl group or an aralkyl group as a substituent bonded to a nitrogen atom such as α-methylbenzyldimethylamine, 1,8-diazahycyclo [5.4.0] undecene-7 and its phenol salt, octylate, Examples thereof include a salt of a cycloamidine compound such as an oleate and an organic acid thereof, and a salt or a complex salt of a cycloamidine compound such as a compound of the following formula and a quaternary boron compound.

【0023】[0023]

【化2】 Embedded image

【0024】また、有機リン系化合物としては、トリフ
ェニルホスフィン等のトリオルガノホスフィン化合物や
テトラフェニルホスホニウムテトラフェニルボレート等
の4級ホスホニウム塩などが挙げられる。
Examples of the organic phosphorus compounds include triorganophosphine compounds such as triphenylphosphine, and quaternary phosphonium salts such as tetraphenylphosphonium tetraphenylborate.

【0025】その配合量は、上記エポキシ樹脂100重
量部に対して0.01〜10重量部、望ましくは0.5
〜5重量部である。0.01重量部より少ないと硬化性
が低下し、10重量部より多いと硬化性に優れるが、保
存性が低下する傾向となる。
The compounding amount is 0.01 to 10 parts by weight, desirably 0.5 to 100 parts by weight of the epoxy resin.
-5 parts by weight. If the amount is less than 0.01 part by weight, the curability is reduced. If the amount is more than 10 parts by weight, the curability is excellent, but the storage stability tends to be reduced.

【0026】ここで、上記エポキシ樹脂は、上記硬化促
進剤単独でも硬化させることができるが、必要によって
は、硬化剤として例えば、テトラヒドロ無水フタル酸、
メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ
無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチル
ハイミック酸、ピロメリット酸二無水物、ベンゾフェノ
ンテトラカルボン酸二無水物、3,3’,4,4’−ビ
フェニルテトラカルボン酸二無水物、ビス(3,4−ジ
カルボキシフェニル)エーテル二無水物、ビス(3,4
−ジカルボキシフェニル)メタン二無水物、2,2−ビ
ス(3,4−ジカルボキシフェニル)プロパン二無水物
などの、好ましくは分子中に脂肪族環又は芳香族環を1
個又は2個有すると共に、酸無水物基(即ち、−CO−
O−CO−基)を1個又は2個有する、炭素原子数4〜
25個、好ましくは8〜20個程度の酸無水物や、ジシ
アンジアミド、アジピン酸ヒドラジド、イソフタル酸ヒ
ドラジドなどのカルボン酸ヒドラジドを使用することが
できる。
Here, the epoxy resin can be cured with the curing accelerator alone, but if necessary, a curing agent such as tetrahydrophthalic anhydride,
Methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, methylhymic anhydride, pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyl Tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4
-Dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, etc., preferably having one aliphatic or aromatic ring in the molecule.
Or two, and an acid anhydride group (that is, -CO-
An O—CO— group) having 1 or 2 carbon atoms,
It is possible to use about 25, preferably about 8 to 20 acid anhydrides and carboxylic acid hydrazides such as dicyandiamide, adipic hydrazide, and isophthalic hydrazide.

【0027】なお、酸無水物を硬化剤として用いる場合
は、エポキシ樹脂中のエポキシ基1モルに対し、硬化剤
中の酸無水物基の比を0.3〜0.7モルの範囲とする
ことが望ましい。0.3モル未満では硬化性が不十分で
あり、0.7モルを超えると、未反応の酸無水物が残存
し、ガラス転移温度の低下となるおそれがある。より望
ましくは0.4〜0.6モルの範囲である。
When an acid anhydride is used as a curing agent, the ratio of the acid anhydride group in the curing agent to the mol of epoxy group in the epoxy resin is in the range of 0.3 to 0.7 mol. It is desirable. If it is less than 0.3 mol, the curability is insufficient, and if it exceeds 0.7 mol, unreacted acid anhydride remains and the glass transition temperature may be lowered. More preferably, it is in the range of 0.4 to 0.6 mol.

【0028】本発明の組成物には、応力を低下させる目
的でシリコーンゴム、シリコーンオイルや液状のポリブ
タジエンゴム、メタクリル酸メチル−ブタジエン−スチ
レン共重合体といった熱可塑性樹脂などを配合してもよ
い。好ましくは、アルケニル基含有エポキシ樹脂又はフ
ェノール樹脂のアルケニル基と、下記式(1)で示され
る一分子中の珪素原子の数が20〜400、好ましくは
40〜200であり、SiH基の数が1〜5であるオル
ガノポリシロキサンのSiH基との付加反応により得ら
れる共重合体を配合することがよい。 HabSiO(4-a-b)/2 (1) (式中、Rは置換又は非置換の一価炭化水素基、aは
0.005〜0.1、bは1.8〜2.2、1.81≦
a+b≦2.3を満足する正数を示す。)
The composition of the present invention may be blended with a thermoplastic resin such as silicone rubber, silicone oil, liquid polybutadiene rubber, or methyl methacrylate-butadiene-styrene copolymer, for the purpose of reducing stress. Preferably, the alkenyl group of the alkenyl group-containing epoxy resin or phenol resin and the number of silicon atoms in one molecule represented by the following formula (1) are 20 to 400, preferably 40 to 200, and the number of SiH groups is It is preferable to blend a copolymer obtained by an addition reaction of the organopolysiloxane with SiH groups of 1 to 5. H a R b SiO (4-ab) / 2 (1) (wherein, R is a substituted or unsubstituted monovalent hydrocarbon group, a is 0.005 to 0.1, b is 1.8 to 2. 2, 1.81 ≦
It indicates a positive number satisfying a + b ≦ 2.3. )

【0029】なお、Rの一価炭化水素基としては、炭素
数1〜10、特に1〜8のものが好ましく、メチル基、
エチル基、プロピル基、イソプロピル基、ブチル基、イ
ソブチル基、tert−ブチル基、ヘキシル基、シクロ
ヘキシル基、オクチル基、デシル基等のアルキル基、ビ
ニル基、アリル基、プロペニル基、ブテニル基、ヘキセ
ニル基等のアルケニル基、フェニル基、キシリル基、ト
リル基等のアリール基、ベンジル基、フェニルエチル
基、フェニルプロピル基等のアラルキル基などや、これ
らの炭化水素基の水素原子の一部又は全部を塩素、フッ
素、臭素等のハロゲン原子で置換したクロロメチル基、
ブロモエチル基、トリフルオロプロピル基等のハロゲン
置換一価炭化水素基を挙げることができる。上記共重合
体としては、中でも下記構造のものが望ましい。
The monovalent hydrocarbon group of R preferably has 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms.
Ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, hexyl group, cyclohexyl group, octyl group, alkyl group such as decyl group, vinyl group, allyl group, propenyl group, butenyl group, hexenyl group Alkenyl groups such as phenyl group, xylyl group, and tolyl group; aralkyl groups such as benzyl group, phenylethyl group, and phenylpropyl group; and a part or all of hydrogen atoms of these hydrocarbon groups. A chloromethyl group substituted by a halogen atom such as fluorine, bromine,
Examples thereof include a halogen-substituted monovalent hydrocarbon group such as a bromoethyl group and a trifluoropropyl group. Among the above copolymers, those having the following structures are particularly desirable.

【0030】[0030]

【化3】 Embedded image

【0031】[0031]

【化4】 (上記式中、Rは上記と同じ、R1は水素原子又は炭素
数1〜4のアルキル基、R2は−CH2CH2CH2−、−
OCH2−CH(OH)−CH2−O−CH2CH2CH2
−又は−O−CH2CH2CH2−である。nは4〜19
9、好ましくは19〜99の整数、pは1〜10の整
数、qは1〜10の整数である。)
Embedded image (In the above formula, R is the same as above, R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 is —CH 2 CH 2 CH 2 —, −
OCH 2 —CH (OH) —CH 2 —O—CH 2 CH 2 CH 2
— Or —O—CH 2 CH 2 CH 2 —. n is 4 to 19
9, preferably an integer of 19 to 99, p is an integer of 1 to 10, and q is an integer of 1 to 10. )

【0032】上記共重合体は、ジオルガノポリシロキサ
ン単位が液状エポキシ樹脂と硬化剤(配合した場合)の
合計量100重量部に対し0〜20重量部、特には2〜
15重量部含まれるように配合することで、応力をより
一層低下させることができる。
In the above copolymer, the diorganopolysiloxane unit is contained in an amount of 0 to 20 parts by weight, preferably 2 to 20 parts by weight, based on 100 parts by weight of the total amount of the liquid epoxy resin and the curing agent (when blended).
By blending so as to contain 15 parts by weight, the stress can be further reduced.

【0033】本発明の封止材(液状エポキシ樹脂組成
物)には、更に必要に応じ、接着向上用炭素官能性シラ
ン、カーボンブラックなどの顔料、染料、酸化防止剤、
表面処理剤(γ−グリシドキシプロピルトリメトキシシ
ラン等のシランカップリング剤など)、その他の添加剤
を配合することができる。
The sealing material (liquid epoxy resin composition) of the present invention may further contain, if necessary, pigments such as carbon-functional silane for improving adhesion, carbon black, dyes, antioxidants,
A surface treating agent (such as a silane coupling agent such as γ-glycidoxypropyltrimethoxysilane) and other additives can be blended.

【0034】本発明のエポキシ樹脂組成物は、例えば、
エポキシ樹脂、硬化剤、硬化促進剤、無機質充填剤を同
時に又は別々に必要により加熱処理を加えながら撹拌、
溶解、混合、分散させることにより製造することができ
る。これらの混合物の混合、撹拌、分散等の装置は特に
限定されないが、撹拌、加熱装置を備えたライカイ機、
3本ロール、ボールミル、プラネタリーミキサー等を用
いることができる。これら装置を適宜組み合わせて使用
してもよい。
The epoxy resin composition of the present invention is, for example,
Epoxy resin, curing agent, curing accelerator, inorganic filler simultaneously or separately stirring while adding heat treatment as necessary,
It can be produced by dissolving, mixing and dispersing. The apparatus for mixing, stirring, and dispersing these mixtures is not particularly limited, but a stirring and heating apparatus equipped with a heating device,
A three roll, ball mill, planetary mixer or the like can be used. These devices may be used in appropriate combination.

【0035】なお、本発明における、アンダーフィル
材、即ちアンダーフィル部の封止材として用いる液状エ
ポキシ樹脂組成物の粘度は、25℃において10,00
0ポイズ以下のものが好ましい。また、本発明のアンダ
ーフィル材は、隙間充填性と耐熱衝撃性の点で、ガラス
転移温度以下の膨張係数が20〜40ppm/℃、特に
20〜30ppm/℃であることが好ましい。
In the present invention, the viscosity of the underfill material, that is, the liquid epoxy resin composition used as a sealing material for the underfill portion, is 10,000 at 25 ° C.
Those having 0 poise or less are preferred. In addition, the underfill material of the present invention preferably has an expansion coefficient of 20 to 40 ppm / ° C. or less, particularly 20 to 30 ppm / ° C. or lower at a glass transition temperature or lower, in view of gap filling properties and thermal shock resistance.

【0036】本発明のアンダーフィル材はフリップチッ
プ型半導体装置用として使用するものであるが、本発明
に係るフリップチップ型半導体装置は、図1に示したよ
うに、有機基板1の配線パターン面に複数個のバンプ2
を介して半導体チップ3が搭載されているものであり、
上記有機基板1と半導体チップ3との間の隙間(バンプ
2間の隙間)にアンダーフィル材4が充填され、その側
部がフィレット材5で封止されたものである。
Although the underfill material of the present invention is used for flip-chip type semiconductor devices, the flip-chip type semiconductor device according to the present invention, as shown in FIG. Multiple bumps 2
The semiconductor chip 3 is mounted via
A gap between the organic substrate 1 and the semiconductor chip 3 (a gap between the bumps 2) is filled with an underfill material 4, and a side portion thereof is sealed with a fillet material 5.

【0037】なお、上記フィレット材は特に制限される
ものではなく、エポキシ樹脂組成物、特に上述したアン
ダーフィル材と同様の成分を有するエポキシ樹脂組成物
を用いることができる(但し、無機質充填剤としては、
上記球状シリカのほか、溶融シリカ、結晶シリカ、アル
ミナ、ボロンナイトライド、チッ化アルミ、チッ化珪
素、マグネシア、マグネシウムシリケートなどが使用さ
れる)が、ガラス転移温度以下の膨張係数が20ppm
/℃以下、好ましくは5〜19ppm/℃、より好まし
くは10〜18ppm/℃であるものを使用するのが好
ましい。
The fillet material is not particularly limited, and an epoxy resin composition, particularly an epoxy resin composition having the same components as the above-described underfill material, can be used (however, as an inorganic filler, Is
In addition to the above-mentioned spherical silica, fused silica, crystalline silica, alumina, boron nitride, aluminum nitride, silicon nitride, magnesia, magnesium silicate, etc. are used, but the expansion coefficient below the glass transition temperature is 20 ppm.
/ C, preferably 5 to 19 ppm / C, more preferably 10 to 18 ppm / C.

【0038】上記アンダーフィル材の成形方法、成形条
件は常法とすることができるが、好ましくは熱オーブン
を用いて150℃で0.5時間以上の条件において硬
化、成形することが好ましい。
The molding method and molding conditions of the above-mentioned underfill material may be conventional methods, but it is preferable to cure and mold the material at 150 ° C. for 0.5 hour or more using a hot oven.

【0039】[0039]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0040】[実施例、比較例]表1,2に示す成分を
3本ロールで均一に混練することにより8種のエポキシ
樹脂組成物を得た。これらのエポキシ樹脂組成物を用い
て、以下に示す試験を行った。その結果を表1,2に示
す。
Examples and Comparative Examples Eight types of epoxy resin compositions were obtained by uniformly kneading the components shown in Tables 1 and 2 with a three-roll mill. The following tests were performed using these epoxy resin compositions. The results are shown in Tables 1 and 2.

【0041】[粘度]BH型回転粘度計を用いて20r
pmの回転数で25℃における粘度を測定した。 [チキソ比]BH型回転粘度計を用いて2rpmと20
rpmの粘度の比を25℃におけるチキソ比とした。 [ゲル化時間]組成物のゲル化時間を150℃の熱板上
で測定した。 [Tg]:ガラス転移温度 5mm×5mm×15mmの硬化物サンプルを用いてT
MA(熱機械分析装置)により5℃/分の速度で昇温し
た際の値を測定した。 [CTE−1]:Tg以下の膨張係数 [CTE−2]:Tg以上の膨張係数 上記ガラス転移温度の測定において、CTE−1は50
〜80℃の温度範囲、CTE−2は200〜230℃の
温度範囲における値を求めた。 [侵入試験]及び[ボイド不良]図2(A),(B)に
示したように、熱板11上に下側スライドガラス12を
載置し、その上にそれぞれ厚さ80μmの2枚のポリイ
ミドフィルム13,13を1cmの間隔を隔ててセット
し、その上から上側スライドガラス14を被せ、上記両
スライドガラス12,14と2枚のポリイミドフィルム
13,13とにより、幅1cm、高さ80μmの間隙1
5を形成した。上記下側スライドガラス12上にエポキ
シ樹脂組成物16を置き、熱板11を100℃に設定し
た時、上記組成物16が上記間隙15に20mmの距離
まで浸透、到達するまでの時間を測定した。 [超音波探傷装置によるボイドの観察]400個のバン
プを有する10mm×10mmのシリコンチップをBT
基板に搭載し、23℃/60%RHの雰囲気に2時間放
置した後、このデバイスの一片にディスペンサーでそれ
ぞれの組成物を滴下し、封止した。封止後、加熱硬化さ
せた後に超音波探傷装置を用い、ボイド(内部ボイド)
の検出を行った。評価はアンダーフィル材硬化物の封止
面積に対するボイドのトータル面積割合で示した。 [熱衝撃性不良率]銅フレームの上にエポキシ樹脂組成
物を均一に塗布して、10mm×10mmにカットした
0.6mm厚のシリコンウエハーを樹脂上にのせ、15
0℃で4時間硬化させて得られた試験片を−55℃×1
分〜160℃×30秒の熱サイクルを繰り返して、10
0サイクル後にエポキシ樹脂組成物のクラック及び剥離
が発生しているものを不良とし、不良率を測定した(試
験数=20)。
[Viscosity] 20 r using a BH type rotational viscometer
The viscosity at 25 ° C. was measured at a rpm of pm. [Thixo ratio] Using a BH-type rotational viscometer at 2 rpm and 20 rpm
The ratio of the viscosity at rpm was the thixo ratio at 25 ° C. [Gelling time] The gelling time of the composition was measured on a hot plate at 150 ° C. [Tg]: glass transition temperature T using a cured product sample of 5 mm × 5 mm × 15 mm
The value when the temperature was raised at a rate of 5 ° C./min by an MA (thermomechanical analyzer) was measured. [CTE-1]: Expansion coefficient of Tg or less [CTE-2]: Expansion coefficient of Tg or more In the above measurement of the glass transition temperature, CTE-1 was 50.
The temperature in the temperature range of 8080 ° C. and the value of CTE-2 in the temperature range of 200 to 230 ° C. were determined. [Intrusion Test] and [Void Failure] As shown in FIGS. 2A and 2B, the lower slide glass 12 is placed on the hot plate 11 and two 80 μm-thick glass plates are placed thereon. The polyimide films 13 and 13 are set at an interval of 1 cm, and the upper slide glass 14 is put on the polyimide films 13 and 13. The two slide films 12 and 14 and the two polyimide films 13 and 13 are 1 cm wide and 80 μm high. Gap 1
5 was formed. When the epoxy resin composition 16 was placed on the lower slide glass 12 and the hot plate 11 was set at 100 ° C., the time required for the composition 16 to penetrate and reach the gap 15 up to a distance of 20 mm into the gap 15 was measured. . [Observation of Void by Ultrasonic Flaw Detector] A 10 mm × 10 mm silicon chip having 400 bumps was subjected to BT.
After being mounted on a substrate and allowed to stand in an atmosphere of 23 ° C./60% RH for 2 hours, each composition was dropped on a piece of the device with a dispenser and sealed. After sealing and heat curing, use an ultrasonic flaw detector to form voids (internal voids).
Was detected. The evaluation was shown by the total area ratio of voids to the sealing area of the cured underfill material. [Defective rate of thermal shock resistance] An epoxy resin composition was uniformly applied on a copper frame, and a 0.6 mm-thick silicon wafer cut into 10 mm × 10 mm was placed on the resin.
A test specimen obtained by curing at 0 ° C. for 4 hours was −55 ° C. × 1
A heat cycle of 30 min.
After 0 cycles, those having cracks and peeling of the epoxy resin composition were regarded as defective, and the defective rate was measured (number of tests = 20).

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】使用原料 (1)RE310:ビスフェノールA型エポキシ樹脂
(日本化薬(株)製) (2)RE304:ビスフェノールF型エポキシ樹脂
(日本化薬(株)製) (3)MH700:メチルテトラヒドロ無水フタル酸
(新日本理化(株)製) (4)下記表3に示すシリカ (5)KBM403:γ−グリシドキシプロピルトリメ
トキシシラン(信越化学工業(株)製) (6)2P4MZ:2−フェニル−4−メチルイミダゾ
ール(四国化成(株)製) (7)HX3741:イミダゾ−ル化合物を含有するマ
イクロカプセル化触媒(旭チバ(株)製)
Raw Materials Used (1) RE310: Bisphenol A epoxy resin (Nippon Kayaku Co., Ltd.) (2) RE304: Bisphenol F epoxy resin (Nippon Kayaku Co., Ltd.) (3) MH700: Methyltetrahydro Phthalic anhydride (manufactured by Nippon Rika Co., Ltd.) (4) Silica shown in Table 3 below (5) KBM403: γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) (6) 2P4MZ: 2 -Phenyl-4-methylimidazole (manufactured by Shikoku Chemicals) (7) HX3741: a microencapsulated catalyst containing an imidazole compound (manufactured by Asahi Ciba Co., Ltd.)

【0045】[0045]

【表3】 * SO32H:アドマテクス(株)製[Table 3] * SO32H: manufactured by Admatechs Co., Ltd.

【0046】[0046]

【発明の効果】本発明のフリップチップ型半導体装置用
アンダーフィル材は、薄膜侵入性、保存安定性に優れて
おり、このアンダーフィル材を用いた半導体装置は非常
に信頼性の高いものである。
The underfill material for a flip-chip type semiconductor device according to the present invention is excellent in thin film penetration and storage stability, and a semiconductor device using this underfill material is very reliable. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】フリップチップ型半導体装置の一例を示す概略
図である。
FIG. 1 is a schematic view illustrating an example of a flip-chip type semiconductor device.

【図2】侵入試験で用いたテストピースを示し、(A)
は側面図、(B)は平面図である。
FIG. 2 shows a test piece used in the penetration test, (A)
Is a side view, and (B) is a plan view.

【符号の説明】 1 有機基板 2 バンプ 3 半導体チップ 4 アンダーフィル材 5 フィレット材 11 熱板 12 下側スライドガラス 13 ポリイミドフィルム 14 上側スライドガラス 15 間隙 16 エポキシ樹脂組成物[Description of Signs] 1 Organic substrate 2 Bump 3 Semiconductor chip 4 Underfill material 5 Fillet material 11 Hot plate 12 Lower slide glass 13 Polyimide film 14 Upper slide glass 15 Gap 16 Epoxy resin composition

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 7/18 C08K 7/18 9/00 9/00 H01L 21/56 H01L 21/56 E 21/60 311 21/60 311S 23/29 23/30 R 23/31 (72)発明者 隅田 和昌 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料 技術研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08K 7/18 C08K 7/18 9/00 9/00 H01L 21/56 H01L 21/56 E 21/60 311 21/60 311S 23/29 23/30 R 23/31 (72) Inventor Kazumasa Sumida 1-10 Hitomi, Matsuida-machi, Usui-gun, Gunma Prefecture 10 Silicone Electronic Materials Technology Laboratory, Shin-Etsu Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (A)液状エポキシ樹脂:100重量部 (B)ポリオルガノシルセスキオキサン球状粒子を加熱
燃焼させることにより得られる球状シリカ:100〜3
00重量部 (C)硬化促進剤:0.01〜10重量部 を含有してなることを特徴とするフリップチップ型半導
体装置用アンダーフィル材。
(A) Liquid epoxy resin: 100 parts by weight (B) Spherical silica obtained by heating and burning polyorganosilsesquioxane spherical particles: 100 to 3
An underfill material for a flip-chip type semiconductor device, comprising: 00 parts by weight (C) a curing accelerator: 0.01 to 10 parts by weight.
【請求項2】 (B)成分の球状シリカが、最大粒径が
50μm以下で、平均粒径が0.5〜10μmであっ
て、表面に炭素原子を0.005〜0.1重量%含有し
たものである請求項1記載のアンダーフィル材。
2. The spherical silica as component (B) has a maximum particle size of 50 μm or less, an average particle size of 0.5 to 10 μm, and contains 0.005 to 0.1% by weight of carbon atoms on the surface. The underfill material according to claim 1, wherein
【請求項3】 (B)成分の球状シリカ以外の無機質充
填剤を含有し、(B)成分を含めた無機質充填剤全体に
対する(B)成分の球状シリカの含有量が60重量%以
上である請求項1又は2記載のアンダーフィル材。
3. An inorganic filler other than the spherical silica as the component (B) is contained, and the content of the spherical silica as the component (B) is 60% by weight or more based on the whole inorganic filler including the component (B). The underfill material according to claim 1.
JP2000067640A 1999-03-17 2000-03-10 Underfill material for flip chip type semiconductor devices Expired - Fee Related JP3674675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067640A JP3674675B2 (en) 1999-03-17 2000-03-10 Underfill material for flip chip type semiconductor devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7137899 1999-03-17
JP11-71378 1999-03-17
JP2000067640A JP3674675B2 (en) 1999-03-17 2000-03-10 Underfill material for flip chip type semiconductor devices

Publications (2)

Publication Number Publication Date
JP2000327884A true JP2000327884A (en) 2000-11-28
JP3674675B2 JP3674675B2 (en) 2005-07-20

Family

ID=26412483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067640A Expired - Fee Related JP3674675B2 (en) 1999-03-17 2000-03-10 Underfill material for flip chip type semiconductor devices

Country Status (1)

Country Link
JP (1) JP3674675B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008888A (en) * 2004-06-28 2006-01-12 Nippon Steel Chem Co Ltd Liquid epoxy resin composition
JP2006128488A (en) * 2004-10-29 2006-05-18 Seiko Epson Corp Manufacturing method of semiconductor device
JP2008537760A (en) * 2005-04-05 2008-09-25 モーメンティブ・パフォーマンス・マテリアルズ・インク Curing system, adhesive system, electronic equipment
JP2009049115A (en) * 2007-08-17 2009-03-05 Seiko Epson Corp Semiconductor device, and manufacturing method thereof
US7768136B2 (en) 2005-02-02 2010-08-03 Sharp Kabushiki Kaisha Sealed-by-resin type semiconductor device
JP2011171458A (en) * 2010-02-17 2011-09-01 Nec Corp Electronic device and method for manufacturing electronic device
CN112457807A (en) * 2020-11-14 2021-03-09 烟台德邦科技股份有限公司 Preparation method of chip-level underfill material with excellent thermal stability

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008888A (en) * 2004-06-28 2006-01-12 Nippon Steel Chem Co Ltd Liquid epoxy resin composition
JP4583821B2 (en) * 2004-06-28 2010-11-17 新日鐵化学株式会社 Liquid epoxy resin composition
JP2006128488A (en) * 2004-10-29 2006-05-18 Seiko Epson Corp Manufacturing method of semiconductor device
JP4737370B2 (en) * 2004-10-29 2011-07-27 セイコーエプソン株式会社 Manufacturing method of semiconductor device
US7768136B2 (en) 2005-02-02 2010-08-03 Sharp Kabushiki Kaisha Sealed-by-resin type semiconductor device
JP2008537760A (en) * 2005-04-05 2008-09-25 モーメンティブ・パフォーマンス・マテリアルズ・インク Curing system, adhesive system, electronic equipment
JP2009049115A (en) * 2007-08-17 2009-03-05 Seiko Epson Corp Semiconductor device, and manufacturing method thereof
JP2011171458A (en) * 2010-02-17 2011-09-01 Nec Corp Electronic device and method for manufacturing electronic device
CN112457807A (en) * 2020-11-14 2021-03-09 烟台德邦科技股份有限公司 Preparation method of chip-level underfill material with excellent thermal stability

Also Published As

Publication number Publication date
JP3674675B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US6225704B1 (en) Flip-chip type semiconductor device
JP5502268B2 (en) Resin composition set for system-in-package semiconductor devices
JP2001288340A (en) Encapsulant for flip-chip type semiconductor device and flip-chip type semiconductor device
US6376923B1 (en) Flip-chip type semiconductor device sealing material and flip-chip type semiconductor device
JP4905668B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4066174B2 (en) Liquid epoxy resin composition, flip chip type semiconductor device and sealing method thereof
US6429238B1 (en) Flip-chip type semiconductor device sealing material and flip-chip type semiconductor device
US6323263B1 (en) Semiconductor sealing liquid epoxy resin compositions
JP3997422B2 (en) Liquid epoxy resin composition and semiconductor device
US6372839B1 (en) Flip-chip type semiconductor device underfill
US6376100B1 (en) Flip-chip type semiconductor device underfill material and flip-chip type semiconductor device
JP3707531B2 (en) Flip chip type semiconductor device sealing material and flip chip type semiconductor device
JP3773022B2 (en) Flip chip type semiconductor device
JP3646785B2 (en) Underfill material for flip chip type semiconductor device and flip chip type semiconductor device
JP2004051734A (en) Liquid epoxy resin composition and semiconductor apparatus
JP2009173744A (en) Underfill agent composition
JP3674675B2 (en) Underfill material for flip chip type semiconductor devices
JP2001055488A (en) Encapsulant for flip chip type semiconductor device and flip chip type semiconductor device
JP2010077234A (en) Liquid epoxy resin composition and semiconductor device
JP2010111747A (en) Underfill agent composition
KR100572959B1 (en) Sealing Materials for Flip Chip Semiconductor Devices
JP2000273287A (en) Under-filling material for flip chip type semiconductor device and flip chip type semiconductor device
JP2005036069A (en) Sidefill material for flip-chip mounting, and semiconductor device
JP2001200139A (en) Liquid epoxy resin composition for semiconductor sealing
JP5354721B2 (en) Underfill agent composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050126

A521 Written amendment

Effective date: 20050314

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050419

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees